
Large Scale Turbulence in the
Atmosphere and Ocean

J. H. LaCasce

Dept. of Geosciences
University of Oslo

Oslo, Norway

LAST REVISED
March 16, 2023

Joe LaCasce
Department for Geosciences
University of Oslo
P.O. Box 1022 Blindern
0315 Oslo, Norway
j.h.lacasce@geo.uio.no

1



Contents
1 Equations 4

1.1 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Statistics in a nutshell 9

3 The Fourier transform 14

4 A chaotic example 18

5 Conservation laws 27
5.1 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Vorticity and enstrophy . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 3-D turbulence 34
6.1 Triad interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Kolmogorov’s inertial range . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 Shell models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.4 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 2-D turbulence 45
7.1 Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 A triad interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.3 An integral argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.4 The two inertial ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.5 Physical interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.6 The vortex view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.7 Passive tracer spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.8 Predictability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.8.1 Lorenz Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.8.2 Predictability in 2-D turbulence . . . . . . . . . . . . . . . . . . 71
7.8.3 Predictability in the atmosphere . . . . . . . . . . . . . . . . . . 72

8 Geostrophic turbulence 74
8.1 The Beta-effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.2 Beta turbulence in a closed basin . . . . . . . . . . . . . . . . . . . . . . 84
8.3 Topography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.3.1 The barotropic vorticity equation . . . . . . . . . . . . . . . . . . 89
8.3.2 Conserved quantities . . . . . . . . . . . . . . . . . . . . . . . . 94
8.3.3 Minimum enstrophy . . . . . . . . . . . . . . . . . . . . . . . . 95

8.4 Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.4.1 Conserved quantities . . . . . . . . . . . . . . . . . . . . . . . . 101
8.4.2 Energy cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2



8.4.3 The vortex view . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.4.4 Enstrophy cascade . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.4.5 Cascades in a two mode system . . . . . . . . . . . . . . . . . . 108

9 Turbulent Diffusion 115
9.1 Single particle dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9.1.1 Random walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.1.2 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.1.3 Einstein’s diffusion relation . . . . . . . . . . . . . . . . . . . . 119
9.1.4 Single particle dispersion . . . . . . . . . . . . . . . . . . . . . . 120
9.1.5 The vortex merger problem . . . . . . . . . . . . . . . . . . . . . 123

9.2 Two particle dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10 PV fluxes 133

3



1 Equations

1.1 Basic equations

For what follows, we need to introduce the set of equations we’ll be using,

and the approximations we’ll need. First are the momentum equations,

written in vector form:

∂

∂t
~u+ ~u⊗∇~u+ 2~Ω× ~u = −1

ρ
∇p− gk̂ +

1

ρ

∂

∂z
~τ (1)

Here ~u is the velocity, ρ is the density, p is the pressure, g is gravity, ~τ is

the applied stress and ~Ω is the rotation vector for the earth.

Note this equation actually represents three equations—one for each

component of the velocity: u (x-direction), v (y-direction) and w (z-direction).

The circle notation in the advective term signifies a tensor product. This

represents 9 terms, 3 in each equation. For example, the x-component is:

∂

∂t
u+ ~u · ∇u+ î · (2~Ω× ~u) = −1

ρ

∂

∂x
p+

1

ρ

∂

∂z
τx (2)

where:

~u · ∇u = u
∂

∂x
u+ v

∂

∂y
u+ w

∂

∂z
u

We also have the continuity equation:

∂

∂t
ρ+ ~u · ∇ρ+ ρ(∇ · ~u) = 0 (3)

which expresses the conservation of mass. If the flux of density into a fixed

volume is positive, the volume’s mass will increase. Despite the simplicity

of that idea, the equation is nonlinear and non-trivial.

But we can simplify this considerably if we make the Boussinesq ap-

proximation. This assumes that:

ρ = ρ0 + ρ′(x, y, z, t) (4)
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where ρ0 is a constant and that:

ρ0 � |ρ′|

The density of water is nearly constant—it changes only slightly when

heated (over a reasonable range). Under this assumption, the continuity

equation to first order can be written:
∂

∂t
ρ0 + ~u · ∇ρ0 + ρ0(∇ · ~u) = 0 (5)

which implies:

∇ · ~u = 0 (6)

Thus the Boussinesq fluid is incompressible; its volume is conserved.

The momentum equation is also simplified because the pressure term is

now linear:
1

ρ
∇p → 1

ρ0
∇p (7)

The Boussinesq approximation is valid for the ocean and approximately

so for the planetary boundary layer (the lowest 1 km) in the atmosphere.

It is not accurate in the upper troposphere, due to the compressibility of

air. But if one uses pressure coordinates, the pressure term is also lin-

earized and the flow is incompressible, so the equations are similar to the

Boussinesq ones we use hereafter.

We also require the stress term on the RHS of the momentum equa-

tion. We will write this as the sum of an (unspecified) forcing term and a

diffusive damping term:
1

ρ

∂

∂z
~τ = F + ν∇2~u (8)

The forcing could be the wind acting on the ocean or convective motion

forced by surface heating in the atmosphere. The diffusion term represents

molecular dissipation, with ν ≈ 10−5 m2/sec.
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The momentum equation is often simpler to work with if we write the

advective term in an alternate form:

∇ · (~ua) = ~u · ∇a+ a(∇ · ~u) = ~u · ∇a (9)

The second term vanishes due to incompressibility. Also, we can write the

gravity term as the gradient of the geopotential, gz. With these modifica-

tions, the momentum equation becomes:

∂

∂t
~u+∇ · (~u⊗ ~u) + 2~Ω× ~u = −∇(

p

ρ0
+ gz) + F + ν∇2~u (10)

Notice the advective term is the only nonlinear one in the equation. This

is quadratically nonlinear because it involves the product of the unknown

velocities. Turbulence springs from these term, as we’ll see shortly.

1.2 Scaling

Not all the terms in the momentum equation are equally important. To see

this, we approximate each of the terms with “typical” values, i.e. U , L, P ,

etc. Neglecting external forcing, the x-momentum equation scales as:

∂

∂t
u+ ~u · ∇u+ î · (2~Ω× ~u) = − 1

ρ0

∂

∂x
p+ ν∇2u

U

T

U 2

L
2ΩU

P

ρ0L

νU

L2
(11)

We’ll compare the size of each to that of the dissipation term. We do this

by dividing by the last term, yielding:

L2

νT

UL

ν

2ΩL2

ν

PL

ρ0νU
1 (12)

Thus the advection term is a factor of UL/ν times the size of the dissipa-

tion term. This is the Reynold’s number, Re. How big is this? At the

scale of weather systems in the atmosphere, we have:
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Re =
UL

ν
≈ (10m/sec)(106m)

10−5m2/sec
= 1012

So advection is much more important than molecular dissipation at these

scales.

The second point concerns the time scale, T . We can write the first

scaling term thus:
L2

νT
≡ Tν

T
(13)

This is the ratio between the actual time scale of the motion, T , and the

dissipation time scale, Tν = L2/ν. The latter represents the approximate

time required for molecular friction to bring the motion at scale L to rest.

How long is this? At the weather scales:

Tν =
L2

ν
≈ (106m)2

10−5m2/sec
= 1017 sec

This is roughly 1012 days, or about 3 × 109 years—or slightly less than

the age of the earth! So we would have to wait for a very long time for

molecular dissipation to halt a storm system. Storms spin down typically

in less than a week or so, so something else is at work here.

The dissipation time scale is a strong function of the spatial scale. Con-

sider a cup of coffee. You add milk to the coffee and stir it. How long do

you have to wait for the coffee to cease moving? My cup is 7.5 cm across,

so the dissipation time scale is:

Tν =
L2

ν
≈ (0.075m)2

10−5m2/sec
= 560 sec

or about 9 minutes. But coffee settles down much faster, perhaps over 15

seconds. Again, there is something else at play.
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Another important scaling is obtained if we instead divide through by

2ΩU , the size of the Coriolis term. Then we obtain:
∂

∂t
u+ ~u · ∇u+ î · (2~Ω× ~u) = − 1

ρ0

∂

∂x
p+ ν∇2u

1

2ΩT

U

2ΩL
1

P

2ΩUρ0L

ν

2ΩL2
(14)

The ratio of the advective term to the Coriolis term is U/2ΩL, the Rossby

number. This is usually small at large scales. At synoptic scales in the

atmosphere (O|1000 km|), the Rossby number is:
U

fL
≈ 10 m/sec

10−4 sec−1 106 m
= 0.1

At the synoptic scales in the ocean (O|100 km|), the Rossby number is even

less:
U

fL
≈ 0.1 m/sec

10−4 sec−1 105 m
= 0.01

Thus the Coriolis term is 10 and 100 times larger than the advective term

respectively.

Scaling the other terms, we find the pressure gradient term is about

the same size as the Coriolis term. So the dominant balance at weather

scales is between the Coriolis and pressure gradient terms, known as the

geostrophic balance. This is the reason that the winds circulate around a

low pressure system, counterclockwise in the Northern Hemisphere.

Exercise: Other points

a) The time derivative term, ∂
∂tu, is typically about the same size as

the advective term at synoptic scales. Knowing this, discuss how you can

deduce the scale of the pressure, P, above. What is P at the 1000 km scale

in the atmosphere? How does this compare to observations from weather

charts?
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b) At what scale are advection and the Coriolis term of equal size in the

atmosphere? What about in the ocean? What happens below this scale?

As we will see, this scale represents an important transition point in

both systems.

2 Statistics in a nutshell

Turbulence often appears as “noise” in a signal. Consider the synthetic

temperature time series T (t) in the upper panel of Fig. (1). The temper-

ature varies slowly in time but also has a high frequency component. If

we low-pass filter1 the time series, we get the signal in the middle panel.

This has a smooth, even quasi-periodic variation. If we high-pass filter the

time series instead, we get the signal in the lower panel. This appears to

be “white noise”, i.e. a random signal with no dominant frequencies. This

looks completely unpredictable, i.e. we don’t know from one instant to the

next how it will behave. The low frequency motion could be the seasonal

change in temperature, with warming in the summer and cooling in the

winter. The high frequency motion on the other hand could be weather,

which is unpredictable at scales beyond a few days.

Since turbulent signals are fundamentally unpredictable (we will demon-

strate this in sec. 4), it often doesn’t make sense to try and predict them.

Rather than worrying about the exact values of the signal at any given

time, we focus instead on statistics. In some cases, statistical aspects can

be predicted.

We are most concerned about the range of possible values the signal can
1See for example https://en.wikipedia.org/wiki/Low-pass_filter.
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Figure 1: A time series of temperature measured over a certain period. The upper panel
shows the whole time series, while the middle and lower panels show the low-pass and
high-pass filtered time series.
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Figure 2: The probability density function (PDF) of the high-pass filtered time series in
Fig. (1). The dashed curve is a Gaussian PDF.

have. We measure these with statistical moments—the mean, the variance,

and so forth. The moments in turn can be derived from the probability

density function (PDF) of the signal.

To obtain the PDF, we calculate a histogram of the signal. We do this by

counting the number of times the temperature falls within a given range,

e.g. between −0.2 and −0.1. Then we normalize the histogram so that:
∫ ∞
−∞

p(T ) dT = 1 (15)

The PDF indicates the probability of measuring particular values. The

probability of getting any exact value, like T = −0.15, is effectively zero

(since temperature is a continuous variable), but we can evaluate the prob-

ability it will have a value in a given range, for example from T = −0.1 to

T = 0.2: ∫ 0.2

−0.1
p(T ) dT (16)

This indicates what fraction of time the temperature is found between these

values.
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Fig. (2) shows the PDF for the high-pass filtered time series in Fig.

(1). The curve is centered around zero, but values as large as ±0.6 C

occasionally occur.

The dashed curve in Fig. (2) shows a Gaussian or “normal” distribution.

The Gaussian is defined:

p(T ) =
1√

2πδ2
exp(−(T− < T >)2

2δ2
) (17)

The PDF from the high-pass filtered time series is very close to the normal

distribution. This is useful to know, because the moments of a Gaussian

can be derived analytically (see the exercises).

IT is often true that random signals exhibit a nearly Gaussian PDF. In-

deed, there is an important result in statistics called the Central Limit The-

orem which states that the sum of independent processes has a PDF which

converges to a Gaussian. So if a time series is long enough, the PDF will

eventually converge to a normal distribution.

Once we have the PDF, we can derive the statistical moments. The first

moment is the mean:

< T >=
∫ ∞
−∞

T p(T ) dT (18)

The mean is approximately where the PDF is centered. The mean for the

distribution in Fig. (2) is −0.0022 C. This is close to zero, as we might

have guessed.

The width of the PDF is determined by the second moment, the vari-

ance:

V =< (T− < T >)2 >=< T 2 > − < T >2

=
∫ ∞
−∞

T 2 p(T ) dT − (
∫ ∞
−∞

T p(T ) dT )2 (19)
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Notice that we subtract the mean prior to taking the square – otherwise

the mean value itself would affect the answer. For our distribution, the

variance is 0.0386 C2.

The variance, being a square, is somewhat non-intuitive though. A bet-

ter indicator of the width of the PDF is the standard deviation, which is the

square root of the variance:

δ = (< T 2 > − < T >2)1/2 (20)

This yields δ = 0.1965 C. You can see that the PDF in Fig. (2) falls to

roughly half its maximum value at ±0.2 C. Thus the temperature in the

high pass filtered time series is most often between −0.2 C and 0.2 C.

We can also calculate higher moments. The third order moment is the

skewness. The skewness indicates how asymmetric about the mean the

distribution is. A symmetric distribution has a skewness near zero. It is

traditional to normalize the skewness by the cube of the standard deviation

so that the result is a non-dimensional number:

S =

∫∞
−∞(T− < T >)3 p(T ) dT

δ3
(21)

In our case, S=0.0271, so the PDF is slightly skewed toward positive val-

ues.

The (normalized) fourth order moment is also useful:

K =

∫∞
−∞(T− < T >)4 p(T ) dT

δ4
(22)

This is the kurtosis. The kurtosis reflects the shape of the PDF. If the PDF

has a sharp peak in the middle and long wings, the kurtosis is large, while

if it is very flat, the kurtosis is small. In our case, k=2.9792. The kurtosis

of a Gaussian distribution is exactly three. So our PDF is indeed close to

normal.
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Exercise: Random examples

In matlab, say: x = 0.1 + rand(1000,1); What is the mean of x? The

standard deviation?

Use the histogram function to find out what kind of distribution x has.

Explain why then that the mean of x is given by: < x >≈ 0.1 + 0.5

What is the probability that x lies in the range −0.1 to 0.1?

Now try: x = 0.1 + randn(1000,1);

Plot the PDF. What is the standard deviation? The kurtosis?

Exercise: Gaussian distribution

a) Show that the Gaussian distribution in (17) is normalized.

b) Show that all odd moments of the Gaussian are exactly zero.

c) Show that the kurtosis of a Gaussian is 3.0.

3 The Fourier transform

Another very useful operation we’ll be using is the Fourier transform. The

basic idea is that we project a function onto a basis of sinusoidal functions:

φ(t) =
∑
ω
φ̂(ω)eiωt (23)

Here φ(t) is a quantity which varies in time (such as temperature at a given

location), and φ̂(ω) is the Fourier transform of φ. The sum goes over the

range of ω, which is the frequency. Note that while φ(t) is usually a real

function, the transform φ̂(ω) is complex, because the term exp(iωt) is also

complex.

By using the transform, we represent the signal, φ(t), by a series of
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sinusoidal functions. Each wave has a period, which is given by:

T =
2π

ω

Long waves have large periods and small frequencies, while short waves

have short periods and high frequencies. The transform variable, φ̂(ω),

represents the amplitude of each wave.

Consider the temperature time series in Fig. (1). Taking the Fourier

transform, the amplitude would be large for a few long (low frequency)

waves – these would capture the low-pass filtered part of the signal. The

amplitude would also be large for a number of high frequency waves, rep-

resenting the high-pass signal. We would also expect a spectral gap in

between, since there are few waves of intermediate scale. This is fairly

unusual – most time series have a full continuum of waves.

Relation (23) shows us how to construct φ(t) if we know it’s transform.

But how do we obtain the transform in the first place? We can extract the

component at a single frequency by integrating the equation, thus:

1

T

∫ T
0
φ(t) e−iω

′t dt =
1

T
∑
ω

∫ T
0
φ̂(ω)ei(ω−ω

′)t dt (24)

Here T is the length of the time series. Because T is finite, the frequencies

have discrete values:

ω =
2πn

T
→ T = nT

where n is an integer. This means there are an integral number of waves in

the total record (the frequencies are quantized).

If ω 6= ω′, then the integral on the right hand side of (24) is exactly zero.

If ω = ω′ though, then:

1

T

∫ T
0
φ(t) e−iωt dt =

1

T

∫ T
0
φ̂(ω)dt = φ̂(ω) (25)
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So the integral extracts the amplitude at frequency ω. This is the Fourier

transform of φ(t) in time.

The transform can be made in space as well. For instance, we can write:

ψ(x, y) =
∑
k

∑
l

ψ̂(k, l)eikx+ily (26)

Here k and l are wavenumbers, which correspond to the frequency in

space. The inverse of the wavenumber is the wavelength, which is the

space version of the period. The wavelength in the x-direction is:

λx =
2π

k

The corresponding transform is given by:

ψ̂(k, l) =
1

LM

∫ M

0

∫ L

0
ψ(x, y)e−ikx−ily dx dy (27)

We’ve assumed a rectangular domain with sides of length L and M . Be-

cause these are finite dimensions, the wavenumbers are both quantized, as

before.

An advantage of the Fourier transform is that it makes taking derivatives

easy. Say that ψ is a 2D streamfunction, with the velocities given by:

u = − ∂

∂y
ψ, v =

∂

∂x
ψ (28)

Then:

û = −ilψ̂, v̂ = ikψ̂ (29)

Another useful point concerns the energy. The total kinetic energy in

the domain is:

E =
1

LM

∫∫ 1

2
(u2 + v2) dxdy (30)

The Fourier version of this is:

E =
1

2

∑
k

∑
l

|û|2 + |v̂|2 (31)
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Thus the kinetic energy is the sum of the squares of the Fourier amplitudes

(a result known as Parseval’s theorem). Written in terms of the stream-

function, the energy is:

E =
1

2

∑
k

∑
l

(k2 + l2)|ψ̂|2 (32)

Very often, we’ll talk about the energy spectrum. This is the argument of

the sum above:

E(k, l) =
1

2
(|û|2 + |v̂|2) =

1

2
(k2 + l2)|ψ̂|2 (33)

Thus the total energy is the sum of the spectrum over all wavenumbers.

The spectrum reveals the contribution to the energy by wavenumber (or

frequency) and is a central quantity in turbulence theory.

Exercise:

Construct a time vector thus: t = [0 : 999] ∗ .001. Let:

x = sin(100πt) + sin(240πt)

and:

y = x+ 2 ∗ randn(size(t))

Plot x and y vs. t. Then construct the power spectra of x and y, thus:

N = 1000

X = fft(x,N)/N

Y = fft(y,N)/N

f = 0.001/2 ∗ linspace(0, 1, N/2 + 1)

plot(f, 2 ∗ abs(X(1 : N/2 + 1)), f, 2 ∗ abs(Y (1 : N/2 + 1)))

Here fft is the fast Fourier transform, an important numerical routine

which calculates the transform.

