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Preface

The dynamics of the atmosphere and ocean are largely nonlinear. Non-

linearity is the reason these systems are chaotic and hence unpredictable.

However much of what we understand about the systems comes from the

study of the linear equations of motion. These are mathematically tractable

(unlike, for the most part, their nonlinear counterparts), meaning we can

derive solutions. These solutions include gravity waves, Rossby waves

and storm formation—all of which are observed. So the linear dynamics

informs our understanding of the actual systems.

These notes are intended as a one to two semester introduction to the dy-

namics of the atmosphere and ocean. The target audience is the advanced

undergraduate or beginning graduate student. The philosophy is to obtain

simplified equations and then use those to study specific atmospheric or

oceanic flows. Some of the latter examples come from research done 50

years ago, but others are from much more recent work.

Thanks to the people in Oslo who over the years have suggested changes

and improvements. Particular thanks to Jan Erik Weber, Pal Erik Isach-

sen, Lise Seland Graff, Anita Ager-Wick, Magnus Drivdal, Hanne Beatte

Skattor, Sigmund Guttu, Rafael Escobar Lovdahl, Liv Denstad, Ada Gjer-

mundsen and (others).
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Chapter 1

Equations

The motion in the atmosphere and ocean is governed by a set of equations,

the Navier-Stokes equations. These are used to produce our forecasts, both

for the weather and ocean currents. While there are details about these

equations which are uncertain (for example, how we represent processes

smaller than the grid size of our models), they are for the most part ac-

cepted as fact. Let’s consider how these equations come about.

1.1 Derivatives

A fundamental aspect is how various fields (temperature, wind, density)

change in time and space. Thus we must first specify how to take deriva-

tives.

Consider a scalar, ψ, which varies in both time and space, i.e. ψ =

ψ(x, y, z, t). This could be the wind speed in the east-west direction, or

the ocean density. By the chain rule, the total change in the ψ is:

dψ =
∂

∂t
ψ dt+

∂

∂x
ψ dx+

∂

∂y
ψ dy +

∂

∂z
ψ dz (1.1)

Dividing through by dt, we get:

dψ

dt
=

∂

∂t
ψ + u

∂

∂x
ψ + v

∂

∂y
ψ + w

∂

∂z
ψ (1.2)

7



8 CHAPTER 1. EQUATIONS

or, in short form:

dψ

dt
=

∂

∂t
ψ + ~u · ∇ψ (1.3)

Here (u, v, w) are the components of the velocity in the (x, y, z) directions.

On the left side, the derivative is a total derivative. That implies that ψ on

the left side is only a function of time. This is the case when ψ is ob-

served following the flow. If you measure temperature while riding in a

balloon, moving with the winds, you would only record changes in time.

We call this the Lagrangian formulation. The derivatives on the right side

instead are partial derivatives. These are relevant for an observer at a fixed

location. This person records temperature as a function of time, but her in-

formation also depends on her position. An observer at a different location

will generally obtain a different result (depending on how far away she is).

We call the right side the Eulerian formulation.

Most numerical models are based on the Eulerian formulation, albeit

with some using Lagrangian or semi-Lagrangian representations of advec-

tion. But derivations are often simpler in the Lagrangian form. In par-

ticular, we will consider changes occuring to a fluid parcel moving with

the flow. The parcel is an infinitesimal element. However, it nevertheless

contains a large and fixed number of molecules. So it is small in the fluid

sense, but large in the molecular sense. This permits us to think of the fluid

as a continuum, rather than as a set of discrete molecules, as in a gas.
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Figure 1.1: A infinitesimal element of fluid, with volume δV , moving with the flow.

1.2 Continuity equation

Consider a fluid parcel, with a fixed number of molecules (Fig. 1.1). The

parcel’s mass is constant (because it has a fixed number of molecules) but

its volume isn’t. Mass conservation implies:

d

dt
M =

d

dt
ρ δV = 0 (1.4)

if M is the mass, ρ is the parcel’s density and δV is its volume. Imagine

the parcel is a cube, as in Fig. (1.1), with sides δx, δy and δz. Then we can

write:

d

dt
M = δxδyδz

d

dt
ρ+ρ δyδz

d

dt
δx+ρ δxδz

d

dt
δy+ρ δxδy

d

dt
δz = 0 (1.5)

using the chain rule again. Since this equals zero, we can divide through

by δV and still have zero:

1

δV

d

dt
M =

d

dt
ρ+

ρ

δx

d

dt
δx+

ρ

δy

d

dt
δy +

ρ

δz

d

dt
δz = 0 (1.6)

The time derivatives move through the δ terms, so for example:

d

dt
δx = δ

d

dt
x = δu

Thus the relative change in mass is:

1

δV

d

dt
M =

d

dt
ρ+ ρ

δu

δx
+ ρ

δv

δy
+ ρ

δw

δz
= 0 (1.7)



10 CHAPTER 1. EQUATIONS

In the limit that δ → 0, this is:

1

δV

d

dt
M =

d

dt
ρ+ ρ

∂u

∂x
+ ρ

∂v

∂y
+ ρ

∂w

∂z
= 0 (1.8)

So we have:

dρ

dt
+ ρ(∇ · ~u) = 0 (1.9)

This is the continuity equation, in its Lagrangian form. It states that the

density of a parcel advected by the flow will change if the flow is divergent,

i.e. if:

∇ · ~u 6= 0 (1.10)

The divergence determines whether the box shrinks or grows. If the box

expands, the density must decrease to preserve the box’s mass.

The continuity equation can also be written in its Eulerian form, using

the definition of the Lagrangian derivative:

∂ρ

∂t
+ ~u · ∇ρ+ ρ(∇ · ~u) = ∂ρ

∂t
+∇ · (ρ~u) = 0 (1.11)

This version pertains to a fixed volume, whose sides aren’t changing. It

states that the density of a fixed volume will change if there is a net density

flux through the sides of the volume.

To see this, consider another small volume, but now fixed in space and

with fluid (either wind or water) flowing through it. The flux of density
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zδ

yδ

xδxδ

yδ δzρu ρu
xδ
δ ρu yδ δz+ [ ]

x x +   xδ

Figure 1.2: A infinitesimal element of fluid, with volume δV , fixed in space and with fluid

flowing through it.

through the left side is:

Fl = ρu × (area) = (ρu) δy δz (1.12)

The flux leaving the right side can be different, as both the velocity and

density change in space. Using a Taylor expansion, we can write the flux

through the right side as:

Fr ≈ [ρu+
∂

∂x
(ρu)δx] δy δz (1.13)

If these two density fluxes differ, then the box’s mass will change. The net

rate of change in mass is:

∂

∂t
M =

∂

∂t
(ρ δx δy δz) = Fl − Fr (1.14)

so that:

∂

∂t
(ρ δx δy δz) ≈ [ρu− ρu− ∂

∂x
(ρu)δx] δy δz = − ∂

∂x
(ρu)δx δy δz

(1.15)

The volume of the box is constant, so:

∂

∂t
ρ = − ∂

∂x
(ρu) (1.16)
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Taking into account the other four sides of the box we have:

∂ρ

∂t
= − ∂

∂x
(ρu)− ∂

∂y
(ρv)− ∂

∂z
(ρw) = −∇ · (ρ~u) (1.17)

Using the chain rule, we can rewrite the RHS as follows:

∇ · (ρ~u) = ρ∇ · ~u+ ~u · ∇ρ (1.18)

This yields the continuity equation in Eulerian form again:

∂ρ

∂t
+ ~u · ∇ρ+ ρ(∇ · ~u) = 0 (1.19)

So the two approaches yield the same results. We will use both hereafter.

1.3 Momentum equations

The continuity equation pertains to mass. Now consider the fluid veloci-

ties. We can derive expressions for these using Newton’s second law:

~F = m~a (1.20)

We’ll consider a moving parcel again, although the same results obtain

with a fixed volume. The forces acting on the parcel are:

• pressure gradients: 1
ρ∇p

• gravity: ~g

• friction: ~F

Consider the pressure first. The force acting on the left side of the box

(Fig. 1.1) is:

Fl = pA = p(x) δy δz
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while the force on the right side is:

Fr = p(x+ δx) δy δz

Thus the net force acting in the x-direction is:

Fl − Fr = [p(x)− p(x+ δx)] δy δz

Since the parcel is small, we can expand the pressure on in a Taylor series:

p(x+ δx) = p(x) +
∂p

∂x
δx+ ...

The higher order terms are small and so we neglect them. Thus the net

force is:

Fl − Fr = −∂p
∂x

δx δy δz

So Newton’s law states:

m
du

dt
= ρ(δx δy δz)

du

dt
= −∂p

∂x
δx δy δz (1.21)

Cancelling the volumes on both sides, we get:

ρ
du

dt
= −∂p

∂x
(1.22)

Pressure gradients in the other directions have the same effect, so we can

write:
d~u

dt
= −1

ρ
∇p (1.23)

Note that this actually represents three equations, one for each component

of the velocity, (u, v, w). The equation implies that a pressure gradient

produces an acceleration down the gradient (from high to low pressure).

We’ll examine this more closely later.

The gravitational force acts in the vertical direction:

m
dw

dt
= −mg (1.24)
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or just:
dw

dt
= −g (1.25)

We can combine this with the pressure gradient forced to produce a vector

momentum equation:
d~u

dt
= −1

ρ
∇p− gk̂ (1.26)

Lastly there is the friction. At small scales, friction is due to molecular

collisions, by which kinetic energy is converted to heat. At larger scales

though, the friction is usually represented as due to the action of eddies

which are unresolved in the flow. In much of what follows we neglect

friction. Where it is important is in the vertical boundary layers, at the

bottom of the atmosphere and ocean and at the surface of the ocean. We

consider this further in section (3.6). We won’t specify the friction yet, but

just represent it as a vector, ~F . Thus we have:

d

dt
~u = −1

ρ
∇p− gk̂ +

1

ρ
~F (1.27)

This is the momentum equation in Lagrangian form. Under the influence

of the forcing terms, the fluid parcel will accelerate.

This equation pertains to motion in a non-rotating (fixed) frame. There

are additional acceleration terms which come about due to the earth’s rota-

tion. As opposed to the “real” forces shown in (1.27), rotation introduces

“apparent” forces. A stationary parcel on the earth will rotate with the

planet. From the perspective of an observer in space, the parcel is trav-

eling in circles, completing a circuit once a day. Since circular motion

represents an acceleration (the velocity is changing direction), there must

be a corresponding force.

Consider such a stationary parcel, on a rotating sphere, represented by

a vector, ~A (Fig. 1.3). During the time, δt, the vector rotates through an
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δΑδΘ

γ

Ω

γ

Α

Figure 1.3: The effect of rotation on a vector,A, which is otherwise stationary. The vector

rotates through an angle, δΘ, in a time δt.

angle:

δΘ = Ωδt (1.28)

where:

Ω =
2π

86400
sec−1

is the Earth’s rotation rate (one day is 86,400 sec). The change in A is δA,

the arc-length:

δ ~A = | ~A|sin(γ)δΘ = Ω| ~A|sin(γ)δt = (~Ω× ~A) δt (1.29)

So we can write:

limδ→0
δ ~A

δt
=
d ~A

dt
= ~Ω× ~A (1.30)

If ~A is not stationary, but changing in the rotating frame, one can show

that:

(
d ~A

dt
)F = (

d ~A

dt
)R + ~Ω× ~A (1.31)

The F here refers to the fixed frame (space) and R to the rotating one

(earth). If ~A = ~r, the position vector, then:

(
d~r

dt
)F ≡ ~uF = ~uR + ~Ω× ~r (1.32)
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So the velocity in the fixed frame is just that in the rotating frame plus the

velocity associated with the rotation.

Now take ~A to be the velocity in the fixed frame, ~uF . Then:

(
d~uF
dt

)F = (
d~uF
dt

)R + ~Ω× ~uF (1.33)

Substituting in the previous expression for uF , we get:

(
d~uF
dt

)F = (
d

dt
[~uR + ~Ω× ~r])R + ~Ω× [~uR + ~Ω× ~r] (1.34)

Collecting terms, we have:

(
d~uF
dt

)F = (
d~uR
dt

)R + 2~Ω× ~uR + ~Ω× ~Ω× ~r (1.35)

We’ve picked up two additional terms: the Coriolis and centrifugal ac-

celerations. These are the apparent forces which stem from the Earth’s

rotation. Note that both vanish if ~Ω = 0. The centrifugal acceleration

depends only on the position of the fluid parcel; the Coriolis term on the

other hand depends on its velocity.

Plugging this expression into the momentum equation, we obtain:

(
d~uF
dt

)F = (
d~uR
dt

)R + 2~Ω× ~uR + ~Ω× ~Ω× ~r = −1

ρ
∇p+ ~g +

1

ρ
~F (1.36)

This is the momentum equation for motion in a rotating frame.1

The centrifugal acceleration acts perpendicular to the axis of rotation

(Fig. 1.4). As such it projects onto both the radial and the N-S directions.

As such, a parcel in the Northern Hemisphere would accelerate upward and

southward. However these accelerations are balanced by gravity, which

acts to pull the parcel toward the center and northward. The latter (which

is not intuitive!) occurs because rotation changes the shape of the earth

1In a frame with a constant rotation rate. Allowing for variations in the rotation rate introduces an

additional term.
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itself, making it ellipsoidal rather than spherical. The change in shape

results in an exact cancellation of the N-S component of the centrifugal

force.

g

g

*

Ω

Ω
2
R

R

Figure 1.4: The centrifugal force and the deformed earth. Here is g is the gravitational

vector for a spherical earth, and g∗ is that for the actual earth. The latter is an oblate

spheroid.

The radial acceleration is also overcome by gravity. If this weren’t true,

the atmosphere would fly off the earth. So the centrifugal force effectively

modifies gravity, reducing it over what it would be if the earth were sta-

tionary. So the centrifugal acceleration causes no change in the velocity of

a fluid parcel. As such, we can absorb it into gravity:

g′ = g − ~Ω× ~Ω× ~r (1.37)

This correction is rather small (see the exercises), so we will ignore it. We

will also drop the prime on g hereafter.

Thus the momentum equation can be written:

(
d~uR
dt

)R + 2~Ω× ~uR = −1

ρ
∇p+ ~g +

1

ρ
~F (1.38)
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There is only one rotational term, the Coriolis acceleration.

Hereafter, we will focus on the dynamics in a region of the ocean or

atmosphere. The proper coordinates for geophysical motion are spheri-

cal coordinates, but Cartesian coordinates simplify things greatly. So we

imagine a fluid region in a plane, with the vertical coordinate parallel to

the earth’s radial coordinate and the (x, y) coordinates oriented east-west

and north-south, respectively (Fig. 1.5). For now, we assume the plane is

centered at a middle latitude, θ, for example 45 N.

Ωcosθ
Ω    sinθ

θ

Ω

Figure 1.5: We examine the dynamics of a rectangular region of ocean or atmosphere

centered at latitude θ.

There are three spatial directions and each has a corresponding momen-

tum equation. We define the local coordinates (x, y, z) such that:

dx = Recos(θ) dφ, dy = Re dθ, dz = dr

where φ is the longitude, Re is the earth’s radius and r is the radial coordi-

nate; x is the east-west coordinate, y the north-south coordinate and z the

vertical coordinate. We define the corresponding velocities:

u ≡ dx

dt
, v ≡ dy

dt
, w ≡ dz

dt



1.4. EQUATIONS OF STATE 19

The momentum equations determine the accelerations in (x,y,z).

The rotation vector ~Ω projects onto both the y and z directions (Fig.

1.5). Thus the Coriolis acceleration is:

2~Ω× ~u = (0, 2Ωcosθ, 2Ωsinθ)× (u, v, w) =

2Ω(w cosθ − v sinθ, u sinθ,−u cosθ) (1.39)

The Coriolis acceleration acts in all three directions.

An important point is that because the Coriolis forces acts perpendicular

to the motion, it does no work. Specifically, it doesn’t change the speed of

a fluid parcel, just its direction of motion. Despite this, the Coriolis force

is one of the dominant terms at synoptic (weather) scales.

Collecting terms, we have:

du

dt
+ 2Ωw cosθ − 2Ωv sinθ = −1

ρ

∂p

∂x
+

1

ρ
Fx (1.40)

dv

dt
+ 2Ωu sinθ = −1

ρ

∂p

∂y
+

1

ρ
Fy (1.41)

dw

dt
− 2Ωu cosθ = −1

ρ

∂p

∂z
− g +

1

ρ
Fz (1.42)

These are the momentum equations in their Lagrangian form.2

1.4 Equations of state

With the continuity and momentum equations, we have four equations. But

there are 6 unknowns— the pressure, the three components of the velocity,

2If we had used spherical coordinates instead, we would have several additional curvature terms. We’ll

see an example in sec. (2.2), when we examine the momentum equation in cylindrical coordinates.



20 CHAPTER 1. EQUATIONS

the density and the temperature. In fact there are additional variables as

well: the humidity in the atmosphere and the salinity in the ocean. But

even neglecting those, we require two additional equations to close the

system.

One of these is an “equation of state” which relates the density to the

temperature and, for the ocean, the salinity. In the atmosphere, the density

and temperature are linked via the Ideal Gas Law:

p = ρRT (1.43)

where R = 287 Jkg−1K−1 is the gas constant for dry air. The density and

temperature of the gas thus determine its pressure. The Ideal Gas law is

applicable for a dry gas (one with zero humidity), but a similar equation

applies in the presence of moisture if one replaces the temperature with the

“virtual temperature”.3 For our purposes though, it will suffice to consider

a dry gas.

In the ocean, both salinity and temperature affect the density. The de-

pendence is expressed:

ρ = ρ(T, S) = ρc(1− αT (T − Tref) + αS(S − Sref)) + ... (1.44)

where ρc is a constant, T and S are the temperature and salinity (and Tref

and Sref are reference values). As indicated, there are higher order terms

3See, e.g. Holton, An Introduction to Dynamic Meteorology.
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as well. These are nonlinear and generally smaller than the two linear

terms shown. So we will neglect them hereafter.

Increasing the temperature or decreasing the salinity reduces the water

density. In the ocean, the temperature and salinity corrections are much

less than one. Thus the density is dominated by the first term, ρc, a con-

stant. We exploit this later on.

1.5 Thermodynamic equations

The other equation we’ll use is the thermodynamic energy equation, which

expresses how fluid responds to heating. The equation derives from the

first law of thermodynamics, which states that the heat added to a volume

minus the work done by the volume equals the change in its internal energy.

Consider the volume shown in Fig. (1.5). Gas is enclosed in a chamber

to the left of a sliding piston. Heat is applied to the gas and it can then

expand, pushing the piston.

F

q

The heat added equals the change in the internal energy of the gas plus

the work done on the piston.

dq = de+ dw (1.45)
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The work is the product of the force and the distance moved by the piston.

For a small displacement, dx, this is:

dw = Fdx = pAdx = p dV (1.46)

If the volume increases, i.e. if dV > 0, the gas is doing the work; if the

volume decreases, the gas is compressed and is being worked upon.

Let’s assume the volume has a unit mass, so that:

ρ V = 1 (1.47)

Then:

dV = d(
1

ρ
) (1.48)

So we have:

dq = de+ p d(
1

ρ
) (1.49)

If we add heat to the volume, the temperature will rise. If the volume is

kept constant, the temperature increase is proportional to the heat added:

dqv = cv dT (1.50)

where cv is the specific heat at constant volume. One can determine cv in

the lab, by heating a gas in a fixed volume and measuring the temperature

change. With a constant volume, the change in the gas’ energy equals the

heat added to it, so:

dqv = dev = cv dT (1.51)

What if the volume isn’t constant? In fact, the internal energy still only

depends on temperature (for an ideal gas). This is Joule’s Second Law. So

even if V changes, we have:

de = cv dT (1.52)
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Thus we can write:

dq = cvdT + p d (
1

ρ
) (1.53)

If we divide through by dt, we obtain the theromdynamic energy equation:

dq

dt
= cv

dT

dt
+ p

d

dt
(
1

ρ
) (1.54)

The rate of change of the temperature and density depend on the rate at

which the gas is heated.

We can derive another version of the equation. Imagine instead we keep

the pressure of the gas constant. That is, we allow the piston to move but

in such a way that the force on the piston remains the same. If we add

heat, the temperature increases, but it does so at a different rate than if the

volume is held constant. So we can write:

dqp = cp dT (1.55)

where cp is the specific heat at constant pressure. We expect that cp should

be greater than cv, because it requires more heat to raise the gas’ tempera-

ture if the gas is also doing work on the piston.

We can rewrite the work term using the chain rule:

p d(
1

ρ
) = d(

p

ρ
)− 1

ρ
dp (1.56)

So:

dq = cv dT + d(
p

ρ
)− 1

ρ
dp (1.57)

We can rewrite the second term on the RHS using the the ideal gas law:

d(
p

ρ
) = RdT (1.58)

Substituting this in, we have:

dq = (cv +R) dT − 1

ρ
dp (1.59)
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Now if the pressure is held constant, we have:

dqp = (cv +R) dT (1.60)

So:

cp = cv +R

The specific heat at constant pressure is indeed larger than that at constant

volume. For dry air, measurements yield:

cv = 717 Jkg−1K−1, cp = 1004 Jkg−1K−1 (1.61)

So:

R = 287 Jkg−1K−1 (1.62)

as noted in sec. (1.4).

Therefore we can also write the thermodynamic equation as:

dq = cp dT − 1

ρ
dp (1.63)

Dividing by dt, we obtain the second version of the thermodynamic energy

equation. So the two versions of the equation are:

cv
dT

dt
+ p

d

dt
(
1

ρ
) =

dq

dt
(1.64)

cp
dT

dt
− (

1

ρ
)
dp

dt
=

dq

dt
(1.65)

Either one can be used, depending on the situation.

However, it will be more convenient to use a third version of the equa-

tion. This pertains to the potential temperature. As one moves upward
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in atmosphere, both the temperature and pressure change. So if you are

ascending in a balloon and taking measurements, you have to keep track

of both the pressure and temperature. Put another way, it is not enough

to label an air parcel by its temperature. A parcel with a temperature of

1C could be at the ground (at high latitudes) or at a great height (at low

latitudes).

The potential temperature accounts for the change with temperature due

to pressure. Imagine we have a parcel of air at some height. We then

move that parcel back to the surface– without heating it–and measure its

temperature. This is its potential temperature.

From above, we have that:

cp dT − 1

ρ
dp = dq (1.66)

If there is zero heating, dq = 0:

cp dT − 1

ρ
dp = cp dT − RT

p
dp = 0 (1.67)

again using the ideal gas law. We can rewrite this thus:

cp dlnT −Rdlnp = 0 (1.68)

Integrating this, we get:

cp lnT −R lnp = const. (1.69)

This implies:

cp lnT −R lnp = cp lnθ −R lnps (1.70)

where θ and ps are the temperature and pressure at a chosen reference level,

which we take to be the surface. Solving for θ we get:
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θ = T (
ps
p
)R/cp (1.71)

This defines the potential temperature. It is linearly proportional to the

actual temperature, but also depends on the pressure. The potential tem-

perature increases with altitude, because the pressure decreases going up.

In the ocean, the potential temperature increases from the bottom, because

the pressure likewise decreases moving towards the sea surface.

An important point is that if there is no heating, an air parcel conserves

its potential temperature. So without heating, the potential temperature is

like a label for the parcel. In a similar vein, surfaces of constant poten-

tial temperature (also known as an isentropic surfaces or adiabats) are of

special interest. A parcel on an adiabat must remain there if there is no

heating.

The advantage is that we can write the thermodynamic energy equation

in terms of only one variable. Including heating, this is:

cp
d(lnθ)

dt
=

1

T

dq

dt
(1.72)

This is simpler than equations (1.64-1.65) because it doesn’t involve the

pressure.

The potential temperature and temperature in the atmosphere are plotted

in Fig. (1.6). The temperature decreases almost linearly with height near

the earth’s surface, in the troposphere. At about 8 km, the temperature
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Figure 1.6: The potential temperature and temperature in the lower atmosphere. Courtesy

of NASA/GSFC.

begins to rise again, in the stratosphere. In contrast, the potential temper-

ature rises monotonically with height. This makes it a better variable for

studying atmospheric motion.

The corresponding thermodynamic relation in the ocean is:

d

dt
σθ = J (1.73)

where σθ is the potential density and J is the applied forcing. In analogy

to the potential temperature, the potential density is the density of a fluid

parcel if raised adiabatically to a reference pressure (usually 100 kPa). As

will be seen, the pressure increases with depth in the ocean, and this in turn

increases the density on a parcel. The potential density corrects for this. In

addition the forcing term, J , includes changes to either the temperature or
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Figure 1.7: The temperature and potential temperature (left panel) and the potential den-

sity, σθ (right panel), plotted vs. depth. The additional density, σT , is an alternate form

of the potential density. The data come from the Kermadec trench in the Pacific and are

described by Warren (1973). Courtesy of Ocean World at Texas A&M University.

the salinity. So J can also represent fresh water input, for example from

melting ice.

A typical profile of potential density is shown in Fig. (1.7). The tem-

perature (left panel) is warmest near the surface (although in this example,

not very warm!). It decreases with depth until about 5000 m, but then

increases again below that. The latter is due to the increase in pressure.

The potential temperature on the other hand decreases monotonically with

depth. The potential density, σθ (right panel), increases monotonically with

depth.

For our purposes, it will suffice to assume that the density itself is con-

served in the absence of thermodynamic forcing, i.e.:

d

dt
ρ = 0 (1.74)

We do this in the interest of simplicity. But again, the assumption is that
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there is no applied heating of fresh water forcing, both of which we’ll

mostly neglect.

1.6 Exercises

1.1. There are two observers, one at a weather station and another passing

overhead in a balloon. The observer on the ground notices the tem-

perature is falling at rate of 1oC/day, while the balloonist observes the

temperature rising at the same rate. If the balloon is moving east at

10 m/sec, at constant height, what can you conclude about the tem-

perature field?

1.2. A car is driving eastward at 50 km/hr, at 60 N. What is the car’s speed

when viewed from space?

1.3. How much does rotation alter gravity? Calculate the centrifugal ac-

celeration at the equator. How large is this compared to g = 9.8

m/sec2?

1.4. Consider a train moving east at 50 km/hr in Oslo, Norway. What is the

Coriolis acceleration acting on the train? Which direction is it point-

ing? How big is the acceleration compared to gravity? Now imagine

the train is driving the same speed and direction, but in Wellington,

New Zealand. What is the Coriolis acceleration?

1.5. A parcel of air has a temperature of 30C at the surface and rises adia-

batically to the 200 hPa level. What is the density of the parcel there?

Assume the pressure at the surface is 1000 hPa.

1.6. Show that if the troposphere has a constant potential temperature, θ0,

the pressure decreases with height as:
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p(z) = ps(1−
gz

Rθ0
)cp/R

Hint: use the hydrostatic relation (2.3) with the Ideal Gas Law and

the definition of the potential temperature, assumpting that θ = θ0.

An atmosphere with constant potential temperature has an “adiabatic

lapse rate”.



Chapter 2

Basic balances

The equations of motion can be used to model both winds and ocean cur-

rents. When we run numerical models for weather prediction, we are solv-

ing equations like these. But they are nonlinear partial differential equa-

tions, with no known analytical solutions, and as such, it can be difficult to

uncover the wide range of flow phenomena they encompass. However, not

all terms in the equations are equally important at a given set of scales. By

neglecting the smaller terms, we can often simplify the equations, in the

best cases allowing us to obtain analytical solutions.

2.1 Hydrostatic balance

We can assess the sizes of the different terms by scaling the equations.

We do this by estimating the size of the terms using typical values. We

illustrate this with the vertical momentum equation:

31
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∂

∂t
w + u

∂

∂x
w + v

∂

∂y
w + w

∂

∂z
w − 2Ωucosθ = −1

ρ

∂

∂z
p− g (2.1)

W

T

UW

L

UW

L

W 2

D
2ΩU

△VP

ρD
g

W

gT

UW

gL

UW

gL

W 2

gD

2ΩU

g

△VP

gρD
1

10−8 10−8 10−8 10−9 10−4 1 1

In the second line, we’ve estimated each term by a ratio of approximate

values, for example ∂
∂tw by W/T , where w is a typical vertical velocity

and T is a time scale.

For the scales, we’ll use values typical of a weather system in the atmo-

sphere:

U ≈ 10m/sec, L ≈ 106m, D ≈ 104m, T = 1 day ≈ 105 sec

2Ω =
2π

86400 sec
≈ 10−4 sec−1, △VP/ρ ≈ 105m2/sec2

W ≈ 1 cm/sec , g ≈ 10m2/sec (2.2)

Notice that we use a single scale, L, for the two horizontal dimensions.

This is because storms are quasi-circular, not overly elliptical. However

we use a different scale, D, for the depth of the troposphere, which is

much less than L. Likewise we use the same scale, U , for the horizontal

velocities, but a different one (W ) for the vertical velocity. We assume
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too that we are at mid-latitudes, so that cos(θ) is of order one—this term

would be smaller if we were near the poles (where θ = π/2).

Each of the scalings in the second line has dimensions of m/sec2. But

it’s preferable to have non-dimensional parameters, when comparing sizes.

To obtain this, we’ll divide by one of the terms, which we use as a refer-

ence. In this case we’ll use the gravity term, which turns out to be one

of the largest. The result is the third line of (2.1), where all the terms are

dimensionless. How each term compares to one, the size of the scaled

gravity term, determines how important it is.

