Climatic signals recorded in snow avalanchedominated colluvium in western Norway: depositional facies successions and pollen records

Lars Harald Blikra and Synove Fjeldstad Selvik 1998

Overview

- Study based on depositional processes and ¹⁴C dating of paleosol
- Focus on the palaoeclimatic significance of snow flows
- Variations in winter/extreme climate recorded in avalance deposits

Contents

- Methods/background
- Results
- Conclusion
- Future research

METHODS

Collovium

- Collovium (talus, scree, debris slope)
 - Clastic sediments (coarse grained and immature texture)
 - Deposit at the foot of a mountain slope or a cliff
 - Brought there by gravitational forces (mass movement)

TYPICAL CHARACTERISTICS	colluvial fan	alluvial fan
Geomorphic setting:	mountain slope and its base (slope fan)	mountain footplain or broad valley floor (footplain fa
Catchment:	mountain-slope ravine	intramontane valley or canyon
Apex location:	high on the mountain slope (at the base of ravine)	at the base of mountain slope (valley/canyon mouth
Depositional slope:	35-45° near the apex, to 15-20° near the toe	seldom more than 10-15° near the apex, often less than 1-5° near the toe
Plan-view radius:	less than 0.5 km, rarely up to 1-1.5 km	commonly up to 10 km, occasionally more than 100
Sediment:	mainly gravel, typically very immature	gravel and/or sand, immature to mature
Grain-size trend:	coarsest debris in the lower/toe zone	coarsest debris in the upper/apical zone
Depositional processes:	avalanches, including rockfall, debrisflow and snowflow; minor waterflow, with streamflow chiefly in gullies	debrisflow and/or waterflow (braided streams)
EXAMPLES	The Brotfonna colluvial fan, Trollvegen near Romsdal, Norway: one of the world's largest colluvial fans, with	The Badwater alluvial fan, eastern side of Death Val

Fig. 2. A comparison of the distinctive features of colluvial fans and alluvial fans.

(Blikra and Nemec, 1998)

Palaeosol

- Sediment layers from in-situ vegetation/transported material
- Possible to use for ¹⁴C dating
- Indicate a stable phase

Avalanche deposits

- Avalanches deposits often contain not only snow but also a lot of debris and rock fragments
- Dense/cohesive snow flows are capable of transporting larger amount of debris

Figure 3 Features of recent snow-flow deposits. (a) Snow-flow avalanches showing distinct snow lobes and levees on a colluvial fan; (b) Fresh, snowavalanche deposits on a grass-covered surface of a colluvial fan. Photographs taken in early spring 1993 (a) and early fall 1993 (b).

RESULTS

The Korsbrekke colluvial apron DW.SH.=Dwarf shrubs, V=Varia

Present situation

- Avalanche activity is high at several sites
- Winter climate and extreme weather events are moderate
- "high snow-avalanche activity in the last century are more a rule than an exception in the geological record"

CONCLUSIONS AND FUTURE RESEARCH

Conclusion

- Avalanche dominated colluvium in Western
 Norway : important for palaeo-climatic research
 - The impact of regional climatic change was stronger than varied local slope conditions
 - Avalanche activity mainly controlled by fluctuations in winter conditions
- The palaeoclimatic record from colluvial deposits has a higher resolution than glacier fluctuation proxy data

Conclusion

- Holocene climatic record from avalanche colluvium shows
 - Fluctuating winter climate
 - Colder conditions from 4700 yr BP
 - The phases 3900-3100 yr BP and post 1400 yr AD being the most severe

• Extreme weather events common through out the Holocene, some of them more severe than it is today

Future research

- Should focus on analyzing glacial and colluvial records situated in different geomorphological postions
- Resolve the controlling factors on a local scale
 - Variations in temperature and precipitation rates VS.
 prevalent wind directions and local slope conditions

Time for...

• Questions?