What is the difference between x and y? Describe the spectra.
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4 A chaotic example

As noted earlier, the “trouble” with the momentum equation stems from

the quadratic nonlinearity on the LHS. We’ll consider how this affects the

solution in an idealized case.2 The x-momentum equation is:

∂

∂t
u+ ~u · ∇u+ i · (2~Ω× ~u) = − 1

ρ0

∂

∂x
p+ Fx + ν∇2u (34)

We represent this using a “toy” model:

d

dt
u+ ru2 = 1− u (35)

This is an ODE with only a single dependent variable, u(t). The terms on

the RHS represent simple forcing and dissipation terms. The equation has

a quadratic nonlinearity and that is multiplied by r, which is essentially

the Reynolds number for the problem. If r is small, the flow is viscous

and the equation is approximately linear. If r is order one or larger, the

nonlinearity is important.

We will discretize the equation, using a simple Euler routine with a time

step dt = 1:
u(t+ 1)− u(t)

1
+ ru(t)2 = 1− u(t) (36)

We can rewrite this as:

u(t+ 1) = F (u(t)) = 1− ru(t)2 (37)

This is a “map”, in which a new value of u, at t + 1, is derived from the

previous value. This particular map is a variant of the “logistic map”.3

2This example is based on one given by Frisch [14].
3The logistic map was originally proposed by May [30]. His was an idealized model of a biological

system where the growth rate of a population is proportional to the population itself. The paper became a
landmark in the chaos literature.
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Figure 3: . Two solutions of the logistic map with u(0)=0. The solution at right has r=0.1
and the one on the right has r=0.75.

The behavior of the system depends entirely on the parameter, r. If

r = 0, the solution goes immediately to u = 1.0. This is the viscous limit,

when the forcing determines the solution.

If r is larger than zero, the solution approaches a smaller value. The

value is known as a fixed point. This is defined as a point at which u(t)

will not change, i.e. where du/dt vanishes. If u(t) starts on a fixed point,

it will remain there. With r 6= 0, there are actually two fixed points, which

we can find by solving:

d

dt
u = −ru2 + 1− u = 0 (38)

This quadratic equation has solutions:

u = − 1

2r
±
√

1 + 4r

2r
(39)

There are two roots, one positive and one negative. With r = 0.1, the roots

are u = 0.9161 and u = −10.9161. Solving (37) numerically, we see the

solution rapidly converges to the positive root (left panel of Fig. 3).

Only a single solution exists with r = 0, i.e. u = 1. When r is small

but non-zero, there are two solutions, one near u = 1 and a second which
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is large and negative, as above. This second root thus appears from −∞
when r increases from zero.

Why does the numerical solution favor the positive root over the neg-

ative one? To see, we perform a linear stability analysis. Let’s say the

solution is near a fixed point, denoted ua. The fixed point is such that:

F (ua) = ua (40)

If we are near the fixed point, we can write:

u = ua + δ(t) (41)

where δ is a small deviation. Putting this into (37), we have:

u(t+ 1) = ua + δ(t+ 1) = F (ua + δ(t)) ≈ F (ua) + F ′(ua)δ(t) (42)

after using a Taylor expansion. We keep only the first term, consistent with

a “linear” analysis. Because ua = F (ua), we get:

δ(t+ 1) = F ′(ua)δ(t) (43)

Whether |δt| increases or decreases depends therefore on F ′(ua). If we

think in terms of iterations, we have that:

δn+1 = F ′(ua)δn = (F ′(ua))
2δn−1 = (F ′(ua))

nδ1 (44)

Thus if:

|F ′(ua)| < 1 (45)

then δ will asymptote to zero. How it decays depends on the sign of F ′(ua)

(Fig. 4). If 0 < F ′(ua) < 1, then δ decays monotonically to zero (upper

left panel); if−1 < F ′(ua) < 0, then δ oscillates as it decays (upper right).

On the other hand, if F ′(ua) > 1, δ increases monotonically (lower left)
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and if F ′(ua) < −1, δ oscillates and increases (lower right). If δ decreases

in time, we say that ua is a stable fixed point; if δ increases, it is an unstable

fixed point.
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Figure 4: . The four different types of stability: monotonic decay (upper left), oscillating
decay (upper right), monotonic growth (lower left) and oscillating growth (lower right).

We have that:

F ′(u) = −2ru (46)

With the positive root, ua = .9161, so F ′(ua) = −0.1832, implying de-

caying oscillations. In fact there are oscillations in Fig. (3), but the de-

cay is so rapid we don’t see them. The other root, ua = −10.9161 has

F ′(ua) = 2.1832 and so is unstable. Thus the numerical solution con-

verges to the positive root rather than the negative one.
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Note the linear stability analysis only pertains for values of u near the

fixed points. We can’t say how the system will behave when it is far from

the points. If we start at u(0) = −11, the solution becomes more and

more negative, and so never approaches a steady state. Thus there is no

guarantee the system will converge to the stable fixed point.

The oscillations are more noticeable when r is larger. An example, with

r = 0.75, is shown in the right panel of Fig. (3). The roots in this case are

u = −2/3 and u = −2. The solution again approaches the positive root.

Note that F ′(−2/3) = −1; so the linear stability analysis indicates we are

on the border between stable and unstable solutions.
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Figure 5: . The solution (left) and spectrum (right) with r=0.8.

Indeed, with a somewhat larger r the oscillations don’t die out. Con-

sider the case with r = 0.8 (left panel of Fig. 5). The fixed points are

u = 0.6559 and u = −1.9059, and we see that u oscillates around the for-

mer. But the oscillation itself is stable. This is interesting, because linear

stability suggests the point is unstable (since F ′(0.6559) = 1.05. But the

oscillations around the fixed point exhibit finite amplitude stability, as u

remains in the neighborhood of the fixed point.
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Figure 6: . The solution with r=1.3.

It is useful to consider the spectrum of u, as a function of the (non-

dimensional) frequency, ω. This is shown in the right panel of Fig. (5).

There is a single peak, at ω = 0.5. This reflects the stable oscillation in the

left panel.

Increasing r further, the behavior becomes more complex. The case

with r = 1.3 is shown in Fig. (6). Now the fixed points are u = 0.5731

and u = −1.3423, and again u is oscillating about the positive root. But

the oscillations are less regular. Looking at the spectrum, we see why:

there are now two dominant frequencies; the solution is a superposition of

these waves.

Increasing r further, the solution becomes even more complex as more

and more frequencies appear. With r = 2 (Fig. 6), the solution is fully

chaotic. The roots are u = 0.5 and u = −1, but u oscillates erratically

between -1 and +1. Sometimes there are rapid changes and sometimes

slower ones. In addition, the spectrum (right panel) is nearly “white” (flat),

with contributions across the whole range of frequencies.

Chaotic signals are fundamentally unpredictable, because a chaotic sys-
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Figure 7: . The solution with r=2.

tem is sensitively dependent on the initial conditions. The initial value in

Fig. (7) is u(0) = 0.1. Let’s change that slightly, to u(0) = 0.10001. The

two curves are plotted in Fig. (8). Initially the curves are together. But

shortly after t=10, they begin to diverge. By t=20, the two are essentially

independent of one another. If this were a temperature forecast, we would

have two completely different values after about t = 15.

This is a central difficulty with chaotic systems: unless you know the

initial conditions exactly, it’s impossible to make a correct prediction—and

there will always be some error in the initial conditions.4

Given that the motion is unpredictable, it doesn’t make sense to worry

about the exact value of u at any given time. Rather, we can focus on

the statistics. The PDF of u is shown in Fig. (9) for both of the initial

values used in Fig. (8). Despite that the two time series are different, the

PDFs are almost identical. We see that u takes on all values in the range

from [-1:1]. We also see that u is most frequently near the extremes, -1
4H. Poincaré noted in 1890 that the trajectories in systems with three interacting bodies—the minimum

required to obtain chaos—depend sensitively on the initial conditions. In reference to the same effect, E.
Lorenz remarked: “One meteorologist remarked that if the theory were correct, one flap of a seagull’s
wings could change the course of weather forever.” The seagull was later changed to a “butterfly” and the
dependence on initial conditions has become known as the “butterfly effect”.
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Figure 8: . The solution with r=2, with two initial values which are nearly the same.

and 1. These are the extremes of the oscillations, so u spends more time

in their neighborhood (the same is true for a simple sinusoidal oscillation).

Note too that unlike with our noise example earlier, this PDF isn’t remotely

Gaussian. The kurtosis is roughly 1.5, well below the Gaussian value of 3.

It’s actually possible to predict the shape of the PDF. Making a suitable

change of variables [14], one can convert this to a “tent map”, which has a

uniform (or flat) PDF. Then one can convert back again to u to predict the

PDF. The solution is [14]:

p(u) =
1

π
√

1− u2
(47)

This is indicated by the red curve in Fig. (9).

There are several points here. One is that this system is fully chaotic at

r = 2. If this is our Reynolds number, we see that the value is very low.

With a Reynolds number of 1012, as in the atmosphere, it isn’t surprising

the motion is chaotic.

Second, because u explores the entire range of values between -1 and

1, we say the motion is ergodic. Given (almost) any initial value, we can
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Figure 9: . The histogram of the logistic map with r=2 and 10,000 iterations. The red
curve is the analytical prediction for this map, p(u) = 1/(π

√
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expect u to take on any other value in the range. Thus if we did an ensemble

of experiments, measuring u at a point and then averaged all the values we

obtained, we would get the same answer than if we had just averaged u in

time.

However, we must be cautious about taking the logistic map too liter-

ally. The progression from stable fixed points, to more and more oscilla-

tions and then to chaos is typical of nonlinear systems with few degrees

of freedom. In the atmosphere or ocean, where there are many, many de-

grees of freedom, the transition from stability to chaos is usually less clean.

Nevertheless, the logistic map gives us a good idea of what a quadratic

nonlinearity can do.

Exercise: Another map

Analyze the equation:

du

dt
+ ru2 = (r − 1)u (48)
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with dt = 0.1 (note!).

a) Write the equation as a map.

b) What are the fixed points?

c) Calculate the stability for each point. Notice that this depends not

only on r, but on the time step, dt(!)

d) Write a code to solve the mapping. Check the solution for various

values of r. How does the behavior compare to your expectations from the

linear stability analysis?

e) Write a second code to calculate the spectrum of u. Check the spectra

in the cases in (b).

f) What are the critical values of r where transitions occur? When are

the solutions fully chaotic? Plot time series to show this.

5 Conservation laws

Central in much of the theory that follows are two conservation laws: one

for energy and one for “enstrophy”. These play a central role in the evolu-

tion of turbulent systems, allowing us to make basic deductions about the

behavior.

Both the energy and enstrophy equations are derived from the momen-

tum equation (10). The derivations are somewhat simpler using a modified

version of the advective term, which comes from using a vector identity:

~u · ∇~u = ~ω × ~u+∇|~u|
2

2

Here ~ω is the total vorticity, the curl of the velocity. Using this, we get:

∂

∂t
~u+ ωa × ~u = −∇(

p

ρ0
+
|~u2|
2

+ gz) + F + ν∇2~u (49)
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Figure 10: . A three dimensional volume. The boundaries are either solid or periodic.

The term:

~ωa = ~ω + 2~Ω

is the absolute vorticity, the sum of the “relative vorticity”, ~ω, and the

“planetary vorticity”, 2~Ω. Note how the two vorticities are essentially on

equal footing here, showing how important the planetary rotation is.

The first term on the RHS of (49) is the gradient of the Bernoulli func-

tion, an important quantity in fluid mechanics.

5.1 Energy

If we take the dot product of equation (49) with the velocity, we get:

∂

∂t

|~u2|
2

= −∇ · [~u(
p

ρ0
+
|~u2|
2

+ gz)] + ~u · F + ν~u · ∇2~u (50)

We’ve used incompressibility to rewrite the Bernoulli term. Note too that

the term with the absolute vorticity has vanished—this is because it is per-

pendicular to the velocity. So that term does not affect the total energy.
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To obtain an equation for the total energy, we integrate (50) over a vol-

ume. For the volume, we’ll assume either solid or periodic boundaries

(Fig. 10). At solid walls, the normal component of the velocity vanishes.

With periodic conditions, the velocity is the same on the opposite bound-

aries, so their difference is zero.5

Most oceans are bounded by solid walls on the sides and bottom. The

sea surface is often considered as a solid boundary as well, because there

are no currents flowing up into the atmosphere. The atmosphere can be

modelled as having solid boundaries at the surface and at a chosen height

(e.g. the tropopause). Often we specify solid boundaries at a northern and

southern latitude, confining motion to the latitude band. But the longitudi-

nal direction is periodic, as the flow can wrap all the way around the earth

(such as the Jet Stream).

The main effect of these choices is on the integral of divergences. Con-

sider the volume integral of the advection of some quantity, G:
∫∫∫
∇ · (~uG) dV =

∫����∫
G~u · n̂ dS = 0 (51)

By Gauss’s theorem, the volume integral can be converted to a surface in-

tegral, as in the second term. This then vanishes with solid walls because

the normal velocity is zero. It also vanishes with periodic boundary condi-

tions. Consider the integral in the x direction:
∫ L

0

∂

∂x
(uG) dx = u(L)G(L)− u(0)G(0) = 0 (52)

By periodicity, the two terms are equal so their difference is zero.

Thus, if we integrate (50) over the volume, the two divergence terms
5Boundaries can be important places, supporting boundary layers which are sometimes turbulent them-

selves. We purposely avoid such issues here.
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vanish and we get:

d

dt
E =

∫∫∫
~u · F dV + ν

∫∫∫
~u · ∇2~u dV (53)

Here:

E =
∫∫∫ 1

2
|~u2| dV (54)

is the total kinetic energy. Equation (53) implies the total energy changes

only in response to forcing and dissipation. Advection doesn’t change the

total energy; it only redistributes energy in the domain.

Dissipation causes the energy to decrease. But this isn’t obvious be-

cause the last term in (53) is positive. We can convert it though using

another vector identity:

∇2~u = ∇(∇ · ~u)−∇× (∇× ~u) = −∇× ~ω (55)

The second term vanishes by incompressibility. Taking the dot product

with ~u, we get:

~u ·∇2~u = −~u ·(∇×ω) = −~ω ·(∇×~u)+∇·(~ω×~u) = −|~ω|2+∇·(~ω×~u)

(56)

using (yet) another vector identity. So we can write:

ν
∫∫∫

~u · ∇2~u dV = −ν
∫∫∫
|~ω|2 dV + ν

∫∫∫
∇ · (~ω × ~u) dV (57)

The last term vanishes when integrated over space, because:∫∫∫
∇ · (~ω × ~u) dV =

∫����∫
(~ω × ~u) · n̂ dS (58)

This vanishes automatically for periodic boundary conditions. But it also

vanishes with solid walls (see the exercise).

Thus the energy equation, without forcing, is:

d

dt
E = −ν

∫∫∫
|~ω|2 dV (59)
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The energy dissipation is proportional to the integral of the squared vortic-

ity, which is known as the enstrophy. Because the RHS is negative definite,

the energy can only decrease in time.

An important question in turbulence theory is whether the energy is

conserved when the viscosity goes to zero. This is relevant for the atmo-

sphere and ocean, because the viscous damping term is so much smaller

than the other terms in the momentum equation. It looks at first glance like

energy should be conserved, because the RHS of (59) should go to zero

with ν. But it could happen that the enstrophy increases as ν decreases.

Say for example that: ∫∫∫
|~ω|2 dV ∝ C

ν
(60)

in the limit of small viscosity. Then we would have

dE

dt
= −C (61)

Then the energy would decrease at a constant rate, regardless of how small

ν was. For this to happen, there must be production of vorticity in the ab-

sence of forcing, so that the vorticity doesn’t just decrease. To see whether

or not this is the case, we must examine the vorticity equation.

Exercise: Why does the term on the RHS of eq. (58) vanish with solid

walls?

5.2 Vorticity and enstrophy

We obtain the vorticity equation by taking the curl of equation (49):

∂

∂t
~ω + ~u · ∇~ωa + ~ωa(∇ · ~u)− ~ωa · ∇~u = ∇×F + ν∇2~ω (62)
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We’ve used yet another vector identity to rewrite the advection term. Com-

bining the second and third terms on the LHS, we get:

∂

∂t
~ω +∇ · (~u⊗ ~ω) = ~ωa · ∇~u+∇×F + ν∇2~ω (63)

Now, the question is whether the enstrophy, |~ω|2 is bounded if there is

no forcing (F = 0) and if the viscosity, ν, decreases toward zero. Taking

the dot product with ~ω, we obtain:

1

2

∂

∂t
|~ω|2 +∇ · (~u |~ω|

2

2
) = ~ω · (~ωa · ∇~u) + ν~ω · ∇2~ω (64)

Integrating this in space, and using the same vector identities that we did

with the energy, we obtain:

d

dt

∫∫∫ 1

2
|~ω|2 dV =

∫∫∫
~ω · (~ωa · ∇~u) dV − ν

∫∫∫
|∇ × ~ω|2 dV (65)

The last term is negative definite, causing a decay in the enstrophy. But

the middle term has an undetermined sign. In fact, this can be positive,

and as such, it can act as a source of enstrophy. Thus we can’t say whether

E is conserved in the limit of vanishing viscosity. Indeed, what happens

in such high Reynolds number fluids is that the velocity gradients become

very large at small scales and the enstrophy can be very large. And mea-

surements of the total energy suggest it decreases in time, even when the

viscosity is very small.

However, this isn’t the case in two dimensions. Imagine a flow con-

fined to a plane. This is not as unrealistic as it seems, because at large

scales, atmospheric and oceanic motion is predominantly in the horizontal

directions. Assuming the velocity is purely horizontal, we have:

~u = (u, v, 0) (66)
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The vorticity, which is perpendicular to the velocity, is then purely vertical:

~ω = (0, 0,
∂

∂x
v − ∂

∂y
u) ≡ ζk̂ (67)

It’s possible to show that the important part of the planetary rotation vector

is the one which is locally vertical [22]:

2~Ω ≈ 2Ωsin(θ)k̂ ≡ fk̂ (68)

where θ is the central latitude.

Now, consider the enstrophy source term in eq. (65):

ωa · ∇~u = (ζ + f)k̂ · ∇(uî+ vĵ) = 0 (69)

The term vanishes because the vorticity and the velocity are perpendicular.

So the enstrophy source is absent in a 2-D flow, meaning the enstrophy

can only decrease in time. Thus energy is conserved in the inviscid limit

in 2-D:

limν→0
dE

dt
= 0 (70)

This has an enormous effect on 2-D flows, as we will see.

But what about the enstrophy with vanishing viscosity? Without the

production term, the RHS of equation (65) is negative definite. But it is

not guaranteed that enstrophy is conserved unless we know that the curl

of the vorticity is bounded in this limit. To see, we have to consider the

next equation, for the palinstrophy. It turns out there is a source term for

that as well. So we can’t assume enstrophy is conserved in 2-D, just as we

couldn’t assume energy was conserved in 3-D. And numerical experiments

show that the total enstrophy decreases in time, even when the viscosity is

small, just as the energy decreases in 3D.

Thus in the limit ν → 0, energy in 2D isn’t affected by the dissipation

at very small scales. Why this is will become clear shortly.
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Exercise: Show that the palinstrophy equation has a source term in 2D.

This implies that enstrophy will decrease in 2D, even when ν → 0.

6 3-D turbulence

Now we return to the coffee cup. Why does it spin down so quickly?

More specifically, how can dissipation, acting at molecular scales, affect

the energy at the scale of the coffee cup? We’ll see that this has to do with

how energy is exchanged between scales.