Putting our estimated values in the dimensionless parameters yields the

values in the fourth line. We see that the first three terms are one hunded

million times smaller than gravity! Thus these can be safely neglected

in the equation. The fourth term is even smaller, being one billion times

smaller; we can neglect this too. The Coriolis term is the largest of those

on the left side of the equation, but it is still 4 orders of magnitude smaller

than gravity. Thus the equation is dominated by the two terms on the right

hand side:

∂p

∂z
≈ −ρg (2.3)

This is the hydrostatic balance. This is a remarkably accurate equation at

the scales of weather systems. Scaling using oceanic values produces the

same result. So the hydrostatic balance is an excellent approximation, in

either system.

However, hydrostatic balance also applies if there is no motion at all.
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If we set u = v = w = 0 in the vertical momentum equation, we obtain

the same balance. This is actually where the name comes from—”hydro”

meaning water and “static” meaning not moving. Neglecting friction, the

momentum equations (1.40-1.42) reduce to:

∂p

∂x
=
∂p

∂y
= 0

0 = −1

ρ

∂p

∂z
− g (2.4)

Thus there are no pressure gradients in the horizontal direction, while in

the vertical direction the pressure gradient is non-zero and balanced by

gravity.

Figure 2.1: The hydrostatic balance.

Consider a layer of fluid at rest in a container (Fig. 2.1). The fluid is in a

cylinder with area of A. The region indicated in the middle of the cylinder,

with a thickness dz, has a mass:

m = ρV = ρAdz

and a weight, mg. The fluid underneath exerts a pressure upwards on the

element, p(z), while the fluid over exerts a pressure downwards, p(z+dz).
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The corresponding forces are the pressures times the area, A. Since the

fluid is at rest, the forces must sum to zero:

p(z)A− p(z + dz)A−mg = 0

or

p(z + dz)− p(z) = −mg
A

= −ρg dz

Letting the height, dz, go to zero, we obtain (2.3). The hydrostatic balance

thus expresses that the atmosphere doesn’t collapse to a thin layer at the

surface.

In reality, there are horizontal pressure gradients and the velocities are

non-zero, and these induce small deviations from the hydrostatic state. But

are the deviations themselves hydrostatic? To see, we separate the pressure

and density into static and dynamic components:

p(x, y, z, t) = p0(z) + p′(x, y, z, t)

ρ(x, y, z, t) = ρ0(z) + ρ′(x, y, z, t) (2.5)

The static components are only functions of z and have no horizontal gra-

dient. As such, they cannot cause acceleration in the horizontal velocities.

At synoptic scales, the dynamic components are generally much smaller

than the static components:

|p′| ≪ |p0|, |ρ′| ≪ |ρ0| (2.6)

Thus we can write:

−1

ρ

∂

∂z
p− g = − 1

ρ0 + ρ′
∂

∂z
(p0 + p′)− g

≈ − 1

ρ0
(1− ρ′

ρ0
) (
∂

∂z
p0 +

∂

∂z
p′)− g
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= − 1

ρ0
(1− ρ′

ρ0
) (−ρ0g +

∂

∂z
p′)− g

= g − 1

ρ0

∂

∂z
p′ − ρ′

ρ0
g +

ρ′

ρ20

∂

∂z
p′ − g

≈ − 1

ρ0

∂

∂z
p′ − ρ′

ρ0
g (2.7)

The static terms by definition obey the hydrostatic balance, so we substitute

−ρ0g for − ∂
∂zp0 in the third line. Also we neglect the term proportional to

the product of the dynamical variables, p′ρ′, in the last line because this is

much smaller than the other terms. These final two terms should replace

the pressure gradient and gravity terms on the RHS of (2.1).

How do we scale these dynamical pressure terms? Measurements sug-

gest the vertical variation of p′ is such that:

1

ρ0

∂

∂z
p′ ≈ 10−1 m/sec2

The perturbation density, ρ′, is roughly 1/100 as large as the static density,

so:
ρ′

ρ0
g ≈ 10−1 m/sec2

To scale these we again divide by g, so that both terms are of order 10−2.

Thus while they are smaller than the static terms, they are still two or-

ders of magnitude larger than the next largest term in (2.1). As such, the

approximate vertical momentum equation is still the hydrostatic balance,

except now with the perturbation pressure and density:

∂

∂z
p′ = −ρ′g (2.8)

The hydrostatic approximation is so accurate that it is used in most

numerical models instead of the full vertical momentum equation. Models
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which use the latter are rarer and are called “non-hydrostatic” models. The

only catch in adopting the hydrostatic balance is that we no longer have a

prognostic equation for w. In hydrostatic models, w must be deduced in

other ways.

In some texts, the following substitution is made:

− ρ′

ρ0
g ≡ b

where b is the buoyancy. However, we’ll retain the density (and also drop

the primes). But keep in mind that the pressure that we are focused on is

the dynamic portion, linked to the motion.

2.2 Horizontal momentum balances

u

u

θ

r

Figure 2.2: Circular flow.

Likewise in the horizontal momentum equations, not all the terms are

equally important. To illustrate this, we could scale the two horizontal

momentum equations, like we did with the vertical momentum equation.

But we use a slightly different approach, by assuming a perfectly circular

(azimuthal) flow, as shown in Fig. (2.2). This way we encompass both u

and v velocities at the same time.
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Consider the momentum equation in cylindrical coordinates for the ve-

locity in the radial direction:1

d

dt
ur −

u2θ
r

+ 2Ωcos(θ)w − 2Ωsin(θ)uθ = −1

ρ

∂

∂r
p (2.9)

The term u2θ/r is called the cyclostrophic term. This term, which arises

in cylindrical coordinates, is actually the centrifugal acceleration, like that

discussed in relation to the earth’s rotation, in sec. (1.3).

Because the flow is purely circular, the radial velocity, ur, is zero. So

we have:

− u2θ
r

+ 2Ωcos(θ)w − 2Ωsin(θ)uθ = −1

ρ

∂

∂r
p (2.10)

U 2

R
2ΩW 2ΩU

△p
ρR

U

2ΩR

W

U
1

△p
2ρΩUR

In the second line, we estimate each of the terms by scaling, as before.

We assume again that we are at mid-latitudes, so that cos(θ) and sin(θ)

are order one quantities. In the third line, we have divided through by the

scale of the third term, that with the vertical component of the Coriolis

parameter.

The second term is small at synoptic scales because vertical velocity

is much less than the horizontal ones. Using the weather system values

of W ∝ 1 cm/sec and U ∝ 10 m/sec, the ratio W/U is 10−3. In the

ocean, the horizontal velocities are typically of order 10 cm/sec while the

vertical velocities are measured in meters per day—roughly four orders of

magnitude smaller. So we can neglect this term.

1See for example Batchelor, Fluid Mechanics.
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So, as with the vertical momentum equation, the term involving the

north-south component of the Coriolis vector, 2Ωcos(θ), has dropped out.

Only the vertical component remains at synoptic scales. So we define:

f ≡ 2Ωsin(θ)

and use this hereafter.

Thus equation (2.10) reduces to:

u2θ
r

+ fuθ = α
1

ρ

∂

∂r
p (2.11)

Now there are just two terms on the LHS, the cyclostrophic and Coriolis

accelerations. The relative sizes of these terms are dictated by the dimen-

sionless parameter:

ǫ ≡ U

2ΩR
=

U

fR

This is an important non-dimensional quantity in geophysical fluid dynam-

ics. It is known as the Rossby number, after the Swedish meteorologist, C.

G. Rossby. We often categorize synoptic flows in term of this parameter.

We’ve also written a prefactor for the pressure gradient term on the right

hand side of (2.11), defined as:

α ≡ △p
2ρΩUR

which is the non-dimensional scale of the term. This must be large enough

to balance the dominant term on the LHS (otherwise the equation is unbal-

anced and there is no flow). So we write:

α = max{1, ǫ}

This in turn determines the size of the pressure gradient associated with

the flow. We’ll see how this works below.
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2.2.1 Geostrophic flow

If the Rossby number is small (ǫ ≪ 1), the cyclostrophic term is much

smaller than the Coriolis term. Using synoptic scale values for the hor-

izontal wind speed, the Coriolis parameter and the radius (sec. 2.1), the

Rossby number is:

ǫ =
10

10−4(106)
= 0.1

In the ocean, the velocity scale is of order 10 cm/sec, while the length

scale of ocean “storms”, like Gulf Stream rings, is about 100 km. So the

Rossby number is:

ǫ =
0.1

10−4(105)
= 0.01

Thus the Rossby number is small in both systems at synoptic scales.

If ǫ ≪ 1, the Coriolis term must be balanced by the pressure term on

the RHS of (2.11). So we require that α = 1. That implies that:

△p
ρfUR

≈ 1

If this weren’t the case there would be no flow. Thus we have:

fuθ =
1

ρ

∂

∂r
p (2.12)

This is the geostrophic balance. This applies at synoptic scales in both

the atmosphere and ocean. Written in Cartesian coordinates, the balance

is:

− fv = −1

ρ

∂

∂x
p (2.13)

fu = −1

ρ

∂

∂y
p (2.14)

This is an strikingly useful balance. If we know the pressure field, we can

deduce the velocities.



2.2. HORIZONTAL MOMENTUM BALANCES 41

p/ ρ
L

H
fu

u

−

Figure 2.3: The geostrophic balance in the Northern Hemisphere.

Consider the flow in Fig. (2.3). The pressure is high to the south and

low to the north. In the absence of rotation, this pressure difference would

force the air to move north. But under the geostrophic balance, the air flows

parallel to the pressure contours. Because ∂
∂yp < 0, we have u > 0 (east-

ward) from (2.14). The Coriolis force is acting to the right of the motion,

exactly balancing the pressure gradient force. Also, because the forces are

balanced, the motion is constant in time (the flow is not accelerating).

If the pressure gradient changes in space, the geostrophic velocity also

changes. In Fig. (2.4), the flow accelerates into a region with more closely-

packed pressure contours, and then decelerates exiting the region.

L

H

Figure 2.4: Geostrophic flow with non-constant pressure gradients.

As a result of the geostrophic relations, we can use pressure maps to
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estimate the winds, as in Fig. (2.5). This shows the surface pressure off

the west coast of the US, with the observed (green) and geostrophic (blue)

wind vectors. We see that the geostrophic estimates agree fairly well with

the observed values. Note too that the wind is counter-clockwise or cy-

clonic around the low pressure system. Had this been a high pressure sys-

tem, we would have seen clockwise or anti-cyclonic flow.

Figure 2.5: A low pressure system of the west coast of the United States. The green

vectors are observed winds and the blue are geostrophic. Courtesy of the University of

Washington.

Since f = 2Ωsinθ, the Coriolis force varies with latitude. It is strongest

at high latitudes and weaker at low latitudes. Furthermore, it is negative

in the southern hemisphere. Because of this, the flow in Fig. (2.3) would

be westward in the southern hemisphere, with the Coriolis force acting

to the left. The Coriolis force is moreover zero at the equator. Thus the

geostrophic balance cannot hold there and one must invoke other terms in

the momentum equations.
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Figure 2.6: A tornado in Oaklahoma in 2010. Courtesy of livescience.com.

2.2.2 Cyclostrophic flow

Now consider the case of a large Rossby number (ǫ ≫ 1). For example, a

tornado (Fig. 2.6) at mid-latitudes has:

U ≈ 30m/s, f = 10−4 sec−1, R ≈ 300m,

Using these values, the Rossby number is ǫ = 1000. Thus the cyclostrophic

term dominates over the Coriolis term. Now we set α = ǫ, so that the pres-

sure gradient balances the centrifugal term.

The result is cyclostrophic balance:

u2θ
r

=
1

ρ

∂

∂r
p (2.15)

Notice this is a non-rotating balance, because f doesn’t enter. As such, we

would have the same balance at the equator. The pressure gradient now is

balanced by the centrifugal acceleration.

We can solve for the velocity after multiplying by r and then taking the

square root:

uθ = ±
√

r

ρ

∂

∂r
p (2.16)
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There are two interesting points about this. One is that only low pressure

systems are permitted, because we require ∂
∂rp > 0 to have a real solu-

tion. However either sign of the circulation is allowed. So our tornado

can have either cyclonic (counter-clockwise) or anti-cyclonic (clockwise)

winds. Both cyclonic and anti-cyclonic tornadoes are in fact observed, but

the former is much more common.

2.2.3 Inertial flow

There is a third possibility, that there is no radial pressure gradient at all.

Then:

u2θ
r

+ fuθ = 0 → uθ = −fr (2.17)

This is called inertial flow. The velocity is negative, implying the rotation

is clockwise (anti-cyclonic) in the Northern Hemisphere. The time for a

parcel to complete a full circle is:

2πr

uθ
=

2π

f
=

0.5 day

|sinθ| , (2.18)

This is known as the “inertial period”. Note that the time for a particle to

complete the circle doesn’t depend on r. We refer to this as “solid body

rotation”. The motion is just like that of an LP record on a turntable.

“Inertial oscillations” are fairly rare in the atmosphere but are frequently

seen at the ocean surface, being easily excited by the wind. An example is

shown in Fig. (2.7), of a pair of drifting buoys at the surface of the Gulf of

Mexico. The pair is slowly separating, but simultaneously executing large,

anticyclonic loops. The inertial period at this latitude is nearly one day.
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Figure 2.7: A pair of drifting buoys on the surface in the Gulf of Mexico, deployed as part

of the GLAD experiment. The pair were deployed in the upper right corner of the figure.

Courtesy of the University of Miami.

2.2.4 Gradient wind

The last possibility is that the Rossby number is order one (ǫ ≈ 1). Then

α = 1 and all three terms in (2.11) are equally important. This is the gra-

dient wind balance. We can then solve for uθ using the quadratic formula:

uθ = −1

2
fr ± 1

2
(f 2r2 +

4r

ρ

∂

∂r
p)1/2

= −1

2
fr ± 1

2
fr(1 +

4

fr
ug)

1/2
(2.19)

Note we’ve used the definition of the geostrophic velocity to replace the

pressure gradient term in the second line.

This solution actually contains all the previous solutions. If the pressure

gradient is zero, the non-zero solution is −fr, as with inertial osciallations.

If ug ≪ fr (so that the Rossby number is small), then one of the roots is

uθ = ug. And if f = 0, the cyclostrophic solution is recovered.



46 CHAPTER 2. BASIC BALANCES

Because the term in the square root must be positive, we must have:

f 2r2 +
4r

ρ

∂

∂r
p ≥ 0 (2.20)

which implies:
1

ρ

∂

∂r
p ≥ −f

2r

4
(2.21)

Thus while there is no limit on how strong a low pressure system can be,

there is a limit on high pressures. The strongest storms must be low pres-

sure systems.

The gradient wind balance, being a three-way balance, has other impli-

cations. For a low pressure system, the gradient wind velocity is actually

less than the geostrophic velocity, because both the centrifugal and Corio-

lis terms balance the pressure gradient (left panel of Fig. 2.8). This reduces

the velocity required for balance. For a high pressure system on the other

hand, the gradient wind velocity is greater than the geostrophic, because

the Coriolis term now opposes the centrifugal term (right panel of Fig. 2.8).

The asymmetry occurs because the centrifugal term always acts outward.

v−r
2

v−r
2

L H

fv

fv∆p /ρ

∆p /ρ

−

−

Figure 2.8: The balance of terms under the gradient wind approximation for a low (left)

and high (right) pressure system.

It is also possible that the centrifugal term opposes both the other terms.

This can occur with a low pressure system (Fig. 2.9). Then the winds are
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anti-cyclonic, so that the Coriolis acceleration is toward the center of the

storm. Such clockwise low pressure systems are called anomalous lows.

They are fairly rare, but are seen occasionally at lower latitudes.

v−r
2

−∆p /ρ

L

fv

Figure 2.9: An anomalous low pressure system.

Thus the gradient wind estimate differs from the geostrophic estimate.

The difference is typically small for weather systems, about 10 % at mid-

latitudes. To see this, we rewrite (2.11) thus:

u2θ
r

+ fuθ =
1

ρ

∂

∂r
p = fug (2.22)

Then:

ug
uθ

= 1 +
uθ
fr

= 1 + ǫ (2.23)

If the Rossby number, ǫ = 0.1, the gradient wind estimate differs from the

geostrophic value by 10 %. This is one reason why the geostrophic winds

in Fig. (2.5) differ slightly from the observed winds. At low latitudes,

where ǫ can be 1-10, the error is larger and the gradient wind estimate is

more accurate.
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2.3 The f-plane and β-plane approximations

The momentum equations are in Cartesian coordinates but the Coriolis

term, f , is in spherical coordinates. We could write it as a sinusoidal func-

tion of y, but this complicates the solutions. A simpler approach is to

linearize f about a chosen latitude, θ0.

0 10 20 30 40 50 60 70 80 90
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0

0.1

0.2
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f

f
0
+ β y

Figure 2.10: The Coriolis parameter, as a function of latitude, and the β-plane approxi-

mation with a central latitude of θ = 30◦.

To do this, we Taylor-expand f about the center latitude:

f(θ) = f(θ0) +
df

dθ
(θ0) (θ − θ0) +

1

2

d2f

dθ2
(θ0) (θ − θ0)

2 + ... (2.24)

The higher order terms are small if the range of latitudes is limited. Re-

taining the first two terms, we can write:

f = f0 + βy

where:

f0 = 2Ωsin(θ0), β =
1

Re

df

dθ
(θ0) =

2Ω

Re
cos(θ0)



2.4. INCOMPRESSIBILITY 49

and

y = Re(θ − θ0)

where again Re is the earth’s radius. We can neglect the nonlinear terms in

(2.24) if the second term is much smaller than the first. This requires:

βL

f0
≪ 1

if L is the north-south extent of the domain (in distance, not degrees). So:

L≪ f0
β

=
2Ωsin(θ)

2Ωcos(θ)/Re
= Re tan(θ0) ≈ Re (2.25)

So L must be much smaller than the earth’s radius, roughly 6600 km or

about 15 degrees of latitude.

The linear approximation of f is shown in Fig. (2.10). It is clear that

the range of validity for the approximation varies with latitude; it’s bet-

ter nearer the equator, where sin(θ) is more linear, but more restricted at

higher latitudes where the curvature is greater.

We will invoke two approximations hereafter. Retaining only the first

term in (2.24), f0, is called the f-plane approximation. This is appropriate

for a small domain, e.g. with L on the order of a hundred kilometers. For

larger domains, we retain the first two terms, the β-plane approximation.

This assumes a domain of up to a few thousand kilometers in N-S extent,

as noted.

2.4 Incompressibility

The continuity equation (1.9) can also be simplified. This is a nonlinear

equation, involving products of the density, ρ, and the velocities. However,

we can obtain a simpler, linear relation in both the atmosphere and ocean.

There actually two approximations, one for each system.
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2.4.1 The Boussinesq approximation

In the ocean, the density changes are very small, as the terms involving the

temperature and salinity in the equation of state (1.44) are typically much

less than one. So if we write:

ρ = ρc + ρ′(x, y, z, t)

the perturbation, ρ′, is much less than ρc. As such, the continuity equation

(1.9) is:
dρ′

dt
+ ρc(∇ · ~u) ≈ ρc(∇ · ~u) = 0 (2.26)

This implies that:

∇ · ~u ≈ 0 (2.27)

The velocities are approximately incompressible. This means that volume

is conserved. If one has a box full of water with a movable lid, it is almost

impossible to press down the lid. Water does actually compress at great

depths in the ocean, but there the pressure is enormous. Most ocean models

assume incompressibility of seawater.

This is known as the “Boussinesq approximation”, after the French

physicist Joseph Boussinesq. Under this, we neglect density variations

in the equations except where gravity is involved. So we replace the full

density with the constant reference density in the horizontal momentum

equations. As such, the geostrophic relations become:

vg =
1

ρcf

∂

∂x
p (2.28)

ug = − 1

ρcf

∂

∂y
p (2.29)

Before the geostrophic relations were nonlinear, because they involved a

product of the density and the pressure, two unknowns. With the Boussi-
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nesq approximation, the geostrophic relations are linear, which is a great

simplification.

Invoking the f -plane or β-plane approximations makes these relations

even simpler. Then the f in the denominator can be replaced by f0, mean-

ing the velocities can be written thus:

vg =
∂

∂x
ψ, ug = − ∂

∂y
ψ

where:

ψ ≡ p

ρcf0

This is the geostrophic streamfunction. The geostrophic flow follows these

contours. And as the streamfunction is proportional to pressure, the flow

follows pressure contours as well.

An additional useful point is that the geostrophic velocities are now

horizontally non-divergent:

∂

∂x
ug +

∂

∂y
vg =

∂

∂x
(− 1

ρcf0

∂

∂y
p) +

∂

∂y
(
1

ρcf

∂

∂x
p) = 0 (2.30)

We’ll exploit this later on.

2.4.2 Pressure coordinates

We cannot use the Boussinesq approximation in the atmosphere, because

air is compressible.2 But it is possible to achieve the same simplifications

if we change the vertical coordinate to pressure instead of height.

We do this by exploiting the hydrostatic balance. Consider a pressure

surface in two dimensions, like p2(x, z) in Fig. (2.11). As one moves along

the surface, its height may change but the pressure remains the same. We

can express this using the chain rule:

2Sometimes this is done in the planetary boundary layer (for example, as in sec. 3.6).
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x

z

z
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Figure 2.11: Pressure surfaces in (x, z).

△ p(x, z) =
∂p

∂x
△ x+

∂p

∂z
△ z = 0 (2.31)

Substituting the hydrostatic relation, we get:

∂p

∂x
△ x− ρg△ z = 0 (2.32)

so that:
∂p

∂x
|z = ρg

△z
△x |p (2.33)

The left-hand side is the pressure gradient in x along a surface of constant

height (hence the z subscript). The right-hand side is proportional to the

height gradient along a surface of constant pressure—i.e. how much the

pressure surface tilts in x. The gradient on the RHS thus has a p subscript,

indicating pressure coordinates.
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If we define the geopotential:

Φ = gz (2.34)

then we have:
∂p

∂x
|z = ρ

∂Φ

∂x
|p (2.35)

This alteration removes the density from momentum equation, because:

−1

ρ
∇p|z → −∇Φ|p

So the geostrophic balance in pressure coordinates is simply:

vg =
1

f0

∂

∂x
Φ (2.36)

ug = − 1

f0

∂

∂y
Φ (2.37)

(again using the β-plane approximation). As with the Boussinesq approx-

imation, the terms on the RHS are linear. So in pressure coordinates too,

the geostrophic velocities can be expressed in terms of a streamfunction:

ψ =
Φ

f0

The continuity equation also simplifies with pressure coordinates. Con-

sider our Lagrangian box, filled with a fixed number of molecules. The

box has a volume:

δV = δx δy δz = −δx δy δp
ρg

(2.38)

after substituting from the hydrostatic balance. Note that the volume is

positive because δp is negative, as pressure decreases with height. The

mass of the box is:

δM = ρ δV = −1

g
δx δy δp
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Conservation of mass implies:

1

δM

d

dt
δM =

−g
δxδyδp

d

dt
(−δxδyδp

g
) = 0 (2.39)

Rearranging:

1

δx
δ(
dx

dt
) +

1

δy
δ(
dy

dt
) +

1

δp
δ(
dp

dt
) = 0 (2.40)

If we let δ → 0, we get:

∂u

∂x
+
∂v

∂y
+
∂ω

∂p
= 0 (2.41)

where ω (called “omega” in the literature) is the velocity perpendicular

to the pressure surface. This is just as w is perpendicular to a z-surface.

Hence the flow is incompressible in pressure coordinates, just as under the

Boussinesq approximation.

The hydrostatic equation takes a different form under pressure coordi-

nates. It can be written:

dΦ

dp
= −RT

p
(2.42)

after invoking the Ideal Gas Law.

Pressure coordinates thus simplifies the equations considerably. But

they are somewhat awkward to work with in theoretical models. The

lower boundary in the atmosphere (the earth’s surface) is most naturally

represented in z-coordinates, e.g. as z = 0. As the pressure varies at the

earth’s surface, it is less obvious what boundary value to use for p. As

such, we will use z-coodinates primarily hereafter. But the solutions in

p-coordinates are often very similar.3
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Figure 2.12: The sea surface temperature in the North Atlantic. The Gulf Stream lies

between the warm Sargasso Sea and the cold waters to the north.

2.5 Thermal wind

Intense flows in the atmosphere and ocean are often associated with strong

lateral temperature gradients. The Gulf Stream, for example, lies on the

boundary between the warmer waters of the Sargasso Sea (familiar to any-

one who’s been swimming in the Carribbean) and the cold waters off New

England and Atlantic Canada (familiar to anyone who’s been swimming

there). This boundary is rather sharp and dynamic, meandering and pinch-

ing off eddies. The Jet Stream in the atmosphere is similar. It lies between

the warm air of the tropics and the colder air at the mid-latitudes. It too is

highly dynamic and generating eddies (storms).

Strong temperature gradients are associated with strong vertical shear

in the velocity. Shown in Fig. (2.13) is a cross section of temperature in

the core of the Gulf Stream. At any given depth, the temperature increases

3An alternative is to use log-pressure coordinates. These involve a coordinate change from pressure to

a z-like coordinate, called z∗. However, z∗ generally differs only slightly from z.
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Figure 2.13: A cross section of the ocean temperature in the core of the Gulf Stream.

from left to right. The current (illustrated by the dark contours) is strongest

where the temperature gradients are most pronounced. The current then

decreases with depth. The surface currents are of order 1 m/sec, a large

value in the ocean.

The relation between lateral temperature contrast and vertical shear is a

consequence of the combined geostrophic and hydrostatic balances. Take,

for instance, the z-derivative of the geostrophic balance for v:

∂vg
∂z

=
1

f0ρc

∂

∂x

∂p

∂z
= − g

f0ρc

∂ρ

∂x
(2.43)

after using (2.3). Likewise:

∂ug
∂z

=
g

f0ρc

∂ρ

∂y
(2.44)

These are the thermal wind relations in z-coordinates. They state that the

vertical velocity shear is proportional to the lateral gradients in the density.

The corresponding relations in pressure coordinates can be obtained by
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taking the p-derivative of the geostrophic relations, for example in the x-

direction:
∂vg
∂p

=
1

f0

∂

∂x

∂Φ

∂p
= − R

pf0

∂T

∂x
(2.45)

after using (2.42). Note that the p passes through the x-derivative because

it is constant on an isobaric (p) surface (p and x are independent variables).

Likewise:
∂ug
∂p

=
R

pf0

∂T

∂y
(2.46)

Thus the vertical shear is proportional to the lateral gradients in tempera-

ture.

Warm

Cold

u/   zδ δ

Figure 2.14: The thermal wind shear associated with a temperature gradient in the y-

direction.

Consider Fig. (2.14). This is reminiscent of the situation in the north-

ern hemisphere, with cold air at the pole and warm air near the equator.

The temperature gradient is in y, so the thermal wind is oriented in the

x-direction. As the temperature decreases to the north, ∂T/∂y is neg-

ative. From (2.46) we have that ∂ug/∂p is also negative. This implies

that ∂ug/∂z is positive, again because pressure decreases going up. So

the zonal velocity is increasing going up, i.e. with the cold air to the left.
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Compare this to geostrophic flow, which is parallel to the pressure contours

with the low pressure on the left.

δ

v1

v2

vT

Warm

Cold

Φ1

Φ +   Φ1

T

δ T +     T

Figure 2.15: Thermal wind between two layers (1 and 2). The geopotential height con-

tours for the lower layer, Φ1, are the dashed lines and the temperature contours are the

solid lines.

In the ocean, the thermal wind is parallel to the density contours, with

the heavy fluid on the left. Consider the Gulf Stream case, shown in Fig.

(2.13). The temperature increases moving offshore. That implies that the

heavy water (cold) is to the left, so that the shear is increasing towards the

surface. Assuming no flow at depth, we have a strong northward flow (into

the picture).

Now consider two adjacent pressure surfaces. If we know the velocities

on one surface and the temperature between the two surfaces, we can de-

duce the geostrophic flow on the other surface. A simplified case is shown
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in Fig. (2.15). The geopotential lines for the lower surface of the layer

are indicated by dashed lines. The wind at this level is parallel to these

lines, with the smaller values of Φ1 to the left. The temperature contours

are the solid lines, with temperature increasing to the right. The thermal

wind vector is parallel to these contours, with the lower temperatures on

the left. We add the vectors v1 and vT to obtain the vector v2, which is the

wind at the upper surface. This is to the northwest, so that the winds are

advecting warm air towards the cold.

Notice that the wind vector turns clockwise with height. This is called

veering and is typical of warm advection. Cold advection produces counter-

clockwise turning, called backing.

Thus the geostrophic wind is parallel to the geopotential contours with

smaller values to the left of the wind (in the Northern Hemisphere). The

thermal wind on the other hand is parallel to the mean temperature con-

tours, with colder air to the left. Keep in mind however that the thermal

wind is not an actual wind, but the difference between the lower and upper

level winds.

The thermal wind relations are routinely used to estimate ocean currents

from density measurement made from ships. Ships collect hydrographic

measurements of temperature and salinity, and these are used to determine

ρ(x, y, z, t), from the equation of state (1.44). Then the thermal wind re-

lations are integrated upward from chosen level to determine (u, v) above

the level, for example:

ug(x, y, z)− ug(x, y, z0) =

∫ z

z0

1

ρcf0

∂ρ(x, y, z)

∂y
dz (2.47)

If (u, v, z0) is set to zero at the lower level, it is known as a “level of no

motion”.
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2.6 Summary of synoptic scale balances

We have a set of simplified equations, one for the ocean and one for the

atmosphere, which are applicable at synoptic scales.

