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off cold=climate geomaorphology

1: Why interest in cold-climate geomorphology ?
2: Glaciation

3: Periglaciation
4. Permafrost
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Increased sedimentation rates and grain
sizes 2-4 Myr ago due to the influence of
climate change on erosion rates
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Around the globe, and in a variety of settings including active and inactive mountain belts, increases in sedimentation rates as well
as in grain sizes of sediments were recorded at —~2-4 Myr ago, implying increased erosion rates. A change in climate represents
the only process that is globally synchronous and can potentially account for the widespread increase in erosion and
sedimentation, but no single process—Ilike a lowering of sea levels or expanded glaciation—can explain increases in
sedimentation in all environments, encompassing continental margins and interiors, and tropical as well as higher latitudes. We
suggest that climate affected erosion mainly by the transition from a period of climate stability, in which landscapes had attained
equilibrium configurations, to a time of frequent and abrupt changes in temperature, precipitation and vegetation, which prevented
fluvial and glacial systems from establishing equilibrium states.
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Figure 1 Plot of 5180 from benthic foraminifers since 25 Myr ago, showing increases in
mean values and in variability since ~4 Myr ago. The former increases imply cooling, and
the latter increases imply an increasingly variable climate. Values (in %o) have been
measured largely (—95%) from fossil tests of Cibicoides spp., or adjusted to be equivalent
to those of Cibicoides (ref. 63), from the Ceara rise in the eastern equatorial Atlantic Ocean
(Ocean Drilling Project sites 925, 926 and 926). Values are plotted increasing downwards
to reflect cooling. Data are from refs 62—66, and from T. Bickert and W. B. Curry, personal
communication.
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Figure 3 Histogram of terrigenous sediment deposited in the world's oceans, compiled by
Hay et al®. We note the abrupt increase since ~5 Myr ago. The solid curve is an

exponential fit to the data; it deviates markedly from the sedimentation rate since 5 Myr
ago. The global sea floor contains nearly all the floor created in the past 5 Myr but anly a
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may incise and denude surfaces more rapidly than would equable
climates climate of any kind alone, even if erosion has occurred
during only part of the past few million years. We consider that the
increased sedimentation of coarser material since 2—4 Myr ago may
have been caused by a climate shift. This shift was from a relatively
unvarying climate, to one that oscillated between states that pre-
pared the surface during some periods—Dby chemical weathering,
periglacial fracturing, or other forms of mass wasting—and states
that transported material. S

Received 5 September 2000; accepted 2 March 2001.
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Figure 1 Plot of 50 from benthic foraminifers since 25 Myr ago, showing increases in
mean values and in variability since ~4 Myr ago. The former increases imply cooling, and
the latter increases imply an increasingly variable climate. Values (in %o) have been
measured largely (—95%) from fossil tests of Cibicoidesspp., or adjusted to be equivalent
to those of Cibicoides (ref. 63), from the Ceara rise in the eastern equatorial Atlantic Ocean
(Ocean Drilling Project sites 925, 926 and 926). Values are plotied increasing downwards
toreflectcooling. Data are from refs 62—66, and from T. Bickert and W. B. Curry, personal
communication
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‘ne periglacial envirommemnt
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Tree Line Europe From Satellites 2006
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Periglacial environments
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Periglacial processes
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Frost heave
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Snow and ground temperature
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High Arctic Nivation Process-Form-Sediment Model
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Permairost
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CIRCUM-ARCTIC MAP OF PERMAFROST AND GROUND-ICE CONDITIONS

Digital version based on USGS Circum-Pacific Map Series Map CP-45;
compiled and edited by Jerry Brown, Oscar J. Ferrians, Jr.,

J. Alan Heginbottom, and Evgeny S. Melnikov.

Original digital version prepared by UNEP/GRID-Arendal, Norway
Source: International Permafrost Association, Data and Information Working
Group, comp. 1898. Circumpolar Active-Layer Permafrost System (CAPS),
version 1.0. CD-ROM Available from National Snow and Ice Data Center,
nsidc@kryos.colorado.edu. Boulder, Colorado: NSIDC, University of
Colorado at Boulder.
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Permafrost on other planets !