6.1 Triad interactions

For this it is best to work in Fourier space. Imagine the forcing,F , happens

at large scales. This is the spoon stirring the coffee. The dissipation is at

the molecular scale. Thus there is a range of intermediate scales where

the forcing and dissipation aren’t relevant. At these scales, it is advection

which dominates the changes in the velocity.

We can illustrate how this works by focusing on just one of the advec-

tive terms, in the x-momentum equation:

∂

∂t
u = −u ∂

∂x
u (71)

We’ll assume 1-D motion, in a periodic domain with a length L.

We first write the velocity on the LHS of (71) in terms of its Fourier

transform:

u =
∑
û(k, t) eikx (72)

Because the domain is periodic, k is quantized:

k =
nπ

L
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Further, the time derivative of u is:

∂

∂t
u =

∑ ∂

∂t
û(k, t) eikx (73)

The RHS of (71) involves the product of two velocities. For this, we

need two different transforms:

−u ∂
∂x
u = −(

∑
l

û(l, t)eilx) (
∑
m
imû(m, t) eimx)

= −
∑
l

∑
m
imû(l, t) û(m, t) ei(l+m)x (74)

Note the factor im comes from taking the x-derivative.

Now we isolate one Fourier component on the LHS of (71), to see how

that is changing in time. We do that by Fourier transforming the whole

equation, multiplying both sides by exp(−ikx) and integrating over the

domain. We get:

∂

∂t
û(k, t) =

1

L

∫ L

0
imû(l, t) û(m, t) ei(l+m−k)x dx (75)

The wavenumbers l and m, like k, are quantized. So we can write:

l +m− k =
(p+ q − n)π

L

where n, p and q are all integers. Thus the sum p + q − n = a is also an

integer. Say this is different from zero. Then the integral above is:

1

L

m

a
û(l, t) û(m, t)eiaπx/L|L0

But because the exponential is periodic, this vanishes. The only time the

integral doesn’t vanish is when a = 0, or:

k = l +m

Then the integral is one. Thus we have:

∂

∂t
û(k, t) = −

∑
l

∑
m
im û(l, t) û(m, t) δ(l +m− k) (76)
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where:

δ(x) =

 1 if x = 0
0 if x 6= 0

This means that wave interactions occur between groups of three waves,

or triads, whose wavenumbers sum to zero.

If we consider the other advective terms, and three dimensional wavenum-

bers, the conclusion is the same. The only contributions come from triads

of waves whose vector wavenumbers sum to zero:

~l + ~m = ~k (77)

So, for instance, a Fourier mode with ~k = (3, 3, 0) will interact with waves

with (1, 2, 0) and (2, 1, 0). This is known as a local interaction, because

the wavenumbers for the triad are all similar. But the same mode will

also be affected by the waves with (−10, 2, 0) and (13, 1, 0). These have

a much smaller scale in the x-direction. This is a non-local interaction, as

the components have very different sizes.

Consider Fig. (11), which shows a hypothetical energy spectrum, E .

We plot the spectrum as a function of the total wavenumber:

κ ≡ (k2x + k2y + k2z)
1/2

The wavenumber is on the x-axis. Note that increasing wavenumber im-

plies decreasing size; so the large scales are on the left. Now the fluid is

forced at a large scale, perhaps by the spoon in the cup. This produces an

energy spectrum like that in dash-dot line—a spike at the forcing scale. In-

teractions between wavenumbers cause the spectrum to spread out, as the

energy is transferred to other wavenumbers. Local interactions cause the

energy to cascade to smaller scales (larger wavenumbers). At later times,
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Figure 11: A hypothetical cascade of an initially narrow band energy spectrum to smaller
scales. We imagine that energy is conserved during the cascade, so that the area under the
curves is conserved (despite appearances).

there is energy across a range of wavenumbers. Then non-local interac-

tions can occur, between large and small scale waves.

Eventually energy arrives at the smallest scales, where it is dissipated by

molecular interactions. So this is how molecular dissipation can bring the

coffee to rest: because turbulence transfers energy down to the dissipation

scales.

6.2 Kolmogorov’s inertial range

Forcing puts energy into the system and dissipation removes it. Energy is

transferred via triad interactions from the large scales to the small. As the

British scientist, Lewis Fry Richardson, put it:

Big whirls have little whirls,

that feed on their velocity.

And little whirls have littler whirls,
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and so on to viscosity.

Kolmogorov proposed a theory for the energy transfer over the inter-

mediate scales, which have become known as the inertial range [17]. The

theory rests on several assumptions:

• The turbulence is in a statistically steady state. This means the en-

ergy, while fluctuating, isn’t increasing or decreasing, and hence the

spectrum retains its shape.

• The turbulence is isotropic—the same in all directions. So instead of

using E(k, l,m), we can focus on E(κ), where κ is the magnitude of

the wavenumber vector.

• The turbulence is homogeneous—the same at all locations in space.

So we can talk about the dynamics in wavenumber space without wor-

rying about variations from place to place.

• The triad interactions are local (the reason for this will become clearer

later on).

As stated, the details of the forcing and dissipation don’t matter in the

inertial range. The only aspect which matters is the rate at which energy

is transferred across scales. In a statistically steady state, this is a constant

number. We denote this energy flux, ε.

It turns out that the energy spectrum has a characteristic power law

slope in the inertial range, and this can be deduced solely from dimensional

considerations. The spectrum, E(κ), has dimensions of L3/T 2. That’s

because energy has units of L2/T 2, and the total energy is the sum over

wavenumbers of the spectrum (recall wavenumbers have units of L−1).
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The energy flux on the other hand has units of L2/T 3, as this is propor-

tional to the time rate of change in the energy. Assuming that ε is the only

important parameter, we must have:

E(κ) = Cε2/3κ−5/3 (78)

where C is a constant.

The inertial range bridges the range of scales for the forcing down to

the dissipation. The forcing scale is determined by the forcing itself (the

size of the spoon). But at what scale does dissipation become important?

This where the energy transfer rate due to turbulence is approximately the

same as the dissipation rate.

We can deduce the scale by equating time scales. The dissipation time

scale, discussed earlier, is:

Tν ∝
L2

ν
∝ ν−1κ−2 (79)

The time scale in the inertial range can be deduced from the energy flux,

again on dimensional grounds:

Ta ∝ ε−1/3κ−2/3 (80)

Notice that this varies across the range, with shorter time scales at smaller

scales. In the dissipation range, the dissipation time scale is shorter than

the cascade time scale, because energy decays before it is transferred. The

opposite is true in the cascade range. At the transition between the cascade

and the dissipation ranges, the two scales are equal. Equating them, we

get:

κν = (
ε

ν3
)1/4 (81)

The corresponding length scale is Lν = (ν3/ε)1/4, the Kolmogorov scale.
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The Kolmogorov model is self-consistent with regards to dissipation.

As noted in sec. (5), the energy dissipation is given by:

D = −ν
∫∫∫
|~ω|2 dV

The term in the integral has a scale:

νU 2

L2
∝ νκ2U 2

U 2 varies as:

U 2 ∝ ε2/3κ−2/3

So the energy dissipation (per unit volume) scales as:

D ∝ νε2/3κ4/3

At the dissipation wavenumber, κν , this equals

ν ε2/3
ε1/3

ν
= ε

Thus the dissipation rate is equal to the energy flux across the inertial

range. The amount of energy put in by the forcing is removed by the

dissipation.

But notice something—the dissipation rate is independent of ν! Imag-

ine that we make ν smaller and smaller. Then the dissipation scale Lν is

smaller. But the dissipation rate is the same. The only difference is that

the inertial range carries the energy to smaller scales.

This is a critical point. Because of the downscale cascade, energy will

not be conserved in the fluid so long as there is even an infinitesimal

amount of dissipation. Energy can only be conserved if there is identically

zero dissipation.

The Kolmogorov picture can be illustrated as in Fig. (12). The energy is

injected at wavenumber, κf , and at a rate ε. It then cascades downscale at
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Figure 12: The Kolmogorov energy spectrum.

the same rate, ε, to the dissipation wavenumber, κν , where it is dissipated

at the same rate. In the inertial range, the only parameter which matters is

ε, yielding the characteristic κ−5/3 spectrum.

6.3 Shell models

A simple way to understand the Kolmogorov model is as follows. Imagine

the turbulence involves energy transfer between discrete wavenumber bins

(Fig. 13). In the figure, we have four bins, and so four different scales.

Energy enters at the largest scale (k = 1) and is removed by dissipation at

the smallest scale (k = 8).

In drawing the figure this way, we make the assumption that the wavenum-

ber interactions are local; energy transfer occurs only between adjacent

bins. The situation would be much more complicated if we allowed for

transfer between all the bins.

The rate that energy is transferred from k = 1 to k = 2 is given by ε.
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Figure 13: Energy transfer in the shell model. Energy is put in at the largest scale (k = 1)
and removed at the smallest (k = 8).

This is the same rate as energy is transferred to k = 4. Imagine this were

not so. Say the energy transfer from k = 2 to k = 4 was only ε/2. Then

the energy would be entering the k = 2 bin faster than it was leaving, and

the energy in the bin would increase in time. The spectrum then would not

be stationary in time. So the transfer rate must be the same between all

bins.

Also notice that the rate that energy is removed from the last bin (k = 8)

is also ε. So the dissipation rate is equal to the flux. Again, if this weren’t

so, the energy would pile up in the smallest bin.

In fact, this is a real possibility. In numerical models with too little dissi-

pation, the energy cascades to the smallest scales faster than it’s taken out.

So the energy increases at the smallest scales and the model subsequently

blows up. The shell model illustrates why this is so.

Exercise: Structure functions

Kolmogorov [17] didn’t actually derive the form of the energy spec-

trum. Rather, he derived relations for the velocity structure functions.
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These are powers of the velocity difference between two points. For ex-

ample, the second order structure function is:

S2(r) =< |u(~x+ r)− u(~x)|2 > (82)

The brackets indicate an ensemble average, i.e. an average over a number

of observations. Use dimensional analysis to deduce how S2(r) varies

with the separation, r. Compare this to the spectrum. Consider also the

third order structure function, S3(r), which has a special significance in

turbulence theory.

6.4 Observations

Observations support Kolmogorov’s prediction for the energy spectrum.

An example is shown in Fig. (14), from measurements in a jet in the

laboratory [8]. The k−5/3 dependence is seen clearly over roughly two

decades (factors of 10) of the wavenumber.

Another well-known example is the observations of Grant et al. [15]

in a tidally-mixed fjord on the west coast of the United States. This also

yielded strong evidence of a k−5/3 spectrum (Fig. 15).

There are numerous other examples as well, from the atmospheric bound-

ary layer, in laboratory experiments and in numerical simulations. How-

ever, where the model is less successful is at predicting the higher mo-

ments. Energy, like the variance, is a second order statistic, being propor-

tional to the velocity squared. But one can also look at higher powers, such

as the skewness and the kurtosis. Or, one can look at velocity PDFs.

What is typically found is that the PDFs of velocity differences at sepa-

rated points (the structure functions; see the exercise above) are not Gaus-

sian. As shown in Fig. (16), the PDFs for velocity differences with large
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Figure 14: The energy spectra for the stream-wise and transverse velocity components
in a jet, with Re = 626. From [8].

separations are close to Gaussian. But as the separation, r, approaches

the Kolmogorov scale, the wings of the PDFs become more and more ex-

tended. So the kurtosis increases to values exceeding 3.

While the velocities themselves have an approximately Gaussian dis-

tribution, the velocity gradients are not Gaussian. What one sees if one

measures the gradients is that large values occasionally occur, much larger

than would be expected for a Gaussian process. Such episodes appear as

“bursts” in the time series. We say that the turbulence is “intermittent”.

This can be taken into account in the shell model above, by stating that

the turbulence fills only a fraction of the bins. This is the idea behind

the “β-model”. Such a model yields the same spectra as Kolmogorov, but

predicts deviations in the higher moments, as observed. See for example
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Figure 15: Energy spectrum from towed measurements in a tidal basin by Grant et al.
[15]. The boxed region shows the region of transition to the dissipative range.

Frisch [14].

7 2-D turbulence

At synoptic or “weather” scales in the atmosphere and ocean, the motion is

nearer two dimensional than three dimensional. This is because the vertical

velocity, suppressed by rotation and stratification, is much smaller than the

horizontal velocities. Turbulence in two dimensions is similar to that in

3-D, but also quite different.

Let’s assume the velocities are purely two-dimensional:

~u = (u, v, 0) (83)

45



Figure 16: PDFs of the velocity differences for different separations, r. At the largest
separations, near the forcing scale, the PDFs are nearly Gaussian. But approaching the
Kolmogorov scale, the wings of the PDF become more and more extended.

Then the continuity equation is just:
∂

∂x
u+

∂

∂y
v = 0 (84)

This implies we can write the velocities in terms of a streamfunction, ψ:

u = − ∂

∂y
ψ, v =

∂

∂x
ψ (85)

The vorticity is perpendicular to the velocity, so it only has a vertical com-

ponent:

~ω = (
∂

∂x
v − ∂

∂y
u) k̂ = ∇2ψ k̂ ≡ ζk̂ (86)

As shown, we define the 2-D relative vorticity ζ . The equation for the 2-D

vorticity follows from (63):
∂

∂t
ζ + ~u · ∇(ζ + f) = ∇×F + ν∇2ζ (87)

As noted earlier, the vorticity production term is absent because the vortic-

ity and velocity are perpendicular.
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Exercise: 2-D triads

Triad interactions also occur in 2-D. Say that:

ψ =
∑
k

∑
l

ψ̂(k, l)eikxx+ikyy (88)

Fourier transform the vorticity equation (87), without forcing or dissipation

and assuming a domain with lengths 2π in each direction. Substitute in the

expansions above and obtain an equation for ∂
∂tψ̂(~k). Show the advective

terms contribute in triads.

7.1 Conservation laws

Without forcing and dissipation, energy and enstrophy are conserved, as in

3-D. Both relations can be derived from the vorticity equation (87).

The enstrophy equation is the simplest. Multiplying (87) by ζ yields:

∂

∂t

ζ2

2
+ ~u · ∇ζ

2

2
= 0 (89)

assuming F = 0, ν = 0 and f = const. As the flow is incompressible,

this is:
∂

∂t

ζ2

2
+∇ · ~u ζ

2

2
= 0 (90)

Integrating over the area:

d

dt

∫∫ ζ2

2
dx dy +

∮ ζ2

2
~u · n̂ dl = 0 (91)

The second term vanishes with either solid walls or periodic boundaries,

so:
d

dt

∫∫ ζ2

2
dx dy ≡ d

dt
Z = 0 (92)

The total enstrophy is conserved in the absence of forcing and dissipation.
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To obtain the energy equation, we multiply (87) by ψ and integrate over

the area: ∫∫
ψ
∂

∂t
ζ dxdy +

∫∫
ψ∇ · (~uζ) dxdy = 0 (93)

The first term can be written:∫∫
ψ
∂

∂t
∇2ψ dxdy = −1

2

∫∫ ∂

∂t
|∇ψ|2 dxdy = −dE

dt
(94)

after integration by parts. For the second term, we use the following iden-

tity:

∇ · (~uζψ) = ψ∇ · (~uζ) + ζ~u · ∇ψ (95)

The last term is zero because ~u is parallel to the streamlines, so the dot

product with the gradient is identically zero. So:∫∫
ψ∇ · (~uζ) dxdy =

∫∫
∇ · (ψ~uζ) dxdy =

∮
ψζ~u · n̂ dl = 0 (96)

again, for periodic conditions or a solid boundary. So:

dE

dt
= 0 (97)

in the absence of forcing.

Thus in the inviscid case, both energy and enstrophy are conserved. We

exploit this in the following sections.

7.2 A triad interaction

The interesting aspect about 2-D turbulence is illustrated nicely by Fjørtoft

[12].6 We look at a triad interaction between three wavenumbers, as shown

in the simple shell model in Fig. (17). Energy is initially in the center

shell, at wavenumber k. The energy flows to the other two shells, one with

a wavenumber κ/2 and the other with a wavenumber 2κ. The energy in

the boxes is E0, E1 and E2, going from left to right.
6A remarkable, short paper...with no references! Fjørtoft argues all his points on first principles.
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Figure 17: A triad in two dimensions. The energy is initially inthe center shell and flows
to the other two. Each shell has a wavelength which is twice that of the shell to its right.

Assume ν = 0, so that both the energy and enstrophy are conserved.

This is a reasonable assumption in the inertial range, where dissipation is

unimportant. Then:

E0(t) + E1(t) + E2(t) = E1(0) (98)

and:

Z0(t) + Z1(t) + Z2(t) = Z1(0) (99)

Now these two statements are related to each other, as follows. The energy

in 2-D is:

E =
∫∫ 1

2
(u2 + v2) dA =

1

2

∑
k

∑
l

(k2 + l2)|ψ̂|2 (100)

from Parseval’s theorem (sec. 3). The enstrophy on the other hand is:

Z =
∫∫ 1

2
(
∂

∂x
v− ∂

∂y
u)2 dA =

1

2

∑
k

∑
l

(k2 + l2)2|ψ̂|2 =
∑
k

∑
l

κ2E (101)

So the enstrophy conservation statement for the boxes can be written:

κ20E0(t) + κ21E1(t) + κ22E2(t) = κ21E1(0) (102)

Using our values for the wavenumbers, we have:

κ2

4
E0(t) + κ2E1(t) + 4κ2E2(t) = κ2E1(0) (103)

49



or simply:
1

4
E0(t) + E1(t) + 4E2(t) = E1(0) (104)

Combining this with the energy equation (98), we get:

1

4
E0(t) = E2(t) (105)

so that:

E0(t) =
4

5
δE1, E2(t) =

1

5
δE1 (106)

where δE1 = E1(0)−E1(t) is the energy lost from the middle shell. Thus

80% of the energy goes to the larger scale wave. Energy is apparently

going upscale rather than downscale! This is completely counter to expec-

tations from 3D turbulence.

What about the enstrophy? We find that:

Z0(t) =
κ2

4
E0(t) =

κ2

4

4

5
δE1 =

1

5
δZ1 (107)

Similarly, we find:

Z2(t) =
4

5
δZ1 (108)

So the situation is reversed: 80% of the enstrophy lost from the middle

shell goes to the smaller wave. So contrary to the energy, enstrophy is

shifting to smaller scales.

If you use different size waves, you will find different fractions of en-

ergy and enstrophy transfer. But if you look at the full range of possible

triads, most act like the one above and transfer energy to larger scales.[34]

Exercise: Another triad

Consider the general case where κ0 = κ1/n and κ2 = nκ1. What

fraction of energy goes to the larger wavenumber and what fraction to the

smaller. What about the enstrophy?
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7.3 An integral argument

The transfer of energy to larger scales in 2D is known as the “inverse cas-

cade”, being in the opposite direction as in 3D. It was also noted by Batche-

lor [2], in the last few pages of his seminal book Homogeneous Turbulence,

published in the same year as Fjørtoft’s article.

Batchelor’s argument goes like this. Imagine that we have a narrow

energy spectrum initially, as in Fig. (11). The spectral peak will broaden

in time, as energy is passed to other wavenumbers via triad interactions.