Equation Boussinesq p-coordinates (2.48)

Geostrophic u f0u = − 1

ρc

∂p

∂y
f0u = −∂Φ

∂y
(2.49)

Geostrophic v f0v =
1

ρc

∂p

∂x
f0v =

∂Φ

∂x
(2.50)

Hydrostatic
∂p

∂z
= −ρg ∂Φ

∂p
= −RT

p
(2.51)

Thermal u f0
∂u

∂z
=

g

ρc

∂ρ

∂y
f0
∂u

∂p
=
R

p

∂T

∂y
(2.52)

Thermal v f0
∂v

∂z
= − g

ρc

∂ρ

∂x
f0
∂v

∂p
= −R

p

∂T

∂x
(2.53)

Continuity
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

∂u

∂x
+
∂v

∂y
+
∂ω

∂p
= 0 (2.54)

For the ocean, we make the Boussinesq approximation and neglect den-

sity variations, except in the hydrostatic relation. For the atmosphere, we

use pressure coordinates. The similarity between the resulting equations

is striking. These equations are all linear, so they are much easier to work

with than the full equations of motion.

2.7 Exercises

2.1. Scale the full x-momentum equation (eq. 1.40), using parameters

typical of the ocean. Assume:

• U = 10 cm/sec

• W = 1 m/day
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• L = 100 km

• D = 5 km

Assume an advective time scale, such that T ∝ L/U and that sin(θ) ≈
1. Show that the geostrophic balance applies with these scales. Can

you estimate what the scale is for △p/ρ?

2.2. Consider a low pressure system centered at 45◦S, with a sea level

pressure given by:

p = 1000hPa−△p e−r2/R2

where r is the radial distance from the center. Determine the geostrophic

wind around this storm. Find the maximum wind, and the radius

where the wind is maximum, if △p = 20 hPa, R = 500 km and the

density at sea level is 1.3 kg/m3. Assume f = f0, with the value at

45◦S.

2.3. The Gulf Stream flows north along the coast of the United States. The

height of the sea surface changes by 2 m over a distance of 100 km.

It’s possible to show that this correponds to a pressure drop given by:

△p = ρg△ η

If the flow is in geostrophic balance, how fast is the current at 45◦N?

2.4. Assuming θ = 45N , so that f = 10−4 sec−1, and that g ≈ 10m/sec2:

a) Assume the pressure decreases by 0.5 Pa over 1 km to the east but

does not change to the north. Which way is the geostrophic wind

blowing? If the density of air is 1 kg/m3, what is the wind speed?

Note 1 Pa=1 kg/(m sec2).
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b) If the temperature of air was 10 C throughout the atmosphere

and the surface pressure was 1000 hPa, what would the pressure at

a height of 1 km be? Note 1 hPa=100 Pa.

c) The temperature decreases by 1/5 deg C over 1 km to the north but

doesn’t change to the east. What is the wind shear (in magnitude and

direction)? Is this veering or backing?

Hint: Use the pressure coordinate version of thermal wind and then

convert the pressure derivative to a z-derivative.

2.5. The talk show host David Letterman once called a man in South

America to ask whether the water swirled clockwise when flowing

out the drain in his bathtub. Is there a preferred tendency in a bathtub,

due to rotation?

Assume the bathtub is 1.5 m long and that typical velocities in the

water are about 1 cm/sec. The bathtub is at 45 N. Explain whether or

not there is a preferred sense of rotation, and if yes, what sign?

2.6. Derive (2.42), using the Ideal Gas Law.

2.7. Say the temperature at the South Pole is -20C and it’s 40C at the Equa-

tor. Assuming the average wind speed is zero at the Earth’s surface

(1000 hPa), what is the mean zonal speed at 250 hPa at 45S?

Assume the temperature gradient is constant with latitude and pres-

sure. Use the thermal wind relations in pressure coordinates and in-

tegrate them with respect to pressure to find the velocity difference

between the surface and 250 hPa.

2.8. Thermal wind on Venus
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We know (from various space missions) that the surface density on

Venus is 67 kg/m3 and the height of the troposphere is 65 km. Also,

the Venetian day is 116.5 times longer than our day(!) We want to

estimate the wind velocity at the top of the tropopause.

a) Write down the thermal wind equation for the zonal wind, u, in

pressure coordinates.

b) Convert the pressure derivative to a z-derivative by assuming the

density decays exponentially with height, with an e-folding scale (the

scale height) equal to half the height of the tropopause.

c) If the temperature gradient in the northern hemisphere is -1.087 x

10−4 degrees/km, what is the zonal velocity at the tropopause? As-

sume the temperature gradient doesn’t change with height and that

the velocity at the surface is zero. Note R = 287 J/(kg K).
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Chapter 3

Synoptic scale barotropic flows

In this chapter, we consider large scale flows, under one crucial simplify-

ing assumption: that the velocities don’t vary in the vertical. We call this

the “barotropic” assumption. This reduces the number of dimensions, be-

cause the flows effectively are now two dimensional. This admittedly isn’t

realistic. But many of the phenomena that we see in barotropic flows are

also seen with vertically-varying velocities.

3.1 The vorticity equation

To start, we introduce a concept which will be central in what follows. This

is the vorticity, the curl of the velocity:

~ζ ≡ ∇× ~u = (
∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y
) (3.1)

The vorticity resembles angular momentum in that it pertains to “spinning”

motion. A tornado has a large vorticity, with its strong, counter-clockwise

swirling motion.

Because the earth is rotating, it also effectively has a vorticity. As noted

in sec. (1.3), the velocity seen by a fixed observer is the sum of the velocity

seen in the rotating frame (earth) and a rotational term:

~uF = ~uR + ~Ω× ~r (3.2)

65
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So we can define a total vorticity, which is the combination of the flow’s

vorticity and the planetary rotation:

~ζa = ∇× (~u+ ~Ω× ~r) = ~ζ + 2~Ω (3.3)

We call ~ζa the absolute vorticity. It is the sum of the relative vorticity,

~ζ = ∇× ~u, and the planetary vorticity, 2~Ω.

Because synoptic scale motion is dominated by the horizontal veloci-

ties, the most important component of the vorticity is the vertical compo-

nent:

ζa · k̂ = (
∂

∂x
v − ∂

∂y
u) + 2Ωsin(θ) ≡ ζ + f (3.4)

This is the only component we consider hereafter.

We can derive an equation for ζ directly from the horizontal momentum

equations. For this, we use the approximate equations that we obtained

after scaling in sec. (2.2), retaining the terms to order Rossby number—

the geostrophic terms, plus the time derivative and advective terms. We

will use the Boussinesq equations; a similar equation obtains if one uses

pressure coordinates.

The momemtum equations are:

∂

∂t
u+ u

∂

∂x
u+ v

∂

∂y
u− fv = − 1

ρc

∂

∂x
p (3.5)

∂

∂t
v + u

∂

∂x
v + v

∂

∂y
v + fu = − 1

ρc

∂

∂y
p (3.6)

where

f = f0 + βy

To obtain the vorticity equation, we cross-differentiate the equations: we

take the x derivative of the second equation and subtract the y derivative

of the first. The result, after some re-arranging, is:

∂

∂t
ζ + u

∂

∂x
ζ + v

∂

∂y
ζ + v

df

dy
+ (ζ + f)(

∂u

∂x
+
∂v

∂y
) = 0 (3.7)
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or, alternately:

dH
dt

(ζ + f) = −(ζ + f)(
∂u

∂x
+
∂v

∂y
) (3.8)

where:
dH
dt

≡ ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
(3.9)

is the Lagrangian derivative based on the horizontal velocities. Note that

we can write the equation this way because f is only a function of y.

A useful feature of the vorticity equation is that the pressure term has

dropped out. This follows from the Boussinesq approximation—if we

hadn’t made that, then there would be terms involving derivatives of the

density. In the same way, the geopotential drops out when using pressure

coordinates. This is left for an exercise.

The vorticity equation is related to a result known as Kelvin’s theorem.

This is of fundamental importance in rotating fluid dynamics. It concerns

how the vorticity and area of a fluid parcel is related to its latitude.

3.1.1 Kelvin’s theorem (optional)

The vorticity equation can be derived in an elegant way. This is based on

the circulation, which is the integral of the vorticity over a closed area:

Γ ≡
∫∫

~ζ · n̂ dA (3.10)

where n̂ is the normal vector to the area. From Stoke’s theorem, the circu-

lation is equivalent to the integral of the velocity around the circumference:

Γ =

∫∫

(∇× ~u) · n̂ dA =

∮

~u · ~dl (3.11)

Thus we can derive an equation for the circulation if we integrate the mo-

mentum equations around a closed circuit. For this, we will use the mo-

mentum equations in vector form. The derivation is somewhat easier if we



68 CHAPTER 3. SYNOPTIC SCALE BAROTROPIC FLOWS

work with the fixed frame velocity:

d

dt
~uF = −1

ρ
∇p+ ~g + ~F (3.12)

If we integrate around a closed area, we get:

d

dt
ΓF = −

∮ ∇p
ρ

· ~dl +
∮

~g · ~dl +
∮

~F · ~dl (3.13)

The gravity term vanishes because it can be written in terms of a potential

(the geopotential):

~g = −gk̂ =
∂

∂z
(−gz) ≡ ∇Φ (3.14)

and because the closed integral of a potential vanishes:
∮

∇Φ · ~dl =
∮

dΦ = 0 (3.15)

So:
d

dt
ΓF = −

∮

dp

ρ
+

∮

~F · ~dl (3.16)

Now the circulation, ΓF , has two components:

ΓF =

∮

~uF · ~dl =
∫∫

∇× ~uF · n̂ dA =

∫∫

(~ζ + 2~Ω) · n̂ dA (3.17)

As noted above, the most important components of the vorticity are in the

vertical. So a natural choice is to take an area which is in the horizontal,

with n̂ = k̂. Then:

ΓF =

∫∫

(ζ + f) dA (3.18)

Putting this back in the circulation equation, we get:

d

dt

∫∫

(ζ + f) dA = −
∮

dp

ρ
+

∮

~F · ~dl (3.19)

Now, the first term on the RHS of (3.19) is zero under the Boussinesq

approximation because:
∮

dp

ρ
=

1

ρc

∮

dp = 0
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It is also zero if we use pressure coordinates because:

∮

dp

ρ
|z →

∮

dΦ|p = 0

Thus, in both cases, we have:

d

dt
Γa =

∮

~F · ~dl (3.20)

So the absolute circulation can only change under the action of friction. If

~F = 0, the absolute circulation is conserved on the parcel. This is Kelvin’s

theorem.

3.2 The Quasi-geostrophic equations

The quasi-geostrophic (QG) system of equations was originally developed

by Jules Charney, Arnt Eliassen and others for weather prediction. As

suggested in the name, the equations apply to motions which are nearly in

geostrophic balance, i.e. for which the Rossby number is small, such as to

weather systems in the atmosphere and oceanic eddies.

An advantage of the QG system is that it filters out gravity waves. As

such, QG focuses on the “slow modes” of motion while ignoring the “fast

modes”. Thus the QG system can be used with a larger time step in nu-

merical models.

The QG system is rigorously derived by a perturbation expansion in

the Rossby number (Pedlosky, 1987). But we will derive the main results

heuristially. The primary assumptions are:
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• The Rossby number, ǫ, is small

• |ζ|/f0 = O|ǫ|

• |βL|/f0 = O|ǫ|

• |hb|/D0 = O|ǫ|

• |η|/D0 = O|ǫ|

The expression O|ǫ| means “of the order of ǫ”, i.e. roughly the same size

as ǫ. Thus all the stated ratios are about as large as the Rossby number.

The second assumption follows from the first. If you note that the vor-

ticity scales as U/L, then:

|ζ|
f0

∝ U

f0L
= ǫ

Thus the relative vorticity is much smaller than f0 if ǫ is small.

The third assumption says that the change in f over the domain is much

less than f0 itself. As noted in sec. (2.3), this implies the N-S extent of the

domain is small compared to the Earth’s radius (6600 km), at mid-latitudes.

Also we assume we’re not at the equator, where f0 = 0.

The fourth and fifth assumptions imply the bottom topography and the

surface elevation are both much less than the total depth. We write:

H = D0 − hb + η

where D0 is the (constant) average depth in the fluid. Then both hb and η

are much smaller than D0.

An important point here is that all the small terms are assumed to be

roughly the same size. We do this so that all these terms enter into the

dynamics. We don’t take |hb|/D0 to scale like ǫ2, for example; if the to-

pography were this weak, it wouldn’t affect the flow much.
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Let’s consider how these assumptions alter the vorticity equation (3.8):

dH
dt

(ζ + f) = −(f + ζ)(
∂

∂x
u+

∂

∂y
v) (3.21)

With a small Rossby number, the velocities are nearly geostrophic, so we

can replace the Lagrangian derivative thus:

dH
dt

→ ∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
≡ dg
dt

The new Lagrangian derivative then is following the geostrophic flow,

rather than the total horizontal flow.

Similarly, the vorticity is replaced by its geostrophic counterpart:

ζ → ζg

Thus the LHS of the equation becomes:

dg
dt
ζg + βvg

On the RHS, the term:

(f + ζ) → f0

because:

(f + ζ) = f0 + βy + ζg

and the two last terms are much smaller than f0, by assumption.

Lastly, we have the horizontal divergence:

∂

∂x
u+

∂

∂y
v = (

∂

∂x
ug +

∂

∂y
vg) + (

∂

∂x
ua +

∂

∂y
va)

But the geostrophic velocities are non-divergent (sec. 2.4.1). So this is:

=
∂

∂x
ua +

∂

∂y
va = − ∂

∂z
w

Collecting all the terms, we have:
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(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
)(ζg + βy) = f0

∂

∂z
w (3.22)

This is the quasi-geostrophic vorticity equation. Note we used the full

vorticity equation to derive this. Thus, in fact, the same result is obtained

for baroclinic flows, i.e. flows with vertical shear. The equation has two

unknowns. The geostrophic velocities and vorticity can be derived from

the surface height, but there is also the vertical velocity.

For barotropic flows though we can eliminate w by simply integrating

(3.22) from the bottom to the surface:
∫ η

−H

dg
dt
(ζg + βy) dz = f0(w(η)− w(−H)) (3.23)

Because the horizontal velocities don’t vary with height, they pass through

the integral. So the LHS is simply:

(η +H)
dg
dt
(ζg + βy) = (η +D0 − hb)

dg
dt
(ζg + βy) ≈ D0

dg
dt
(ζg + βy)

after using the last two assumptions above.

On the RHS, we have the vertical velocities at the upper and lower

surface. Physically, these reflect the motion of the boundaries themselves.

Thus we can write:

w(η) =
d

dt
η → dg

dt
η

and:

w(−H) = − d

dt
H → −dg

dt
(D0 − hb) =

dg
dt
hb

Collecting terms, the integrated vorticity equation becomes:

dg
dt
(ζg + βy) =

f0
D0

[
dg
dt
η − dg

dt
hb]
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or:

(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
)(ζg + βy − f0

D0
η +

f0
D0

hb) = 0 (3.24)

We can simplify this because in a barotropic fluid, the pressure is related

to the surface height. To see this, integrate the hydrostatic balance to the

surface from a depth, z:

p(η)− p(z) = −
∫ η

z

ρcg dz = −ρcg(η − z) (3.25)

Rearranging, and taking the horizontal gradient:

∇p(z) = ∇p(η) + ρcg∇η (3.26)

The first term on the right hand side is the gradient of the the pressure at

the surface, while the second is related to gradients in the surface height.

Both can vary in (x, y, t) but not in z—thus the pressure gradient terms

in the x and y momentum equations likewise do not vary in the vertical.

And typically the height variations occur over much smaller scales, so the

second term on the RHS dominates.

This allows us to rewrite the geostrophic relations in terms of the surface

height:

ug = − g

f0

∂

∂y
η , vg =

g

f0

∂

∂x
η (3.27)

Similarly, the geostrophic relative vorticity can be expressed solely in terms

of the surface height:

ζg =
∂

∂x
v − ∂

∂y
u =

g

f0
∇2η (3.28)

We simplify this somewhat by defining a streamfunction:

ψ =
gη

f0
(3.29)
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Then we have:

ug = − ∂

∂y
ψ, vg =

∂

∂x
ψ, ζg = ∇2ψ (3.30)

Using these, we obtain the quasi-geostrophic potential vorticity equa-

tion:

(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
)(∇2ψ − f 20

c20
ψ + βy +

f0
D0

hb) = 0 (3.31)

with:

ug = − ∂

∂y
ψ, vg =

∂

∂x
ψ

This is a single equation with only one unknown – an enormous simpli-

fication. This is why the quasi-geostrophic system is used so often for

studying geophysical fluid dynamics.

3.2.1 The rigid lid assumption

Having a moveable free surface is important for phenomena like surface

gravity waves, but it is much less important for synoptic scale flows. Since

we have filtered out the faster modes, by assuming the flows are geostroph-

ically balanced, we no longer really require the moveable surface.

So we replace it with a “rigid lid”, a flat surface where the vertical ve-

locity vanishes. It seems like this would remove all flows in the barotropic

system, but it doesn’t—this is because the lid can support pressure differ-

ences in the fluid.

The changes with a rigid lid are relatively minor. First, we omit the
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second term in the potential vorticity in (3.31). So the PV is simply:

ζg + βy +
f0
D0

hb

Second, the streamfunction changes. By assuming a rigid lid, we are

setting η = 0. But as the rigid lid can support pressure anomalies, p(z = 0)

doesn’t vanish. So it makes more sense to define the streamfunction in

terms of the pressure:

ψ ≡ p

ρcf0
(3.32)

3.3 Geostrophic contours

The conservation of PV following the motion is a strong constraint. The

PV is comprised of a time-varying portion (the vorticity) and a time-independent

part (due to β and bottom topography). So we can rewrite equation (3.31)

this way:
dg
dt
∇2ψ + ~ug · ∇qs = 0 (3.33)

where the function:

qs ≡ βy +
f0
D0

h

defines the geostrophic contours, the stationary (unchanging) part of the

potential vorticity.

If a parcel crosses the geostrophic contours, its relative vorticity must

change, to conserve total PV. Consider the example in figure (3.1). Here

there is no topography, so the contours are just latitude lines (qs = βy).

Northward motion is accompanied by a decrease in relative vorticity: as

y increases, ζg must decrease. If the parcel has zero vorticity initially, it

acquires negative vorticity (clockwise circulation) in the northern hemi-
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sphere. Southward motion likewise generates positive vorticity. This is

just Kelvin’s theorem again.

Figure 3.1: The change in relative vorticity due to northward or southward motion relative

to βy.

Topography generally distorts the geostrophic contours. If large enough,

it can overwhelm the βy term locally, even causing closed contours (near

mountains or basins). But the same principle holds, as shown in Fig. (3.2).

Motion towards larger values of qs generates negative vorticity and motion

to lower values of qs generates positive vorticity.

If the flow is steady, then (??) is just:

~ug · ∇(ζg + qs) = 0 (3.34)

This implies a steady geostrophic flow is parallel to the total PV contours,

q = ζg + qs. If the relative vorticity is weak, so that ζg ≪ qs, then:

~ug · ∇qs = 0 (3.35)

Then the flow follows the geostrophic contours.

Take the case again of no topography. Then:

~ug · ∇βy = βvg = 0 (3.36)
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Figure 3.2: The change in relative vorticity due to motion across geostrophic contours

with topography.

So any steady flow must be purely zonal. This is because meridional mo-

tion necessarily implies a changing relative vorticity. An example are the

Jet Streams in the atmosphere. These are approximately zonal flows.

Alternately if the region is small enough so that we can ignore changes

in the Coriolis parameter, then:

~ug · ∇h = 0 (3.37)

(after dropping the constant f0/D0 factor). Then the flow follows the to-

pographic contours. This is why many major currents in the ocean are

parallel to the isobaths.

Whether such steady flows actually exist also depends on the boundary

conditions. The atmosphere is a re-entrant domain, so a zonal wind can

simply wrap around the earth (Fig. 3.3, left). But most ocean basins have

lateral boundaries (continents), and these block the flow. As such, steady,

along-contour flows in a basin can occur only where topography causes the
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contours to close (Fig. 3.3, right). This can happen in basins.

Figure 3.3: Steady, along-geostrophic contour flow in the atmosphere (left) and in the

ocean (right).

Consider Fig. (3.4). This is a plot of the mean surface velocities, de-

rived from surface drifters, in and near the Lofoten Basin off the west coast

of Norway. The strong current on the right hand side is the Norwegian At-

lantic Current, which flows in from the North Atlantic and proceeds toward

Svalbard. Notice how this follows the continental slope (the steep topog-

raphy between the continental shelf and deeper ocean). In the basin itself,

the flow is more variable, but there is a strong, clockwise circulation in the

deepest part of the basin, where the topographic contours are closed. Thus

both closed and open geostrophic contour flows are seen here.

If the relative vorticity is not small compared to qs, the flow will devi-

ate from the latter contours. This can be seen for example with the Gulf

Stream, which crosses topographic contours as it leaves the east coast of

the U.S. If the relative vorticity is much stronger than qs, then we have:

~ug · ∇ζg ≈ 0 (3.38)

as a condition for a steady flow. Then the flow follows contours of constant

vorticity. An example is the flow in a vortex. The vorticity contours are
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Figure 3.4: Mean velocities estimated from surface drifters in the Lofoten Basin west of

Norway. The color contours indicate the water depth. Note the strong flow along the

continental margin and the clockwise flow in the center of the basin, near 2◦ E. From

Koszalka et al. (2010).

circular or ellipsoidal and the streamlines have the same shape. The vortex

persists for long times precisely because it is near a steady state.

We will return to the qs contours repeatedly hereafter. Often these help

understanding how a particular system evolves in time.

3.4 Linear wave equation

As in sec. (??), we will linearize the QGPV equation, to facilitate analyt-

ical solutions. We assume the motion is weak, as this allows us to neglect

terms which are quadratic in the streamfunction.

Suppose we have a mean flow, ~U = (U, V ). Note that this can vary in

space. So we can write:

u = U + u′, v = V + v′
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The perturbations are weak, so that:

|u′| ≪ |U |, |v′| ≪ |V |

Both the mean and the perturbation velocities have vorticity:

Z ≡ ∂

∂x
V − ∂

∂y
U, ζ ′ =

∂

∂x
v′ − ∂

∂y
u′

Only the latter varies in time. The mean vorticity in turn affects the geostrophic

contours:

qs = Z + βy +
f0
D0

h

This is important with regards to the stability of the mean flow, as we will

see later on.

Substituting these into the PV equation (??), we get:

∂

∂t
ζ ′+(U+u′)

∂

∂x
ζ ′+(V +v′)

∂

∂y
ζ ′+~U ·∇qs+u′

∂

∂x
qs+v

′ ∂

∂y
qs = 0 (3.39)

We can separate out the terms in (3.39) with respective to perturbation

velocities. The only term with no primed terms is:

~U · ∇qs = 0 (3.40)

Thus the mean flow must be parallel to the mean PV contours, as inferred

in sec. (3.3). If this were not the case, the mean flow would have to evolve

in time.

Collecting terms with one perturbation quantity yields:

∂

∂t
ζ ′ + U

∂

∂x
ζ ′ + V

∂

∂y
ζ ′ + u′

∂

∂x
qs + v′

∂

∂y
qs = 0 (3.41)
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This is the linearized QGPV equation for barotropic flows. We’ll use this

in the next few examples. For simplicity, we’ll drop the primes, but keep

in mind that it is the perturbation fields that we’re interested in.

3.5 Barotropic Rossby waves

Consider a constant mean flow, ~U = Uî, without bottom topography.

Then:

qs = βy

The mean flow doesn’t contribute to qs because it has no shear and hence

no vorticity. Moreover, the mean flow, which is purely zonal, is parallel to

qs, which is only a function of y. So the linear PV equation is simply:

∂

∂t
ζ ′ + U

∂

∂x
ζ ′ + βv′ = 0 (3.42)

Written in terms of the geostrophic streamfunction, this is:

(
∂

∂t
+ U

∂

∂x
)∇2ψ + β

∂

∂x
ψ = 0 (3.43)

This is the barotropic Rossby wave equation.

3.5.1 Wave solution

To solve this, we use a wave solution. This is a Fourier representation of

the streamfunction:

ψ(x, y, t) =

∫∫∫ ∞

−∞
ψ̂(k, l, ω) eikx+ily−iωt dk dl dω
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(see Appendix 5.2). Here, k and l are wavenumbers. They are related to

the wavelength. If the total wavenumber is κ =
√
k2 + l2, the wavelength

is given by:

λ =
2π

κ
(3.44)

The constant ω on the other hand is the frequency. This is related to the

period of the wave, which is like a wavelength in time:

T =
2π

ω
(3.45)

Since the Rossby wave equation is linear, we can superpose individual

solutions. That means we can study the response for a single Fourier mode,

which we write:

ψ = Re{ψ̂(k, l, ω) eikx+ily−iωt}

The Re{} operator implies taking the real part, for example:

Re{eiθ} = cos(θ)

There is a bit of an art to choosing the right wave solution for a typical

problem. To do this, we must consider the coefficients of the equation, and

perhaps also the boundary conditions. If the coefficients are constant, we

can use a wave representation in the corresponding direction. But if, for

example, a coefficient varied in y, we would use a more general solution,

such as:

ψ = Re{ψ̂(k, y, ω) eikx−iωt}

Then we would retain the derivatives in the y-direction.

Because the coefficients in the wave equation are constants, we can use

a general plane wave solution (sec. ?? and appendix 5.2):

ψ = Re{ψ̂eikx+ily−iωt} (3.46)
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where Re{} signifies the real part; we will drop this hereafter, for simplic-

ity, but remember it in the end. Substituting this in yields:

(−iω + ikU)(−k2 − l2) ψ̂eikx+ily−iωt + iβk ψ̂eikx+ily−iωt = 0 (3.47)

Notice that both the wave amplitude and the exponential term drop out.

This is typical of linear wave problems: we get no information about the

amplitude from the equation itself (that requires specifying initial condi-

tions). Solving for ω, we get:

ω = kU − βk

k2 + l2
(3.48)

This is the Rossby wave dispersion relation. It relates the frequency of

the wave to its wavenumbers. The corresponding phase speed (in the x-

direction) is:

cx =
ω

k
= U − β

k2 + l2
≡ U − β

κ2
(3.49)

where κ = (k2 + l2)1/2 is the total wavenumber.

There are a number of interesting features about this. First, the phase

speed depends on the wavenumbers, so the waves are dispersive. The

largest speeds occur when k and l are small, corresponding to long wave-

lengths. Thus large waves move faster than small waves.

Second, all waves propagate westward relative to the mean velocity, U .

If U = 0, c < 0 for all (k, l). This is a distinctive feature of Rossby waves.

Satellite observations of Rossby waves in the Pacific Ocean show that the

waves, originating off of California and Mexico, sweep westward toward

Asia (as seen hereafter).
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The phase speed also has a meridional component, and this can be either

towards the north or south:

cy =
ω

l
=
Uk

l
− βk

l(k2 + l2)
(3.50)

The sign of cy thus depends on the signs of k and l. So Rossby waves can

propagate northwest, southwest or west—but not east.

With a mean flow, the waves can be swept eastward, producing the

appearance of eastward propagation. This happens frequently in the atmo-

sphere, where the mean westerlies advect Rossby waves (pressure systems)

eastward. If

κ > κs ≡ (
β

U
)1/2

the wave moves eastward. Longer waves move westward, opposite to the

mean flow, and short waves are advected eastward. If κ = κs, the wave

is stationary and the crests don’t move at all—the wave is propagating

west at exactly the same speed that the background flow is going east.

Stationary waves can only occur if the mean flow is eastward, because the

waves propagate westward.

Example: How big is the stationary wave if the mean flow is 20 m/sec

to the east? Assume we are at 45 degrees N and that k = l.

At 45N:

β =
1

6.3× 106
4π

86400
cos(45) = 1.63× 10−11m−1sec−1

so:

κs =
β

U
= (

1.63× 10−11m−1sec−1

20m/sec
)1/2 = 9.03× 10−7m−1
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Assuming λx = λy, we have that:

κs =
2
√
2π

λs

so:

λs = 9.84× 106m ≈ 9000 km

Remember that this is a wavelength, so it includes positive and negative

pressure anomalies. But it still is larger than our typical storm scale of

1000 km, implying the storms are in the eastward-propagating regime.

3.5.2 Westward propagation: mechanism

y=0

+

−

Figure 3.5: Relative vorticity induced in a Rossby wave. Fluid advected northwards

acquires negative vorticity and fluid advected southwards positive vorticity.

We have discussed how motion across the mean PV contours, qs, in-

duces relative vorticity. The same is true with a Rossby wave. Fluid

parcels which are advected north in the wave acquire negative vorticity,

while those advected south acquire positive vorticity (Fig. 3.5). Thus one

can think of a Rossby wave as a string of negative and positive vorticity

anomalies (Fig. 3.6).

Now the negative anomalies to the north will act on the positive anoma-

lies to the south, and vice versa. Consider the two positive anomalies
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Figure 3.6: The Rossby wave as a string of vorticity anomalies. The cyclone in the right

hand circle advects the negative anomaly to the southwest, while the left cyclone advects

it toward the northwest. The net effect is westward motion.

shown in Fig. (3.6). The right one advects the negative anomaly between

them southwest, while the left one advects it northwest. Adding the two

velocities together, the net effect is a westward drift for the anomaly. Sim-

ilar reasoning suggests the positive anomalies are advected westward by

the negative anomalies.

3.5.3 Observations of Rossby waves

What does a Rossby wave look like? In the atmosphere, Rossby waves

are superimposed on the Jet Stream, giving the latter a meandering aspect

(Fig. 3.7). The meanders tend to propagate downstream. They also have

meaning for the weather. Since the temperatures to the north are colder,

the temperature in a trough is colder than in a crest.

In addition, the meanders often grow in amplitude and break. This leads

to regions of anomalous temperature and vorticity, as for example in a so-

called “cut-off” or “blocking” high pressure. Such instability is considered

later on.