We can express this as:

d

dt

∫
(κ− κi)2E dκ > 0 (109)

where κi is the wavenumber peak of the initial spectrum. Expanding the

LHS, we get:

d

dt
[
∫
κ2E dκ− 2κi

∫
κE dκ+ κ2i

∫
E dκ] > 0 (110)

The first term is the total enstrophy and the last term is the total energy,

both of which are constant. So we must have:

d

dt

∫
κE dκ < 0 (111)

Written another way, this is:

d

dt
(

∫
κE dκ∫
E dκ

) =
d

dt
κm < 0 (112)

where κm is the mean wavenumber of the spectrum. This then is decreas-

ing in time, implying the spectrum is shifting to the left, toward larger

scales. Like Fjørtoft, Batchelor concluded that energy is moving upscale

in 2-D.
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We can use a similar argument to see what’s happening to the enstrophy,

following Salmon [43]. If the spectrum is spreading, we also can write:

d

dt

∫
(κ2 − κ2i )2E dκ > 0 (113)

Expanding this, we get:

d

dt
[
∫
κ4E dκ− 2κ2i

∫
κ2E dκ+ κ4i

∫
E dκ] > 0 (114)

The second term is proportional to the total enstrophy and the last term to

the total energy. So we have:

d

dt

∫
κ4E dκ =

d

dt

∫
κ2 Z dκ > 0 (115)

So:
d

dt

∫
κ2 Z dκ∫
Z dκ

> 0 (116)

Thus the mean square wavenumber for the enstrophy is increasing in time;

the enstrophy spectrum is shifting to the right, toward small scales.

Thus two cascades are occurring simultaneously in 2-D: there is an en-

ergy cascade to larger scales, and an enstrophy cascade to smaller scales.

That implies that there are two cascade ranges.

Exercise: Batchelor, part 2

Re-do Batchelor’s arguments using the mean wavenumber instead of

the initial wavenumber. Assume that the variance in wavenumber increases

in time. Do you get the same results?

7.4 The two inertial ranges

That there are two inertial ranges in forced 2-D turbulence was realized by

Kraichnan, Leith and Batchelor [19, 26, 3]. We assume the fluid is forced

52



and that the spectrum is stationary (not changing in time), just as in the

Kolmogorov case in 3-D.

The first inertial range is the energy cascade range. We can determine

the slope of this just as we did for the 3-D energy cascade. In fact, the

slope is the same. The energy still cascades at a rate ε, and the spectrum

has the form:

E(κ) = Cε2/3κ−5/3 (117)

The only difference is the direction of transfer, which is now upscale. If the

forcing were, say, at the 1 km scale, the energy cascade could conceivably

produce eddies 1000 km large! This is truly remarkable.

But what happens to the energy when it gets to the large scales? After

all, energy is normally dissipated at the other end of the spectrum, at the

small scales; we have no means to remove energy at the large scales. So

energy will just pile up there, and the spectrum will never reach a steady

state.

To avoid this, we require additional dissipation which acts at large scales.

A good candidate is Ekman friction [22]. This is drag due a frictional bot-

tom boundary layer. Ekman layers occur at the surface in the atmosphere,

and at the sea surface and the bottom of the ocean. We can include Ekman

friction by adding a linear term in the vorticity equation. Specifically, we

modify (87) thus:

∂

∂t
ζ + ~u · ∇(ζ + f) = F − rζ + ν∇2ζ (118)

where:

r =
fδE
2H

is the inverse of the Ekman spin-down time. Here H is the depth of the

fluid and δE is the thickness of the bottom Ekman layer.
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Ekman friction acts equally at all scales. Consider the case without

forcing or small scale dissipation, with f = const. Then:

d

dt
ζ = −rζ (119)

The solution to this is:

ζ(t) = ζ(0)e−rt (120)

So the vorticity decays exponentially, regardless of the scale.

Where does Ekman friction terminate the upscale cascade? To see, we

equate time scales, as before. The Ekman damping time scale is just the

e-folding time r−1 – independent of the scale of the motion. The advection

time scale in the energy cascade is again:

τ ∝ ε−1/3κ−2/3

Equating them, we can solve for the large scale dissipation wavenumber:

κr = (
r3

ε
)1/2 (121)

This is the boundary between the energy inertial range and the largest

scales, which are dominated by Ekman friction. Note that with less friction

(smaller r), the inverse cascade proceeds to larger scales.

Now to the other inertial range, where enstrophy cascades to smaller

scales. In analogy to the energy range, we have an enstrophy cascade rate,

η. This measures the rate of change of enstrophy, which itself has units

of 1/T 2. So the enstrophy transfer has units of 1/T 3. On dimensional

grounds, we infer the spectrum has a shape:

E(κ) = Cη2/3κ−3 (122)

So this is steeper than the energy inertial range.
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An interesting thing about the enstrophy cascade range is that, unlike

with the energy inertial range, the advective time scale is independent of

the length scale. We have simply that:

τ ∝ η−1/3 (123)

This time scale is determined by the largest eddies in the cascade range. As

such, the enstrophy cascade is “non-local”—the smaller scales are stirred

by the eddies at the top of the inertial range.

Equating this time scale with the dissipation time at small scales, τd =

(νκ2)−1, we get the dissipation wavenumber:

κν = (
η1/3

ν
)1/2 (124)

This is where the enstrophy cascade terminates. As we did with the energy

range in 3-D, we can calculate the rate at which enstrophy is dissipated, by

scaling the enstrophy equation (65). At the dissipation scale, the RHS of

(65) scales as:

ν |∇ × ζ|2 ∝ ν
U 2

L4
∝ ν

η2/3κ−2ν
κ−4ν

= ν
η2/3η1/3

ν
= η (125)

So as with the energy in 3-D, the enstrophy dissipation is independent

of the viscosity, ν. Even if ν is very small, enstrophy is transferred to

the small scales and removed. Thus enstrophy is not conserved in 2-D

turbulence, since it will always (eventually) be dissipated.

We summarize the cascades in Fig. (18). Energy and enstrophy are “in-

jected” into the system at wavenumber κf . There are two inertial ranges:

the κ−5/3 range at larger scales and the κ−3 range at smaller scales. Energy

cascades at a rate, ε, and enstrophy at a rate, η. Energy is removed at large

scales by Ekman friction and at small scales by molecular dissipation.
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Figure 18: The energy spectrum for stationary 2-D turbulence, forced at wavenumber
κf .

Exercise: Energy dissipation rate

Show that the energy lost to Ekman damping at the upper limit of the

energy range is also equal to ε.

7.5 Physical interpretations

But what is enstrophy? How do we visualize these different cascades?

To see, it helps to understand the difference between the streamfunction

and vorticity, and between energy and enstrophy. The vorticity is:

ζ = ∇2ψ

In terms of Fourier-transformed variables, we have:

ζ̂ = −κ2ψ̂

So the vorticity is multiplied by the wavenumber squared. As such, vortic-

ity is like a high-pass filtered version of the streamfunction. We “see” the
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smaller scales better with vorticity than with the streamfunction.

Shown in Fig. (19) is the streamfunction obtained from a 2-D turbu-

lence simulation (run without forcing, from random initial conditions).

The field is fairly smooth, with high and low pressure regions side by side.

Shown in the right panel is the vorticity at the same time. This has much

more small scale structure. There are vortices, but also many small fila-

ments between the vortices. We could hardly have guessed these structures

existed, looking at the streamfunction.
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Figure 19: A snapshot of the streamfunction (left) and vorticity (right) from a 2-D turbu-
lence simulation. Note the vorticity has much more small scale structure.

Another important difference between the streamfunction and the vor-

ticity is that only the latter is conserved in the absence of forcing and dissi-

pation; the streamfunction can change regardless. Watching an animation

of the streamfunction, you see high and low pressure regions appear and

disappear. But watching the vorticity, you can track single vortices; these

only disappear when they collide with other vortices.
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The energy essentially reflects the streamfunction, while the enstrophy

reflects the vorticity. From before, we showed that:

Z(κ) = κ2E (126)

So the enstrophy is like a high-pass version of the energy. While the energy

gauges the large scale structures, the high and low pressures in Fig. (19),

the enstrophy is more affected by the small scale filaments being strained

out between the pressure systems. It is these filaments which are being

dissipated by the small scale damping.

Another question is what is the difference between a local spectrum and

a non-local one? The energy range is local, having a slope of κ−5/3 and

the enstrophy range with a slope of κ−3 is non-local. In fact, κ−3 is the

shallowest non-local spectrum—anything steeper is non-local.

In a local spectrum, there is more energy at the smaller scales relative

to the larger scales. Because the spectrum falls off faster in the non-local

case, the smaller scales are much less energetic, and this has consequences

for mixing. In the local regime, the eddies which are most important for

structures of size L have the same size. This produces a “chunky” look,

for example to smoke blowing away from a chimney. But in the non-local

case, the most important eddies are at the top of the spectral range. In

the ocean, this might be the deformation scale. Thus structures below that

scale get strained out into filaments, much like the vorticity in between the

vortex structures in Fig. (19). We’ll see more examples of the differences

hereafter.
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7.6 The vortex view

The tradition view of 2-D turbulence, following Kraichnan [19], is in terms

of the Fourier components. Like Kolmogorov [17], we have assumed the

turbulence is homogeneous and isotropic. But as with the velocity gra-

dients in 3-D turbulence, 2-D turbulence exhibits intermittency. And this

intermittency is hard to miss— if one looks at the vorticity field.

Beginning in the 1980s, the computer power was sufficient to simulate

2-D turbulence at reasonably large Reynolds numbers. What researchers

began to see was that the vorticity is dominated by long lived or “coherent”

vortices. These are essentially the cyclones (and anticyclones) which are

familiar in the weather. Atmospheric vortices also persist for long periods

of time—it is possible to track storms from their origin in the western

Atlantic to their demise in the Nordic Seas.

Vortices also account for extreme velocities. An observer at a fixed

location will notice the velocities rise and fall, then a vortex will strike and

the velocities will be very large, as with a hurricane. Having vortices also

mean the flow is no longer homogeneous—the vortex parts of the flow are

distinct from other locations.

In numerical simulations, freely-evolving (unforced) turbulence quickly

evolves to a state where the vortices dominate the flow, as the vorticity be-

tween vortices is strained out and dissipated [31, 32]. Thereafter, the evo-

lution is primarily a process of mergers between vortices. Positive vortices

(cyclones) merge with other cyclones and negative vortices (anticyclones)

merge with other anticyclones. The merged vortices are larger than the

vortices which joined to make them. In this way, energy is shifted toward

larger scales—the flow is dominated by fewer, larger vortices.

59



Vorticity at t=5
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Vorticity at t=50
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Figure 20: Snapshots of the vorticity from a 2-D turbulence simulation. The panel at left
is at an earlier time, and the one at right at a later time.

This is illustrated in Figs. (20). The left panel shows the vorticity from

a simulation begun with random initial conditions. After a short period,

vortices emerge, with both signs (cyclones and anticyclones). As time

goes by, the vortices merge, so there are fewer at later times (right panel).

Left to itself, the system would eventually evolve to a dipole—one cyclone

and one anticyclone.

McWilliams [32] studied the statistics of the vortices. He found that the

number of vortices decays as a power law (Fig. 21), i.e.:

Nv ∝ t−α (127)

where α ≈ 0.7. The finding was supported in a subsequent calculations

using “point vortices” (right panel of Fig. 21).

The vortices are important for the flow. Carnevale et al. [7] showed

that all the important measures in these simulations could be explained in

terms of the vortex statistics. Theirs is a “mean field theory”, and it goes as

follows. Assume that the vortices are patches of uniform vorticity, positive
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Figure 21: The number of vortices as a function of time for a freely-evolving turbulence
simulation (left panel); from McWilliams [32]. The number of vortices in a “point vortex”
simulation (right panel); from Weiss and McWilliams [49].

or negative. Thus the vorticity of a vortex can be written:

ζ =

 ζc if r ≤ b

0 if r > b

Here b is the radius of the vortex patch.

The patch also has a velocity field. Using cylindrical coordinates and

assuming no radial flow, we have:

ζ =
1

r

∂

∂r
(rv) (128)

So:

v =
1

r

∫ r

0
ζr dr (129)

Thus for the patch:

v =

 ζcr/2 if r ≤ b
ζcb

2/(2r) if r > b

Using this, we can calculate the energy of the vortex. Integrating over the

domain (which we assume is larger than the vortex radius, b), we get:

E =
1

L2

∫ L

0

v2

2
r dr = Cζ2c b

4 (130)
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where C is a constant which depends on the domain scale, L (we’ve as-

sumed a square domain here, for simplicity).

If there is more than one vortex, the total energy is the sum of the con-

tributions from all the vortex patches:

E =
∑
i

Ei (131)

We will neglect the energy associated with the integrations between the

vortices. To write this sum, we make a mean field approximation; we have

replace the sum above with N times the average vortex quantities, if N is

the total number of vortices. Thus we have:

E ∝ 1

L2
NC ζ2c b

4 ∝ ρ ζ2c b
4 (132)

where ρ is the vortex density in the domain, N/L2.

Now, we demand that energy be conserved in this system—soE =const.

Thus:

ρ ζ2c b
4 = const. (133)

We know that:

ρ ∝ t−α (134)

with α ≈ 0.7. Thus the product of ζ2c b
4 must increase at the same rate.

Carnevale et al. [7] make one further assumption—that the vortex am-

plitude is also conserved in mergers. If we take two patches and combine

them, the amplitude won’t change. That implies that the mean amplitude

is also constant. So:

b ∝ tα/4 (135)

The mean vortex radius is growing in time. Likewise, the mean area is also

growing:

A = πb2 ∝ tα/2 (136)
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This is the inverse cascade in the model—mergers are producing larger and

larger vortices.

Interestingly, the vortex mergers do not conserve enstrophy. The en-

strophy for a single vortex is:

Z =
1

L2

∫∫
ζ2 dA =

1

L2
ζ2cπb

2 (137)

because the vorticity is constant inside and zero outside the patch. Again

the total enstrophy is the sum over all the patches:

Z =
∑
i

Zi =
1

L2
N ζ2c π b

2 ∝ ρ ζ2c b
2 (138)

Thus we have that:

Z ∝ t−α t0 tα/2 = t−α/2 (139)

Given McWilliams’ value for α = 0.7, this implies the enstrophy decays

as t−0.35. This is remarkable, because except for the mergers, this vortex

patch system has no dissipation at all. The prediction was supported by

numerical simulations (Fig. 22).

Why does enstrophy decrease? During mergers, small filaments are cast

off. These are then assumed to be dissipated by small scale damping. The

mergers thus conserve energy, but they don’t conserve vorticity.

The vortex view of 2-D turbulence is that the dynamics are determined

by the vortices. Vortex mergers conserve energy, but enstrophy decreases

in time, as filaments are cast off. This is basically the same conclusion

that we reached in discussing the inertial ranges. But the vortex view is an

appealing physical description which is easy to grasp. We’ll return to the

mean vortex model later on.

Exercise: Enstrophy conservation
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Figure 22: Vortex statistics from the simulations of from Weiss and McWilliams [49].
Here N , r and Γ are the vortex number and their mean radius and circulation. Z is the
enstrophy and K is the vorticity kurtosis. The predictions from the mean vortex theory
are indicated by lines.

What if vortex mergers conserved enstrophy instead of energy? Show

that in this case, the total energy would grow in time. Thus the two quan-

tities cannot be simultaneously conserved in this model.

7.7 Passive tracer spectra

Thus far, we have focused on vorticity, which is an active tracer. Advection

of an active tracer changes the flow. Thus momentum, density and vorticity

are active tracers. But we can also ask what happens to a passive tracer,

which has no affect on the flow. Examples are smoke, ash from volcanic
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plumes and spilled oil. Temperature is often considered to be a passive

tracer, but since it affects the density, it is actually an active one.

The equation for a passive tracer can be written thus:

∂

∂t
C + ~u · ∇C = κ∇2C (140)

where C is the tracer concentration. Changes in tracer concentration occur

because of advection or by diffusion. The coefficient, κ, is the diffusivity.

This is usually different from the viscosity, which dictates how molecu-

lar mixing affects the velocity. The tracer equation is very similar to the

vorticity equation; the main difference is that the concentration is passive

while the vorticity is active. An important consequence is that the advec-

tion term in the tracer equation is linear—u doesn’t depend on C.

As with energy and vorticity, we can consider the spectrum of the tracer,

or rather the tracer variance— the variation about the mean. If we Fourier

transform C, we can determine the tracer fluctuations as a function of

scale—exactly as we do with enstrophy (the vorticity variance) or energy

(the velocity variance).

What would such a spectrum look like? Following our previous ar-

guments, we might expect that in a turbulent inertial range, the flux of

tracer variance across scales will be constant. Otherwise the tracer vari-

ance would pile up at a certain scale (e.g. we’d see filaments of a certain

width emerging in the flow). The tracer flux has units of concentration

squared per second. Let’s call this χ.

Now the spectrum of tracer, P (κ) will have units of tracer squared times

length (so that the integral over all wavenumbers will yield tracer squared).

So, on dimensional grounds, we expect:

P =
χτ

κ
(141)
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where τ is the turbulent time scale.

Here is where the passive element comes in. The tracer doesn’t affect

the time scale, τ ; that only depends on the active portion of the flow, the

vorticity. So for τ , we use the time scales inferred for the turbulent ranges.

For the energy range, τ = ε−1/3κ−2/3. Substituting in, we get:

P (κ) = χε−1/3κ−5/3 (142)

So in the energy range, the tracer spectrum has the same slope as the energy

spectrum.

For the enstrophy range, we have τ = η−1/3. As noted, the enstrophy

range is “non-local” because the time scale is independent of scale and set

by the largest eddies in the range. Substituting in, we get:

P (κ) = χη−1/3κ−1 (143)

So the spectra is shallower than the energy spectrum.

Interestingly though, the tracer spectrum is the same as the enstrophy

spectrum (see the exercise below). This suggests that vorticity in the en-

strophy range behaves like a passive tracer, even though it is an active one.

The reason is that the enstrophy range is non-local; all fields are advected

passively by the largest eddies in the range.

The spectra are summarized in Fig. (23). We assume that tracer is

injected at the largest scales. Tracer variance then cascades downscale,

through the energy and enstrophy ranges. The spectral slopes are κ−5/3

and κ−1.

Exercise: Enstrophy spectrum

Derive the enstrophy spectrum in the two inertial ranges for 2-D turbu-

lence. Show then that the slope in the enstrophy range is the same as for a
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Figure 23: The passive energy spectrum in forced 2-D turbulence. The forcing is applied
at κf , and the tracer is introduced at large scales, at κχ. Note the tracer variance cascades
downscale at all scales.

passive tracer.

7.8 Predictability

Another interesting application of turbulence phenomenology is to pre-

dictability. Imagine the atmosphere was really just a 2-D turbulent fluid.

Now consider that there was an error in the initial conditions at some small

scale. We know the winds at large scales, from measurements, but we

can’t know them precisely at, say, the 1 m scale. Because the atmosphere

is chaotic, slight differences between the modeled initial state and the ac-

tual state will grow, eventually disturbing the forecasts at large scales. But

how quickly will this happen?
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7.8.1 Lorenz Model

The usual point of reference for atmospheric predictability is Lorenz’s

(1963) [29] model. This model is essentially a three mode truncation of

the equations describing a convective fluid system, under the influence of

heating of the lower boundary. In other words, we Fourier transform the

variables and retain only three terms. His equations can be written:

dx

dt
= σ(y − x)

dy

dt
= rx− y − xz

dz

dt
= xy − bz (144)

Here x, y, z are “state variables”, representing temperature and velocity in

the convective system, and where σ, r, b are various parameters (represent-

ing the aspect ratio, the Rayleigh number and the Prandtl number, three

values which are important for buoyancy-driven convection). The equa-

tions are nonlinear, due to the xz and xy terms in the second and third

equations. As with the logistic map (sec. 4), these terms are the source of

the system’s unpredictability.