In the ocean, the mean zonal flow in regions is near zero (U = 0), so the

observed phase propagation is generally westward. Westward phase prop-

gation is clearly visible in satellite measurements of sea surface height. An
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Figure 3.7: An example of Rossby waves in the atmosphere. The Jet Stream, flowing east-

ward, is superimposed over westward-propagating Rossby waves. Courtesy of NASA.

example is shown in Fig. (3.8), from the Pacific. In the upper panel is the

sea surface height anomaly1 from April, 1993. The corresponding field

from July is shown in the lower panel. There is a large positive anomaly

(red) off the Americas in April, surrounded by a (blue) negative anomaly.

The latter is indicated by the white curve. In July the anomalies have all

shifted westward. The waves are basin scale, covering 1000s of kilometers.

From the figure, you can see that the phase speed varies with latitude,

being largest at the equator and decreasing away from that. In fact this is a

baroclinic effect. Baroclinic Rossby waves are discussed in sec. (4.5).

1The stationary part of the surface height, due to mean flows and also irregularities in the graviational

field, have been removed.
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Figure 3.8: Sea surface height anomalies at two successive times. Westward phase prop-

agation is clear at low latitudes, with the largest speeds occurring near the equator. From

Chelton and Schlax (1996).

3.5.4 Group Velocity

Rossby waves propagate westward. But this actually poses a problem.

Say we are in an ocean basin, with no mean flow (U = 0). If there is

a disturbance on the eastern wall, Rossby waves will propagate westward

into the interior. Thus changes on the eastern wall are communicated to the

rest of the basin by Rossby waves. Because they propagate westward, the

whole basin will soon know about these changes. But say the disturbance

is on the west wall. If the waves can go only toward the wall, the energy

would necessarily be trapped there. How do we reconcile this?
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The answer is that the phase velocity tells us only about the motion of

the crests and troughs—it does not tell us how the energy is moving. To

see how energy moves, it helps to consider a packet of waves with different

wavelengths. If the Rossby waves were initiated by a localized source, say

a meteor crashing into the ocean, they would start out as a wave packet.

Wave packets have both a phase velocity and a “group velocity”. The

latter tells us about the movement of packet itself, and this reflects how the

energy is moving. It is possible to have a packet of Rossby waves which

are moving eastwards, while the crests of the waves in the packet move

westward.

Consider the simplest example, of two waves with different wavelengths

and frequencies, but the same (unit) amplitude:

ψ = cos(k1x+ l1y − ω1t) + cos(k2x+ l2y − ω2t) (3.51)

Imagine that k1 and k2 are almost equal to k, one slightly larger and the

other slightly smaller. We’ll suppose the same for l1 and l2 and ω1 and ω2.

Then we can write:

ψ = cos[(k + δk)x+ (l + δl)y − (ω + δω)t]

+ cos[(k − δk)x+ (l − δl)y − (ω − δω)t] (3.52)

From the cosine identity:

cos(a± b) = cos(a)cos(b)∓ sin(a)sin(b) (3.53)

So we can rewrite the streamfunction as:

ψ = 2 cos(δkx+ δly − δωt) cos(kx+ ly − ωt) (3.54)

The combination of waves has two components: a plane wave (like we
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considered before) multiplied by a carrier wave, which has a longer wave-

length and lower frequency. The carrier wave has a phase speed of:

cx =
δω

δk
≈ ∂ω

∂k
≡ cgx (3.55)

and

cy =
δω

δl
≈ ∂ω

∂l
≡ cgy (3.56)

The phase speed of the carrier wave is the group velocity, because this is

the speed at which the group (in this case two waves) moves. While the

phase velocity of a wave is the ratio of the frequency and the wavenumber,

the group velocity is the derivative of the frequency by the wavenumber.

This is illustrated in Fig. (3.9). This shows two waves, cos(1.05x)

and cos(0.095x). Their sum yields the wave packet in the lower panel.

The smaller ripples propagate with the phase speed, c = ω/k = ω/1,

westward. But the larger scale undulations move with the group velocity,

and this can be either west or east.

The group velocity concept applies to any type of wave. For Rossby

waves, we take derivatives of the Rossby wave dispersion relation for ω.

This yields:

cgx =
∂ω

∂k
= β

k2 − l2

(k2 + l2)2
, cgy =

∂ω

∂l
=

2βkl

(k2 + l2)2
(3.57)

Consider for example the group velocity in the zonal direction, cgx.

The sign of this depends on the relative sizes of the zonal and meridional

wavenumbers. If

k > l

the wave packet has a positive (eastward) zonal velocity. Then the energy

is moving in the opposite direction to the phase speed. This answers the

question about the disturbance on the west wall. Energy can indeed spread
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Figure 3.9: Two waves with nearly the same wavelength (upper panel) and their sum

(lower panel).

eastward into the interior, if the zonal wavelength is shorter than the merid-

ional one. Note that for such waves, the phase speed is still westward. So

the crests will move toward the west wall while energy is carried eastward!

Another interesting aspect is that the group velocity in the y-direction

is always in the opposite direction to the phase speed in y, because:

cgy
cy

= − 2l2

k2 + l2
< 0 . (3.58)

So northward propagating waves have southward energy flux!

The group velocity can also be derived by considering the energy equa-

tion for the wave. This is shown in Appendix (5.3).



92 CHAPTER 3. SYNOPTIC SCALE BAROTROPIC FLOWS

3.5.5 Rossby wave reflection

A good illustration of Rossby wave properties is the case of a wave reflect-

ing off a solid boundary. Consider what happens to a westward propagating

plane Rossby wave which encounters a straight wall, oriented along x = 0.

The incident wave can be written:

ψi = Ai e
ikix+iliy−iωit

where:

ωi =
−βki
k2i + l2i

The incident wave has a westward group velocity, so that

ki < li

Let’s assume too that the group velocity has a northward component (so

that the wave is generated somewhere to the south). As such, the phase

velocity is oriented toward the southwest.

The wall will produce a reflected wave. If this weren’t the case, all the

energy would have to be absorbed by the wall. We assume instead that all

the energy is reflected. The reflected wave is:

ψr = Ar e
ikrx+ilry−iωrt

The total streamfunction is the sum of the incident and reflected waves:

ψ = ψi + ψr (3.59)

In order for there to be no flow into the wall, we require that the zonal

velocity vanish at x = 0, or:

u = − ∂

∂y
ψ = 0 at x = 0 (3.60)
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This implies:

− iliAi e
iliy−iωit − ilr Ar e

ilry−iωrt = 0 (3.61)

In order for this condition to hold at all times, the frequencies must be

equal:

ωi = ωr = ω (3.62)

Likewise, if it holds for all values of y along the wall, the meridional

wavenumbers must also be equal:

li = lr = l (3.63)

Note that because the frequency and meridional wavenumbers are pre-

served on reflection, the meridional phase velocity, cy = ω/l, remains

unchanged. Thus (3.61) becomes:

il Ai e
ily−iωt + il Ar e

ily−iωt = 0 (3.64)

which implies:

Ai = −Ar ≡ A (3.65)

So the amplitude of the wave is preserved, but the phase is changed by

180◦.

Now let’s go back to the dispersion relations. Because the frequencies

are equal, we have:

ω =
−βki
k2i + l2

=
−βkr
k2r + l2

. (3.66)

This is possible because the dispersion relation is quadratic in k and thus

admits two different values of k. Solving the Rossby dispersion relation

for k, we get:

k = − β

2ω
±

√

β2 − 4ω2l2

2ω
(3.67)
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The incident wave has a smaller value of k because it has a westward group

velocity; so it is the additive root. The reflected wave thus comes from the

difference of the two terms.

This implies the zonal wavenumber increases on reflection, by an amount:

|kr − ki| = 2

√

β2

4ω2
− l2 (3.68)

So if the incident waves are long, the reflected waves are short.

We can also show that the meridional velocity, v, increases upon reflec-

tion and also that the mean energy (Appendix 5.3) increases on reflection.

The reflected wave is more energetic because the energy is squeezed into

a shorter wave. However, the flux of energy is conserved; the amount of

energy going in equals that going out. So energy does not accumulate at

the wall.

Thus Rossby waves change their character on reflection. Interestingly,

the change depends on the orientation of the boundary. A tilted boundary

(e.g. northwest) will produce different results. In fact, the case with a

zonally-oriented boundary (lying, say, along y = 0) is singular; you must

introduce other dynamics, like friction, to solve the problem.

3.6 Boundary layers

So far we have ignored forcing and friction. Without wind forcing, we

would not have many of the major ocean currents, like the Gulf Stream.

And without friction, there would be nothing to remove energy supplied by

the sun (to the atmosphere) or the winds (to the ocean) and the velocities

would accelerate to infinity. Stresses, by which forcing and friction act, are

important in the boundary layers at the earth’s surface in the atmosphere,
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Figure 3.10: A plane Rossby wave reflecting at a western wall. The incident wave is

shown by the solid lines and the reflected wave by the dashed lines. The phase velocities

are indicated by the solid arrows and the group velocities by the dashed arrows. Note the

wavelength in y doesn’t change, but the reflected wavelength in x is much shorter. Note

too the reflected wave has a phase speed directed toward the wall, but a group velocity

away from the wall.

and at the surface and bottom of the ocean. How do these layers affect the

interior motion?

The important feature of the boundary layers is that the velocities are

sheared. So we can distinguish the interior of our barotropic fluid, where

there is no shear, and the boundary layers. In the bottom boundary layers,

the velocity goes to zero at the ground, to satisfy the “no-slip condition”.

This is because the water directly in contact with the bottom shouldn’t be
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moving. At the ocean surface on the other hand, the stress exerted by the

wind will drive a flow. In both surface and bottom layers, friction permits

the smooth variation of the velocities to the interior values.

Figure 3.11: The wind acting on an upper layer of fluid at the surface. The layer exerts

stress on the layer below, which produces and equal and opposite stress on the upper layer.

We represent friction as the gradient of a stress. Think of the surface

layer as a series of thin layers. The stress at the surface acts on the upper-

most layer (Fig. 3.11). That layer in turn exerts a stress on the layer below

it. But that layer exerts an equal and opposite force on the upper-most

layer. The acceleration of the layer is due to the difference between the

surface and bottom stresses. Thus it is the vertical derivative of the stress

which accelerates the fluid. Because the aspect ratio is small, we focus

solely on the vertical derivative, and ignore the horizontal stress deriva-

tives.

Perhaps the simplest boundary layer model possible includes the geostrophic

relations (2.28) and (2.29) with the vertical stress terms:

− f0v = − 1

ρc

∂

∂x
p +

∂

∂z

τx
ρc

(3.69)

f0u = − 1

ρc

∂

∂y
p +

∂

∂z

τy
ρc

(3.70)

where τx and τy are stresses acting in the x and y directions. Notice that

friction breaks the geostrophic balance in the boundary layers.



3.6. BOUNDARY LAYERS 97

We can rewrite these relations thus:

− f0(v − vg) ≡ −f0va =
∂

∂z

τx
ρc

(3.71)

f0(u− ug) ≡ f0ua =
∂

∂z

τy
ρc

(3.72)

where (ua, va) are the ageostrophic velocities (the departures from purely

geostrophic flow). The ageostrophic velocities in the boundary layer are

proportional to the stresses. As such, these velocities will be vertically

sheared.

3.6.1 Surface Ekman layer

Consider the boundary layer at the ocean surface. This was first considered

in a paper by Ekman (1905), which in turn was motivated by observations

by Fridtjof Nansen. Nansen noticed that icebergs in the Arctic drift to the

right of the wind. Ekman’s model explains why. Hereafter, we refer to the

boundary layers as “Ekman layers”, following his derivation.

Let’s say the surface is at z = 0 and that the Ekman layer extends down

to z = −δe (which we take to be a constant depth). The lower depth is

defined as the location where the stress vanishes; below that, in the ocean

interior, the flow is in geostrophic balance.

We are mainly concerned with how the boundary layer affects the mo-

tion in the interior. As seen in sec. (3.7), it is the vertical velocity from

the boundary layers which forces the flow in the interior. With the surface

Ekman layer, this is the vertical velocity at the base, w(δe). To obtain this,

we use the continuity equation (2.27):

∂

∂z
w = − ∂

∂x
u− ∂

∂y
v = − ∂

∂x
ua −

∂

∂y
va (3.73)
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The horizontal divergence involves only the ageostrophic velocities be-

cause the geostrophic velocities are horizontally non-divergent (sec. 2.4.1).

Integrating this over the layer yields:

w(0)− w(−δe) = −
∫ 0

−δe

(
∂

∂x
ua +

∂

∂y
va) dz (3.74)

Since there is no flow out of the ocean surface, we can write w(0) = 0.

Then we have:

w(−δe) =
∂

∂x
Us +

∂

∂y
Vs (3.75)

where (Us, Vs) are the horizontal ageostrophic transports in the surface

layer:

Us ≡
∫ 0

−δe

ua dz, Vs ≡
∫ 0

−δe

va dz (3.76)

We obtain these by integrating (3.71) and (3.72) vertically.

The stress at the surface (z = 0) is due to the wind:

~τw = (τwx , τ
w
y )

The stress at the base of the Ekman layer is zero, by definition. So we

obtain:

Us =
τwy
ρcf0

, Vs = − τwx
ρcf0

Notice the transport in the layer is 90 degrees to the right of the wind

stress. If the wind is blowing to the north, the transport is to the east. This

is consistent with Nansen’s observations.

To get the vertical velocity, we take the divergence of these transports:

w(δe) =
∂

∂x

τwy
ρcf0

+
∂

∂y
(− τwx
ρcf0

) =
1

ρcf0
k̂ · ∇ × ~τw (3.77)

So the vertical velocity is proportional to the curl of the wind stress. It is

the curl, not the stress itself, which is most important for the interior flow

in the ocean at synoptic scales.
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Interestingly, we haven’t made any assumptions about the stress in the

surface layer itself. By integrating over the layer, we only need to know

the stress at the surface. So the result (3.77) is independent of the stress

distribution, τ(z)/ρc, in the layer.

3.6.2 Bottom Ekman layer

Then there is the bottom boundary layer, which exists in both the ocean

and atmosphere. Let’s assume the bottom is flat and that the Ekman layer

goes from z = 0 to z = δe. The integral of the continuity equation is:

w(δe)− w(0) = w(δe) = −(
∂

∂x
UB +

∂

∂y
VB) (3.78)

where now UB, VB are the integrated (ageostrophic) transports in the bot-

tom layer. Note the vertical velocity vanishes at the bottom of the layer—

there is no flow into the bottom surface (which we assume is flat).

Again we integrate (3.71) and (3.72) to find the transports. However,

we don’t know the stress at the bottom. All we know is that the bottom

boundary isn’t moving. So we must solve for the ageostrophic velocity

distributions in the layer.

This was done originally by Ekman (1905). Ekman’s solution requires

that we parametrize the stress in the boundary layer. To do this, we make

a typical assumption, that the stress is proportional to the velocity shear:

~τ

ρc
= Az

∂

∂z
~u (3.79)

Here Az, is a mixing coefficient. Note the stress acts down the gradient

of the velocity. The stress is large if the vertical shear is large and vice

versa. Generally, Az varies with height and often in a non-trivial way, but
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in such cases it is difficult to find analytical solutions. So we’ll assume Az

is constant.

Again, we assume the interior flow is in geostrophic balance, with ve-

locities (ug, vg). The boundary layer’s role is to bring the velocities to rest

at the lower boundary. Substituting the parametrized stresses (3.79) into

the boundary layer equations (3.71-3.72) yields:

− f0va = Az
∂2

∂z2
ua (3.80)

f0ua = Az
∂2

∂z2
va (3.81)

Because the geostrophic velocity is independent of height, it doesn’t con-

tribute to the RHS.

These are coupled second order ordinary differential equations. To

solve them, we define a variable χ thus:

χ ≡ ua + iva (3.82)

Then we can combine the two equations into one:

∂2

∂z2
χ = i

f0
Az
χ (3.83)

The general solution to this is:

χ = Aexp(
z

δe
) exp(i

z

δe
) +B exp(− z

δe
) exp(−i z

δe
) (3.84)

The scale, δe, is the layer depth that we assumed before. Now we see that

this is related to the mixing coefficient, Az:

δe = (
2Az

f0
)1/2 (3.85)

Thus the Ekman depth is determined by the mixing coefficient and by the

Coriolis parameter.
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To proceed, we need boundary conditions. The solutions should de-

cay moving upward, into the interior of the fluid, as the boundary layer

solutions should be confined to the boundary layer. Thus we can set:

A = 0

From the definition of χ, we have:

ua = Re{χ} = Re{B} exp(− z

δe
) cos(

z

δe
)

+ Im{B} exp(− z

δe
) sin(

z

δe
) (3.86)

and:

va = Im{χ} = −Re{B} exp(− z

δe
) sin(

z

δe
)

+ Im{B} exp(− z

δe
) cos(

z

δe
) (3.87)

Thus there are two unknowns, the real and imaginary parts of B. To de-

termine these, we evaluate the velocities at z = 0. To satisfy the no-slip

condition, we require:

ua = −ug, va = −vg at z = 0

Then the total velocity will vanish. So we must have:

Re{B} = −ug

and:

Im{B} = −vg

The resulting total velocities, the sum of geostrophic and ageostrophic

parts, are shown in the left panel of Fig. (3.12) for a case with vg = 0. Out-

side the boundary layer, the velocity reverts to (ug, 0). Both velocities go

to zero at the bottom, to satisfy the no-slip condition. But above that, both
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Figure 3.12: The Ekman velocities for a case with vg = 0. In the left panel are the

velocities as a function of height. In the right panel are the velocity vectors, looking down

from above.

increase somewhat as well. This reflects the decaying/sinusoidal nature of

the solutions.

The figure masks the actual behavior of the velocities, which is seen

more clearly in the right panel. This shows the velocity vectors when

viewed from above. Outside the layer, the vector is parallel with the x-

axis. As one descends into the layer, the vectors veer to the left. They first

increase slightly in magnitude and then decrease smoothly to zero. The

result is a curving Ekman spiral.

If one solves the same problem in the surface layer, one also finds a so-

lution which spirals with depth. But since it is the stress which is matched

at the surface, the vectors spiral to the right. That’s why the depth-averaged

velocity is to the right in the surface layer. In the bottom layer, the transport

is to the left.

Strictly speaking, the integrals are over the depth of the layer. But as

the ageostrophic velocities decay with height, we can just as well integrate
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them to infinity. So, we have:

Ua = −ug
∫ ∞

0

exp(− z

δe
) cos(

z

δe
) dz − vg

∫ ∞

0

exp(− z

δe
) sin(

z

δe
) dz

= −δe
2
(ug + vg) (3.88)

(using a standard table of integrals). Likewise:

Va = ug

∫ ∞

0

exp(− z

δe
) sin(

z

δe
) dz − vg

∫ ∞

0

exp(− z

δe
) cos(

z

δe
) dz

=
δe
2
(ug − vg) (3.89)

where (ug, vg) are the velocities in the interior. Thus for the case shown in

Fig. (3.12), the transport is:

(Ua, Va) =
δe
2
(−ug, ug)

This is 135◦ to the left of the geostrophic velocity.

What about the stress at the bottom? From the definition above, we

have τ/ρc = Auz. Only the ageostrophic velocity varies with height, by

assumption. It can be shown (see exercises) that the transport is 90 degrees

to the left of the bottom stress.

But the primary factor of interest for the interior flow is the vertical

velocity at the top of the Ekman layer, as this will be seen to force the

interior flow. This is:

w(δe) = − ∂

∂x
Ua −

∂

∂y
Va (3.90)

=
δe
2
(
∂ug
∂x

+
∂vg
∂x

) +
δe
2
(−∂ug

∂y
+
∂vg
∂y

) (3.91)

=
δe
2
(
∂vg
∂x

− ∂ug
∂y

) (3.92)

=
δe
2
∇× ~ug (3.93)

=
δe
2
ζg (3.94)
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Recall that the horizontal divergence of the geostrophic velocities is zero.

Thus the vertical velocity at the top of a bottom Ekman layer is propor-

tional to the relative vorticity in the interior. So there is updrafting beneath

a cyclonic vortex.

These two results represent a tremendous simplification. We can in-

clude the boundary layers without actually worrying about what is hap-

pening in the layers themselves. The bottom layer causes relative vorticity

to decay in time (sec. 3.8) and the stress at the ocean surface forces the

ocean.

3.7 The QGPV equation with forcing

We include the Ekman layers to the interior dynamics by adding two ad-

ditional terms on the RHS of the vertically-integrated vorticity equation

(3.24), thus:

dg
dt

(ζ + βy +
f0
D0

h) =
f0
D0

[we(z1)− we(z0)] (3.95)

Recall that we have imposed a rigid lid, so that the term − f0
D0

η is neglected.

The first term on the RHS is the vertical velocity associated with the bound-

ary layer on the upper surface and the second term is that with the layer on

the lower surface.

In the atmosphere, we set the vertical velocity at the top boundary to

zero (there is no Ekman layer on the tropopause). For the ocean, we in-

clude the wind stress term from (3.77):

we(z1) =
1

ρcf0
k̂ · ∇ × τw (3.96)

The bottom Ekman layer exists in both the atmosphere and ocean. From
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(3.94), we have:

we(z0) =
δ

2
ζg (3.97)

The Ekman layers thus affect the motion in the interior when there is vor-

ticity.

Combining the terms, we arrive at the full QG barotropic PV equation:

dg
dt

(∇2ψ + βy +
f0
D0

h) =
1

ρcD0
k̂ · ∇ × ~τw − r∇2ψ (3.98)

The constant, r, is called the “Ekman drag coefficient” and is defined:

r =
f0δ

2D0

An important point is that the forcing terms exert themselves over the

entire depth of the fluid, because there is no vertical shear in the barotropic

system.

3.8 Spin down

Bottom friction damps the velocities, causing the winds to slow. The sim-

plest example of this is with no bottom topography and a constant f . Then

the barotropic vorticity equation is:

dg
dt
ζ = −rζ (3.99)

This is a nonlinear equation. However it is easily solved in the Lagrangian

frame. Following a parcel, we have that:

ζ(t) = ζ(0)e−rt (3.100)
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implying the vorticity decreases exponentially. The e-folding time scale is

known as the Ekman spin-down time:

Te = r−1 =
2D0

f0δ
(3.101)

Typical atmospheric values are:

D0 = 10km, f0 = 10−4sec−1, δ = 1km

So:

Te ≈ 2.3 days

If all the forcing (including the sun) were suddenly switched off, the winds

would slow down, over this time scale. After about a week or so, the winds

would be weak.

If we assume the atmospheric barotropic layer does not extend all the

way to the tropopause but lies nearer the ground, the spin-down time will

be even shorter. This is actually what happens in the stratified atmosphere,

with the winds near the ground spinning down but the winds aloft being

less affected. So bottom friction favors flows intensified further up. The

same is true in the ocean.

3.9 Mountain waves

Barotropic Rossby waves have been used to study the mean surface pres-

sure distribution in the atmosphere. This is the pressure field you get when

averaging over long periods of time (e.g. years). The central idea is that

the mean wind, U , blowing over topography can excite stationary waves

(cx = 0). As demonstrated by Charney and Eliassen (1949), one can find

a reasonable first estimate of the observed distribution using the linear,

barotropic vorticity equation.
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We begin with the vorticity equation without forcing:

dg
dt

(ζ + βy +
f0
D0

h) = 0 (3.102)

(we’ll add friction later on). We linearize about a mean zonal flow:

u = U + u′, v = v′, ζ = ζ ′

We will also assume the topography is weak:

h = h′

Then the Rossby wave equation has one additional term:

(
∂

∂t
+ U

∂

∂x
)ζ ′ + βv′ + U

∂

∂x

f0
D0

h′ = 0 (3.103)

Substituting in the streamfunction, we have:

(
∂

∂t
+ U

∂

∂x
)∇2ψ + β

∂

∂x
ψ = − f0

D0
U
∂

∂x
h′ (3.104)

We put the topographic term on the RHS because it does not involve the

streamfunction, and so acts instead like a forcing term. The winds blowing

over the mountains generate the response.

The homogeneous solution to this equation are the Rossby waves dis-

cussed earlier. These are called “free Rossby waves”. If we were to sud-

denly turn on the wind, we would excite free waves. The particular solu-

tion, the forced wave, is the part generated by the topographic term on the

RHS. This is the portion of the flow that remains after the free waves have

propagated away.

Thus the forced wave is what determines the time mean flow. To find it,

we ignore the time derivative:
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U
∂

∂x
∇2ψ + β

∂

∂x
ψ = − f0

D0
U
∂

∂x
h′ (3.105)

All the terms involve a derivative in x, so we can simply integrate the

equation once in x to get rid of that. We will also ignore the constant of

integration.2

In line with our previous derivations, we write the topography as a sum

of Fourier modes:

h′(x, y) = Re{
∑

k

∑

l

h0(k, l) e
ikx+ily} (3.106)

and for simplicity, we focus on the response to a single wave mode:

h′ = h0e
ikx+ily (3.107)

We can always construct the response to more complicated topography by

adding the solutions for different (k, l), because the Rossby wave equation

is linear (see exercise 2.7). We’ll also use a single wave expression for ψ:

ψ = Aeikx+ily (3.108)

Substituting these into the wave yields:

(U(−k2 − l2) + β)A = −f0h0
D0

U (3.109)

or:

A =
f0h0

D0(κ2 − β/U)
=

f0h0
D0(κ2 − κ2s)

(3.110)

where:
2This would add a constant to the streamfunction. The latter would have no effect on the velocity field

(why?).
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κs ≡ (
β

U
)1/2

is the wavenumber of the stationary Rossby wave with a background ve-

locity, U (sec. 3.5.1). So the forced solution is:

ψ =
f0h0

D0(κ2 − κ2s)
eikx+ily (3.111)

The pressure field thus resembles the topography. If the wavenumber

of the topography, κ, is greater than the stationary wavenumber, the am-

plitude is positive. Then the forced wave is in phase with the topography.

If the topographic wavenumber is smaller, the atmospheric wave is 180◦

out of phase with the topography. The latter case applies to large scale

topography, for which the wavenumber is small. So there are negative

pressures over mountains and positive pressures over valleys. With small

scale topography, the pressure over the mountains will instead be positive.

What happens though when κ = κS? Then the streamfunction is infi-

nite! This is typical with forced oscillations. If the forcing is at the natural

frequency of the system, the response is infinite (we say the response is

resonant). Having infinite winds is not realistic, so we must add additional

dynamics to correct for this. In particular, we can add friction.

So we return to the barotropic vorticity equation, but with a bottom

Ekman layer:

dg
dt

(ζ + βy +
f0
D0

h) = −rζ (3.112)

Linearizing as before, we obtain:

U
∂

∂x
∇2ψ + β

∂

∂x
ψ = − f0

D0
U
∂

∂x
h′ − r∇2ψ (3.113)
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or:

(U
∂

∂x
+ r)∇2ψ + β

∂

∂x
ψ =

f0
D0

∂

∂x
h′ (3.114)

Using the wave expressions for the topography and streamfunction, we

get:

[(ikU + r)(−k2 − l2) + ikβ]A = −ikf0U
D0

h0 (3.115)

after cancelling the exponential terms. Solving for A, we get:

A =
f0h0

D0(κ2 − κ2s − iR)
(3.116)

where:

R ≡ rκ2

kU
(3.117)

The difference from before is that now the wave amplitude is complex.

The result is similar to that without friction, except for the additional

term in the denominator. This term does two things. First, it removes the

singularity. At κ = κs, we have:

A = i
f0h0
D0R

(3.118)

So the response is no longer infinite. It is however still greatest at this

wavenumber; having κ 6= κs produces a weaker amplitude.

Second, friction causes a phase shift in the pressure field relative to

the topography. Consider the response at κ = κS . Then the amplitude is

purely imaginary, as seen above. Using the relation:

i = eiπ/2



3.9. MOUNTAIN WAVES 111

we can write:

ψ = Aeikx+ily =
f0h0
D0R

eikx+iπ/2+ily (3.119)

So the streamfunction is 90◦ out of phase with the mountains. Plotting

the streamfunction, we find that the low pressure is downstream of the

mountain and the high pressure is upstream.

For non-resonant waves, the phase shift depends on the difference be-

tween κ and κs. The larger the difference, the more aligned the pressure

field is with the topography (either in phase, or 180◦ out of phase).

L H L H

H

L

κ << κ s

κ = κ s

κ >> κ s

H H

LL

Figure 3.13: The mean pressure distribution over a sinusoidal mountain range. The topo-

graphic wavenumber is less than (upper), greater than (bottom) and equal to (middle) the

stationary wavenumber.

We summarize the results with sinusoidal topography and Ekman fric-
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tion graphically in Fig. (3.13). When the topographic wavenumber is much

less than κs, the pressure field is aligned but anti-correlated with the to-

pography. When the wavenumber is much greater than κs, the pressure is

aligned and correlated. When κ = κs, the pressure is 90 ◦ out of phase

with the mountains.

Figure 3.14: Charney and Eliassen’s (1949) solution of the barotropic mountain wave

problem at 45N. The topographic profile is shown in the left panel (their Fig. 3). The

mean pressure at 500 mb is shown in the right panel (their Fig. 4) as the solid line. The

dashed lines indicate the theoretical solutions, using three different values of friction.

Charney and Eliassen (1949) applied this approach using actual atmo-

spheric fields. But instead of using sinusoidal topography, they took the

observed topographic profile at 45 N. The result of their calculation is

shown in Fig. (3.14). The topography (left panel) has two large maxima,

from the Himalayas and the Rocky Mountains. Their solutions, using three

different friction parameters, is compared with the observed mean pressure

at 500 mb in the right panel. The model pressure exhibits much of the same

structure as the observed. Both have low pressure regions downwind of the

mountains.

The agreement between the model and observations is surprisingly good,

given the simplicity of the model. In fact, it is probably too good. Charney
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and Eliassen used a zonally-reentrant channel for their calculation (as one

would do with a QG β-plane), but if one does the calculation on a sphere,

the Rossby waves can disperse meridionally and the amplitude is decreased

(Held, 1983). Nevertheless, the relative success of the model demonstrates

the utility of Rossby wave dynamics in understanding the low frequency

atmospheric response.

3.10 The Gulf Stream

Figure 3.15: Benjamin Franklin’s map of the Gulf Stream. From Wikipedia.

The next example is one of the most famous in dynamical oceanogra-

phy. It was known at least since the mid 1700’s, when Benjamin Franklin

mapped the principal currents of the North Atlantic (Fig. 3.15), that the

Gulf Stream is an intense current which lies on the western side of the

basin, near North America. The same is true of the Kuroshio Current, on
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the western side of the North Pacific, the Agulhas Current on the western

side of the Indian Ocean, and numerous other examples. Why do these cur-

rents lie in the west? A plausible answer came from a work by Stommel

(1948), based on the barotropic vorticity equation. We will consider this

problem, which also illustrates the technique of boundary layer analysis.

We retain the β-effect and bottom Ekman drag, but neglect topography

(the bottom is flat). We also include the surface Ekman layer, to allow for

wind forcing. The result is:

dg
dt
(ζ + βy) =

dg
dt
ζ + βv =

1

ρcD0
∇× ~τw − rζ (3.120)

We will search for steady solutions, as with the mountain waves. More-

over, we will not linearize about a mean flow—it is the mean flow itself

we’re after. So we neglect the first term in the equation entirely. Using the

streamfunction, we get:

β
∂

∂x
ψ =

1

ρcD0
∇× ~τw − r∇2ψ (3.121)

For our “ocean”, we will assume a square basin. The dimensions of

the basin aren’t important, so we will just use the region x = [0, L] and

y = [0, L] (L might be 5000 km).

It is important to consider the geostrophic contours in this case:

qs = βy (3.122)

which are just latitude lines. In this case, all the geostrophic contours

intersect the basin walls. From the discussion in sec. (3.3), we know that

there can be no steady flows without forcing, because such a flow would

be purely zonal and would have to continue through the walls. However,
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with forcing there can be steady flow; we will see that this flow crosses the

geostrophic contours.

Solutions to (3.121) can be obtained in a general form, once the wind

stress is specified. But Stommel used a more elegant method. The main

idea is as follows. Since the vorticity equation is linear, we can express the

solution as the sum of two components:

ψ = ψI + ψB (3.123)

The first part, ψI , is that driven by the wind forcing. We assume that this

part is present in the whole domain. We assume moreover that the friction

is weak, and does not affect this interior component. Then the interior

component is governed by:

β
∂

∂x
ψI =

1

ρcD0
∇× ~τ (3.124)

This is the Sverdrup relation, after H. U. Sverdrup. It is perhaps the most

important dynamical balance in oceanography. It states that vertical flow

from the base of the surface Ekman layer, due to the wind stress curl, drives

meridional motion. This is the motion across the geostrophic contours,

mentioned above.

We can solve (3.124) if we know the wind stress and the boundary con-

ditions. For the wind stress, Stommel assumed:

~τ = −L
π
cos(

πy

L
) î

The wind is purely zonal, with a cosine dependence. The winds in the

northern half of the domain are eastward, and they are westward in the

southern half. This roughly resembles the situation over the subtropical
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North Atlantic. Thus the wind stress curl is:

∇× ~τ = − ∂

∂y
τx = −sin(πy

L
)

Again, this is the vertical component of the curl. From the Sverdrup rela-

tion (3.124), this corresponds to southward flow over the whole basin, with

the largest velocities occurring at the mid-basin (y = L/2). We can then

integrate equation (3.124) to obtain the streamfunction in the interior.

However, one can do this in two ways: either by integrating from the

western wall or to the eastern wall (the reason why these produce different

results will become clear). Let’s do the latter case first. Then:

∫ L

x

∂

∂x
ψI dx = ψI(L, y)−ψI(x, y) = − 1

βρcD0
sin(

πy

L
)(L−x) (3.125)

To evaluate this, we need to know the value of the streamfunction on the

eastern wall, ψI(L, y).

The boundary condition here is that there is no normal flow, i.e. u(L, y) =

0. From the definition of u:

u(L, y) = − ∂

∂y
ψI(L, y) (3.126)

this implies that ψ(L, y) must be a constant. But what is the constant? In

fact, we can take this to be zero, because using any other constant would

not change the velocity field. So we have:

ψI(x, y) =
1

βρcD0
sin(

πy

L
)(L− x) (3.127)

However, this solution has flow into the western wall, because:



3.10. THE GULF STREAM 117

uI(0, y) = − ∂

∂y
ψI(0, y) = − π

βρcD0
cos(

πy

L
) 6= 0 (3.128)

This can’t occur.

To fix the flow at the western wall, we use the second component of

the flow, ψB. Let’s go back to the vorticity equation, with the interior and

boundary streamfunctions substituted in:

β
∂

∂x
ψI + β

∂

∂x
ψB =

1

ρcD0
∇× ~τw − r∇2ψB (3.129)

We have ignored the term r∇2ψI . We assume this is much smaller than

r∇2ψB, becauseψB has rapid variations near the wall, so the second deriva-

tive will be much larger than that of ψI (which has a large scale structure).

Using (3.124), the vorticity equation reduces to:

β
∂

∂x
ψB = −r∇2ψB (3.130)

ψB is assumed to be vanishingly small in the interior. But it will not be

small in a boundary layer, which occupies a narrow region near the western

wall. Rather ψB will be large enough to cancel the zonal interior flow at

the wall.

Thus the boundary layer will be narrow in the x-direction, but the changes

in y should be more gradual (as the boundary layer will cover the entire

west wall). Thus the derivatives in x will be much greater than in y. So we

have:

β
∂

∂x
ψB = −r∇2ψB ≈ −r ∂

2

∂x2
ψB (3.131)

This has a general solution:



118 CHAPTER 3. SYNOPTIC SCALE BAROTROPIC FLOWS

ψB = Aexp(−βx
r
) +B

In order for the boundary correction to vanish in the interior, the con-

stant B must be zero. We then determine A by making the zonal flow

vanish at the west wall (at x = 0). This again implies that the stream-

function is constant. That constant must be zero, because we took it to be

zero on the east wall. If it were a different constant, then ψ would have to

change along the northern and southern walls, meaning v = ∂
∂xψ would be

non-zero. Thus we demand:

ψI(0, y) + ψB(0, y) = 0 (3.132)

Thus:

A = − L

βρcD0
sin(

πy

L
) (3.133)

So the total solution is:

ψ =
1

βρcD0
sin(

πy

L
) [L− x− Lexp(−βx

r
)] (3.134)

We examine the character of this solution below. But first let’s see what

would have happened if we integrated the Sverdrup relation (3.124) from

the western wall instead of to the eastern. Then we would get:

β

∫ x

0

∂

∂x
ψ dx = βψ(x, y)− βψ(0, y) = −x sin(πy

L
) (3.135)

Setting ψ(0, y) = 0, we get:

ψ(x, y) = − x

βρcD0
sin(

πy

L
) (3.136)
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This solution has flow into the eastern wall, implying we must have a

boundary layer there. Again the boundary layer should have more rapid

variation in x than in y, so the appropriate boundary layer equation is

(3.131), with a solution:

ψB = Aexp(−βx
r
) +B

We take B to be zero again, so the solution vanishes in the interior.

But does it? To satisfy the zero flow condition at x = L, we have:

ψI(L, y) + ψB(L, y) = 0 (3.137)

or:

− L

βρcD0
sin(

πy

L
) + Aexp(−βL

r
) = 0 (3.138)

Solving for A, we get:

A =
L

βρcD0
exp(

βL

r
) sin(

πy

L
) (3.139)

So the total solution in this case is:

ψ =
1

βρcD0
sin(

πy

L
) [−x+ Lexp(

β(L− x)

r
)] (3.140)

Now there is a problem. The exponential term in this case does not de-

crease moving away from the eastern wall. Rather, it grows exponentially.

So the boundary layer solution isn’t confined to the eastern wall! Thus

we reject the possibility of an eastern boundary layer. The boundary layer

must lie on the western wall. This is why, Stommel concluded, the Gulf

Stream lies on the western boundary of the North Atlantic.
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Figure 3.16: Solutions of Stommel’s model for two different values of the friction coeffi-

cient, r.
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Another explanation for the western intensification was proposed by

Pedlosky (1965). Recall that Rossby waves propagate to the west as long

waves, and reflect off the western wall as short waves. The short waves

move more slowly, with the result that the energy is intensified in the region

near the west wall (sec. 3.5.5). Pedlosky showed that in the limit of low

frequencies (long period waves), the Rossby wave solution converges to

the Stommel solution. So western intensification occurs because Rossby

waves propagate to the west.

Let’s look at the (correct) Stommel solution. Shown in figure (3.16) is

the Sverdrup solution (upper panel) and two full solutions with different r

(lower panels). The Sverdrup solution has southward flow over the whole

basin. So the mean flow crosses the geostrophic contours, as suggested

earlier. There is, in addition, an eastward drift in the north and a westward

drift in the south.

With the larger friction coefficient, the Stommel solution has a broad,

northward-flowing western boundary current. With the friction coefficient

10 times smaller, the boundary current is ten times narrower and the north-

ward flow is roughly ten times stronger. This is the Stommel analogue of

the Gulf Stream.

Consider what is happening to a fluid parcel in this solution. The par-

cel’s potential vorticity decreases in the interior, due to the negative wind

stress curl, which causes the parcel to drift southward. We know the parcel

needs to return to the north to complete its circuit, but to do that it must

somehow acquire vorticity. Bottom friction permits the parcel to acquire

vorticity in the western layer. You can show that if the parcel were in an

eastern boundary layer, it’s vorticity would decrease going northward. So

the parcel would not be able to re-enter the northern interior.
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The Stommel boundary layer is like the bottom Ekman layer (sec. 3.6),

in several ways. In the Ekman layer, friction, which acts only in a bound-

ary layer, brings the velocity to zero to satisfy the no-slip condition. This

yields a strong vertical shear in the velocities. In the Stommel layer, fric-

tion acts to satisfy the no-normal flow condition and causes strong lateral

shear. Both types of boundary layer also are passive, in that they do not

force the interior motion; they simply modify the behavior near the bound-

aries.

Shortly after Stommel’s (1948) paper came another (Munk, 1950) ap-

peared which also modelled the barotropic North Atlantic. The model is

similar, except that Munk used lateral friction rather than bottom friction.

The lateral friction was meant to represent horizontal stirring by oceanic

eddies. Munk’s model is considered in one of the exercises.

3.11 Closed ocean basins

Next we consider an example with bottom topography. As discussed in

sec. (3.3), topography can cause the geostrophic contours to close on them-

selves. This is an entirely different situation because mean flows can exist

on the closed contours (they do not encounter boundaries; Fig. 3.3). Such

mean flows can be excited by wind-forcing and can be very strong.

There are several regions with closed geostrophic contours in the Nordic

Seas (Fig. 3.17), specifically in three basins: the Norwegian, Lofoten and

Greenland gyres. The topography is thus steep enough here as to over-

whelm the β-effect. Isachsen et al. (2003) examined how wind-forcing

could excite flow in these gyres.

This time we take equation (3.98) with wind forcing and bottom topog-
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Figure 3.17: Geostrophic contours (solid lines) in the Nordic seas. Superimposed are

contours showing the first EOF of sea surface height derived from satellite measurements.

The latter shows strong variability localized in regions of closed qs contours. From Isach-

sen et al. (2003).

raphy:

dg
dt
(ζ + βy +

f0
D0

h) =
1

ρcD0
∇× ~τ − rζ (3.141)

We will linearize the equation, without a mean flow. We can write the

result this way:

∂

∂t
ζ + ~u · ∇qs =

1

ρcD0
∇× ~τ − rζ (3.142)

where:

qs ≡ βy +
f0
D0

h
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defines the geostrophic contours (sec.3.3). Recall that these are the so-

called “f/H” contours in the shallow water system. As noted, the qs con-

tours can close on themselves if the topography is strong enough to over-

whelm the βy contribution to qs (Fig. 3.3). This is the case in the Nordic

Seas (Fig. 3.17).

As in the Gulf Stream model, we will assume the bottom friction coeffi-

cient, r, is small. In addition, we will assume that the wind forcing and the

time derivative terms are as small as the bottom friction term (of order r).

Thus the first, third and fourth terms in equation (3.142) are of comparable

size. We can indicate this by writing the equation this way:

r
∂

∂t′
ζ + ~u · ∇qs = r

1

ρcD0
∇× ~τ ′ − rζ (3.143)

where t′ = rt and τ ′ = τ/r are the small variables normalized by r, so

that they are order one.

Now we use a perturbation expansion and expand the variables in r.

For example, the vorticity is:

ζ = ζ0 + rζ1 + r2ζ2 + ...

Likewise, the velocity is:

~u = ~u0 + r~u1 + r2~u2 + ...

We plug this into the vorticity equation and then collect terms which are

multiplied by the same factor of r. The largest terms are those multiplied

by one. These are just:

~u0 · ∇qs = 0 (3.144)
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So the first order component follows the qs contours. In other words, the

first order streamfunction is everywhere parallel to the qs contours. Once

we plot the qs contours, we know what the flow looks like.

But this only tells us the direction of ~uo, not its strength or structure

(how it varies from contour to contour). To find that out, we go to the next

order in r:

∂

∂t′
ζ0 + ~u1 · ∇qs =

1

ρcD0
∇× ~τ ′ − ζ0 (3.145)

This equation tells us how the zeroth order field changes in time. However,

there is a problem. In order to solve for the zeroth order field, we need to

know the first order field because of the term with u1. But it is possible to

eliminate this, as follows. First, we can rewrite the advective term thus:

~u1 · ∇qs = ∇ · (~u1qs)− qs(∇ · ~u1) (3.146)

The second term on the RHS vanishes by incompressibility. In particular:

∇ · ~u = 0 (3.147)

This implies that the velocity is incompressible at each order. So the vor-

ticity equation becomes:

∂

∂t′
ζ0 +∇ · (~u1qs) =

1

ρcD0
∇× ~τ ′ − rζ0 (3.148)

Now, we can eliminate the second term if we integrate the equation over

an area bounded by a closed qs contour. This follows from Gauss’s Law,

which states:

∫∫

∇ · ~A dx dy =

∮

~A · n̂ dl (3.149)
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Thus:

∫∫

∇ · (~uqs) dA =

∮

qs~u · n̂ dl = qs

∮

~u · n̂ dl = 0 (3.150)

We can take the qs outside the line integral because qs is constant on the

bounding contour. The closed integral of ~u · n̂ vanishes because of incom-

pressibility:

∮

~u · n̂ dl =
∫∫

∇ · ~u dA = 0

Thus the integral of (3.151) in a region bounded by a qs contour is:

∂

∂t′

∫∫

ζ0 dxdy =
1

ρcD0

∫∫

∇× ~τ ′ dxdy −
∫∫

ζ0 dxdy (3.151)

Notice this contains only zeroth order terms. We can rewrite (3.151) by

exploiting Stoke’s Law, which states:

∫∫

∇× ~A dx dy =

∮

~A · ~dl (3.152)

So (3.151) can be rewritten:

∂

∂t′

∮

~u · ~dl = 1

ρcD0

∮

~τ ′ · ~dl −
∮

~u · ~dl (3.153)

We have dropped the zero subscripts, since this is the only component we

will consider. In terms of the real time and wind stress, this is:

∂

∂t

∮

~u · ~dl = 1

ρcD0

∮

~τ · ~dl − r

∮

~u · ~dl (3.154)

Isachsen et al. (2003) solved (3.154) by decomposing the velocity into

Fourier components in time:
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~u(x, y, t) =
∑

ũ(x, y, ω) eiωt

Then it is easy to solve (3.154) for the velocity integrated around the con-

tour:

∮

~u · ~dl = 1

r + iω

1

ρcD0

∮

~τ · ~dl (3.155)

Note the solution is actually for the integral of the velocity around the

contour (rather than the velocity at every point). We can divide by the

length of the contour to get the average velocity on the contour:

< u >≡
∮

~u · ~dl
∮

dl
=

1

r + iω

1

ρcD0

∮

~τ · ~dl
∮

dl
(3.156)

Isachsen et al. (2003) derived a similar relation using the shallow water

equations. Their expression is somewhat more complicated but has the

same meaning. They tested this prediction using various types of data from

the Nordic Seas. One example is shown in figure (3.17). This shows the

principal Empirical Orthogonal Function (EOF) of the sea surface height

variability measured from satellite. The EOF shows that there are regions

with spatially coherent upward and downward sea surface motion. These

regions are exactly where the qs contours are closed. This height variability

reflects strong gyres which are aligned with the qs contours.

Isachsen et al. took wind data, the actual bottom topography and an

approximate value of the bottom drag to predict the transport in the three

gyres (corresponding to the Norwegian, Lofoten and Greenland basins).

The results are shown in figure (3.18). The simple model does astonish-

ingly well, predicting the intensification and weakening of the gyres in all

three basins.
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Figure 3.18: Time series of observed (thin line) and predicted (thick line) sea surface

height displacements between the outer rim and the center of each of the principal gyres

in the Nordic seas. The linear bottom drag coefficient was R = 5 × 10−4 m/sec. From

Isachsen et al. (2003).

3.12 Barotropic instability

Many of the “mean” flows in the atmosphere and ocean, like the Jet and

Gulf Streams, are not steady at all. They meander and generate eddies

(storms). The reason is that these flows are unstable. If the flow is per-

turbed slightly, for instance by a slight change in heating or wind forcing,

the perturbation will grow, extracting energy from the mean flow. These

perturbations then develop into mature storms, both in the atmosphere and

ocean.

We’ll first study instability in the barotropic context. In this we ignore

forcing and dissipation, and focus exclusively on the interaction between

the mean flow and the perturbations. A constant mean flow, like we used

when deriving the dispersion relation for free Rossby waves, is stable. But
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a mean flow which is sheared can be unstable. To illustrate this, we exam-

ine a mean flow which varies in y. We will see that wave solutions exist in

this case too, but that they can grow in time.

The barotropic vorticity equation with a flat bottom and no forcing or

bottom drag is:

dg
dt
(ζ + βy) = 0 (3.157)

We again linearize the equation assuming a zonal flow, but we now allow

this to vary in y, i.e. U = U(y). As a result, the mean flow now has

vorticity:

ζ = − ∂

∂y
U (3.158)

So the PV equation is now:

dg
dt
(ζ ′ − ∂

∂y
U + βy) = 0 (3.159)

Because the mean flow is time independent, its vorticity doesn’t change

in time and as such, the mean vorticity alters the geostrophic contours:

qs = βy − ∂

∂y
U (3.160)

This implies the mean flow will affect the way Rossby waves propagate in

the system.

The linearized version of the vorticity equation is:

(
∂

∂t
+ U

∂

∂x
)ζ ′ + v′

∂

∂y
qs = 0 (3.161)

Written in terms of the streamfunction, this is:
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(
∂

∂t
+ U

∂

∂x
)∇2ψ + (

∂

∂y
qs)
∂ψ

∂x
= 0 (3.162)

Now because the mean flow varies in y, we have to be careful about

our choice of wave solutions. We can in any case assume a sinusoidal

dependence in x and t. The form we will use is:

ψ = Re{ψ̂(y) eik(x−ct)} (3.163)

Recall that the amplitude can be complex, i.e.:

ψ̂ = ψ̂r + iψ̂i

However, now the phase speed, c, also can be complex:

c = cr + ici (3.164)

This is an important point. With a complex c, we have:

eik(x−ct) = eik(x−(cr+ici) t) = eik(x−crt)+kcit (3.165)

Thus the argument of the exponential has both real and imaginary parts.

The real part determines how the phases change, as with the mountain

waves. But the imaginary part affects the wave amplitude. In particular,

if ci > 0, the amplitude will grow exponentially in time. If this happens,

we say the flow is barotropically unstable. This growth will continue such

that the wave eventually becomes as strong as the background flow itself.

If we substitute the wave solution into (3.162), we get:

(−ikc+ ikU)(−k2ψ̂ +
∂2

∂y2
ψ̂) + ikψ̂

∂

∂y
qs = 0 (3.166)
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Cancelling the ik yields:

(U − c) (
∂2

∂y2
ψ̂ − k2ψ̂) + ψ̂

∂

∂y
qs = 0 (3.167)

This is known as the “Rayleigh equation”. The solution of this determines

which waves are unstable. However, because U and qs are functions of y,

the equation is not trivial to solve.

One alternative is to solve it numerically. If you know U(y), you can

put that into the equation and crank out a solution (see sec. 3.12.2). But

imagine you then want to examine a slightly different flow; you would have

to solve the equation all over again. It would be nice if we could figure out

a way to determine if the flow is unstable without actually solving (3.167).

It turns out this is possible.

3.12.1 Rayleigh-Kuo criterion

We do this as follows. First we divide (3.167) by U − c:

(
∂2

∂y2
ψ̂ − k2ψ̂) +

ψ̂

U − c

∂

∂y
qs = 0 (3.168)

This assumes that U 6= c anywhere in the flow.3 Then we multiply by the

complex conjugate of the streamfunction:

ψ̂∗ = ψ̂r − iψ̂i

This yields:

(ψ̂r
∂2

∂y2
ψ̂r+ψ̂i

∂2

∂y2
ψ̂i)+i(ψ̂r

∂2

∂y2
ψ̂i−ψ̂i

∂2

∂y2
ψ̂r)−k2|ψ̂|2+

|ψ̂|2
U − c

∂

∂y
qs = 0

(3.169)
3When U = c at some point, the flow is said to have a critical layer. Then the analysis is more involved

than that here.
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The denominator in the last term is complex, but we can write it in a more

convenient form this way:

1

U − c
=

1

U − cr − ici
=
U − cr + ici
|U − c|2

Now the denominator is purely real. So we have:

(ψ̂r
∂2

∂y2
ψ̂r + ψ̂i

∂2

∂y2
ψ̂i) + i(ψ̂r

∂2

∂y2
ψ̂i − ψ̂i

∂2

∂y2
ψ̂r)− k2|ψ̂|2

+ (U − cr + ici)
|ψ̂|2

|U − c|2
∂

∂y
qs = 0 (3.170)

This equation has both real and imaginary parts, and each must separately

equal zero.

Consider the imaginary part of (3.170):

(ψ̂r
∂2

∂y2
ψ̂i − ψ̂i

∂2

∂y2
ψ̂r) + ci

|ψ̂|2
|U − c|2

∂

∂y
qs = 0 (3.171)

Let’s integrate this in y, over a region from y = [0, L]:

∫ L

0

(ψ̂i
∂2

∂y2
ψ̂r − ψ̂r

∂2

∂y2
ψ̂i) dy = ci

∫ L

0

|ψ̂|2
|U − c|2

∂

∂y
qs dy (3.172)

We can rewrite the first terms by noting:

ψ̂i
∂2

∂y2
ψ̂r− ψ̂r

∂2

∂y2
ψ̂i =

∂

∂y
(ψ̂i

∂

∂y
ψ̂r− ψ̂r

∂

∂y
ψ̂i)−

∂

∂y
ψ̂i
∂

∂y
ψ̂r+

∂

∂y
ψ̂r

∂

∂y
ψ̂i

=
∂

∂y
(ψ̂i

∂

∂y
ψ̂r − ψ̂r

∂

∂y
ψ̂i) (3.173)

Substituting this into the LHS of (3.172), we get:
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∫ L

0

∂

∂y
(ψ̂i

∂

∂y
ψ̂r − ψ̂r

∂

∂y
ψ̂i) dy = (ψ̂i

∂

∂y
ψ̂r − ψ̂r

∂

∂y
ψ̂i) |L0 (3.174)

To evaluate this, we need the boundary conditions on ψ at y = 0 and

y = L. If the flow is confined to a channel, then the normal flow vanishes

at the northern and southern walls. This implies that the streamfunction is

constant on those walls, and we can take the constant to be zero:

ψ̂(0) = ψ̂(L) = 0

Then (3.174) vanishes. Alternately we could simply choose y = 0 and y =

L to be latitudes where the perturbation vanishes (i.e. far away from the

mean flow), and then (3.174) would also vanish. If the flow was periodic

in y, it would also vanish because the streamfunction and its y-derivative

would be the same at y = 0 and L.

Either way, the equation for the imaginary part reduces to:

ci

∫ L

0

|ψ̂|2
|U − c|2

∂

∂y
qs dy = 0 (3.175)

In order for this to be true, either ci or the integral must be zero. If ci = 0,

the wave amplitude is not growing and the wave is stable. For unstable

waves, ci > 0. Then the integral must vanish to satisfy the equation. The

squared terms in the integrand are always greater than zero, so a necessary

condition for instability is that:

∂

∂y
qs = β − ∂2

∂y2
U = 0 (3.176)

somewhere in the domain. If this is true, then the integrand is positive in

part of the domain and negative in another part, and the integral is thus
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possibly zero. This is the Rayleigh-Kuo criterion. It states that the merid-

ional gradient of the background PV must change sign somewhere in the

domain, and that:

The PV gradient can only change sign if there is a mean flow. If U = 0,

then qs = βy and we have Rossby waves, all of which propagate west-

ward. But with Uyy 6= 0, the wave propagation changes with latitude, and

instability is possible.

However, we can only state that the flow may be unstable (because the

integral in 3.175 may still not be zero). As such, the Rayleigh-Kuo crite-

rion is a necessary condition for instability, but it is not a sufficient condi-

tion. Having ∂
∂yqs vanish doesn’t guarantee that a jet will be unstable. On

the other hand, the opposite case is a sufficient condition; if the gradient

does not change sign, the jet must be stable.

As noted, the Rayleigh-Kuo condition is useful because we don’t actu-

ally need to solve for the unstable waves to see if the jet is unstable. We

can evaluate the potential for instability by making a simply calculation

involving the jet profile.

One can derive another stability criterion, following Fjørtoft (1950), by

taking the real part of (3.170). The result is similar to the Rayleigh-Kuo

criterion, but a little more specific. Some flows which are unstable by the

Rayleigh criterion may be stable by Fjørtoft’s. However this is fairly rare.

Details are given in Appendix (5.4).

3.12.2 Stability of a barotropic jet

Now we examine a specific example of a barotropically unstable jet. This

has the following profile:
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Figure 3.19: An eastward jet (left panel). The middle and right panels show β − ∂2

∂y2
u for

the jet with amplitudes of 0.04 and 0.1, respectively. Only the latter satisfies Rayleigh’s

criterion for instability.

U(y) = U0 sech
2(by) (3.177)

This is called a “Bickley jet”, a well-known profile in fluid dynamics. It

is similar to a Gaussian, and is frequently used in the literature. The jet

profile, with b = 5, is plotted in the left panel of Fig. (3.19). Note the

parameters have been set so that that β = L = 1, to simplify things.

Shown in the middle and right panels is β − ∂2

∂y2U . Taking derivatives,

this is:

β − Uyy = β − 2b2 U0 sech
2(by)[3 tanh2(by)− 1] (3.178)

This is plotted for two jet amplitudes, U0. With U0 = 0.04 (middle panel),

the PV gradient is positive everywhere, so the jet is stable. With U0 = 0.1
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Figure 3.20: A westward jet (left panel). The middle and right panels again show β− ∂2

∂y2
u

for the jet, with amplitudes of 0.04 and 0.1. Note that both satisfy Rayleigh’s criterion for

instability.

(right panel), the PV gradient changes sign both to the north and south of

the jet maximum. So the latter jet may be unstable.

What happens if the jet is westward? This is shown in Fig. (3.20).

Now with both amplitudes, β − ∂2

∂y2U is negative at the centers of the jets,

meaning the jet may be unstable in both cases. Generally westward jets

tend to be more unstable than eastward ones.

To know what type of eddies result from the instability requires solving

the instability equation (3.167), with this profile. This is very difficult to

do analytically (as with most mean velocity profiles). But it is relatively

straightforward to do this numerically.

To solve the problem, we re-write equation (3.167) this way:
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U (
∂2

∂y2
ψ̂ − k2ψ̂) + ψ̂

∂

∂y
qs = c(

∂2

∂y2
ψ̂ − k2ψ̂) (3.179)

We can write this as a matrix equation:

Aψ = cBψ (3.180)

where:

A = U(y)(D2 − k2) +
∂

∂y
qs, B = (D2 − k2)

if D is a differentiation matrix. This is known as a generalized eigenvalue

problem. The eigenvalues are the phase speeds, c, and each c has a corre-

sponding eigenvector. The Matlab routine “eig” can be used to solve this,

given appropriate boundary conditions.
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Figure 3.21: The growth rates, kci, for symmetric and asymmetric modes, for an eastward

sech2 jet with amplitude U0 = 1 and a width L = 0.2.
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We’ll assume the flow is confined to an east-west channel, from x =

[0, 2π] and y = [−1, 1], with a sech2 jet centered on y = 0 (as in Fig.

3.19). We set β = U0 = 1 (this can be done by “non-dimensionalizing”

the governing equation). The jet width, which is given by 1/b, is 0.2 here.

As discussed above, this profile should be unstable from the Rayleigh-

Kuo criterion. We solve the problem in Matlab, using 200 grid points in

the cross-channel direction. We do this for a range of values of the zonal

wavenumber, k, and obtain the phase speed for each value.

Since the jet is symmetric around y = 0, it’s possible to show the so-

lutions are either symmetric or asymmetic about y = 0. Shown in Fig.

(3.21) are the growth rates, kci, for both types of mode. The rates are

plotted against the wavenumber, k.