The equations have three fixed points, found by setting the time deriva-

tives in the equations above to zero:

(x, y, z) = (0, 0, 0), (a, a, r − 1), (−a,−a, r − 1) (145)

Here

a =
√
b(r − 1)

The first solution is trivial, with no motion. The other two have convection,

with opposing circulation.
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Figure 24: A phase space (x, y, z) portrait of the Lorenz model. The parameters are
σ = 10, b = 8/3 and r = 14 (left) and r = 16 (right).

As with the logistic map in sec. (4), the system exhibits different behav-

ior, dependent on the choice of parameters. We show two examples in Fig.

(24). The parameters σ = 10 and b = 8/3 have been set to the same values

used by Lorenz; this is equivalent to setting the aspect ratio (the ratio of

the vertical to the horizontal length scales) and the ratio of the diffusivity

and the viscosity. We will vary r, the Rayleigh number, which determines

the type of convective behavior (laminar vs. turbulent). With r = 14,

there are two non-trivial fixed points, at (x, y, z) = (5.89, 5.89, 1.67) and

at (−5.89,−5.89, 1.67). We see that the system spirals in towards the latter

fixed points, signalling a stable final state.

With r = 16 however, the system never settles into a steady state.

Instead it orbits around the two non-trivial fixed points, at (x, y, z) =

(±6.32,±6.32, 1.67). It appears to approach one or the other, than abruptly

jumps over to the other one. These transitions occur at random times.

The system in the latter case is chaotic and as such it exhibits a sensi-

tive dependence on the initial condition. This is shown in Fig. (25), of the

squared difference between two runs, one beginning at (x, y, z) = (1, 2, 1)
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Figure 25: The absolute difference between two solutions to the Lorenz model, with
parameters are σ = 10, b = 8/3 and r = 16. The log of the error is plotted as a function
of time. Also shown is a exponential curve, with a growth rate of 0.3. This appears as a
straight line on the semi-log plot.

and a second at (x, y, z) = (1.0001, 2, 1). The plot shows that the differ-

ence is initially small, but then grows rapidly after roughly t = 5. Note

that this is a semilogarithmic plot, so the difference is increasing by orders

of magnitude. Also shown is a straight line, which indicates an exponential

growth. The difference tracks this fairly well, until it saturates soon before

t = 20.

Predictability is a measure of how quickly the system diverges under a

change in the initial condition. In the Lorenz model, the error growth is

exponential, as shown here. The magnitude of the error depends on the

initial condition. The smaller the initial error, the longer it takes for the

error to grow.

However, the Lorenz model isn’t very realistic. Think if we truncated
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a turbulence model with only three wavelengths. Energy could pass from

to the other (assuming they made a triad), but it couldn’t go any further.

Energy would have to recycle between the three wavenumbers.

7.8.2 Predictability in 2-D turbulence

So how do errors propagate through in a fully turbulent system?7 If the

cascade is local, an error at one scale will affect the next largest scale.

Then that scale affects the next scale, and so on up to the largest scales.

The total time to reach the largest scale would then be an integral over all

wavenumbers.

We can think of a “spectrum” of interaction times:

P =
τ(κ)

κ
(146)

Again we divide by κ so that the integral over all wavelengths will produce

a quantity with units of time, i.e.:

T =
∫ κ1

κ0

τ

κ
dκ (147)

Here κ1 is the scale where the error is introduced, and κ0 is our “weather

scale”, the large scale we’re focused on.

Consider the enstrophy cascade first. Here τ = η−1/3, so:

T =
∫ κ1

κ0

η−1/3

κ
dκ = η−1/3 ln(

κ1
κ0

) (148)

The predictability time depends on the scale of the error, so we can increase

the predictability time by reducing the scale of the error (increasing κ1).

Rewriting the equation in terms of scales, L ∝ κ−1, we get:

L0 = L1 e
η1/3T (149)

7The researcher C. Leith from the National Center for Atmospheric Research (NCAR) was an early
proponent of using turbulence models to understand predictability. The following section is based on that
of Vallis [46].
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So errors grow exponentially in time, at a rate proportional to η1/3. Thus

the enstrophy range is in line with our expectations from the Lorenz model.

Now consider the energy inertial range. Then τ = ε−1/3κ−2/3. Substi-

tuting in, we get:

T =
∫ κ1

κ0
ε−1/3κ−5/3 dκ ∝ ε−1/3κ−2/3|κ1κ0 (150)

Now if the scale of the error is much smaller than the largest eddies, we

have:

T ≈ ε−1/3κ
−2/3
0 (151)

In an energy cascade, the predictability time is independent of the scale

of the error! This is quite different from the Lorenz model. The reason is

that in the energy cascade the interaction time decreases with increasing

wavenumber. So error propagation depends on the largest scales, where

the error transfer is the slowest.

7.8.3 Predictability in the atmosphere

Given these ideas, what would we infer about the atmosphere? To find out,

we need to know what the energy spectra looks like. Nastrom and Gage

[36] used velocity data collected from over 6000 commercial aircraft to

calculate wavenumber spectra. The result is shown in Figure (26). This in-

dicates a κ−3 range from 100-2000 km and a κ−5/3 range at smaller scales.

The κ−3 range is thought to be en enstrophy cascade [28]. The dynami-

cal basis of the κ−5/3 range is still debated. If it is a 2-D energy cascade, it

implies a source of energy at small scales, as the scales are too large to be

a 3-D energy range. More recently, Buhler et al. (2016) have suggested the

source is inertial gravity waves. Whatever the case, the small scale range,

if turbulent, is local.
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Figure 26: Kinetic energy spectra from data collected on commercial airplanes over the
U.S. The zonal and meridional components are shown, with the latter shifted one decade
to the right. Note the lower x-axis is mislabeled— it should say “wavelength”. From [36].

Given what we now know about 2-D turbulence, we infer that pre-

dictability is limited by the local range at small scales, and by the transition

scale, 100 km, which would determine κ0 in the previous discussion. So

regardless of how good our observations are, we could not improve the

predictability time. Using approximate values for the dissipation rate, we

obtain a value of T on the order of a week. We caution though that the

dissipation rate is not well-known; indeed, even its sign is debated in the

smaller scale range.
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8 Geostrophic turbulence

Two-dimensional turbulence was first studied as an analogue to three-dimensional

turbulence; two dimensions is less computationally intensive than three.

But are the dynamics of two-dimensional flow actually relevant for the

ocean and atmosphere?

In fact they are. At synoptic scales (the scale of weather systems in the

atmosphere and of oceanic eddies), horizontal velocities greatly exceed the

vertical ones. Consider the scaled incompressibility condition:

∂

∂x
u+

∂

∂y
v +

∂

∂z
w = 0

U

L

U

L

W

H
(152)

If all three terms are of equal importance, the vertical velocity must scale

as:

W ∝ U
H

L
≡ δU (153)

where δ = H/L is the aspect ratio of the flow. This is typically of order

1/1000 at synoptic scales, so the vertical velocity is 1000 times smaller

than the horizontal ones.

Second, when the Rossby number is small (sec. 1.2), the velocities are

approximately geostrophic:

v ≈ vg =
1

ρ0f

∂

∂x
p

u ≈ ug = − 1

ρ0f

∂

∂y
p (154)

These are very reminiscent of 2D velocities, which can be expressed in

terms of a streamfunction:

v =
∂

∂x
ψ, u = − ∂

∂y
ψ
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However, the Coriolis parameter, f , in the denominator in (154) varies in

the y-direction, so the relations are not quite equivalent.

But we can make them so if we make one additional approximation, the

β-plane approximation. This involves a Taylor-expansion of the Coriolis

parameter about a central latitude, θ0:

f(θ) = f(θ0) +
df

dθ
(θ0) (θ − θ0) +

1

2

d2f

dθ2
(θ0) (θ − θ0)2 + ... (155)

We neglect the higher order terms, so that:

f ≈ f(θ0) +
df

dθ
(θ0) (θ − θ0) ≡ f0 + βy (156)

where

f0 = 2Ωsin(θ0)

β =
1

a

df

dθ
(θ0) =

2Ω

a
cos(θ0)

and

y = Re(θ − θ0)

Here Re is the radius of the earth.

The β-plane approximation is valid when the second term in the expan-

sion, βy, is much less than the first, f0. Scaling the two, we require:

βL

f0
� 1 → L� f0

β
= Retan(θ0) ≈ Re

So the latitudinal extent of the doman, L, must be much less than the

Earth’s radius.

Under the β-plane approximation, we can replace f by f0 in the geostrophic

relations in (157):

v ≈ vg =
1

ρ0f0

∂

∂x
p =

∂

∂x
ψ
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u ≈ ug = − 1

ρ0f0

∂

∂y
p = − ∂

∂y
ψ (157)

where ψ is the “geostrophic streamfunction”:

ψ ≡ p

ρ0f0
(158)

Then the horizontal velocities are approximately non-divergent because:
∂

∂x
u+

∂

∂y
v ≈ ∂

∂x
ug +

∂

∂y
vg = 0

This implies that the concepts of 2-D turbulence should apply, as long as

the flow is nearly geostrophic.

Figure (26) raises some interesting questions though. The 2D system

we considered before is very idealized. Atmospheric and oceanic flows

are affected by changes in planetary rotation, stratification and bottom to-

pography, to name only a few complicating factors. Yet we see energy

spectra which resemble those in pure 2-D turbulence. How can this be?

Geostrophic turbulence is what happens when we add geophysically

relevant factors to 2D turbulence. The name orginates from an article

where 2D turbulence was considered in a rotating fluid with continuous

stratification [9]. But we also use the term to encompass variations in f

and in topography. We’ll consider these in turn. We begin with f .

8.1 The Beta-effect

What effect does rotation have on the flow? The vorticity equation (63) in

two dimensions is given in (87):
∂

∂t
ζ + ~u · ∇(ζ + f) = 0 (159)

We neglect forcing and dissipation for the moment. Thus if f is constant,

it drops out of the vorticity equation completely. So a constant Coriolis

parameter has no effect on 2D turbulence.
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However, if f is variable f , the flow is affected. To see this, let’s sub-

stitute f0 + βy for f in the equation:

∂

∂t
ζ + ~u · ∇ζ + βv = 0 (160)

With β we pick up an additional term. Because of this, meridional motion

induces changes in the relative vorticity. This can also be seen if we rewrite

the equation in Lagrangian form:

d

dt
ζ + β

d

dt
y =

d

dt
(ζ + βy) = 0 (161)

So:

ζ + βy = const. (162)

If a fluid parcel moves north, to greater y, its vorticity must decrease.

The linear version of the vorticity equation is just:

∂

∂t
ζ + βv = 0 (163)

Written in terms of the streamfunction, this is:

∂

∂t
∇2ψ + β

∂

∂x
ψ = 0 (164)

We can solve this if we use a planar wave solution:

ψ = Re{ψ̂ eikx+ily−iωt} (165)

where Re{} signifies the real part. Then we obtain:

ω = − βk

k2 + l2
(166)

This is the dispersion relation for Rossby waves. Rossby waves, discovered

by C. G. Rossby [41] are fundamental to our understanding of large scale
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variability in the atmosphere and ocean. Rossby waves have a zonal phase

speed of:

cx =
ω

k
= − β

k2 + l2
(167)

So Rossby waves always propagate toward the west (in the absence of a

mean flow), and larger waves move faster than smaller waves.

Now let’s put advection back into the problem. Some scales will be

turbulent and others will be wave-like. But which ones? We can get a

rough idea by scaling the vorticity equation:

∂

∂t
ζ + ~u · ∇ζ + βv = 0

U

LT

U 2

L2
βU

1

βLT

U

βL2
1 (168)

In the last line, we’ve divided through by βU . Thus the advective term

scales as U(βL2)−1.

This is like the Rossby number, except that f has been replaced by βL

(which measures how much f changes over the length scale, L). If this

parameter is small, the vorticity equation is approximately linear and the

flow is dominated by Rossby waves. If large, the β term is unimportant

and the dynamics are turbulent. We then anticipate a “boundary” between

wave and turbulent dynamics. This is called the “Rhines scale” [39]:

Lβ =

√√√√U
β

(169)

At Lβ, all three terms in the vorticity equation are of equal importance.

Notice we haven’t specified a time scale in the vorticity equation. This

is because we assume the time scale adjusts to the dynamics. With Rossby
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waves, the first term should balance the third, so that T = (βL)−1. If

turbulence, we would expect the advective time scale, T = L/U .

The above arguments apply to spin-down experiments, where energy is

conserved. Then U and hence Lβ are fixed over the experiment. But with

forcing, the energy changes as the system spins up and the Rhines scale

varies. How can we predict Lβ in this case?

Assuming the turbulence reaches a steady state, we can think in terms

of the energy dissipation rate, ε. Imagine turbulence forced at a small scale

Lf (our “spoon”, stirring the fluid). This generates a cascade to larger

scales. At the largest scales, the dynamics are quasi-linear and turbulent

transfers weak or non-existent. So the cascade should halt or arrest at the

boundary between turbulence and waves.

We can deduce where the cascade stops by invoking time scales again.

In the energy cascade range, the time scale is proportional to:

τ ∝ ε−1/3κ−2/3 (170)

At the large scales, the relevant time is the Rossby wave period:

T ∝ |ω−1| = k2 + l2

βk
(171)

If the flow is isotropic, then:

k = l ≈ κ (172)

So the wave time scale is just:

T ∝ |ω−1| = κ

β
(173)

At the arrest scale, the two time scales are equal:

ε−1/3κ
−2/3
β =

κβ
β

(174)
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or:

κβ = β3/5ε−1/5 (175)

This is the arrest wavenumber. We would expect the cascade to stop ap-

proximately here (assuming the dissipation is sufficiently strong to prevent

the energy from building up here).

But an interesting thing happens when you try this numerically. An ex-

ample is shown in Fig. (27), of numerical simulations with a barotropic8

fluid on a sphere (which is periodic in the x direction). The simulations

show the energy cascade does indeed arrest, but the arrest is anisotropic;

the eddies are longer in the x direction than in y. The result is a banded

structure, reminiscent of the Jovian atmosphere. So the arrest is not isotropic,

and it’s thus incorrect to assume that k = l as we did above.

We can retain the anisotropy in the arrest wavenumber in the following

way, following Vallis and Maltrud [47]. First we write:

k = κcos(θ), l = κsin(θ) (176)

where θ is the angle the wavenumber vector makes with the k-axis. Then

the wave period is:

T ∝ |ω−1| = κ2

βκcos(θ)
=

κ

βcos(θ)
(177)

Equating this to the turbulent time scale:

ε−1/3κ
−2/3
β =

κβ
βcos(θ)

(178)

or:

κβ = β3/5ε−1/5cos3/5(θ) (179)
8A barotropic flow has no vertical shear in the horizontal velocities, i.e. ∂

∂zu = ∂
∂z v = 0.
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Figure 27: Numerical simulations of forced barotropic turbulence on a sphere. Note the
formation of banded flow, superimposed over a field of eddies. The mean zonal velocities
are indicated in the inserts. From [50].

This has two components:

(kβ, lβ) = [(
β3

ε
)1/5cos8/5(θ), (

β3

ε
)1/5cos3/5(θ)sin(θ)] (180)

The result is an arrest boundary in (k, l) space. The boundary is plotted

in Fig. (28). It has two symmetric lobes. Outside the lobes, the wavenum-

bers transfer energy in triad interactions toward the lobes. Inside the lobes,

the dynamics are essentially linear and the energy flux is weak.

Vallis and Maltrud tested this prediction numerically, in spin down ex-
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Figure 28: The boundary between turbulence and Rossby waves. For plotting, we assume
β3/ε = 1.

periments from random initial conditions. The latter were isotropic and

covered a specified band in wavenumber space (upper left panel of Fig.

(29). The initial spectrum thus appears as a ring in (k, l) space. As time

proceeds, energy shifts toward smaller wavenumbers, but it ceases at the

lobe structures described above. Vallis and Maltrud called these “dumb-

bells”.

The “dumbbell” shape explains the anisotropy observed in Fig. (27).

Consider energy moving in along the axis where l = 0 (the x-axis in the

figure). The energy cascade here would stop at k = 1. But energy moving

along the y-axis, with k = 0, will proceed nearly to the center.

The reason for this is that if k = 0, the meridional velocity is zero and

the β term drops out of the vorticity equation. So for zonal motion, it is as

if the β effect were non-existent and the inverse cascade is not arrested by

the waves.

So a forced cascade with β will produce structures with k = 0—zonal
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Figure 29: Spectra from a freely-evolving 2-D turbulence simulation, plotted in
wavenumber space. From [47].

jets—as in Fig. (27). But there are also eddies superimposed on the bands;

this is the turbulence at smaller scales. If you average the zonal velocities

in time, you see that there are alternating eastward and westward flows

associated with the bands. Those flows are in fact asymmetric; the east-

ward jets are sharper than the westward ones. This is a consequence of

barotropic stability, which favors sharper eastward jets.9

Exercise: Topographic arrest

A bottom slope acts exactly like the β-effect in a barotropic fluid. The

vorticity equation (see eq. 206 below) can be written:
9See [22].
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∂

∂t
ζ + ~u · ∇(ζ + h) = 0 (181)

where h is the topographic elevation. Say that h = αx (the bottom slopes

up to the east). Find the dispersion relation for the waves (assume periodic

boundary conditions in x and y). Now solve for the arrest wavenumber.

Draw it in (k, l) space. What type of structures do you expect?

8.2 Beta turbulence in a closed basin

Zonal jets can exist in re-entrant domains, like the atmosphere. The Jet

Stream is an example. But can zonal jets exist in the ocean, where there

are lateral (continental) boundaries?

To see, we must consider Rossby waves in a closed basin. These have

a slightly different structure and dispersion relation than the plane Rossby

waves discussed above. The waves have a dual structure: a propagating

wave superimposed upon a stationary “envelope”. The latter ensures that

there is no flow on the boundaries. For a rectangular basin, the streamfunc-

tion takes the form [38]:

ψ = Acos(kx− ωt)sin(
mπx

Lx
)sin(

nπy

Ly
) (182)

Here Lx and Ly and the lengths of the domain in x and y. The two sine

terms ensure that the streamfunction vanishes on the boundaries, and the

wavelengths are quantized. This solution is referred to as a barotropic

basin mode.

The dispersion relation for a basin mode is given by:

ω = ωmn = − β

2π(m2/L2
x + n2/L2

y)
1/2

(183)
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This too is quantized, i.e. there are only discrete values of the frequency,

corresponding to the discrete wavenumbers. The dispersion relation re-

sembles the plane Rossby wave dispersion relation, except that there is no

“k” in the numerator. This makes all the difference.

The basin mode period is proportional to the inverse of the frequency:

T ∝ κmn
β

(184)

where κmn = 2π(m2/L2
x+n2/L2

y)
1/2 is the (quantized) total wavenumber.

Equating this to the turbulent time scale in the energy range:

ε−1/3κ
−2/3
β =

κβ
β

(185)

Assuming that the arrest wavenumber is also quantized. Then:

κβ = β3/5ε−1/5 (186)

[20]. So we obtain the same arrest wavenumber that we did for the peri-

odic domain when the flow was assumed isotropic. Thus the wave-turbulence

boundary in a basin is also isotropic. There is no reason to expect zonal

jets.

Numerical simulations confirm this. Shown in Fig. (30) are the stream-

functions from two forced simulations, one in a periodic domain (left

panel) and one with solid walls (right). The former shows zonally-elongated

structures, spanning the domain. The closed basin simulation on the other

hand has mostly isotropic eddies. The only place where the flow is zonally

elongated is along the northern boundary (where in fact a stationary gyre

develops [13]).