The curves show that there are a range of wavenumbers which produce

unstable solutions. Also, there are no unstable solutions if the wavenumber

is greater than roughly k = 10. This means that small scale disturbances

will not grow, they will simply be advected by the jet. Thus the instability

has a “short wave cut-off”, because short waves are stable.

Larger waves on the other hand will grow in time. The fastest growing

are the symmetric waves (blue curve). These are unstable over a range of

wavenumbers, from roughly k = 1.5 − 10. Thus the largest symmetric

waves are also stable (this is due to the β-effect). The maximum occurs at

k = 4.8, with a maximum growth rate of 0.9. We refer to this as the “most

unstable wave”. If there was a range of disturbances initially, we’d expect

to see this wave emerge first, with a wavelength of 2π/(4.8).

The asymmetric modes (red curve) have smaller growth rates. How-

ever, for wavenumbers less than k = 1.5, only the asymmetric modes are

unstable. Thus if the initial disturbance is large enough, it will yield an
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asymmetric unstable mode (growing more slowly than the smaller sym-

metric modes). The maximum growth for the asymmetric modes occurs at

k = 2.9.

The most unstable modes are plotted in Fig. (3.22). The symmetric

mode (upper panel) has maxima centered on the jet axis and resembles

a train of high and low pressures. The maxima have a meridional extent

which mirrors that of the jet, i.e. twice 0.2 = 0.4. The asymmetric mode

(lower panel), has a longer wavelength than the symmetric mode, and has

maxima on the flanks of the jet axis.

Most unstable symmetric mode

0 1 2 3 4 5 6

-0.5

0

0.5

Most unstable asymmetric mode

0 1 2 3 4 5 6

x

-0.5

0

0.5

y

Figure 3.22: The most unstable symmetric and asymmetric waves for the eastward sech2

jet.

What happens in such cases is that as the unstable waves grow in time,

they extracts energy from the jet. At some point, the waves become as
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strong as the jet itself, and then the jet is obscured by the waves. An

asymmetric mode, like that in Fig. (3.22b), causes the jet to bulge and

narrow and as such is often referred to as a “varicose mode”. A symmetric

mode on the other hand causes the jet to meander, i.e. to shift north and

south. Given that the symmetric mode grows faster here, we expect that

meandering would be favored with this profile. Meandering is common in

the atmosphere and ocean, occurring both in the atmospheric Jet Streams

and in the major oceanic jets, like the Gulf Stream.

3.12.3 Simulations and observations

To capture the eddies depleting energy from a jet requires a fully nonlinear

numerical simulation. In the linear instability calculation, the jet profile is

fixed, and thus it cannot weaken. An example of a nonlinear simulation is

shown in Fig. (3.23). This involves a jet with a Gaussian profile of relative

vorticity:

ζ = − ∂

∂y
U = Ae−y2/L2

(3.181)

The author chose moreover to set β = 0, so the PV gradient is:

∂

∂y
qs = − ∂2

∂y2
U = −2y

L2
Ae−y2/L2

(3.182)

This is zero at y = 0, and thus satisfies Rayleigh’s criterion. In the sim-

ulation (Fig. 3.23), the jet begins to meander and then wraps up, into a

“street” of vortices. These have positive vorticity, like the jet itself.

An actual example of barotropic instability, in the atmosphere, is seen

in Fig. (3.24). This shows three infrared satellite images of water vapor

above the US. Note the dark band which stretches over the western US in
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Figure 3.23: Barotropic instability of a jet with a Gaussian profile in relative vorticity.

Courtesy of G. Hakim, Univ. of Washington.

into Canada. This is a dark filament of air, near the tropopause. This is dry

air, probably from the stratosphere. We see the filament is rolling up into

vortices, much like in the numerical simulation in (3.23).

An example of barotropic instability in the ocean, from the southern In-

dian and Atlantic Oceans, is shown in Figs. (3.25-3.27). Shown in (3.25)

is a Stommel-like solution for the region. Africa is represented by a barrier

attached to the northern wall, and the island to its east represents Mada-

gascar. The wind stress curl is indicated in the right panel; this is negative

in the north, positive in the middle and negative in the south.

In the southern part of the domain, the flow is eastward. This repre-

sents the Antarctic Circumpolar Current (the largest ocean current in the



142 CHAPTER 3. SYNOPTIC SCALE BAROTROPIC FLOWS

Figure 3.24: Barotropic instability of a filament of dry air, observed from water vapor

infrared satellite imagery. The images were taken on the 11th of October, 2005, at 22:45

pm, 3:15 am and 9:45 am, respectively. Courtesy of G. Hakim, Univ. of Washington.

world). In the “Indian Ocean”, the flow is to the west, towards Madagas-

car. This corresponds to the South Equatorial Current, which impinges on

Madagascar. There are western boundary currents to the east of Africa and

Madagascar. The boundary currents east of Madagascar flow westward

toward Africa in two jets, to the north and south of the Island. Similarly,

the western boundary current leaves South Africa to flow west and join the

flow in the South Atlantic.
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Figure 3.25: A Stommel-like solution for the Indian Ocean. The curl of the wind stress is

indicated in the right panel. From LaCasce and Isachsen (2007).

Shown in Fig. (3.26) is the PV gradient for this solution, in the region

near South Africa and Madagascar. Clearly the gradient is dominated by

the separated jets. Moreover, the gradient changes sign several times in

each of the jets. So we would expect the jets might be unstable, by the

Rayleigh-Kuo criterion.

A snapshot from a numerical solution of the barotropic flow is shown in

Fig. (3.27). In this simulation, the mean observed winds were used to drive

the ocean, which was allowed to spin-up to a statistically steady state. The

figure shows a snapshot of the sea surface height, after the model has spun

up. We see that all three of the eastward jets have become unstable and are

generating eddies (of both signs). The eddies drift westward, linking up

with the boundary currents to their west.

Barotropic instability occurs when the lateral shear in a current is too

large. The unstable waves extract energy from the mean flow, reducing
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Figure 3.26: The PV gradient for the solution in Fig. (3.25). The gradient changes sign

rapidly in the three jet regions. From LaCasce and Isachsen (2007).

the shear by mixing momentum laterally. However, in the atmosphere

baroclinic instability is more important, and this results in storm forma-

tion. Under baroclinic instability, unstable waves act to reduce the vertical

shear of the mean flow. In order to study that, we have to take account of

density changes.

3.13 Exercises

3.1. Planetary vorticity. Imagine looking down on the North Pole. The

earth spinning in solid body rotation, because every point is rotating

with the same frequency, 2π rad/day. This implies that the azimuthal

velocity at any point is just Ωr. Write the vorticity in cylindrical

coordinates. For a solid body rotating at a frequency ω, vr = 0 and

vθ = ωr. Use this to show that ζ = 2Ω.

The analogy carries over to a local region, centered at latitude θ,

where the vertical component of the rotation is 2Ωsin(θ), the planet’s
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Figure 3.27: The sea surface height from a barotropic numerical simulation of the south-

ern Indian and Atlantic Oceans. From LaCasce and Isachsen (2007).

vorticity at this latitude.

3.2. Imagine that a fluid parcel is moving into a region where there is a

constant horizontal divergence, i.e.:

∂

∂x
u+

∂

∂y
v = D = const. (3.183)

Solve the vorticity equation, assuming D > 0. What can you con-

clude about the parcel’s vorticity at long times? Now consider D < 0

(convergent flow). What happens? Consider two cases, one where the

absolute vorticity is initially positive and a second where it is nega-

tive. Note that the storm initially should have a small Rossby number.

3.3. Consider again a region where the horizontal divergence is constant

and equal to - 0.5 day−1. Use the vorticity equation to deduce what
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the vorticity on a parcel will be after 2 days if:

a) ζ(t = 0) = f/2

b) ζ(t = 0) = −f/2

c) ζ(t = 0) = −2f

Are these reasonable values of vorticity? Explain why or why not.

3.4. Barotropic Rossby waves

a) Write down the expression for the Rossby wave phase speed, given

a constant mean velocity, U .

b) Let U = 0 and β = 1. Consider the following wave:

ψ = Acos(5.1x+ 2y − ω1t) (3.184)

What is the frequency ω1? What is the phase speed in the x−direction,

cx? What is the group velocity in the x-direction, cgx?

c) Now let the wave be the sum of two waves:

ψ = Acos(5.1x+ 2y − ω1t) + Acos(4.9x+ 2y − ω2t) (3.185)

What is the group velocity in the x-direction of this wave?

3.5. Topographic Rossby waves

Bottom topography, like the β-effect, can support Rossby-like waves,

called topographic waves. To see this, use the linearized version of

the barotropic PV equation (3.31) with β=0 (a constant Coriolis pa-

rameter). Assume the depth is given by:

H = H0 − αx (3.186)
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Derive the phase speed (in the y-direction) for the waves, assuming no

background flow (U = V = 0). Which way do the waves propagate,

relative to the shallower water? What if α < 0? What about in the

southern hemisphere?

3.6. Mixed planetary-topographic waves (optional)

Now consider what happens when you have both a bottom slope and

β. Say the depth is again given by:

H = H0 − αx

and that there is no forcing.

a) Simplify the barotropic PV equation, assuming no mean flow (U =

0).

b) Propose a wave solution.

c) Solve the equation and derive the dispersion relation.

d) What is the phase speed in the x-direction? What about in the

y-direction? Which way are they going?

e) (Hard): How would you rotate the coordinate system, so that the

new x-direction is parallel to the qs contours?

f) Which way will the waves propagate in the new coordinate system?

If you don’t have the solution to (e), use your intuition.

3.7. Basin Rossby waves

We solved the Rossby wave problem on an infinite plane. Now con-

sider what happens if there are solid walls. Start with the linear vor-

ticity equation, with no mean flow (U = 0). Assume the variations
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in y are weak, so that you can approximate the vorticity by ∂
∂xv. For

the boundary conditions, let ψ = 0 at x = 0 and x = L—this ensures

that there is no flow into the walls. What are the solutions for ω and

k?

Hint 1: Assume ψ = A(x)cos(kx− ωt)

Hint 2: Impose the boundary conditions on A.

Hint 3: The coefficients of the sine and cosine terms should both be

zero.

Hint 4: The solutions are quantized (have discrete values).

3.8. Rossby wave reflection

Consider Rossby waves incident on a northern wall, i.e. oriented east-

west, located at y = 0. Proceed as before, with one incident and one

reflected wave. What can you say about the reflected wave?

Hint: there are two possibilities, depending on the sign of lr.

3.9. Stress in the bottom Ekman layer

Derive the stress at the bottom of the bottom Ekman layer. Show that

this is 45◦ to the left of the geostrophic velocity. As such it is 90◦

to the right of the Ekman transport. Note that this contrasts with the

surface, where the transport is to the right of the surface stress.

Note: having the stress in the same direction as the flow seems para-

doxical. However, the depth-integrated, linear x-momentum equation

is:

∂

∂t
U − fV = − 1

ρc

∫ δ

0

∂

∂x
p− τx

ρc
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if U and V are the transports in the Ekman layer. So a positive bottom

stress acts to decelerate U .

3.10. Mountain waves (optional)

Consider Rossby waves with an isolated mountain range. A purely

sinusoidal mountain range is not very realistic. A more typical case

is one where the mountain is localized. Consider a mountain “range”

centered at x = 0 with:

h(x, y) = h0 e
−x2/L2

(3.187)

Because the range doesn’t vary in y, we can write ψ = ψ(x).

Write the wave equation, without friction. Transform the streamfunc-

tion and the mountain using the Fourier cosine transform. Then solve

for the transform of ψ, and write the expression for ψ(x) using the in-

verse transform (it’s not necessary to evaluate the inverse transform).

Where do you expect the largest contribution to the integral to occur

(which values of k)?

3.11. Sverdrup transport

Consider the following wind profiles. For each one, calculate a) the

associated Ekman transport, b) the vertical velocity at the base of the

Ekman layer and c) the Sverdrup transport in the underlying ocean.

• ~τw = T0 î

• ~τw = T0 cos(
πy
L ) î (assuming a domain with y = [0, L].

• ~τw = T0 exp(− (y−L/2)2

D2 ) î (where D = L/10).

3.12. Is there really western intensification?
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To convince ourselves of this, we can solve the Stommel problem in

1-D, as follows. Let the wind stress be given by:

~τ = yî (3.188)

Write the vorticity equation following Stommel (linear, U=V=0, steady).

Ignore variations in y, leaving a 1-D equation. Assume the domain

goes from x = 0 to x = L, as before. Solve it.

Note that you should have two constants of integration. This will

allow you to satisfy the boundary conditions ψ = 0 at x = 0 and x =

L. Plot the meridional velocity v(x). Assume that (βρcD0)
−1 = 1

and L(rρcD)−1 = 10. Where is the jet?

3.13. Barotropic instability.

We have a region with −1 ≤ y < 1. Consider the following velocity

profiles:

a) U = 1− y2

b) U = exp(−y2)

c) U = sin(πy)

d) U = 1
6y

3 + 5
6y

Which profiles are unstable by the Rayleigh-Kuo criterion if β = 0?

How large must β be to stabilize all the profiles? Note that the terms

here have been non-dimensionalized, so that β can be any number

(e.g. an integer).

3.14. Instability over a slope (optional)

Consider a barotropic flow over the continental slope in the ocean.

There is no forcing and no Ekman layer, and β = 0. The water depth
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is given by:

H = D − αx (3.189)

The flow is confined to a channel, with walls at x = 0 and x = L

(Fig. 3.28). There are no walls at the northern and southern ends;

assume that the flow is periodic in the y-direction.

x=0

x=L

H = D −    xα

y
x

Figure 3.28: A channel with a bottom slope.

a) What is the PV equation governing the dynamics in this case? What

are the boundary conditions?

b) Linearize the equation, assuming no mean flow. What is an appro-

priate wave solution? Substitute the wave solution to find a dispersion

relation.

c) Now assume there is a mean flow, V = V (x) ĵ (which follows the

bottom topgraphy). Linearize the equation in (a) assuming this mean

flow. What are the qs contours?

d) Write down an appropriate wave solution for this case. Note that
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V (x) can be any function of x. Substitute this into the PV equation.

Then multiply the equation by the complex conjugate of the wave

amplitude, and derive a condition for the stability of V .



Chapter 4

Synoptic scale baroclinic flows

We will now examine what happens with vertical shear. In this case the

winds at higher levels need not be parallel to or of equal strength with those

at lower levels, and surface currents in the ocean can be quite different

from those near the bottom. Baroclinic flows are inherently more three

dimensional than barotropic ones. Nevertheless, we will see that we get the

same type of solutions with baroclinic flows as with barotropic ones. We

have baroclinic Rossby waves, mountain waves and baroclinic instability.

These phenomena involve some modifications though.

4.1 Vorticity equation

Consider the vorticity equation (3.22):

(
∂

∂t
− ∂ψ

∂y

∂

∂x
+
∂ψ

∂x

∂

∂y
)(∇2ψ + f) = f0

∂

∂z
w (4.1)

This equation was derived from the shallow water equations. However, at

synoptic scales, the vertical advection of momentum is much weaker than

horizontal advection. As such, the horizontal momentum equations are

quasi-horizontal, meaning we can neglect the terms withw in them. Cross-

differentiating the momentum equations and then invoking incompressibil-

153
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ity produces the same vorticity equation above. This works equally well

with baroclinic flows as barotropic ones at synoptic scales.

For atmospheric flows, we use the pressure coordinate version of the

vorticity equation. This is nearly the same:

(
∂

∂t
− ∂ψ

∂y

∂

∂x
+
∂ψ

∂x

∂

∂y
)(∇2ψ + f) = f0

∂

∂p
ω (4.2)

These equations have two unknowns, ψ, and w or ω. With a barotropic

flow, one can eliminate w or ω by integrating over the depth of the fluid.

Then the vertical velocity only enters at the upper and lower boundaries.

But for baroclinic flows, in which u and v vary with height, we require a

second equation to close the system.

4.2 Density Equation

For this, we use the equation for the fluid density (temperature). In the

atmosphere, we have the thermodynamic equation (1.72):

cp
d(lnθ)

dt
=
J

T
(4.3)

With zero heating, J = 0, implying:

dθ

dt
= 0 (4.4)

i.e. the potential temperature is conserved. This equation can be rewrit-

ten in terms of ψ and ω and then combined with the pressure coordinate

version of the vorticity equation (Appendix 5.5).

To illustrate this, we’ll use the thermodynamic equation for the ocean:

dρ

dt
=

∂

∂t
ρ+ ~u · ∇ρ = 0 (4.5)

Here the velocity here is the full velocity, not just the geostrophic one.
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As in sec. (2.1), we can decompose the pressure and density into static

and moving parts:

p = p0(z) + p′(x, y, z, t), ρ = ρ0(z) + ρ′(x, y, z, t)

where the dynamic terms are much smaller:

|ρ′| ≪ ρ0, |p′| ≪ p0 (4.6)

Both the static and dynamic parts are separately in hydrostatic balance:

∂

∂z
p0 = −ρ0g,

∂

∂z
p′ = −ρ′g (4.7)

Inserting these into the density equation yields:

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
) ρ′ + w

∂

∂z
ρ0 = 0 (4.8)

Now we simplify this by replacing the horizontal velocities with the geostrophic

ones, and neglecting the vertical advection of the perturbation density gra-

dient compared to that of the background density gradient:

(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
) ρ′ + w

∂

∂z
ρ0 = 0 (4.9)

Using hydrostatic balance, we can re-write this as:

(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
)
∂p′

∂z
− gw

∂

∂z
ρ0 = 0 (4.10)

after multiplying through by −g. Lastly, we use the geostrophic stream-

function (3.32) to get:

(
∂

∂t
− ∂ψ

∂y

∂

∂x
+
∂ψ

∂x

∂

∂y
)
∂ψ

∂z
+
N 2

f0
w = 0 (4.11)
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This is the quasi-geostrophic density equation. Here N 2 is the buoyancy

frequency:

N 2 = − g

ρc

dρ0
dz

(4.12)

The buoyancy frequency is a measure of the stratification in z-coordinates.

It reflect the frequency of oscillation of parcels in a stably stratified fluid

which are displaced up or down (see problem 3.1).

Consider what the density equation means. If there is vertical motion

in the presence of background stratification, the perturbation density will

change. For example, if the background density decreases going up (as it

must for a stably stratified fluid), a rising parcel has:

w
∂

∂z
ρ0 < 0

This implies that the pertubation density must increase in time. So as the

parcel rises, it becomes heavier relative to the background density.

There is an interesting parallel here. The vorticity equation implies that

meridional motion changes the parcels vorticity. Here we see that vertical

motion affects its density. The two effects are intimately linked when you

have baroclinic instability (sec. 4.8).

4.3 QG Potential vorticity

We now have two equations with two unknowns. It is straightforward to

combine them to produce a single equation with only one unknown, by

eliminating w from (4.1) and (4.11). First we multiply (4.11) by f 20/N
2

and take the derivative with respect to z:

∂

∂z
(
f 20
N 2

∂

∂t

∂ψ

∂z
) +

∂

∂z
[~ug · ∇(

f 20
N 2

∂ψ

∂z
)] = −f0

∂

∂z
w (4.13)



4.3. QG POTENTIAL VORTICITY 157

The second term can be expanded thus:

(
∂

∂z
~ug) · ∇(

f 20
N 2

∂ψ

∂z
) + ~ug · ∇(

∂

∂z
(
f 20
N 2

∂ψ

∂z
))

The first term vanishes. You can see this by writing the velocity in terms

of the streamfunction:

f 20
N 2

[− ∂

∂z
(
∂ψ

∂y
)
∂

∂x
(
∂ψ

∂z
) +

∂

∂z
(
∂ψ

∂x
)
∂

∂y
(
∂ψ

∂z
)] = 0 (4.14)

The physical reason for this is that the the geostrophic velocity is parallel

to the pressure; thus the dot product between ( ∂
∂z~ug) and the gradient of

∂
∂zψ must be zero. So (4.13) reduces to:

(
∂

∂t
+ ~ug · ∇) [

∂

∂z
(
f 20
N 2

∂ψ

∂z
)] = −f0

∂

∂z
w

If we combine this with (4.1), we get:

(
∂

∂t
+ ~ug · ∇) [∇2ψ +

∂

∂z
(
f 20
N 2

∂ψ

∂z
) + βy] = 0 (4.15)

This is the quasi-geostrophic potential vorticity (QGPV) equation. It has

only one unknown, ψ. The equation implies that the potential vorticity:

q = ∇2ψ +
∂

∂z
(
f 20
N 2

∂ψ

∂z
) + βy (4.16)

is conserved following a parcel moving with the geostrophic flow. This is

a powerful constraint. Without forcing, the flow evolves such that q is only

redistributed, not changed.

The first term in the QGPV is the QG relative vorticity and the third

term is the planetary vorticity, as seen before. The second term is new
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though; this is the stretching vorticity. This is related to vertical gradients

in the density.

The QGPV equation can be used to model synoptic scale flows. If one

to solve this numerically, it would require several steps. First, the QGPV

equation is advanced in time to obtain the PV at the next time step. Then

the PV is inverted to obtain the streamfunction. From this, we can obtain

the velocities and then advance the QGPV equation again. But doing this

requires boundary conditions.

4.4 Boundary conditions

Notice the QGPV equation (4.15) doesn’t contain any Ekman or topo-

graphic terms. This is because the PV equation pertains to the interior.

In the barotropic case, we introduced those terms by integrating between

the lower and upper boundaries, but here, we must treat the boundary con-

ditions separately.

For these, we use the density equation (4.11), rewritten thus:

f0
N 2

dg
dt

∂ψ

∂z
= −w (4.17)

The vertical velocity at the boundary can come from either pumping from

an Ekman layer or flow over topography. Thus for the lower boundary, we

have:

f0
N 2

dg
dt

∂ψ

∂z
|zb = −ug · ∇h− δ

2
∇2ψ (4.18)

where the velocities and streamfunction are evaluated at the bottom bound-

ary, which we take to be at z = zb.

The upper boundary condition is similar. For the ocean, with the ocean



4.5. BAROCLINIC ROSSBY WAVES 159

surface at z = zu, we have:

f0
N 2

dg
dt

∂ψ

∂z
|zu = − 1

ρcf0
∇× ~τw (4.19)

The upper boundary condition for the atmosphere depends on the ap-

plication. If we are considering the entire atmosphere, we could demand

that the amplitude of the motion decay as z → ∞, or that the energy flux

is directed upwards. However, we will primarily be interested in motion in

the troposphere. Then we can treat the tropopause as a surface, either rigid

or freely moving. If it is a rigid surface, we would have simply:

1

N 2

dg
dt

∂ψ

∂z∗
|zu = 0 (4.20)

at z = zu. A free surface is only slightly more complicated, but the rigid

upper surface will suffice for what follows.

4.5 Baroclinic Rossby waves

Now we’ll look at some specific solutions. We begin with seeing how

stratification alters the Rossby wave solutions.

First we linearize the PV equation (4.15) assuming a constant back-

ground flow:

(
∂

∂t
+ U

∂

∂x
) [∇2ψ +

∂

∂z
(
f 20
N 2

∂ψ

∂z
)] + β

∂

∂x
ψ = 0 (4.21)

Assume for simplicity that the domain lies between two rigid, flat surfaces.

With the ocean in mind, we’ll take the boundaries at z = 0 and z = −D
(the result is the same with positive z). We’ll also neglect Ekman layers on

those surfaces. So the linearized boundary condition on each surface is:

(
∂

∂t
+ U

∂

∂x
)
∂ψ

∂z
= 0 (4.22)
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This implies that the density (or temperature) doesn’t change on parcels

advected by the mean flow along the boundary. So the density is constant

on the boundaries, and we take the constant to be zero:

∂ψ

∂z
= 0 (4.23)

The coefficients in the PV equation do not vary with time or in (x, y),

but the buoyancy frequency, N , can vary in z. So an appropriate choice of

wave solution would be:

ψ = Re{ψ̂(z)ei(kx+ly−ωt)} (4.24)

Substituting this into the PV equation, we get:

(−iω + ikU)[−(k2 + l2)ψ̂ +
d

dz
(
f 20
N 2

dψ̂

dz
)] + iβkψ̂ = 0 (4.25)

or:
d

dz
(
f 20
N 2

dψ̂

dz
) + λ2ψ̂ = 0 (4.26)

where:

λ2 ≡ βk

Uk − ω
− k2 − l2 (4.27)

Equation (4.26) determines the vertical structure, ψ̂(z), of the Rossby

waves. With the boundary conditions (4.23), this constitutes an eigenvalue

or “Sturm-Liouville” problem. Only specific values of λ will be permitted.

In order to find the dispersion relation for the waves, we must first solve

for the vertical structure.

4.5.1 Baroclinic modes with constant stratification

To illustrate, consider the simplest case, with N 2 = const. Then we have:

d2ψ̂

dz2
+
N 2λ2

f 20
ψ̂ = 0 (4.28)
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This has a general solution:

ψ̂ = Acos(
Nλz

f0
) +Bsin(

Nλz

f0
) (4.29)

In order to satisfy ∂
∂z ψ̂ = 0 on the upper boundary (at z = 0), we

require that B = 0. But in addition, it must work on the lower boundary,

at z = −D. So either A = 0 (so that we have no wave at all) or:

sin(
NλD

f0
) = 0 (4.30)

For this to be true:
NλD

f0
= nπ (4.31)

where n = 0, 1, 2... is an integer. In other words, only specific combina-

tions of of the parameters will work. Solving for λ, we get:

λ2 =
n2π2f 20
N 2D2

≡ n2

L2
D

(4.32)

Here,

LD =
ND

πf0
is the baroclinic deformation radius. Combining this with the definition of

λ2, we get:
n2

L2
D

≡ βk

Uk − ω
− k2 − l2 (4.33)

Solving for ω, we obtain:

ω ≡ ωn = Uk − βk

k2 + l2 + n2/L2
D

(4.34)

This is the dispersion relation for baroclinic Rossby waves.

In fact, there are an infinite number of relations here, one for each value

of n, each with a different vertical structure. The wave structure corre-

sponding to each is given by:

ψ = Acos(kx+ ly − ωnt) cos(
nπz

D
) (4.35)
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Consider first the case with n = 0. The dispersion relation is:

ω0 = Uk − βk

k2 + l2
(4.36)

This is just the dispersion relation for the barotropic Rossby wave obtained

earlier (sec. 3.5). The wave solution with n = 0 is

ψ0 = Acos(kx+ ly − ωnt) (4.37)

This doesn’t vary in the vertical, exactly as we would expect for a baro-

tropic wave. So the barotropic mode exists, even though there is strati-

fication. All the properties that we derived before apply to this wave as

well.

Why does the barotropic mode exist? The mode has no vertical shear, so

the stretching vorticity is zero, and as such, equation (4.21) is exactly the

same as the barotropic Rossby wave equation (3.43). Also–and equally

importantly–the boundary conditions at the top and bottom permit solu-

tions with no vertical shear.

With n = 1, the streamfunction is:

ψ1 = Acos(kx+ ly − ωnt)cos(
πz

D
) (4.38)

This is the first baroclinic mode, shown as the red curve in Fig. (4.1). The

streamfunction (and thus the velocities) change sign in the vertical. Thus

if the velocity is eastward near the upper boundary, it is westward near the

bottom. There is also a “zero-crossing” at z = −D/2, where the velocities

vanish. The waves have an associated density perturbation as well:

ρ1 ∝
∂

∂z
ψ1 = −nπ

D
Acos(kx+ ly − ωnt)sin(

πz

D
) (4.39)

So the density perturbation is largest at the mid-depth, where the horizontal

velocities vanish. In the ocean, first mode baroclinic Rossby waves cause
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Figure 4.1: The baroclinic modes with constant stratification.

large deviations in the thermocline, which is the subsurface maximum in

the density gradient.

We have assumed the surface and bottom are flat, and our solution has

no density perturbations on those surfaces. However, if we had allowed

the upper surface to move, we would have found that the first baroclinic

mode has an associated surface deflection. Moreover, this deflection is of

the opposite in sign to the density perturbation at mid-depth. If the density

contours are pressed down at mid-depth, the surface rises. This means one

can observe baroclinic Rossby waves by satellite.

The dispersion relation for the first mode is:

ω1 = Uk − βk

k2 + l2 + 1/L2
D

(4.40)

The corresponding zonal phase speed is:

c1 =
ω1

k
= U − β

k2 + l2 + 1/L2
D

(4.41)
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So the first mode wave also propagates westward relative to the mean flow.

But the phase speed is slower than that of the barotropic Rossby wave.

However, if the wavelength is much smaller than the deformation radius

(so that k2 + l2 ≫ 1/L2
d), then:

c1 ≈ U − β

k2 + l2
(4.42)

So small scale baroclinic waves have a phase speed like that of a barotropic

wave of the same size.

If on the other hand the wave is much larger than the deformation radius,

then:

c1 ≈ U − βL2
D = U − βN 2D2

π2f 20
(4.43)

This means the large waves are non-dispersive, because the phase speed

is independent of the wavenumber. This phase speed, known as the “long

wave speed”, is a strong function of latitude, varying inversely with the

square of the Coriolis parameter. Where f0 is small—at low latitudes—the

long baroclinic waves move faster.

The phase speeds from the first four modes are plotted as a function of

wavenumber in Fig. (4.2). Here we plot the function:

cn =
1

2k2 + n2
(4.44)

(note that the actual c is the negative of this). We have set β = LD = 1 and

k = l and assumed the mean flow is zero. The barotropic mode (n = 0)

has a phase speed which increases without bound as the wavenumber goes

to zero. This is actually a consequence of having a rigid lid at the surface;

if we had a free (moving) surface, the wave would have a finite phase speed

at k = 0. The first baroclinic mode (n = 1) has a constant phase speed

at low k, equal to c = 1. This is the long wave speed with LD = 1. The
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Figure 4.2: Rossby phase speeds as a function of wavenumber for the first four modes.

second and third baroclinic modes (n = 2, 3) also have long wave speeds,

but these are four and nine times smaller than the first baroclinic long wave

speed.

4.5.2 Baroclinic modes with exponential stratification

In the preceding section, we assumed a constant buoyancy frequency, N .

This implies the density has linear profile in the vertical. In reality, the

oceanic density varies strongly with z. In many locations, the buoyancy

frequency exhibits a nearly exponential dependence on depth, with larger

values near the surface and smaller ones at depth.

An exponential profile can also be solved analytically. Assume:

N = N0e
αz (4.45)
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Substituting (4.45) into (4.26) yields:

d2ψ̂

dz2
− α

dψ̂

dz
+
N 2

0λ
2

f 20
e2αzψ̂ = 0 (4.46)

Making the substitution ζ = eαz, we obtain:

ζ2
d2ψ̂

dζ2
− ζ

dψ̂

dζ
+

4N 2
0λ

2

α2f 20
ζ2ψ̂ = 0 (4.47)

This is a Bessel-type equation. The solution which satisfies the upper

boundary condition (at z = 0) is:

ψ̂ = Aeαz[Y0(γ)J1(γe
αz)− J0(γ)Y1(γe

αz)] (4.48)

where γ = N0λ/(αf0). If we then impose the bottom boundary condition,

we get:

J0(γ)Y0(γe
−αH)− Y0(γ)J0(γe

−αH) = 0 (4.49)

Equation (4.49), a transcendental equation, admits only certain discrete

values, γn. As before, γn is quantized. Once γn is found, the wave frequen-

cies can be determined from the dispersion relation as before. Equation

(4.49) is more difficult to solve than with constant stratification, but it’s

possible to do this numerically. Notice though that γ = 0 is also a solution

of (4.49)—so there is also a barotropic mode in this case as well.

The baroclinic modes, ψ̂(z), with one value of α are shown in Fig. (4.3).

Again there is the depth-independent barotropic mode, and depth-varying

baroclinic modes. The first baroclinic mode again has one zero crossing,

the second mode has two, and so forth. But unlike the cosine modes, the

exponential modes have their largest amplitudes near the surface. This im-

plies that the Rossby wave velocities and density perturbations are likewise

surface-intensified.
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Figure 4.3: The baroclinic modes with exponential stratification. The e-folding rate for

the stratification, α, is 2.5.

4.5.3 Baroclinic modes with actual stratification

In most cases though, the stratification has a more complicated dependence

on depth. An example is shown in the left panel of Fig. (4.4), from a lo-

cation in the ocean off the west coast of Oregon in the U.S (Kundu et al.,

1974). Below about 10 m depth N 2 decreases approximately exponen-

tially. But above that it also decreases, toward the surface. We refer to

this weakly stratified upper region as the mixed layer. It is here that sur-

face cooling and wind-induced turbulent mixing stir the waters, making

the stratification more homogeneous. This is a common phenomenon in

the world ocean.

With profiles of N 2 like this, it is necessary to solve equation (4.26)

numerically. The authors did this, and the result is shown in the right

panel of Fig. (4.4). Below 10 m, the modes resemble those obtained with
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Figure 4.4: The buoyancy frequency (left panel) and the corresponding vertical modes

(right panel) from a location on the continental shelf off Oregon. From Kundu et al.

(1974).

exponential stratification. The baroclinic modes have larger amplitudes

near the surface, and the zero crossings are also higher up in the water

column. Where they differ though is in the upper 10 m. Here the modes

flatten out, indicating weaker vertical shear. So the flow in the mixed layer

is more barotropic than below. Note though that there is still a barotropic

mode. This is always present under the condition of a vanishing density

perturbation on the boundaries.

It can be shown that the the eigenfunctions obtained from the Sturm-

Liouville problem form a complete basis. That means that we can express

an arbitrary function in terms of them, if that function is continuous. So

oceanic currents can be decomposed into vertical modes. Wunsch (1997)

studied currents using a large collection of current meters deployed all over
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the world. He found that the variability projects largely onto the barotropic

and first baroclinic modes. So these two modes are the most important for

time-varying motion.

4.5.4 Observations of oceanic Rossby waves

As noted in sec. (3.5.3), baroclinic Rossby waves can be seen by satellite-

derived measurements of sea surface height (SSH). The SSH fields in Fig.

(3.8) were from two different times in 1993. There are large scale anoma-

lies and these migrate westward in time. The speed of propagation more-

over increases towards the equator, which is evident from a bending of the

leading wave front (indicated by the white contours).

Chelton and Schlax (1996) took cuts in the fields at various latitudes to

construct time-longitude plots or “Hovmuller” diagrams (Fig. 4.5). Time

is increasing on the y-axis, so the tilt towards the upper left is consistent

with westward phase propagation. The tilt can be used to deduce the phase

speeds, which are on the order of cm/sec. Interestingly the speeds are

strongly dependent on latitude, being fastest at 21N and slowest at 39N.

Shown in Fig. (4.6) are the calculated phase speeds plotted against lat-

itude. A curve showing the long wave speed for the first baroclinic mode

is also shown. We see there is reasonable agreement at most latitudes. The

agreement is very good below about 20 degrees of latitude; at higher lat-

itudes there is a systematic discrepancy, with the observed waves moving

perhaps twice as fast as predicted. There are a number of theories which

have tried to explain this.1 For our purposes though, we see that the simple

theory does surprisingly well at predicting the observed sea surface height

propagation.

1See for example LaCasce and Pedlosky (2004) and Isachsen et al. (2007).
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Figure 4.5: Three Hovmuller diagrams constructed from sea surface height in the North

Pacific. From Chelton and Schlax (1996).

This is still an active area of research. For example, the reason why

the waves are more pronounced west of 150-180 W in Fig. (3.8) is still

unknown.

4.6 Mountain waves

In sec. (3.9), we saw how a mean wind blowing over mountains could

excite standing Rossby waves. Now we will consider what happens in the

baroclinic case.
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Figure 4.6: Westward phase speeds deduced from the motion of sea surface height anoma-

lies, compared with the value predicted by the long wave phase speed given in (4.43).

The lower panel shows the ratio of observed to predicted phase speed. Note the observed

speeds are roughly twice as fast at high latitudes. From Chelton and Schlax (1996).

We consider the potential vorticity equation (4.15), without forcing:

dg
dt
[∇2ψ +

∂

∂z
(
f 20
N 2

∂ψ

∂z
) + βy] = 0 (4.50)

As before, we consider a steady flow forced by a mean zonal wind:

U
∂

∂x
[∇2ψ +

∂

∂z
(
f 20
N 2

∂ψ

∂z
)] + β

∂

∂x
ψ = 0 (4.51)

Note that even though the Rossby waves will be baroclinic, the mean flow

is assumed to be barotropic (otherwise there would be an additional term

involving the mean shear). We will again assume that the stratification

parameter, N 2, is constant, for simplicity.
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With a constant N 2, all the coefficients in the vorticity equation are

constant. But given that we have a boundary in z, it’s still wise to leave the

z-dependence undetermined. So our wave solution is:

ψ = ψ̂(z)eikx+ily (4.52)

Substituting this into (4.51) yields:

ikU [−(k2 + l2)ψ̂ − f 20
N 2

d2ψ̂

dz2
] + ikβψ̂ = 0 (4.53)

Rearranging, we get:

d2ψ̂

dz2
+m2ψ̂ = 0 (4.54)

where:

m = ±N
f0

√

β

U
− k2 − l2 (4.55)

There are actually four possibilites for the vertical structure; m can be pos-

itive or negative, and real or imaginary. This in turn depends on the term

in the square root; if positive, m is real and has wave-like solutions. But if

it is negative, m is imaginary and the vertical dependence is exponential in

the vertical.

Consider the second case first. Then we can write:

m = ±imi ≡ ±iN
f0

√

k2 + l2 − β

U
(4.56)

as the term in the root is positive. The streamfunction is thus:

ψ = (Aemiz +Be−miz)eikx+ily (4.57)

The first term in the parentheses grows with height. This is not realistic, as

the velocities would become extremely large at great heights in the atmo-

sphere. So we conclude that A = 0 and that all wave solutions are trapped
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at the surface. Thus the pressure field excited by the mountains is basically

trapped over the mountains.

When the term in the root in (4.55) is positive on the other hand, we

have:

ψ = (Aeimz +Be−imz)eikx+ily (4.58)

Then the solution is wave-like in the vertical, meaning the waves can ef-

fectively propagate upward to infinity, leaving the troposphere and entering

the stratosphere and beyond. In such situations, the mountain waves can

disturb the atmospheric flow well above them.

Which term do we take though, the positive or the negative exponent?

To find out, we examine the group velocity in the vertical direction. The

dispersion relation for baroclinic Rossby waves with a mean flow and a

wave-like structure in the vertical is:

ω = Uk − βk

k2 + l2 +m2f 20/N
2

(4.59)

(sec. 4.5). The corresponding vertical group velocity is:

cgz =
∂ω

∂m
=

2βkmf 20
N 2(k2 + l2 +m2f 20/N

2)2
(4.60)

This is positive if the product km is positive. Thus if k is positive, we

require that m also be positive. So we could write:

ψ = Aeikx+ily+imz (4.61)

where:

m = sgn(k)
N

f0

√

β

U
− k2 − l2 (4.62)

Here sgn(k) is +1 if k is positive and -1 if it is negative.

Thus the character of the solution in the vertical depends on the sign of

the argument of the root in (4.55). This is positive when:

β

U
> k2 + l2 (4.63)
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This implies that the mean flow, U , must be positive, or eastward. Rewrit-

ing the relation, we have:

0 < U <
β

k2 + l2
≡ Us (4.64)

So while U must be positive, neither can it be too strong. It must, in

particular, be less than Us, the speed at which the barotropic Rossby wave

is stationary (sec. 3.5.1).

Figure 4.7: The geopotential height at 10 hPa on February 11 and 16, 1979. The polar

vortex is being perturbed by a disturbance over the Pacific. From Holton, An Introduction

to Dynamic Meteorology.

Why is the mean flow limited by speed of the barotropic wave? As we

saw in the previous section, the barotropic mode is the fastest of all the
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Figure 4.8: The geopotential height at 10 hPa on February 21, 1979 (following Fig. 4.7).

The polar vortex has split in two, appearing now as a mode 2 Rossby wave. From Holton,

An Introduction to Dynamic Meteorology.

Rossby modes. So standing waves are possible only when the mean speed

is slow enough so that one of the baroclinic Rossby modes is stationary.

Notice that we have not said anything about the lower boundary, where

the waves are forced. In fact, the form of the mountains determines the

structure of the stationary waves. But the general condition above applies

to all types of mountain. If the mean flow is eastward and not too strong,

the waves generated over the mountains can extend upward indefinitely.

Upward propagating Rossby waves are important in the stratosphere,

and can greatly disturb the flow there. They can even change the usual

equator-to-pole temperature difference, a stratospheric warming event.
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Consider Figs. (4.7) and (4.8). In the first panel of Fig. (4.7), we see

the polar vortex over the Arctic. This is a region of persistent low pres-

sure (with a correspondingly low tropopause height). In the second panel,

a high pressure is developing over the North Pacific. This high intensi-

fies, eventually causing the polar vortex to split in two, making a mode 2

planetary wave (Fig. 4.8). The wave has a corresponding temperature per-

turbation, and in some regions the air actually warms moving from south

to north.

Stratospheric warming events occur only in the wintertime. Charney

and Drazin (1961) used the above theory to explain which this happens.

In the wintertime, the winds are eastward, so that upward propagation is

possible. But in the summertime, the stratospheric winds are westward,

preventing upward propagation. So Rossby waves only alter the strato-

spheric circulation in the wintertime.

4.7 Topographic waves

In an earlier problem, we found that a sloping bottom can support Rossby

waves, just like the β-effect. The waves propagate with shallow water to

their right (or “west”, when facing “north” up the slope). Topographic

waves exist with stratification too, and it is useful to examine their struc-

ture.

We’ll use the potential vorticity equation, linearized with zero mean

flow (U = 0) and on the f -plane (β = 0). We’ll also assume that the

buoyancy frequency, N , is constant. Then we have:

∂

∂t
(∇2ψ +

f 20
N 2

∂2

∂z2
ψ) = 0 (4.65)

Thus the potential vorticity in the interior of the fluid does not change in
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time; it is simply constant. We can take this constant to be zero.

For the bottom boundary condition, we will assume a linear topographic

slope. This can be in any direction, but we will say the depth is decreasing

toward the north:

D = D0 − αy (4.66)

so that h = αy. In fact, this is a general choice because with f=const., the

system is rotationally invariant (why?). With this topography, the bottom

boundary condition (4.18) becomes:

dg
dt

∂ψ

∂z
+
N 2

f0
w =

dg
dt

∂ψ

∂z
+
N 2

f0
ug · ∇h =

dg
dt

∂ψ

∂z
+
N 2

f0
αv = 0 (4.67)

We’ll take the bottom to be at z = 0. Also we won’t worry about the upper

boundary, as the waves will be trapped near the lower one.

To see that, assume a solution which is wave-like in x and y:

ψ = Re{ψ̂(z)eikx+ily−iωt} (4.68)

Under the condition that the PV is zero, we have:

(−k2 − l2)ψ̂ +
f 20
N 2

d2ψ̂

dz2
= 0 (4.69)

or
d2ψ̂

dz2
− N 2κ2

f 20
ψ̂ = 0 (4.70)

where κ = (k2 + l2)1/2 is again the total wavenumber. This equation only

has exponential solutions. The one that decays going up from the bottom

boundary has:

ψ̂(z) = Ae−Nκz/|f0| (4.71)
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This is the vertical structure of the topographic waves. It implies the waves

have a vertical e-folding scale of:

H ∝ |f0|
Nκ

=
|f0|λ
2πN

if λ is the wavelength of the wave. Thus the vertical scale of the wave de-

pends on its horizontal scale. Larger waves extend further into the interior.

Also, we have a continuum of waves, not a discrete set like we did with the

baroclinic modes (sec. 4.5).

Notice that we would have obtained the same result with the mountain

waves in the previous section. If we take (4.55) and set β = 0, we get:

m = ±N
f0
(−k2 − l2)1/2 = ±iNκ

f0
(4.72)

So with β = 0, we obtain only exponential solutions in the vertical. The

wave-like solutions require an interior PV gradient.

To obtain the dispersion relation, we apply the bottom boundary condi-

tion. We linearize (4.67) with zero mean flow and write v in terms of the

streamfunction:
∂

∂t

∂

∂z
ψ +

N 2α

f0

∂ψ

∂x
= 0 (4.73)

Substituting into the wave expression for ψ, we get:

− ωNκ

|f0|
A− N 2αk

f0
A = 0 (4.74)

so that:

ω = −Nαk
κ

sgn(f0) (4.75)

where sgn(f0) is +1 if f > 0 (Northern Hemisphere) and -1 if f < 0

(Southern).

This is the dispersion relation for stratified topographic waves. The

phase speed in the x-direction (along the isobaths, the lines of constant
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depth) is:

cx = −Nα
κ
sgn(f0) (4.76)

This then is “westward” in the Northern Hemisphere, i.e. with the shal-

low water on the right. As with planetary waves, the fastest waves are

the largest ones (with small κ). These are also the waves the penetrate

the highest into the water column. Thus the waves which are closest to

barotropic are the fastest.

Topographic waves are often observed in the ocean, particularly over

the continental slope. Observations suggest that disturbances originating

at the equator propagate north (with shallow water on the right) past Cal-

ifornia towards Canada. Topographic waves have also been observed off

the east coast of the United States, propagating towards the south, and

propagating south (with the shallow water on the left) past Peru.

4.8 Baroclinic instability

Now we return to instability. As discussed before, solar heating of the

earth’s surface causes a temperature gradient, with a warmer equator and

colder poles. This north-south temperature gradient is accompanied by a

vertically sheared flow in the east-west direction. The flow is weak near

the surface and increases moving upward in the troposphere.

4.8.1 Basic mechanism

The isotherms look (crudely) as sketched in Fig. (4.9). The temperature

decreases to the north, and also increases going up. Thus the parcel A is

colder (and heavier) than parcel C, which is directly above it. The air is

stably stratified, because exchanging A and C would increase the potential
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Figure 4.9: Slantwise convection. The slanted isotherms are accompanied by a thermal

wind shear. The parcel A is colder, and thus heavier, than parcel C, implying static stabil-

ity. But A is lighter than B. So A and B can be interchanged, releasing potential energy.

energy.

However, because the isotherms tilt, there is a parcel B which is above

A and heavier. So A and B can be exchanged, releasing potential en-

ergy. This is often referred to as “slantwise” convection, and it is the basis

for baroclinic instability. Baroclinic instability simultaneously reduces the

vertical shear while decreasing the north-south temperature gradient. In

effect, it causes the temperature contours to slump back to a more horizon-

tal configuration, which reduces the thermal wind shear while decreasing

the meridional temperature difference.

Baroclinic instability is extremely important. For one, it allows us to

live at high latitudes—without it, the poles would be much colder than the

equator.

4.8.2 Charney-Stern criterion

We can derive conditions for baroclinic instability, just as we did to obtain

the Rayleigh-Kuo criterion for barotropic instability. We begin, as always,
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with the PV equation (4.15):

dg
dt
[∇2ψ +

∂

∂z
(
f 20
N 2

∂ψ

∂z
) + βy] = 0 (4.77)

We linearize this about a mean flow, U , which varies in both the y and z-

directions. Doing this is the same thing if we had writen the streamfunction

as:

ψ = Ψ(y, z) + ψ′(x, y, z, t) (4.78)

where the primed streamfunction is much smaller than the mean stream-

function. The mean streamfunction has an associated zonal flow:

U(y, z) = − ∂

∂y
Ψ (4.79)

Note it has no meridional flow (V ) because Ψ is independent of x. Using

this, we see the mean PV is:

qs =
∂2

∂y2
Ψ+

∂

∂z
(
f 20
N 2

∂Ψ

∂z
) + βy (4.80)

So the full linearized PV equation is:

(
∂

∂t
+ U

∂

∂x
)[∇2ψ +

∂

∂z
(
f 20
N 2

∂ψ

∂z
)] + (

∂

∂y
qs)

∂

∂x
ψ = 0 (4.81)

with:
∂

∂y
qs = β − ∂2

∂y2
U − ∂

∂z
(
f 20
N 2

∂U

∂z
) (4.82)

We saw the first two terms before, in the barotropic case, but the third term

is new. This comes about because the mean velocity (and hence the mean

streamfunction) varies in z.

In addition, we need the boundary conditions. We’ll assume flat bound-

aries and no Ekman layers, to make this as simple as possible. Thus we

use (4.20), linearized about the mean flow:

dg
dt

∂ψ

∂z
= (

∂

∂t
+ U

∂

∂x
)
∂ψ

∂z
+ v

∂

∂y

∂Ψ

∂z



182 CHAPTER 4. SYNOPTIC SCALE BAROCLINIC FLOWS

= (
∂

∂t
+ U

∂

∂x
)
∂ψ

∂z
− v

∂U

∂z
= 0 (4.83)

The boundaries are at the ground, at z = 0, and an upper level, z = D.

The latter could be the tropopause. Alternatively, we could have no upper

boundary at all, as with the mountain waves. We’ll use an upper boundary

in the Eady model in the next section, so it’s useful to include that now.

Because U is potentially a function of both y and z, we can only assume

a wave structure in (x, t). So we use a Fourier solution with the following

form:

ψ = ψ̂(y, z)eik(x−ct) (4.84)

Substituting into the PV equation (4.81), we get:

(U − c)[−k2ψ̂ +
∂2

∂y2
ψ̂ +

∂

∂z
(
f 20
N 2

∂ψ̂

∂z
)] + (

∂

∂y
qs)ψ̂ = 0 (4.85)

after canceling the factor of k. Similarly, the boundary conditions are:

(U − c)
∂

∂z
ψ̂ − (

∂

∂z
U)ψ̂ = 0 (4.86)

We now do as we did in sec. (3.12.1): we divide (4.85) by U − c and

then multiply by the complex conjugate of ψ̂:

ψ̂∗[
∂2

∂y2
ψ̂ +

∂

∂z
(
f 20
N 2

∂ψ̂

∂z
)]− k2|ψ̂|2 + 1

U − c
(
∂

∂y
qs)|ψ̂|2 = 0 (4.87)

We then separate real and imaginary parts. The imaginary part of the equa-

tion is:

ψ̂r
∂2

∂y2
ψ̂i − ψ̂i

∂2

∂y2
ψ̂r + ψ̂r

∂

∂z
(
f 20
N 2

∂ψ̂i

∂z
)− ψ̂i

∂

∂z
(
f 20
N 2

∂ψ̂r

∂z
)

+
ci

|U − c|2 (
∂

∂y
qs)|ψ̂|2 = 0 (4.88)

We have again used:

1

U − c
=

1

U − cr − ici
=
U − cr + ici
|U − c|2
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The flow will be confined to a zonal channel, with ψ̂ = 0 at the north

and south walls (at y = 0 and y = L). Integrating the PV equation in y and

then using integration by parts yields, for the first two terms on the LHS:

∫ L

0

(ψ̂i
∂2

∂y2
ψ̂r − ψ̂r

∂2

∂y2
ψ̂i) dy = ψ̂i

∂

∂y
ψ̂r|L0 −

∫ L

0

∂

∂y
ψ̂i
∂

∂y
ψ̂r dy

− ψ̂r
∂

∂y
ψ̂i|L0 +

∫ L

0

∂

∂y
ψ̂r

∂

∂y
ψ̂i dy = 0 (4.89)

We can similarly integrate the PV equation in the vertical, from z = 0 to

z = D, and again integrate by parts. This leaves:

ψ̂r
f 20
N 2

∂ψ̂i

∂z
|D0 − ψ̂i

f 20
N 2

∂ψ̂r

∂z
|D0 (4.90)

(the leftover integrals are the same and cancel each other). We then evalu-

ate these two terms using the boundary condition. We rewrite that as:

∂

∂z
ψ̂ = (

∂

∂z
U)

ψ̂

U − c
(4.91)

The real part of this is:

∂

∂z
ψ̂r = (

∂

∂z
U)[

(U − cr)ψ̂r

|U − c|2 − ciψ̂i

|U − c|2 ] (4.92)

and the imaginary part is:

∂

∂z
ψ̂i = (

∂

∂z
U)[

(U − cr)ψ̂i

|U − c|2 +
ciψ̂r

|U − c|2 ] (4.93)

If we substitute these into (4.90), we get:

f 20
N 2

(
∂

∂z
U)

ciψ̂
2
i

(U − cr)2 + c2i
|D0 +

f 20
N 2

(
∂

∂z
U)

ciψ̂
2
r

(U − cr)2 + c2i
|D0 =

f 20
N 2

(
∂

∂z
U)

cî|ψ|2
(U − cr)2 + c2i

|D0 (4.94)

So the doubly-integrated (4.90) reduces to:
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ci[

∫ L

0

∫ D

0

|ψ̂|2
|U − c|2 (

∂

∂y
qs) dz dy +

∫ L

0

f 20
N 2

|̂ψ|2
|U − c|2 (

∂

∂z
U) |D0 dy ] = 0

(4.95)

This is the Charney-Stern criterion for instability. In order to have insta-

bility, ci > 0 and that requires that the term in brackets vanish.

Note that the first term is identical to the one we got for the Rayleigh-

Kuo criterion (3.175). In that case we had:

∂

∂y
qs = β − ∂2

∂y2
U (4.96)

For instability, we required that ∂
∂yqs had to be zero somewhere in the do-

main.

The baroclinic condition is similar, except that now the background PV

is given by (4.82), so:

∂

∂y
qs = β − ∂2

∂y2
U − ∂

∂z
(
f 20
N 2

∂U

∂z
) = 0

Thus the vertical shear can also cause the PV gradient to vanish.

In addition, the boundary contributions also come into play. In fact we

have four possibilities:

• ∂
∂yqs vanishes in the interior, with ∂

∂zU = 0 on the boundaries

• ∂
∂zU at the upper boundary has the opposite sign as ∂

∂yqs

• ∂
∂zU at the lower boundary has the same sign as ∂

∂yqs

• ∂
∂zU has the same sign on the boundaries, with ∂

∂yqs = 0 in the interior
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The first condition is the Rayleigh-Kuo criterion. This is the only condition

in the baroclinic case too if the vertical shear vanishes at the boundaries.

Note that from the thermal wind balance:

∂

∂z
U ∝ ∂

∂y
T

So having zero vertical shear at the boundaries implies the temperature is

constant on them. The boundaries are important only if there is a temper-

ature gradient on them.

The fourth condition applies when the PV (and hence the gradient) is

zero in the interior. Then the two boundaries can interact to produce in-

stability. This is Eady’s (1949) model of baroclinic instability, which we

consider in the next section.

In the atmosphere, the mean relative vorticity is generally smaller than

the β-effect. So the interior gradient is positive (and approximately equal

to β) and the main effect is for the lower boundary to cancel the interior

term. This is what happens in Charney’s (1947) model of baroclinic insta-

bility.

It is also possible to construct a model with zero shear at the boundaries

and where the gradient of the interior PV vanishes because of the vertical

term. This is what happens in Phillip’s (1954) model. This has two fluid

layers, with the flow in each layer being barotropic. Because ot the baro-

tropic flow, the shear at the upper and lower boundaries is zero. But the PV

in each layer can be different. If the PV in the layers is of opposite sign,

then they can potentially sum to zero, leading to instability.

As with the Rayleigh-Kuo criterion, the Charney-Stern criteria repre-

sent a necessary condition for instability, but not a sufficient one. Satisfy-

ing one of the conditions above indicates instability may occur. Further-
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more, only one needs to be satisfied. But if none of the conditions are

satisfied, the flow is unconditionally stable.

4.9 The Eady model

The simplest model of baroclinic instability with continuous stratification

is that of Eady (1949). This came out two years after Charney’s (1947)

model, which also has continuous stratification and the β-effect (some-

thing not included in the Eady model). But the Eady model is compara-

tively simple, and illustrates the major aspects.

The configuration for the Eady model is shown in Fig. (4.10). The flow

is confined to a channel, with no normal flow at the meridional walls (at

y = 0, L) and at the upper and lower flat plates (at z = 0, D). We also

make the following key assumptions:

• A constant Coriolis parameter (β = 0)

• Uniform stratification (N = const.)

• The mean velocity has constant vertical shear but no lateral shear

(U = Λz)

The uniform stratification assumption is reasonable for the troposphere

but less so for the ocean (where the stratification is greater near the sur-

face). The flat boundaries are also unrealistic, but simplify the boundary

conditions.

From the Charney-Stern criteria, we see that the model can be unstable

because Uz is the same on the two boundaries. The interior PV on the

other hand is zero, so this cannot contribute to the instability. We will see
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Figure 4.10: The configuration for the Eady model.

that the interior in the Eady model is basically passive. It is the interaction

between anomalies on the boundaries which are important.

We will use a wave solution with the following form:

ψ = ψ̂(z)sin(
nπy

L
)eik(x−ct)

The sin term satisfies the boundary conditions on the channel walls be-

cause:

v =
∂

∂x
ψ = 0 → ikψ̂ = 0 (4.97)

which implies that ψ̂ = 0. (Note too that k = mπ/Lx; it is quantized to

satisfy periodicity in x.)

The linearized PV equation for the Eady model is:

(
∂

∂t
+ U

∂

∂x
)(∇2ψ +

f 20
N 2

∂2

∂z2
ψ) = 0 (4.98)

Because there is no β term, the PV is constant on air parcels advected by

the mean flow. Inserting the wave solution in yields:
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(U − c)[(−(k2 +
n2π2

L2
)ψ̂ +

f 20
N 2

d2ψ

dz2
] = 0 (4.99)

Either the phase speed equals the mean velocity or the PV itself is zero.

This defines what is known as a critical layer. This is not an issue for an

unstable wave, which a non-zero value of ci. Thus we assume instead the

PV is zero. This implies:

d2ψ

dz2
= α2ψ̂ (4.100)

where

α ≡ Nκ

f0

and where κ = (k2+(nπ/L)2)1/2 is the total horizontal wavenumber. This

is exactly the same as in the topographic wave problem in (4.7). Equation

(4.100) determines the vertical structure of the waves.

For a wave solution, we’ll use the following:

ψ̂ = Aeαz +Be−αz (4.101)

Note that this applies over the whole interior, including both boundaries.