We quantify the arrest further, as follows. In the simulations shown, the

damping was with Ekman friction, i.e. we have a linear damping term, rζ ,

85



0 1 2 3 4 5 6
0

1

2

3

4

5

6

Periodic, β=200

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Basin, β=200

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 30: Streamfunctions from a forced 2-D turbulence simulations with periodic (left)
and solid wall (right) boundary conditions.

in the vorticity equation. With this, the integrated energy equation (53) can

be written:

d

dt
E =

∫∫
~u · ~F dV − r

∫∫
~u · ~u dV = ε− 2rE (187)

where E is the total kinetic energy. Notice that the forcing yields the en-

ergy flux, ε. When the flow obtains a statistically steady state, the change

in energy on the LHS is approximately zero, leaving:

ε = 2rE (188)

Using this, we estimate the arrest scale as:

Lβ ∝ κ−1β = β−3/5(2rE)1/5 (189)

86



We compare this estimate to the simulations by calculating spatial cor-

relations in the velocity field. In an eddy, the velocities are correlated (or

anti-correlated) across the eddy. Outside the eddy, the velocities are uncor-

related with those in the eddy. So we can use velocity correlations to find

the size of the eddies.

The correlations are plotted as ellipses in Fig. (31). The solid and

dashed curves correspond to two different ways of calculating the correla-

tion (either using parallel velocities along a line—the longitudinal velocities—

or perpendicular velocities—the transverse velocities). Both yield the same

result; the eddy scales are isotropic and are consistent with the length scale

estimate in (189).

For comparison, the correlation ellipses from two simulations in a pe-

riodic domain are shown in Fig. (32). In this case, the longitudinal corre-

lations (corresponding to the u velocities) are elongated in the x-direction,

indicating coherent zonal flow. The transverse correlations on the other

hand (corresponding to the v velocities in the x-direction) are more nearly

isotropic. These reflect the small scale eddies superimposed on the zonal

jets.

So the arrest in a rectangular basin is like that described by Rhines [39],

but is isotropic. The isotropy stems from the fact that the wave time scale

in a basin is also isotropic. So the boundaries prevent the formation of

zonal jets.

However, this case is still quite unrealistic in terms of the ocean, as the

bottom is entirely flat. The actual ocean of course has significant topogra-

phy. We consider that next.
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Figure 31: Velocity correlation ellipses from a series of experiments in a closed basin.
The solid ellipses are from the longitudinal correlations (with values [0.8 0.6 0.4]); the
dashed ellipses are transverse correlations (with values of [0.5 0]). The vertical lines
indicate the arrest scale from (189). From [20].

8.3 Topography

As seen in the exercise in sec. (8.1), a bottom slope in a barotropic fluid

acts like the β-effect. But instead of limiting N-S motion, topography

inhibits motion across the depth contours. So an inverse cascade should

generate jets over a topographic slope, as shown in [47].

But a major difference with topography is that it need not be a simple

linear slope. We have mountains, ridges and closed basins. How do such

features affect the inverse cascade?

This question was addressed in two independent, simultaneous papers,
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Figure 32: The velocity correlation ellipses from two simulations in a periodic domain.
From [20].

one by Bretherton and Haidvogel [5] and the other by Salmon, Holloway

and Hendershott [44]. Both considered freely-evolving (unforced) 2D tur-

bulence over variable bottom topography. Salmon et al. used ideas from

statistical mechanics to predict the most likely flow one would expect to

find. Bretherton and Haidvogel used the calculus of variations. The two

approaches in fact yield the same results, as demonstrated by [6].

8.3.1 The barotropic vorticity equation

First we need the vorticity equation with topography. Topography causes

columns of fluid to compress or expand, thereby altering the vorticity. We

can include this effect by using the full vorticity equation (63), without

forcing or dissipation, applied to the 2D velocities:

∂

∂t
ζ + ~u2 · ∇(ζ + f) + (ζ + f)(∇ · ~u2) = 0 (190)

where ~u2 = (u, v, 0) and again ζ is the vertical component of the vorticity.

The divergence term, the third, may be non-zero now because topography

can induce convergence or divergence. Using the continuity equation, we
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can rewrite this term:

∂

∂t
ζ + ~u2 · ∇(ζ + f)− (ζ + f)(

∂

∂z
w) = 0 (191)

Assume the flow is barotropic, so that the horizontal velocities have

no vertical shear. Then we can integrate the vorticity equation from the

bottom of the fluid, say at z = −H , to the surface, at z = 0. Because

the horizontal velocities, and hence ζ , have no shear, they pass through the

integral:
∫ 0

−H

∂

∂t
ζ + ~u2 · ∇(ζ + f)− (ζ + f)(

∂

∂z
w) dz = 0

H
∂

∂t
ζ +H~u2 · ∇(ζ + f)− (ζ + f)[w(0)− w(−H)] = 0 (192)

We’ll assume the upper surface is flat (the rigid lid assumption) so that

w vanishes there. At the bottom, the topography permits vertical flow,

because a parcel resting on the bottom remains there. We can express this

as:
d

dt
(z +H)|z=−H = 0 (193)

This implies:

w(−H) = − d
dt
H (194)

Inserting this in the vorticity equation, we get:

H
∂

∂t
ζ +H~u2 · ∇(ζ + f)− (ζ + f)

d

dt
H = 0 (195)

Because f doesn’t vary in time, we can write this entirely in Lagrangian

form:

H
d

dt
(ζ + f)− (ζ + f)

d

dt
H = 0 (196)
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Dividing through by H2, this is simply:

d

dt

ζ + f

H
= 0 (197)

This is the shallow water vorticity equation. It states that the potential

vorticity, (ζ + f)/H , is conserved on fluid parcels without forcing or dis-

sipation. The equation applies even in the presence of finite amplitude

topography. This equation is the basis for global models for the barotropic

tides.

However, the equation contains two unknowns (u, v), so it can’t be

solved without an additional equation. It’s also awkward having the to-

pographic term in the denominator. So we will work with a simplified

equation, the quasi-geostrophic (QG) vorticity equation. This is based on

three assumptions:

• The Rossby number, ε = U/(f0L), is small

• |βy| � f0

• The bottom topography is weak

Consider the first condition. When the Rossby number, ε, is small, the

horizontal velocities are approximately in geostrophic balance. Likewise,

the vorticity is much less than f0, because:

|ζ|
f0
∝ U

f0L
= ε

The second condition is necessary if we are to make the β-plane ap-

proximation. If the β term weren’t small compared to f0, we’d have to

retain all the higher order terms in the Taylor expansion of f . But we will

further assume that:
|βy|
|f0|
∝ ε
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Of course we could demand the β term be even smaller, but then we would

actually lose this term. Assuming a Rossby number scaling preserves the

variation of f , as seen hereafter.

Lastly, we assume that we can write the depth as:

H = H0 − h(x, y)

where:
|h|
H0
∝ ε

So the topography is also of order Rossby number compared to the fluid

depth. So we don’t allow for mountains which extend from the bottom to

the surface. The tallest mountains can only extend to, say, 10 % of the total

depth (Fig. 33).

D

h

0

Figure 33: The geometry of our fluid layer. The topographic height, h, is much less than
the depth of the layer.

We now use these assumptions to write a simpler version of the vorticity

equation. First, we replace the horizontal velocities with their geostrophic

equivalents in the Lagrangian derivative:

d

dt
→ dg

dt
≡ ∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
(198)

Similarly, we replace the vorticity with its geostrophic version:

ζ → ζg =
∂

∂x
vg −

∂

∂y
ug (199)
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We also replace f by it’s β-plane approximation. So the PV equation is:

dg
dt

ζg + f0 + βy

H0 − h
= 0 (200)

With the above assumptions, the PV can be simplified.

ζg + f0 + βy

H0 − h
=

f0
H0

(
1 + ζ/f0 + βy/f0

1− h/H0
) (201)

≈ f0
H0

(1 +
ζ

f0
+
βy

f0
)(1 +

h

H0
) (202)

≈ f0
H0

+
ζ

H0
+
βy

H0
+
f0h

H2
0

(203)

Each of the last three terms are of order Rossby number compared to the

first term. The terms we’ve dropped involve the products of the small

terms and are of order Rossby number squared. Substituting this into (200)

yields:
dg
dt

(ζg + βy +
f0
H0

h) = 0 (204)

after multiplying through by the constant, H0 and cancelling the constant

first term, f0/H0. This the quasi-geostrophic PV equation without forcing

or friction. Written in terms of the geostrophic streamfunction, this is:

(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
)(∇2ψ + βy +

f0
H0

h) = 0 (205)

or:
∂

∂t
∇2ψ +∇ · [~ug(∇2ψ + βy + h)] = 0 (206)

because the geostrophic velocities are horizontally non-divergent. Notice

we absorbed the constant factor of f0/H into the topographic term, h (so

now the height has units of sec−1, like the vorticity). This is a very useful

equation for studying diverse phenomena, such as Rossby waves emanat-

ing from mountains and the barotropic Gulf Stream.
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8.3.2 Conserved quantities

Hereafter we’ll focus on the topographic term, and ignore the variation of

the Coriolis parameter (and set β = 0). There are two conserved quantities

in the absence of dissipation. One is the energy:

1

2

∂

∂t

∫∫
(u2 + v2) dxdy = 0 (207)

The proof of this is left for an exercise. We also conserve “total enstrophy”.

First note that we can rewrite the vorticity equation (206) thus:

∂

∂t
q +∇ · (~uq) = 0 (208)

where

q ≡ ∇2ψ + h (209)

is the potential vorticity. If we multiply the equation by q and integrate

over space, we get:

∂

∂t

1

2

∫∫
q2 dxdy +

∫∫
∇ · (~u q

2

2
) dxdy = 0 (210)

The second term on the LHS vanishes:
∫∫
∇ · (~u q

2

2
) dxdy =

∮ q2

2
~u · n̂ dl = 0 (211)

So the total enstrophy, q2/2, is also conserved. We will call this Q. Note

though the enstrophy itself is not conserved; this is because the interaction

with the topography itself can produce enstrophy.

Exercise: Energy conservation

Prove that the integrated kinetic energy is conserved, starting directly

with the vorticity equation (206).
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8.3.3 Minimum enstrophy

Under a dual cascade, we expect the energy to shift to large scales and

the total enstrophy to move to smaller scales. If the dissipation is non-

zero, the total enstrophy will then be dissipated. Bretherton and Haidvogel

[5] suggested that the turbulence would thereby act to minimize the total

enstrophy while conserving the energy.

To do this, we use the calculus of variations. Let Q be the total en-

strophy. Its minimum occurs where its variation vanishes. This is exactly

like when a function has an extremum where its first derivative vanishes.

For example, the function f(x) = x2 has an extremum at x = 0, because

f ′(x) = 2x = 0 at x = 0. To know that the extremum is a minimum, you

have to evaluate the second variation at that point. We have f ′′(0) = 2, so

the curvature is positive. That means the extremum is a minimum.

The first variation of Q is:

δQ = δ
∫∫ 1

2
(∇2ψ + h)2 dA =

∫∫
(∇2ψ + h)δ(∇2ψ + h) dA = 0 (212)

We assume the topography is fixed but that the streamfunction can vary.

So the equation is:
∫∫

(∇2ψ + h)δ(∇2ψ) dA = 0 (213)

However, this only tells us where Q has an extremum; we haven’t said

anything about the energy. But we can impose energy conservation by

using the method of Lagrange multipliers. In particular, we define a func-

tional:

F = Q+ µ(E − E0) (214)
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Here the constant µ is a Lagrange multiplier and E is the kinetic energy:

E =
1

2

∫∫
(u2 + v2) dA =

1

2

∫∫
|∇ψ|2 dA (215)

E0 is the kinetic energy of the system, assumed constant.

If we take the variation of F with respect to µ, we get:

δF

δµ
= E − E0 = 0 (216)

So this implies the solution will have an energy of E0.

If, on the other hand, we keep µ constant and take the variation of F ,

we get:

δF = δ(Q+ µ(E − E0)) = δQ+ µδE = 0 (217)

The variation of E0 is zero since it is a constant. Substituting in the ex-

pressions for Q and E, we have:

δQ+ µδE =
∫∫

(∇2ψ + h)δ(∇2ψ) dA+ µ
∫∫
∇ψ · δ∇ψ dA (218)

Both integrals in (218) can be rewritten using integration by parts, assum-

ing either periodic boundary conditions or that ψ vanishes on the bound-

aries. So for instance:
∫∫
∇ψ · δ∇ψ dA = −

∫∫
∇2ψ · δψ dA (219)

Also:
∫∫

(∇2ψ + h)δ∇2ψ dA = −
∫∫
∇(∇2ψ + h) · δ∇ψ dA =

∫∫
∇2(∇2ψ + h)δψ dA (220)

Combining the terms, we get:

δQ+ µδE =
1

2

∫∫
∇2(∇2ψ + h− µψ)δψ dA = 0 (221)
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We require that the integral vanish for all variations δψ. For this to happen,

we must have:

∇2ψ + h− µψ = 0 (222)

This is is known as the “Euler-Lagrange equation” for the problem. We

can solve this by Fourier transforming both the streamfunction and the

topography:

ψ =
∑
k,l

ψ̂(k, l)eikx+ily, h =
∑
k,l

ĥ(k, l)eikx+ily (223)

Substituting both into the Euler-Lagrange equation, we can solve for ψ̂ in

terms of ĥ:

ψ̂ =
ĥ

µ+ k2 + l2
=

ĥ

µ+ κ2
(224)

This is the extremal solution for the streamfunction, i.e. the one with

the minimum value of F . Of course, to find out whether this really is a

minimum, we’d have to examine the second variation. We won’t do that,

but the solution is indeed a minimum.

The predicted streamfunction resembles the topography. If we know the

transform of the topography, we have the transform of the streamfunction.

Then we can inverse transform to obtain the actual streamfunction. The

solution suggests that the flow is approximately parallel to the isobaths.

But the flow isn’t entirely parallel to the isobaths. This is because the

denominator in (224) filters the small scales. At large scales, so that κ �
µ, ψ ≈ ĥ/µ. But at small scales, ψ ≈ ĥ/κ2, which goes to zero as κ gets

large. So the flow resembles a low-pass filtered version of the topography.

In particular, there will be anticyclonic flow over seamounts and cyclonic

flow in basins. This is often observed in the ocean.

To finish the solution, we have to impose the other condition, which
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is that the energy is equal to the initial value, E0. This determines µ, the

Lagrange multiplier. We have that:

E = E0 =
1

2

∑
k,l

κ2|ψ̂|2 =
1

2

∑
k,l

κ2|ĥ|2

(µ+ κ2)2
(225)

It’s not trivial to determine µ from this, given that the energy involves a

sum over all wavenumbers, but it can be done numerically. The larger E

is, the smaller µ will be. And the smaller µ is, the greater the low-pass

filtering effect will be. Thus energetic flows will evolve to a smoother

representation of the topography than weak flows.

The results from a numerical simulation by Bretherton and Haidvogel

[5] are shown in Fig. (34). As noted, this was a freely-evolving experi-

ment, i.e. one without forcing. The initial streamfunction is shown in the

lower left panel and the topography in the upper left panel. After a period

of time, the streamfunction settles down into the configuration shown in

the lower right panel. The streamfunction strongly resembles the topog-

raphy, and has the same signs. There is cyclonic flow in the depression

in the upper part of the domain. But note too that the streamfunction has

less small scale structure than the topography—evidence of the low pass

filtering effect predicted by the variational solution.

Observations in the ocean show that mean flows are often correlated

with bottom topography. The present theory is one possible explanation

for this.

Exercise: Minimum enstrophy with a free surface

Consider the case of a barotropic flow with a free surface. It’s possible
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Figure 34: A numerical simulation from Bretherton and Haidvogel [5]. The topography
is shown in the upper left panel and the initial streamfunction in the lower left panel. The
final streamfunction is shown in the lower right panel. Notice that this is very similar to
the topography.

to show that the potential vorticity then becomes:

q = ∇2ψ − 1

L2
b

ψ + h (226)

where Lb is the barotropic “deformation radius”. Minimize the enstrophy,

but neglect the conservation of energy. What is the solution for ψ? How

does this differ from the solution in (224)?
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8.4 Stratification

So far, we have looked only at barotropic flows. But the atmosphere and

ocean are stratified, and many important dynamics are linked to stratifica-

tion. Storms in the atmosphere derive from baroclinic instability, and the

Gulf Stream is similarly unstable.

In barotropic turbulence, we speak of triad interactions among horizon-

tal wavenumbers. But with stratification, we can have interactions between

waves with different vertical structure. Thus the problem becomes three

dimensional.

But we are interested in large scale turbulence, and the flow is still pre-

dominantly two dimensional at large scales, even with stratification. It will

turn out that many of the concepts we have discussed will carry over to the

stratified case.

The following is based on the stratified quasi-geostrophic potential vor-

ticity (QGPV) equation. Derivations are given in [38] and [22]. We will

use the Boussinesq form of the QGPV equation, which can be written:
∂

∂t
q +∇ · (~ugq) = 0 (227)

where

q = ∇2ψ +
∂

∂z
(
f 20
N 2

∂ψ

∂z
) (228)

This is the potential vorticity. It is comprised of two parts: the relative

vorticity and the stretching vorticity. The latter depends on the vertial shear

and N 2, the buoyancy frequency. Note too that the advecting velocities are

the geostrophic and that the Laplacian is the horizontal Laplacian, not the

three-dimensional one.

For concreteness, we’ll assume we have a periodic domain in (x, y)

and solid boundaries at z = 0 and z = 1. The boundary condition on
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the vertical boundaries is that the vertical velocity vanishes. This can be

shown to be satisfied if ∂
∂zψ = 0.

8.4.1 Conserved quantities

We can derive an energy equation if we multiply the PV equation by ψ and

integrate over the volume:

∫∫∫
ψ
∂

∂t
∇2ψ dV +

∫∫∫
ψ
∂

∂t

∂

∂z
(
f 20
N 2

∂ψ

∂z
) dV +

∫∫∫
ψ∇ · (~ugq) dV = 0

(229)

The third term can be rewritten as before:
∫∫∫

ψ∇ · (~ugq) dV =
∫∫∫
∇ · (ψ~ugq) dV =

∫����∫
ψq (~u · n̂) dS = 0 (230)

This is zero because of periodicity in x and y and because the vertical

velocity vanishes at the top and bottom.

Using integration by parts with the first term in (229), we get:
∫∫∫

ψ
∂

∂t
∇2ψ dV = −1

2

∂

∂t

∫∫∫
|∇ψ|2 dV = −1

2

∂

∂t

∫∫∫
(u2+v2) dV (231)

This is the time rate of change of the (horizontal) kinetic energy.

Then there’s the other term. Now we apply integration by parts in the

vertical:
∫∫∫

ψ
∂

∂t

∂

∂z
(
f 20
N 2

∂ψ

∂z
) dV =

∫∫
ψ
∂

∂t

f 20
N 2

∂ψ

∂z
|10 dA−

1

2

∂

∂t

∫∫∫ f 20
N 2

(
∂ψ

∂z
)2 dV

(232)

The first term on the RHS is zero because ∂
∂zψ vanishes on the vertical

boundaries. The second term on the RHS is the potential energy and is

related to changes in the fluid density. Thus we have:

∂

∂t

1

2

∫∫∫
(
∂ψ

∂x
)2 + (

∂ψ

∂y
)2 +

f 20
N 2

(
∂ψ

∂z
)2 dV = 0 (233)
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So the total energy—the horizontal kinetic plus potential—is conserved.