Next, we impose the boundary conditions, which involve the linearized

density equation:

(
∂

∂t
+ U

∂

∂x
)
∂ψ

∂z
− ∂ψ

∂x

dU

dz
= 0 (4.102)

(see eq. (4.83)). With the mean velocity and using the wave dependence

in x and t, this reduces to:

(Λz − c)
∂ψ

∂z
− Λψ̂ = 0 (4.103)
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after cancelling the factor of ik. Plugging the wave solution into (4.103)

we get, at z = 0:

(−cα− Λ)A+ (αc− Λ)B = 0 (4.104)

while at the upper boundary, at z = D, we get:

(α(ΛD − c)− Λ)eαDA+ (−α(ΛD − c)− Λ)e−αDB = 0 (4.105)

We can rewrite these equations in matrix form as follows:

(

cα + Λ −cα + Λ
(−αc+ Λ(αD − 1))eαD (αc− Λ(αD + 1))e−αD

)(

A

B

)

=

(

0
0

)

(4.106)

Note we multiplied the first equation through by −1. Because this system

is homogeneous, solutions exist only if the determinant of the coefficients

vanishes. Multiplying this out, we get:

c2α2(−eαD + e−αD)+ cα(Λ−ΛαD−Λ)e−αD + cα(ΛαD−Λ+Λ)eαD−

Λ2(αD + 1)e−αD − Λ2(αD − 1)eαD = 0 (4.107)

or:

−2c2α2sinh(αD) + 2cα2ΛDsinh(αD)− 2Λ2αDcosh(αD)

+ 2Λ2sinh(αD) = 0 (4.108)

Dividing through by −2α2sinh(αD):

c2 − ΛDc+
Λ2D

α
coth(αD)− Λ2

α2
= 0 (4.109)

This quadratic equation has the solutions:

c =
ΛD

2
± ΛD

2
[1− 4

αD
coth(αD) +

4

α2D2
]1/2 (4.110)
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We can rewrite the part in the square root using the identity:

cothx =
1

2
[tanh

x

2
+ coth

x

2
]

Then, pulling in a factor of αD/2, the solution is:

c =
ΛD

2
± Λ

α
[
α2D2

4
− αD

2
coth(

αD

2
)− αD

2
tanh(

αD

2
) + 1]1/2

=
ΛD

2
± Λ

α
[(
αD

2
− coth[

αD

2
])(
αD

2
− tanh[

αD

2
])]1/2 (4.111)

For all x, x > tanh(x) (Fig. 4.11). So the second factor in the root is

always positive and the sign of the product in the square root is determined

by the sign of the other term. In particular, if:

αD

2
> coth[

αD

2
] (4.112)

the term inside the root is positive.

In Fig. (4.11), we see that x is greater than coth(x) for large values of

x. As seen in the figure,

coth(x) → 1

for larger values of x. Thus when x ≫ 1, the term in the square root in

(4.111) is positive. When this happens, c has two roots, both of which are

real. This implies the flow is stable.

The stable solutions occur when x = αD/2 is large. Since:

α =
N

f0
(k2 +

n2π2

L2
)1/2

this happens when the wavenumbers, k and n, are large. So short waves

are more likely to be stable.

The condition also implies that the waves have have limited vertical

extent (which is proportional to α−1). If αD/2 ≫ 1:

α−1 ≪ D

2
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Figure 4.11: x, tanh(x) and coth(x).

Thus the wave’s vertical extent is less than half the height of the domain.

As such, the waves on the upper and lower boundaries aren’t in contact

with each other, and hence not interacting. An example is shown in Fig.

(4.12).

If the waves are stable, the phase speed is real; so the small disturbances

are simply propagating. How fast do they move? If αD/2 ≫ 1, the phase

speeds are approximately:

c = 0, ΛD (4.113)

These are nearly equal to the mean velocities on the boundaries. To first

order, the waves are just being swept along by the background flow.

If, on the other hand:

αD

2
< coth[

αD

2
] (4.114)

the term inside the root of (4.111) is negative. Then c has an imaginary

part, and instability is possible.
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Figure 4.12: The Eady streamfunction in the limit of large α.

When this condition is met, we can write the phase speed as:

c =
ΛD

2
± ici (4.115)

where:

ci =
Λ

α
[(coth[

αD

2
]− αD

2
)(
αD

2
− tanh[

αD

2
])]1/2

Putting this into the wave expression, we have that:

ψ ∝ eik(x−ct) = eik(x−ΛDt/2)±kcit (4.116)

Thus at each wavenumber there is a growing wave and a decaying wave,

with growth rates of ±kci.
The real part of the phase speed is:

cr =
ΛD

2
(4.117)

Thus the waves are propagating at a speed equal to the mean flow speed

at the midpoint in the vertical. As such, the waves are moving slower than

the mean flow speed at the upper boundary and faster than that at the lower
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Figure 4.13: The Eady growth rate as a function of the wavenumber, k.

boundary. We call the midpoint, where the speeds are equal, the steering

level.

The growth rate, kci, is plotted in Fig. (4.13) for the meridional n = 1

mode (which is the fastest growing). We use the following parameters:

N = 0.01 sec−1, f0 = 10−4 sec−1, Λ = 0.005 sec−1,

D = 104m, L = 2× 106m

This shear parameter yields a velocity of 50 m/sec at the tropopause height

(10 km), similar to the peak velocity in the Jet Stream. For these values,

the Eady model yields complex phase speeds, indicating the jet is baro-

clinically unstable.

The growth rate increases from zero as k increases, reaches a maximum

value and then goes to zero. For k larger than a critical value, the waves

are stable, as argued above. Thus there is a short wave cut-off for the

instability, as we also saw for the barotropic jet in sec. (3.12.2).
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The growth rate is a maximum at k = 1.25 × 10−6m, corresponding

to a wavelength of 2π/k = 5027 km. The “storm scale” (i.e. the size of

a low pressure region) is one half of a wavelength, or roughly 2500 km

here. A wave of this size will grow faster than any other. If we begin with

a random collection of waves, this will dominate after a period of time.

Furthermore, the maximum value of kci is 8.46 ×10−6 sec−1, or equiva-

lently 1/1.4 day−1. Thus both the length and time scales in the Eady model

are consistent with observations of storm development in the troposphere.

The ocean is quite different geometrically from the atmosphere, as noted

before. But it’s useful to compare the results anyway. Using values typical

of oceanic conditions:

N = 0.0005 sec−1, f0 = 10−4 sec−1, Λ = 0.0001 sec−1,

D = 5× 103m, L = 2× 106m

we get a maximum wavelength of about 100 km, or a half wavelength of

50 km. Because the deformation radius is so much less in the ocean, the

“storms” are correspondingly smaller. The growth times are also roughly

ten times longer than in the troposphere. But these values should be taken

as very approximate, because N in the ocean varies greatly between the

surface and bottom.

Let’s see what the unstable waves look like. To plot them, we rewrite

the solution slightly. From the condition at the lower boundary, we have:

(cα + Λ)A+ (−cα + Λ)B = 0

So the wave solution can be written:

ψ = A[eαz +
cα + Λ

cα− Λ
e−αz]sin(

nπy

L
)eik(x−ct)
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Figure 4.14: The amplitude (left) and phase (right) of the Eady streamfunction vs. height.

Rearranging slightly, we get:

ψ = A[cosh(αz)− Λ

cα
sinh(αz)]sin(

nπy

L
)eik(x−ct) (4.118)

We have absorbed a factor of 2αc/(αc−Λ) into the unknown A. Because

c is complex, the second term in the brackets will affect the phase of the

wave. To take this into account, we rewrite the streamfunction thus:

ψ = AΦ(z)sin(
nπy

L
)cos[k(x− crt) + γ(z)]ekcit (4.119)

where

Φ(z) = [(cosh(αz)− crΛ

|c|2αsinh(αz))
2 + (

ciΛ

|c|2αsinh(αz))
2]1/2

is the magnitude of the amplitude and

γ = tan−1[
ciΛsinh(αz)

|c|2αcosh(αz)− crΛsinh(αz)
]

is its phase. These are plotted in Fig. (4.14). The amplitude is greatest

near the boundaries. But it is not negligible in the interior, falling to only
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about 0.5 at the mid-level. Rather than two separate waves, we have one

which spans the depth of the fluid. Also, the phase changes with height.

So the streamlines tilt in the vertical.

We see this in Fig. (4.15), which shows the streamfunction, temper-

ature, meridional and vertical velocity for the most unstable wave. The

streamfunction extends between the upper and lower boundaries, and the

streamlines tilt to the west going upward. This means the wave is tilted

against the mean shear. You get the impression the wave is working against

the mean flow, trying to reduce its shear (which it is).
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Figure 4.15: The streamfunction (upper), temperature (second), meridional velocity

(third) and vertical velocity for the most unstable wave in the Eady problem.
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The meridional velocity is shown in the third panel of Fig. (4.15). The

velocity tilts with height like the streamfunction, but is shifted by 90 de-

grees. The temperature on the other hand (second panel) tilts toward the

east with height. The result is that the cold anomalies tend to align with

regions of southward (equatorward) flow, and the warm anomalies align

with northward (poleward) flow.

We can also derive the vertical velocity for the Eady wave. Inverting

the linearized temperature equation, we have:

w = − f0
N 2

(
∂

∂t
+ Λz

∂

∂x
)
∂ψ

∂z
+
f0
N 2

Λ
∂ψ

∂x
(4.120)

This is shown in the bottom panel for the most unstable wave. There is

generally downward motion when the flow is toward the south and upward

motion when toward the north.

This fits exactly with our expectations for slantwise convection, illus-

trated in Fig. (4.9). Fluid parcels which are higher up and to the north are

being exchanged with parcels lower down to the south. So the Eady model

captures most of the important elements of baroclinic instability.

However, the Eady model lacks an interior PV gradient (it has no β-

effect). Though this greatly simplifies the derivation, the atmosphere pos-

sesses such gradients, and it is reasonable to ask how they alter the insta-

bility. Interior gradients are considered in both the the Charney (1947) and

Phillips (1954) models. Details are given by Pedlosky (1987) and by Vallis

(2006).
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4.10 Exercises

4.1. Consider a fluid parcel which is displaced from its initial vertical po-

sition, z0, a distance δz. Assume we have a mean background strati-

fication for which:
∂

∂z
p = −ρ0g

Substitute this into the vertical momentum equation to find:

dw

dt
= g(

ρ0 − ρ

ρ
)

Estimate ρ0 at z0 + δz by Taylor-expanding about z0. Assume the

parcel conserves its density from z0. Then use the vertical momentum

equation to show that:

d2(δz)

dt2
= −N 2δz

and define N 2. This is known as the buoyancy frequency. What hap-

pens if N 2 > 0? What if it is negative?

4.2. Baroclinic Rossby waves.

a) What is the phase velocity for a long first baroclinic Rossby wave

in the ocean at 10N? Assume that N = 0.001 sec−1 and that the

ocean depth is 5 km.

b) What about at 30N?

c) What is the group velocity for long first baroclinic Rossby waves?

d) What do you think would happen to a long wave if it encountered

a western wall?

4.3. Topographic waves vs. Eady waves
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Consider a wave which exists at the lower boundary of a fluid, at

z = 0. Assume the region is small enough to neglect β and let N and

ρc be constant. Also let the upper boundary be at z = ∞.

a) Write the expression for the PV. Substitute in a wave solution of

the form:

ψ = A(z)eikx+ily−iωt (4.121)

Assuming the PV is zero in the interior, solve for the vertical depen-

dence of A(z).

b) Assume there is a topographic slope, such that h = αy. Find the

phase speed of the wave, assuming no mean flow (U = 0).

c) Now assume the bottom is flat and that there is a sheared mean

velocity, U = Λz. Find the phase speed for the wave.

d) Compare the two results. In particular, what does the shear have to

be in (c) so that the phase speed is the same as in (b)?

4.4. A rough bottom.

We solved for the baroclinic modes assuming the the upper and lower

boundaries were flat surfaces, with w = 0. As a result, the waves

have non-zero flow at the bottom. But if the lower boundary is rough,

a better condition is to assume that the horizontal velocity vanishes,

i.e. u = v = 0.

Find the modes with this boundary condition, assuming no mean flow

(U = V = 0). Compare the solutions to those with a flat bottom.

What happens to the barotropic mode? The derivation is slightly sim-

pler if you have the bottom at z = 0 and the surface at z = D.

4.5. Topographic wave reflection
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Consider topographic waves over an (approximate) Norwegian slope.

The depth given by:

H = H0 − αx

Assume β = U = V = 0 and N = const.

a) Linearize the PV equation and use a wave solution to solve for the

vertical structure. Assume the ocean depth is much greater than the

height of the waves.

b) Use the linearized density equation to find the phase speed of the

waves. What is the group velocity parallel to the contours?

c) The waves encounter a wall at y = 0. What boundary condition

will you use at the wall?

d) Assume the streamfunction has incident and reflected components.

Impose the boundary condition. What does this tell you about the

wavenumbers and frequency?

e) What can you conclude about reflection in this case?

4.6. Mountain waves (optional)

Suppose that a stationary linear Rossby wave is forced by flow over

sinusoidal topography with height h(x) = h0 cos(kx). Show that the

lower boundary condition on the streamfunction can be expressed as:

∂

∂z
ψ = −hN

2

f0
(4.122)

Using this, and assuming that the energy flux is upward, solve for

ψ(x, z). What is the position of the crests relative to the mountain

tops?
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4.7. Topographic waves.

Say we are in a region where there is a steep topographic slope rising

to the east, as off the west coast of Norway. The bottom decreases by

1 km over a distance of about 20 km. Say there is a southward flow

of 10 cm/sec over the slope (which is constant with depth). Several

fishermen have seen topographic waves which span the entire slope.

But they disagree about which way they are propagating—north or

south. Solve the problem for them, given that N ≈ 10f0 and that we

are at 60N.

4.8. Instability and the Charney-Stern relation.

Consider a region with −1 ≤ y < 1 and 0 ≤ z ≤ D. We have the

following velocity profiles:

a) U = Acos(πzD )

b) U = Az + B

c) U = z(1− y2)

Which profiles are stable or unstable if β = 0 and N 2 = const.?

What if β 6= 0?

(Note the terms have been non-dimensionalized, so β can be any

number, e.g. 1, 3.423, .5, etc.).

4.9. Eady waves

a) Consider a mean flow U = −Bz over a flat surface at z = 0 with

no Ekman layer and no upper surface. Assume that β = 0 and that
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N = const.. Find the phase speed of a perturbation wave on the

lower surface.

b) Consider a mean flow with U = Bz2. What is the phase speed of

the wave at z = 0 now? Assume that β = 2Bf 20/N
2, so that there

still is no PV gradient in the interior. What is the mean temperature

gradient on the surface?

c) Now imagine a sloping bottom with zero mean flow. How is the

slope oriented and how steep is it so that the topographic waves are

propagating at the same speed as the waves in (a) and (b)?

4.10. Eady heat fluxes (optional)

Eady waves can flux heat. To see this, we calculate the correlation

between the northward velocity and the temperature:

vT ∝ ∂ψ

∂x

∂ψ

∂z
≡ 1

L

∫ L

0

∂ψ

∂x

∂ψ

∂z
dx

where L is the wavelength of the wave. Calculate this for the Eady

wave and show that it is positive; this implies that the Eady waves

transport warm air northward. You will also find that the heat flux is

independent of height.

• Hint: use the form of the streamfunction given in (4.119).

• Hint:
∫ L

0

sin(k(x− ct)) cos(k(x− ct)) dx = 0

• Hint:

d

dz
tan−1y

x
=

x2

x2 + y2
(
xdy/dz − ydx/dz

x2
) =

xdy/dz − ydx/dz

x2 + y2

• Hint: The final result will be proportional to ci. Note that ci is

positive for a growing wave.
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4.11. Eady momentum fluxes (optional)

Unstable waves can flux momentum. The zonal momentum flux is

defined as:

uv ∝ −∂ψ
∂y

∂ψ

∂x
≡ − 1

L

∫ L

0

∂ψ

∂y

∂ψ

∂x
dx

Calculate this for the Eady model. Why do you think you get the

answer you do?

4.12. An Eady model with β (optional)

Consider a mean flow in a channel 0 ≤ y ≤ L and 0 ≤ z ≤ 1 with:

U =
βN 2

2f 20
z(z − 1)

Assume N 2 = const. and that β 6= 0.

a) What is the mean PV (qs)?

b) Is the flow stable or unstable by the Charney-Stern criterion?

c) Linearize the PV equation for this mean flow.

d) Propose a wave solution and solve for the vertical structure of the

waves.

e) Linearize the temperature equation for this mean flow.

f) Use the temperature equation to find two equations for the two

unknown wave amplitudes.

g) Solve for phase speed, c. Does this agree with your result in (a)?
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Chapter 5

Appendices

5.1 The linear shallow water wave equation

It’s possible to reduce the three shallow water equations to one equation

with a single unknown. It’s relatively easy to do this if we take the Coriolis

parameter, f , to be constant. As noted in sec. (2.3), this is the “f -plane

approximation” and it applies if the area under consideration is small.

Under the f -plane approximation, we can reduce (??-??) to a single

equation. First we rewrite the equations in terms of the transports (U, V ) ≡
(Hu,Hv):

∂

∂t
U − fV = −gH ∂

∂x
η (5.1)

∂

∂t
V + fU = −gH ∂

∂y
η (5.2)

∂

∂t
η +

∂

∂x
U +

∂

∂y
V = 0 (5.3)

Then we derive equations for the divergence and vorticity:

∂

∂t
χ− fζ = −g∇ · (H∇η) (5.4)

∂

∂t
ζ + fχ = −gJ(H, η) (5.5)

205
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where χ ≡ ( ∂
∂xU + ∂

∂yV ) is the transport divergence, ζ ≡ ( ∂
∂xV − ∂

∂yU) is

the transport vorticity. We use the Jacobian function:

J(a, b) ≡ ∂

∂x
a
∂

∂y
b− ∂

∂x
b
∂

∂y
a (5.6)

to simplify the expression. We can eliminate the vorticity by taking the

time derivative of (5.4) and substituting in from (5.5). The result is:

(
∂2

∂t2
+ f 2)χ = −g ∂

∂t
∇ · (H∇η)− f g J(H, η) (5.7)

From (5.3) we have:

∂

∂t
η + χ = 0 (5.8)

which we can use to eliminate the divergence from (5.7). This leaves a

single equation for the sea surface height:

∂

∂t
{( ∂

2

∂t2
+ f 2) η −∇ · (c20∇η)} − f g J(H, η) = 0 (5.9)

The term c0 =
√
gH has the units of a velocity, and we will see later this

is related to the speed of free gravity waves. If the fluid depth is 4000 m,

c0 = 200 m/sec.

So we have one equation with a single unknown: η. The problem is that

if the topography, H , is complex, the solutions may be very hard to obtain

analytically.

If we assume the bottom is flat however, the Jacobian term vanishes,

leaving:

∂

∂t
{( ∂

2

∂t2
+ f 20 ) η − c20∇2η} = 0 (5.10)
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5.2 Fourier wave modes

In many of the examples in the text, we use solutions derived from the

Fourier transform. The Fourier transform is very useful; we can represent

any continuous function f(x) in this way. More details are given in any

one of a number of different texts.1

Say we have a function, f(x). We can write this as a sum of Fourier

components thus:

f(x) =

∫ ∞

−∞
f̂(k) eikx dk (5.11)

where:

eikx = cos(kx) + isin(kx) (5.12)

is a complex number. The Fourier amplitude, f̂(k), is also typically com-

plex:

f̂(k) = f̂r + if̂i (5.13)

We can obtain the amplitude by taking the inverse relation of the above:

f̂(k) =
1

2π

∫ ∞

−∞
f̂(k) e−ikx dx (5.14)

In all the examples in the text, the equations we will solve are linear. A

linear equation can be solved via a superposition of solutions: if f1(x) is a

solution to the equation and f2(x) is another solution, then f1(x) + f2(x)

is also a solution. In practice, this means we can examine a single Fourier

mode. Then in effect we find solutions which apply to all Fourier modes.

1See, for example, Arfken, Mathematical Methods for Physicists or Boas, Mathematical Methods in the

Physical Sciences.
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Moreover, since we can represent general continuous functions in terms of

Fourier modes, we are solving the equation at once for almost any solution.

Thus we will use solutions like:

ψ = Re{ψ̂(k, l, ω)eikx+ily−iωt} (5.15)

Note we have implicitly performed three transformations—in x, y and in

t. But we only write one wave component (we don’t carry the infinite

integrals along). Notice too that we use negative ω instead of positive—this

is frequently done to distinguish the transform in time (but is not actually

necessary). Here k and l are the wavenumbers in the x and y directions,

and ω is the wave frequency.

As noted in sec. (??), the wave solution has an associated wavelength

and phase speed. The wave above is two-dimensional, so its wavelength is

defined:

λ =
2π

κ
(5.16)

where:

κ = (k2 + l2)1/2 (5.17)

is the total wavenumber. Note that the wavelength is always a positive

number, while the wavenumbers k and l can be positive or negative. The

phase speed is velocity of the crests of the wave. This is defined as:

~c =
ω~κ

κ2
(5.18)

In most of the examples in the text, we’re interested in the motion of

crests in the x-direction (parallel to latitude lines). This velocity is given
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by:

cx =
ω

k
(5.19)

The exact choice of Fourier component depends on the application. The

form written above is appropriate for an infinite plane, where there are no

specific boundary conditions. We will use this one frequently.

However, there are other possibilities. A typical choice for the atmo-

sphere is a periodic channel, because the mid-latitude atmosphere is re-

entrant in the x-direction but limited in the y-direction. So we would have

solid walls, say at y = 0 and at y = Ly, and periodic conditions in x. The

boundary condition at the walls is v = 0. This implies that ∂
∂xψ = 0, so

that ψ must be constant on the wall. In most of the subsequent examples,

we’ll take the constant to be zero. The periodic condition on the other hand

demands that ψ be the same at the two limits, for instance at x = 0 and

x = Lx.

So a good choice of wave solution would be:

ψ = Re{ψ̂(n,m, ω) einπx/Lx−iωt sin(
mπy

Ly
)} (5.20)

This has an integral number of waves in both the x and y directions. But the

streamfunction vanishes at y = 0 and y = Ly, whereas the streamfunction

is merely the same at x = 0 and x = Lx—it is not zero. We will use a

channel solution for example in the Eady problem in sec. (4.9).

Another possibility is to have solid wall boundaries in both directions,

as in an ocean basin. An example of this is a Rossby wave in a basin,

which has the form:
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ψ ∝ A(x, t)sin(
nπx

Lx
)sin(

mπy

Ly
) (5.21)

The two last factors guarantee that the streamfunction vanish at the lateral

walls.

In general, the choice of wave solution is dictated both by the equation

and the boundary conditions. If, for example, the equation has coefficients

which vary only in z, or if there are boundaries in the vertical direction, we

would use something like:

ψ = Re{ψ̂(z)eikx+ily−iωt} (5.22)

5.3 Rossby wave energetics

Another way to derive the group velocity is via the energy equation for the

waves. For this, we first need the energy equation for the wave. As the

wave is barotropic, it has only kinetic energy. This is:

E =
1

2
(u2 + v2) =

1

2
[(−∂ψ

∂y
)2 + (

∂ψ

∂x
)2] =

1

2
|∇ψ|2

To derive an energy equation, we multiply the wave equation (3.43) by ψ.

The result, after some rearranging, is:

∂

∂t
(
1

2
|∇ψ|2) +∇ · [−ψ∇ ∂

∂t
ψ − îβ

1

2
ψ2] = 0 (5.23)

We can also write this as:

∂

∂t
E +∇ · ~S = 0 (5.24)

So the kinetic energy changes in response to the divergence of an energy

flux, given by:
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~S ≡ −ψ∇ ∂

∂t
ψ − îβ

1

2
ψ2

The energy equation is thus like the continuity equation, as the density also

changes in response to a divergence in the velocity. Here the kinetic energy

changes if there is a divergence in ~S.

Let’s apply this to the wave. We have

E =
k2 + l2

2
A2sin2(kx+ ly − ωt) (5.25)

So the energy varies sinusoidally in time. Let’s average this over one wave

period:

< E >≡
∫ 2π/ω

0

E dt =
1

4
(k2 + l2)A2 (5.26)

The flux, ~S, on the other hand is:

~S = −(kî+ lĵ)ω A2cos2(kx+ ly−ωt)− îβ A
2

2
cos2(kx+ ly−ωt) (5.27)

which has a time average:

< S >=
A2

2
[−ω(kî+ lĵ)− β

2
î] =

A2

4
[β
k2 − l2

k2 + l2
î+

2βkl

k2 + l2
ĵ] (5.28)

Rewriting this slightly:

< S >= [β
k2 − l2

(k2 + l2)2
î+

2βkl

(k2 + l2)2
ĵ] E ≡ ~cg < E > (5.29)

So the mean flux is the product of the mean energy and the group velocity,

~cg. It is straightforward to show that the latter is the same as:
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cg =
∂ω

∂k
î+

∂ω

∂l
ĵ (5.30)

Since cg only depends on the wavenumbers, we can write:

∂

∂t
< E > +~cg · ∇ < E >= 0 (5.31)

We could write this in Lagrangian form then:

dc
dt
< E >= 0 (5.32)

where:

dc
dt

=
∂

∂t
+ ~cg · ∇ (5.33)

In words, this means that the energy is conserved when moving at the

group velocity. The group velocity then is the relevant velocity to consider

when talking about the energy of the wave.

5.4 Fjørtoft’s criterion

This is an alternate condition for barotropic instability, derived by Fjørtoft

(1950). This follows from taking the real part of (3.170):

(ψ̂r
∂2

∂y2
ψ̂r + ψ̂i

∂2

∂y2
ψ̂i)− k2|ψ̂|2 + (U − cr)

|ψ̂|2
|U − c|2

∂

∂y
qs = 0 (5.34)

If we again integrate in y and rearrange, we get:

∫ L

0

(U − cr)
|ψ̂|2

|U − c|2
∂

∂y
qs =

−
∫ L

0

(ψ̂r
∂2

∂y2
ψ̂r + ψ̂i

∂2

∂y2
ψ̂i)dy +

∫ L

0

k2|ψ̂|2dy (5.35)
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We can use integration by parts again, on the first term on the RHS. For

instance,

∫ L

0

ψ̂r
∂2

∂y2
ψ̂r dy = ψ̂r

∂

∂y
ψ̂r|L0 −

∫ L

0

(
∂

∂y
ψ̂r)

2 dy (5.36)

The first term on the RHS vanishes because of the boundary condition. So

(5.34) can be written:

∫ L

0

(U − cr)
|ψ̂|2

|U − c|2
∂

∂y
qs dy =

∫ L

0

(
∂

∂y
ψ̂r)

2 + (
∂

∂y
ψ̂i)

2 + k2|ψ̂|2 dy
(5.37)

The RHS is always positive. Now from the Rayleigh-Kuo criterion, we

know that if ci 6= 0:

∫ L

0

|ψ̂|2
|U − c|2

∂

∂y
qs dy = 0 (5.38)

So we conclude that:

∫ L

0

U(y)
|ψ̂|2

|U − c|2
∂

∂y
qs > 0 (5.39)

Thus we must have:

U(y)
∂

∂y
qs > 0 (5.40)

somewhere in the domain. If this fails, the flow is stable (ci = 0).

This represents an additional constraint to the Rayleigh-Kuo criterion.

Sometimes a flow will satisfy the Rayleigh-Kuo criterion but not Fjørtoft’s—

then the flow is stable. It’s possible to show that Fjørtoft’s criterion requires

the flow have a relative vorticity maximum somewhere in the domain inte-

rior, not just on the boundaries.
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5.5 QGPV in pressure coordinates

The PV equation in pressure coordinates is very similar to that in z-coordinates.

First off, the vorticity equation is given by:

dH
dt

(ζ + f) = −(ζ + f)(
∂u

∂x
+
∂v

∂y
) (5.41)

Using the incompressibility condition (2.41), we rewrite this as:

dH
dt

(ζ + f) = (ζ + f)
∂ω

∂p
(5.42)

The quasi-geostrophic version of this is:

dg
dt
(ζ + f) = f0

∂ω

∂p
(5.43)

where ζ = ∇2Φ/f0.

To eliminate ω, we use the potential temperature equation (1.72). For

simplicity we assume no heating, so the equation is simply:

dθ

dt
= 0 (5.44)

We assume:

θtot(x, y, p, t) = θ0(p) + θ(x, y, p, t) , |θ| ≪ |θ0|

where θtot is the full temperature, θ0 is the “static” temperature and θ is the

“dynamic” temperature. Substituting these in, we get:

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
+ w

∂

∂p
θ0 = 0 (5.45)

We neglect the term ω∂θ/∂p because it is much less than the term with θ0.
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The geopotential is also dominated by a static component:

Φtot = Φ0(p) + Φ(x, y, p, t) , |Φ| ≪ |Φ0| (5.46)

Then the hydrostatic relation (2.42) yields:

dΦtot

dp
=
dΦ0

dp
+
dΦ

dp
= −RT0

p
− RT ′

p
(5.47)

and where:

Ttot = T0(p) + T (x, y, p, t) , |T | ≪ |T0| (5.48)

Equating the static and dynamic parts, we find:

dΦ

dp
= −RT

′

p
(5.49)

Now we need to rewrite the hydrostatic relation in terms of the potential

temperature. From the definition of potential temperature, we have:

θ = T (
ps
p
)R/cp, θ0 = T0 (

ps
p
)R/cp

where again we have equated the dynamic and static parts. Thus:

θ

θ0
=
T

T0
(5.50)

So:

1

T0

dΦ

dp
= −RT

pT0
= −Rθ

pθ0
(5.51)

So, dividing equation (5.45) by θ0, we get:

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
)
θ′

θ0
+ ω

∂

∂p
lnθ0 = 0 (5.52)
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Finally, using (5.51) and approximating the horizontal velocities by their

geostrophic values, we obtain the QG temperature equation:

(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
)
∂Φ

∂p
+ σω = 0 (5.53)

The parameter:

σ(p) = −RT0
p

∂

∂p
ln(θ0)

reflects the static stratification and is proportional to the buoyancy fre-

quency (sec. 4.2). We can write this entirely in terms of Φ and ω:

(
∂

∂t
− 1

f0

∂

∂y
Φ
∂

∂x
+

1

f0

∂

∂x
Φ
∂

∂y
)
∂Φ

∂p
+ ωσ = 0 (5.54)

As in sec. (4.3), we can combine the vorticity equation (5.43) and the

temperature equation (5.54) to yield a PV equation. In pressure coordi-

nates, this is:

(
∂

∂t
− 1

f0

∂

∂y
Φ
∂

∂x
+

1

f0

∂

∂x
Φ
∂

∂y
) [

1

f0
∇2Φ+

∂

∂p
(
f0
σ

∂Φ

∂p
) + βy] = 0 (5.55)
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