Now if we multiply the PV equation by q and integrate that over space,

we get:
∂

∂t

1

2

∫∫∫
q2 dV = 0 (234)

So the second conserved quantity is the potential enstrophy (the square of

the PV).

8.4.2 Energy cascade

With these two conserved quantities, Charney [9] demonstrated that the

energy shifts to larger scales and the enstrophy to smaller scales, using an

argument like Batchelor’s [2].

Let’s assume that the Brunt-Vaisala frequency,N , is also constant. Then

we can redefine the vertical coordinate thus:

z∗ =
N

f0
z (235)

Doing this, the PV is simply:

q = ∇2ψ +
∂2

∂z∗2
ψ ≡ ∇2

3ψ (236)

where ∇3 is the three dimensional Laplacian, with the new vertical coor-

dinate. Likewise, the energy is:

E =
1

2

∫∫∫
|∇3ψ|2 dV (237)

and the potential enstrophy is:

Q =
1

2

∫∫∫
(∇2

3ψ)2 dV (238)

We will Fourier transform the streamfunction as follows:

ψ(x, y, z) =
∑
k,l,n

ψ̂eikx+ilycos(nπz) (239)
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We use the cosine expansion in the vertical so that the vertical derivative

of ψ vanishes on the vertical boundaries (at z = 0 and z = 1). With this,

we have:

E =
1

2

∫
κ2|ψ̂|2 dκ (240)

and

Q =
1

2

∫
κ4|ψ̂|2 dκ =

1

2

∫
κ2E dκ (241)

where now:

κ2 = k2 + l2 + n2π2 (242)

is the total wavenumber squared.

Now we can proceed exactly as in 2-D. Consider a spectrum peaked at

some three-dimensional wavenumber, κ1. We assume the peak will spread,

so that:
d

dt

∫
(κ− κ1)2E dκ > 0 (243)

Expanding:

d

dt

∫
κ2E dκ− 2κ1

d

dt

∫
κE dκ+ κ21

d

dt

∫
E dκ > 0 (244)

The first and third terms are zero, so;

d

dt

∫
κE dκ < 0 (245)

which implies the total energy shifts to smaller κ. There is an inverse

cascade, as in 2-D turbulence.

However, the cascade is not only to larger horizontal scales—it is also

to larger vertical scales. So an inverse cascade in a stratified flow favors

the gravest baroclinic modes.

Exercise: Fjørtoft’s approach

Consider Fjørtoft’s single-triad problem, using the total energy and the

potential enstrophy and the same three total wavenumbers: κ/2, κ and 2κ.
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Assuming the energy is initially in the middle wavenumber, comment on

how the vertical scale of motion is changing.

8.4.3 The vortex view

We can invoke a vortex view to obtain a physical impression of this process

of increasing vertical extent. In geostrophic turbulence, the vortices are

potential vortices, having both relative and stretching vorticity.

Consider a vortex, with potential vorticity q. We can scale the PV as

follows:

q = ∇2ψ +
f 20
N 2

∂2

∂z2
ψ

UL

L2

f 20UL

N 2H2

1
f 20L

2

N 2H2
(246)

I’ve divided through by the scaling for the relative vorticity, and I’m taking

N 2=const. We see that the relative scale of the stretching vorticity depends

on the vortex size, L. We can rewrite this term as:

f 20L
2

N 2H2
=
L2

L2
d

(247)

where

Ld =
NH

f0
(248)

is the deformation radius. If the vortex is much larger than the deformation

radius, the stretching vorticity dominates and if the vortex is much smaller

than Ld, the relative vorticity dominates.

Imagine we have a three-dimensional QG simulation, with random ini-

tial flow. The flow will organize itself into vortices, on different levels in

the flow. These vortices will be smaller than the deformation radius and
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dominated by relative vorticity. So they will behave just like vortices in

2-D turbulence. Like-sign vortices will merge, making larger vortices.

As the vortices become larger, the stretching vorticity is more impor-

tant. We see, in particular, that the vortices have greater vertical extent. So

they begin to interact with vortices on other levels. Occasionally, like-sign

vortices will vertically align with one another. This is just like a merger,

but between two vortices on different levels.

The flow thus evolves to a system of fewer and fewer vortices, with

greater and greater vertical extent. This is the physical meaning of Char-

ney’s 3-D cascade.

The potential vorticity from such a simulation, from McWilliams et al.

[33], is shown in Fig. (35). The flow started with a 3-D random initial

condition. In the upper panel is the PV at an intermediate time. Already

it is clear that like-sign vortices are congregating together. At a later time,

shown in the lower panel, the vertical alignment is clear, and two large

tornado-like structures have formed.

Thus the vortex view again illustrates the behavior that we have deduced

from spectral considerations.

8.4.4 Enstrophy cascade

Another prediction of Charney’s is that there will be an enstrophy cascade

in quasi-geostrophic turbulence. This will have an energy spectrum given

by:

E(κ) ∝ η−2/3κ−3 (249)

where η is now the total enstrophy transfer rate, with units of sec−3. The

difference is that the wavenumber again is the full three-dimensional wavenum-

ber given above. However, Charney assumes that the turbulence is isotropic

105



Figure 35: Potential vorticity from a 3-D QG simulation from random initial conditions.
The upper panel shows the PV at an intermediate time and the lower panel at a late time.
Note the vertical alignment of the vortex structures.

in the three directions, (x, y, z∗). That implies that the energy spectrum

will be the same for the horizontal kinetic energy, or indeed even one com-

ponent, i.e. for u2.

This is a possible explanation for the κ−3 range below 2000 km in the

Nastrom and Gage spectra in Fig. (26). The atmosphere is not a 2-D fluid,

but at large scales it is quasi-geostrophic. The Brunt-Vaisala frequency

is approximately constant in the troposphere too, so Charney’s stretched

vertical coordinate is a reasonable choice. Further analysis has shown that

the enstrophy flux in this range is downscale, as expected for an enstrophy

cascade [28].
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There are also indications of an enstrophy cascade in the ocean. Wang

et al. [48] calculated energy spectra from current measurements collected

from a ferry steaming between the U.S. and Bermuda, across the Gulf

Stream. The results (Fig. 36) also show a clear κ−3 range. The peak of

the scale corresponds to roughly the 50 km scale. In addition, the kinetic

and potential energy show the same slope, consistent with Charney’s as-

sumption of an energy flow which is isotropic in the three dimensional

wavenumber.

Figure 36: Kinetic energy spectra from ADCP data collected from a ferry steaming
between the U.S. and Bermuda. The left panel shows the u and v components, and the
right panel the kinetic and potential energies. From [48].

Thus the addition of stratification hasn’t changed the situation greatly.

However, as the vertical extent of the flow increases, the boundaries be-

come important. So it is likely that Charney’s construction works better at

small scales, i.e. in the enstrophy range.
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Where does baroclinic instability fit in? Instability implies a conver-

sion of large scale potential energy to kinetic energy at the deformation

radius. How do we reconcile this with an inverse cascade? The answer can

be found in detailed consideration of the triad interactions occurring in a

baroclinic system.

Exercise: Enstrophy conservation

Show that any function of the potential vorticity q is also conserved in

the QG system.

8.4.5 Cascades in a two mode system

Triad interactions become very complicated when we have vertical modes

in addition to the horizontal wavenumbers. However, we can get a good

idea of how the system behaves when we consider only two vertical modes.10

Consider again the PV equation, which we write thus:

∂

∂t
q + u

∂

∂x
q + v

∂

∂y
q =

∂

∂t
q − ∂ψ

∂y

∂

∂x
q +

∂ψ

∂x

∂

∂y
q = 0 (250)

We can write this in shorthand form thus:

∂

∂t
q + J(ψ, q) = 0 (251)

The J(, ) function is called the Jacobian. It is defined as:

J(a, b) =
∂a

∂x

∂b

∂y
− ∂b

∂x

∂a

∂y
(252)

We’ll take N = const., so the PV is:

q = ∇2ψ +
f 20
N 2

∂2

∂z2
ψ (253)

10The following is based on Salmon’s [42].
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Assuming the fluid depth is such that 0 ≤ z ≤ H , we can express the

streamfunction in terms of vertical modes, thus:

ψ(x, y, z, t) =
∑
n
ψn(x, y, t)cos(

nπz

H
) (254)

We will only consider the first two terms:

ψ(x, y, z, t) = ψB(x, y, t) + ψT (x, y, t) cos(
nπz

H
) (255)

Here ψB is the barotropic streamfunction; it does not vary in the vertical.

ψT is the first baroclinic mode. It is the gravest of the cosine modes; if we

integrate it in the vertical, it vanishes. We will exploit this below.

The PV also has two components:

q = ∇2ψB + (∇2 − F )ψT cos(
nπz

H
) (256)

where

F =
π2f 20
N 2H2

(257)

Notice that this parameter has units of L−2. Thus the square root of F

is like a wavenumber. This corresponds to the inverse of the deformation

radius.

Plugging the streamfunction and PV into the PV equation, we get:

∂

∂t
∇2ψB +

∂

∂t
(∇2 − F )ψT cos(

nπz

H
) + J(ψB,∇2ψB)+

J(ψB, (∇2 − F )ψT )cos(
nπz

H
) + J(ψT ,∇2ψB)cos(

nπz

H
)+

J(ψT , (∇2 − F )ψT )cos2(
nπz

H
) = 0 (258)

We can isolate the time derivative of the barotropic streamfunction if we

integrate this equation in z over the depth of the fluid, and then divide by

the depth H:

∂

∂t
∇2ψB + J(ψB,∇2ψB) +

1

2
J(ψT , (∇2 − F )ψT ) = 0 (259)
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The terms multiplied by cosine vanish, and the cosine squared term inte-

grates to one half. This is the vorticity equation for the barotropic mode.

Notice that the barotropic vorticity can change by two terms. The first in-

volves the barotropic velocity advecting the barotropic vorticity, and the

second the baroclinic velocity advecting the baroclinic vorticity.

Similarly, we can obtain an equation for the baroclinic vorticity if we

multiply the equation by cos(nπz/H) and integrate over the depth. Then

we get:

∂

∂t
(∇2 − F )ψT + J(ψB, (∇2 − F )ψT ) + J(ψT ,∇2ψB) = 0 (260)

after canceling a common factor of 1/2. This is the baroclinic vorticity

equation. This states the baroclinic PV changes when the barotropic ve-

locity advects baroclinic PV, and vice versa.

Each PV equation has an energy relation associated with it. If we mul-

tiply (259) by ψB and integrate over the area of the domain, we get:

d

dt

∫∫ 1

2
|∇ψB|2 dA−

∫∫
ψBJ(ψT , (∇2 − F )ψT ) dA = 0 (261)

after integrating by parts. Note the barotropic advection term vanishes

when integrated over the area. The first term is the barotropic energy,

which is purely kinetic. This is not conserved, because of the interaction

with the baroclinic mode.

Likewise, multiplying (260) by ψT and integrating over area, we get:

d

dt

∫∫ 1

2
[|∇ψT |2+F |ψT |2] dA−

∫∫
ψTJ(ψB, (∇2−F )ψT ) dA = 0 (262)

again, after integration by parts. The first term is the change in the total

baroclinic energy, which has both kinetic and potential parts. The baro-

clinic energy isn’t conserved either, due to the interaction with the baro-

tropic mode.
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However, if we integrate by parts again, we can show that:

−
∫∫
ψBJ(ψT , (∇2 − F )ψT ) dA =

∫∫
ψTJ(ψB, (∇2 − F )ψT ) dA (263)

So adding the two equation energy equations together, we get:

d

dt

1

2

∫∫
|∇ψB|2 + |∇ψT |2 + F |ψT |2 dA = 0 (264)

So the total energy, barotropic plus baroclinic, is conserved.

After a similar derivation, you can show that:

d

dt

1

2

∫∫
(∇2ψB)2 + ((∇2 + F )ψT )2 dA = 0 (265)

So the total enstrophy is also conserved.

Now, how energy is transferred in the two mode system depends on the

triad interactions. To see how these work, we’ll focus on the barotropic PV

equation (259). We write this for Fourier components, and we leave out

the summations for simplicity. The equation then looks like this:

− ∂
∂t

(k2x + k2y)ψB1e
ik·x + J(ψB2,−(m2

x +m2
y)ψB3)e

im·x+in·x

+J(ψT1,−(q2x + q2y + F )ψT2)e
ip·x+iq·x = 0 (266)

Note that I’m using n now as a horizontal wavenumber (not the vertical

mode number). To extract an equation for the barotropic streamfunction

with wavenumbers (kx, ky), we multiply by ψB1e
−ik·x and integrate over

the area. The result is:

− ∂
∂t

(k2x + k2y)|ψB1|2 +Re{ψ∗B1J(ψB2,−(m2
x +m2

y)ψB3)}δ(m+ n− k)

+Re{ψ∗B1J(ψT1,−(q2x + q2y + F )ψT2)}δ(p+ q − k) = 0 (267)

This equation accounts for the change in barotropic energy at wavenum-

ber (kx, ky). Remember that the two advection terms involve sums over
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many wavenumbers. Interactions between wavenumber triads can transfer

energy.

We see though that there are two types of triad. The first involves inter-

actions between three barotropic waves. This corresponds to the triads we

considered previously. The second though is something new, and involves

the barotropic wave (at (kX , ky)) and two baroclinic waves.

Consider a triad of barotropic waves first. These conserve barotropic

energy and enstrophy:

d

dt
(E1 + E2 + E3) = 0

d

dt
(Z1 + Z2 + Z3) = 0 (268)

We can rewrite the enstrophy relation thus:

d

dt
(κ21E1 + κ22E2 + κ23E3) = 0 (269)

This is exactly like Fjørtoft’s barotropic example. We expect then that

energy will shift to larger scales and enstrophy to smaller scales.

Now consider the barotropic/baroclinic triads. The enstrophy relations

are:

d

dt
(κ21E1 + (κ22 + F )E2 + (κ23 + F )E3) = 0 (270)

This is more complicated than the barotropic case because of the F terms

(which also affect the baroclinic energies). Consider first that all three

members of the triad have scales well below the deformation radius, so

that (κ1, κ2, κ3)� F . Then the enstrophy equation is, approximately:

d

dt
(κ21E1 + κ22E2 + κ23E3) = 0 (271)
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This is the same as with the barotropic triad. Thus we expect energy to

be transferred to the triad member with the largest scale (regardless of

whether this is barotropic or baroclinic). Energy would thus shift toward

the deformation radius.

Now consider that we have a large scale triad, so that (κ1, κ2, κ3)� F .

Then we have, approximately:

d

dt
(FE2 + FE3) = 0 (272)

This simply states that energy will pass between the two baroclinic waves.

But the direction of transfer is undetermined—we can’t say whether energy

is moving up or downscale.

Does this mean that baroclinic energy at large scales can’t transition to

smaller scales? It would seem so. But what about baroclinic instability?

In that, energy is transferred from a baroclinic mean shear to barotropic

eddies. This would seem to contradict the present finding. In fact the

problem here is the assumption of local interactions. What about a non-

local interaction, between a large scale baroclinic mode and smaller scale

barotropic and baroclinic waves?

The usual models of baroclinic instability (the Eady model, the Charney

model and the Philips model) all involve a baroclinic shear with no lateral

shear. So we could express this as a baroclinic mode in which:

(κ22 + F )ψT1 = FψT1 (273)

(the Laplacian is zero because the mode is constant in x and y). Making

no other assumptions about scales, we have:

d

dt
(E1 + E2 + E3) = 0
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d

dt
(κ21E1 + FE2 + (κ23 + F )E3) = 0 (274)

Using the first equation, we can eliminate dE2/dt from the enstrophy equa-

tion. This yields:

d

dt
(κ21E1 − FE1 − FE3 + (κ23 + F )E3) = 0 (275)

or:
d

dt
κ23E3 =

d

dt
((F − κ21)E1) (276)

This implies that the energy in both the other modes can increase in time

if:

κ21 < F (277)

In other words, if the barotropic wave is larger than the deformation radius,

it can take energy from the primary baroclinic wave. This is precisely the

short-wave cut-off that we found when we studied the Eady model—only

the long waves can be unstable.

But more than that, the barotropic wave can be much smaller than the

primary baroclinic wave. Recall that the most unstable wave in the Eady

problem has a scale somewhat larger than the deformation radius. Such a

triad is non-local, because there is a large separation in scales between the

triad members.

We can summarize the results by using a schematic diagram (Fig. 37),

based on a figure of Salmon’s [42]. The energy at small scales cascades

to larger scales in both the baroclinic and barotropic modes via local inter-

actions. Baroclinic modes with scales larger than the deformation radius

are unstable and transfer energy non-locally to the barotropic modes. Then

energy eventually cascades locally to large scales in the barotropic mode.
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Figure 37: A idealized diagram indicating the tendencies for energetic transfer in the
two layer model. The upper line represents the baroclinic mode and the lower line the
barotropic mode. Adapted from [42].

An important point here is that baroclinic instability in this turbulence

context is simply a non-local triad interaction. This means that the transfer

to the barotropic mode is generic for large scale baroclinic modes. Thus,

for example, a large scale baroclinic Rossby wave can be unstable too [24,

16]. It is not necessary to have a mean flow.

9 Turbulent Diffusion

We will examine how turbulent flows advect passive tracers, and in par-

ticular what happens with particles and pairs of particles. In section (7.7),

we examined how the spectrum of passive tracer variance would look in

a given turbulent inertial range. In that case, we treated the tracer as a

continuous Eulerian field, like vorticity. Now we take a more Lagrangian

view.
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9.1 Single particle dispersion

9.1.1 Random walk

The essence of single particle motion is captured in the random walk or

“drunkard’s walk” problem. This is the basis of “Brownian motion”, as

studied by Einstein [10]. Einstein’s theoretical work was motivated by

Brown’s earlier observations of the random motion of dust grains on the

surface of a fluid in a dish.

Consider an idealized drunk person. Imagine he takes uniform steps,

of length s. But because he is drunk, each step is randomly oriented and

uncorrelated with the previous step. We can write his position as:

~Dn = ~Dn−1 + ~s (278)

where ~s is the random displacement. So the squared displacement of the

drunk is:

| ~Dn|2 = | ~Dn−1|2 + s2 + 2 ~Dn−1 · ~s (279)

where s is the magnitude of ~s. Now, if we have a party of drunks, each

moving in this way, we can average the mean square displacement for the

whole group. If you think of a “cloud” of drunks, the root mean square

displacement is proportional to the cloud’s radius. Averaging, we get:

< | ~Dn|2 >=< | ~Dn−1|2 > +s2 (280)

where the brackets indicate an average over all the drunks. The averaged

cross correlation term:

< ~Dn−1 · ~s >= 0

This is because the drunks’ steps are uncorrelated with their previous steps.

Assuming all the drunks start at the pub, at zero displacement, we have:

< | ~D1|2 >= 0 + s2 (281)
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and

< | ~D2|2 >= 2s2 (282)

so

< | ~Dn|2 >= ns2 (283)

Thus the root mean square displacement is:

(< | ~Dn|2 >)1/2 =
√
ns (284)

If the drunks take steps with a uniform rate, e.g. one step per second, the

rms displacement grows as t1/2 power. This is a characteristic feature of

Brownian motion. We will see later that single particle dispersion behaves

the same way, when the particle motion is uncorrelated.

9.1.2 Diffusion

Now we show that a diffusing cloud, with a constant diffusivity, has a

radius which also increases as t1/2 power. The equation for a passive tracer

was given in (140). Without advection, this is a simple diffusion equation:

∂

∂t
C = κ∇2C (285)

We define the variance of the cloud as:

< r2 >=

∫∫
r2C dA∫∫
C dA

(286)

This is essentially the mean square radius of the tracer cloud. We are in-

terested in how this changes in time, i.e. d
dt < r2 >. We can obtain an

equation for this by multiplying equation (285) by r2 and integrating over

space. Assuming the spreading is isotropic, we have (using cylindrical

coordinates):

d

dt

∫ ∞
0
r2C rdr =

∫ ∞
0
r2 κ

1

r

∂

∂r
(r
∂

∂r
C) rdr
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= −2κ
∫ ∞
0
r2
∂

∂r
C dr = 4κ

∫ ∞
0
C rdr (287)

after integration by parts. Thus:

d

dt
< r2 >=

d

dt

∫∫
r2C dA∫∫
C dA

= 4κ (288)

Integrating this in time, we get:

< r2 >= 4κt → < r2 >1/2= 2
√
κt (289)

The rms cloud radius increases as t1/2, just as in a random walk. This

imples a random walk is a diffusive process. Drunks stumbling from a pub

behave as a passive tracer, diffusing with a constant diffusivity. We call

the time rate of change of the variance the “diffusivity” when dealing with

particles.

An alternate way of deriving the same result is to use the exact solution

to (285). Assume that the initial tracer distribution is a delta function at the

origin (all the the drunks are initially at the pub at r = 0). One can show

that the solution to (285) is given by:

C =
1

2πκt
exp(− r2

4κt
) (290)

The prefactor guarantees that:
∫ 2π

0

∫ ∞
0
C r drdθ = 1 (291)

We can use this solution to find the variance of the cloud, i.e.:

< r2 >=
1

κt

∫ ∞
0
r3exp(− r2

4κt
) dr (292)

The result turns out to be:

< r2 >= 4κt (293)

118



9.1.3 Einstein’s diffusion relation

You may wonder how realistic the random walk is, given that the particles

(drunks) take a uniform step every second. But a similar result obtains

even with a variable step size. This can be shown using an argument due

to Einstein [10].

Say that particles at every time step take a step of variable length, call it

4. The distribution of step lengths can be represented by a PDF, p(4). We

assume this PDF isn’t changing in time, i.e. that the process is stationary.

Then we can write a PDF for the particles’ positions at time t+ 1:

p(x, t+ 1) =
∫ ∞
−∞

p(x+4, t)p(4) d4 (294)

This states that particles at x have a range of step sizes and integrating

over all step sizes yields the distribution at the new time. Note that in

multiplying the probabilities on the RHS, we are assuming that the position

and step probabilities are uncorrelated.

Taylor-expanding the LHS of (294) to first order yields:

p(x, t+ 1) = p(x, t) +
∂p

∂t

Expanding the RHS, to second order, yields:

p(x, t)
∫ ∞
−∞

p(4) d4+
∂p

∂x

∫ ∞
−∞
4p(4) d4

+
1

2

∂2p

∂x2

∫ ∞
−∞
42p(4) d4 (295)

The first integral is one, as the sum over all possible outcomes must be:∫ ∞
−∞

p(4) d4 = 1 (296)

If we assume the probability distribution, p(4), is symmetric about zero,

then the second integral is also zero:∫ ∞
−∞
4p(4) d4 = 0 (297)
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The last integral is the variance of step distribution:

D ≡
∫ ∞
−∞
42p(4) d4 (298)

Collecting terms and canceling p(x, t) from both sides, we have:

∂p

∂t
=
D

2

∂2p

∂x2
(299)

Thus the probability obeys a diffusion equation, meaning the variance will

again grow linearly in time. So this is true even if the steps are non-

uniform.

9.1.4 Single particle dispersion

As noted, Einstein studied random molecular motion. His purpose, ac-

tually, was to deduce Avogadro’s number (the number of molecules in a

mole of substance). But the same ideas apply to the turbulent advection of

particles, even if the advecting eddies are much larger [45].

Imagine we have a collection of particles. We can define the diffusivity

(in the x-direction) of the cloud by:

K ≡ 1

2

d

dt
< X2 > (300)

where X(t) is the particle displacement in the x-direction from its start-

ing position. The brackets denote an ensemble average (e.g. over all the

particles). As this average is over a fixed number of particles, the time

derivative can be moved through the brackets. Thus we can also write:

K =< u(t)X(t) > (301)

i.e. the diffusivity is the correlation between the particle velocities and

their displacements. Furthermore, realizing that the displacement is just
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the integral of the velocity, we can rewrite this as:

K =< u(t)
∫ t

0
u(t′)dt′ >=

∫ t

0
< u(t)u(t′) > dt′ (302)

If the velocity field is stationary, we can rewrite this as:

K = ν2
∫ t

0
R(t′) dt′ (303)

where

R(t) ≡ 1

ν2
< u(0)u(t′) > (304)

Here ν2 is the velocity variance for the particles andR(t) is the normalized

velocity autocorrelation. Notice that we have exchanged u(t) for u(0); this

follows from stationarity.

Thus the diffusivity is the integral of the velocity autocorrelation. For a

random walk, the velocity is uncorrelated at each step. So the autocorre-

lation is a delta function. But usually the velocity is correlated over some

period.

Taylor [45] considered the behavior of the diffusivity in the limits of

short and long times. At short times, the autocorrelation can be expanded

in a Taylor11 series:

R(t) = 1 +
dR

dt
t+ ... (305)

As t → 0 then, R → 1; the limit is one because we normalized by the

velocity variance, ν2. Thus we have:

limt→0 K = ν2t (306)

So the dispersion, < X2 >, increases as t2 initially.
11Not the same Taylor. The Taylor series was invented by mathematician James Gregory and was first

published in a book by Brook Taylor—no relation to G. I. Taylor, the great fluid dynamicist discussed here.
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At long times, the behavior is also predictable. Assuming the velocity

eventually becomes decorrelated, the integral of the autocorrelation will

converge:

TL =
∫ ∞
0
R(t′) dt′ = const. (307)

This integral has units of time, and is known as the Lagrangian integral

time. TL indicates how long the velocity is correlated with itself and is a

basic measure of predictability. Thus the diffusivity is:

limt→∞ K = ν2TL (308)

and this is constant.

The system is therefore diffusive and hence can be modeled using a

diffusion-type equation. However the diffusivity is not the molecular dif-

fusivity, but one related to the eddies; it is often called the “eddy diffusiv-

ity”. Typical values for the eddy diffusivity at synoptic scales in the ocean

are on the order of 1000 m2/sec, roughly 8 orders of magnitude larger than

the molecular diffusivity in water.

An implication of Taylor’s work is that we can represent many parti-

cle dispersion problems as a random walk. We can, for instance, model

ash spreading from a volcano as a mixture of advection (left out here, but

important) and a random walk. This opens the possibility for stochastic

models for pollution spreading.

But there is a downside as well. Since single particle motion has such

generic limits, it is not so useful when one is trying to distinguish different

types of turbulence. Say for example you would like to know whether an

energy or enstrophy cascade is occurring. In both cases, the single parti-

cle diffusivity should simply asymptote to a constant. To study turbulent

dispersion, it is better to use pairs of particles, as seen hereafter.
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9.1.5 The vortex merger problem

In section (7.6), we showed that freely evolving 2-D turbulence can be

viewed as a merger process between discrete vortices. Carnevale [7] con-

structed a theory in which the important flow statistics, like the enstrophy,

could be deduced from the vortex population. The only unknown in their

theory was the decay rate of the vortex density, ρ. Here we show that can

be accounted in terms of the dispersion of the vortices [21].

The numerical experiment in this case was a freely-evolving, 2-D tur-

bulence simulation in a periodic domain, from random initial conditions.

Vortices emerge at the early times and begin merging. At some point, par-

ticles were deployed in the flow, and the dispersion of the particles and

vortices was compared (left panel of Fig. 38). We see that after a short

time, the dispersion for vortices and particles is statistically indistinguish-

able. That implies that the vortices are dispersing exactly like the passive

particles. Note too that the dispersion is increasing faster that diffusively.

A best fit of the data suggests:

< X2 >∝ t1.3 (309)

This implies that the diffusivity increases as t0.3. Such dispersion is called

“super-diffusive”, since the spreading is greater than in a random walk.

As the vortex dispersion matches the particles’, we can think of a dif-

fusivity to characterize the vortex spreading. We can scale the diffusivity

thus:

D =
1

2

d

dt
< X2 >=< uX >∝ UL (310)

where U is the mean vortex velocity and L is the typical spacing between

123



vortices. Now if we have a vortex density of ρ, then the typical spacing is:

L ∝ ρ−1/2 (311)

The velocity on the other hand scales as the square root of the total energy,

given in (132):

U ∝ E1/2 ∝ ρ1/2ζc b
2 (312)

So the diffusivity scales as:

D ∝ UL ∝ ρ1/2ζc b
2ρ−1/2 ∝ Γ (313)

where

Γ = ζc πb
2 (314)

is the mean vortex circulation. So the diffusivity and the circulation should

behave the same way. In the experiment shown in the left panel of Fig.

(38), the diffusivity scales as:

D =
1

2

d

dt
< X2 >∝ t0.3 (315)

So the circulation, if this argument is correct, should scale the same way.

Shown in the right panel of Fig. (38) are the exponents, α, obtained

from a suite of experiments with different initial conditions and differ-

ent types of small scale damping. We see that the exponents tend to be

between 0.2-0.4, for both the diffusivity and circulation, for most of the

experiments. The average value for the exponent is roughly α = 1/3.

If we know the scaling for the circulation, we can find the decay rate

for the density, because the total energy is conserved. So:

E = ρζ2c b
4 = ρΓ2 = const. (316)
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Figure 38: The dispersion for vortices (solid curve) and passive particles (dashed line)
in a 2-D turbulence simulation (left panel). Shown in the right panel are the growth
exponents, α, from various runs for the vortex diffusivity and the mean vortex circulation.
The value is usually between 0.2-0.4. From [21].

Thus:

ρ ∝ Γ−2 ∝ t−2/3 (317)

This is close to the value, 0.7, inferred by McWilliams [32] and Weiss and

McWilliams [49] (sec. 7.6). In other simulations, we find a value of 2/3

(Fig. 39), using a range of different initial conditions.

The results shown in Fig. (38) are from numerical experiments with

very weak lateral damping. Increasing the damping accelerates the vortex

decay, because lateral diffusion causes the vortices to spread out, hence

increasing their chance for collisions. But nevertheless, it is fruitful to

think of vortex merger as a dispersion problem.

Note though that this problem is not completely solved! All we’ve done

is to change the unknown. Previously, we didn’t know what set the den-

sity decay. Now we know that, but we don’t know what determines the

dispersion exponent. So there’s still work to be done.
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9.2 Two particle dispersion

As noted, the single particle dispersion exhibits generic behavior and so

is not terribly useful for differentiating different types of flow. Better in

this regard is the dispersion between two particles, called “relative disper-

sion”. Rather than study how a particle drifts from its starting location, we

see how two particles separate in time. An advantage is that two particle

dispersion is unaffected by a constant background flow, U (it is “Galilean

invariant”).

Say the velocities of the two particles are ~u1 and ~u2. Then the mean

square difference between the velocities, averaged over a large number of

pairs, is:

< |~ui − ~uj|2 >=< |~ui|2 > + < |~uj|2 > −2 < ~ui · ~uj > (318)
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If the flow is homogeneous, then:

< |~ui|2 >=< |~uj|2 >= ν2 (319)

where ν2 is the single particle velocity variance, introduced previously. So:

< |~ui − ~uj|2 >= 2ν2 − 2 < ~ui · ~uj > (320)

If the two particles are moving independently, i.e. if their velocities are

uncorrelated, the cross correlation term will be zero. This is what happens

when the particles are far apart. Then the mean square relative velocity is

just twice the mean square single particle velocity and relative dispersion

is just like single particle dispersion. Similarly if we define a two particle

diffusivity, then in this limit:

K2x ≡
∫ t

0
< (ui(0)− uj(0))(ui(t

′)− uj(t′)) > dt′

=
∫ t

0
< ui(0)ui(t

′) > + < uj(0)uj(t
′) > − < ui(0)uj(t

′) >

− < uj(0)ui(t
′) > dt′

→ 2
∫ t

0
< ui(0)ui(t

′) > dt′

= 2K1x (321)

again from homogeneity. Thus the two particle diffusivity asymptotes to

twice the single particle diffusivity when the particle velocitiess are uncor-

related.

But what happens when the particle motion is correlated? This is where

relative dispersion is interesting. Two particles are effectively measuring

the velocities at the points in space and time where the particles are (Fig.

40). Thus the difference between the particle velocities is equal to the dif-

ference in Eulerian velocities at that time and location. Now if the flow is
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homogeneous and isotropic, the mean square velocity difference for parti-

cles with a separation r is the same as the mean square velocity difference

for any two points in the flow also with a separation r.

The mean square velocity difference is the second order structure func-

tion (see the exercise after sec. 6.3). In the turbulent inertial ranges, this

scales with energy or enstrophy transfer rate, just as the spectrum does. So

in the energy cascade, we have:

< |~u1 − ~u2|2 >∝ ε2/3r2/3 (322)

The two thirds can be deduced from dimensional grounds: ε has units of

m2/sec3 and the square velocity difference has units of m2/sec2. This

relation is known as “Kolmogorov’s 2/3 Law”.

u

u 1

2

r

Figure 40: Two particles moving in a flow.

In the enstrophy range on the other hand, we have:

< |~u1 − ~u2|2 >∝ η2/3r2 (323)

So the velocity difference increases more rapidly with separation in the

enstrophy range.

We can deduce corresponding relations for the relative diffusivity. In

the energy range, the diffusivity scales as:

K2 ∝ ε1/3r4/3 (324)
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because the diffusivity has units of m2/sec. This dependence was first de-

duced by Richardson [40], from observations of smoke plumes. The con-

nection to Kolmogorov’s theory was made by Obukhov [37] and Batchelor

[1]. This implies:

d

dt
< (x1 − x2)2 >=

d

dt
< r2 >∝ ε1/3r4/3 (325)

If we integrate this, we find that:

< r2 >∝ εt3 (326)

Integrating (325) is not strictly correct, because the LHS involves the mean

square separation, not the separation. But from a scaling perspective, this

is reasonable. The cubic growth is now known as “Richardson’s Law”.

In the enstrophy range, dimensional arguments suggest:

d

dt
< r2 >∝ η1/3r2 (327)

Integrating this in time, we get:

< r2 >∝ exp(η1/3t) (328)

This is sometimes called “Lin’s Law” [27]. So separations in the enstrophy

range grow exponentially in time.

These results can be compared with those that we derived for pre-

dictability, in sec. (7.8). In the enstrophy range, the scale of the error

was found to increase as exp(η1/3t)—exactly as the separation in particles

increases here. Similarly, in the energy range we found:

T =
∫ κ1

κ0
ε−1/3κ−5/3 dκ ≈ ε−1/3κ−2/3|κ1κ0 ≈ ε−1/3κ

−2/3
0 (329)

This implies that the length scale scales as:

L
2/3
0 ∝ ε1/3T (330)
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as L0 = 2π/κ0. Thus:

L2
0 ∝ εT 3 (331)

The predictability relations are thus identical in form to the two particle

dispersion relations. This is not coincidental; two particle dispersion is

actually a measure of Lagrangian predictability. If we change the initial

condition of a particle slightly, the growth of the error is determined by

relative dispersion.

How do these predictions compare to observations? Morel and Larcheveque

[35] calculated pair statistics for pairs of balloons deployed in the lower

stratosphere in the Southern Hemisphere, during the French EOLE exper-

iment. The dispersion was found to grow exponentially in time during the

first 6 days, up to separations of 1000-2000 km. Thereafter, the two parti-

cle dispersion increased linearly in time. From the turbulence perspective,

we would interpret this as evidence of an enstrophy cascade at scales below

2000 km, and random, uncorrelated motion at larger scales.

Compare this with the Nastrom and Gage energy spectrum, shown in

Fig. (26). The spectrum exhibits a κ−3 spectrum at scales below roughly

2000 km. So the exponential growth seen here is consistent. However,

the energy spectrum also shows a κ−5/3 range at smaller scales. This

would produce a t3 growth in the dispersion, which we don’t see. However,

this occurs below 100 km, the smallest separation of the balloons. So we

wouldn’t expect to resolve the smaller scale dispersion. Er-El and Peskin

[11] examined another set of balloons, also from the Southern Hemisphere,

and obtained exponential growth at scales below 1000 km.

Two results from the ocean are shown in Fig. (42). These come from

surface buoy pairs, deployed in the Gulf of Mexico during the SCULP

experiment and in the Nordic Seas during the POLEWARD experiment.
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Figure 41: Relative dispersion for pairs of balloons from the EOLE experiment in the
Southern Hemisphere. From [35].

In both cases, we see exponential dispersion at early times. In the Gulf,

the growth occurs below scales of
√

2000 = 45 km, and in the Nordic

Seas below the 10 km scale. In the Gulf case, the dispersion at large scales

is super-diffusive. In the Nordic Seas case, the dispersion increases more

rapidly, perhaps as t3, up to 100 km; it grows diffusively thereafter. So it is

possible there is an inverse cascade happening between 10-100 km in the

eastern Nordic Seas.

An interesting point is that 1000 km is comparable to the deformation

radius (sec. 8.4.3) in the atmosphere. Furthermore, the deformation radius

is close to 45 km in the Gulf of Mexico and 10 km in the Nordic Seas.

So these studies all suggest exponential growth below the deformation ra-

dius. This is what one would expect if there was an enstrophy cascade,
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Figure 42: Relative dispersion for pairs of surface drifters in the Gulf of Mexico de-
ployed during the SCULP experiment (upper panel) and in the Nordic Seas during the
POLEWARD campaign (lower panel). Note the dispersion in the first is plotted on a
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suggesting a source of enstrophy at the deformation scale.

Following Richardson [40], one can also write an equation for the prob-

ability of pair separations. It is possible to solve this equation and then

compare the predicted probabilities with the observed distributions of pair

separations for balloons or drifters. Details can be found in [25].
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10 PV fluxes

The potential vorticity (PV) is conserved in the absence of forcing. It is

useful then to think about how PV can be redistributed by the motion of

fluid parcels. As shown by Bretherton [4], such thinking can shed light on

baroclinic stability.

Consider flow in a channel, bounded by northern and southern walls

and also by flat surfaces at the bottom and at some upper height. Assuming

there are no temperature gradients on the vertical boundaries and that these

are flat, we have:
∂

∂z
ψ = 0 at z = 0, H (332)

In addition, the meridional flow vanishes at the northern and southern

walls:
∂

∂y
ψ = 0 at y = 0,M (333)

With these conditions alone, we can show:
∫ H

0

∫ M

O
vq dydz = 0 (334)

where now q is the full potential vorticity (relative plus stretching plus

planetary):

q = ∇2ψ +
∂

∂z
(
f 20
N 2

∂

∂z
)ψ + βy (335)

and where:

C =
∫ L

0
C dx (336)

is a zonal average. Equation (334) implies that the net meridional PV flux,

vq, must vanish when integrated over the domain.

We can see this by expanding the PV flux:

vq = ψxq = ψxψxx + ψxψyy + ψx(
f 20
N 2

ψz)z + ψxβy
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= (ψyψx)y + (
f 20
N 2

ψzψx)z + (βyψ +
1

2
ψ2
x −

1

2
ψ2
y +

1

2

f 20
N 2

ψ2
z)x

=
∂

∂y
ψyψx +

∂

∂z

f 20
N 2

ψzψx (337)

The last term in the second line is zero because the domain is x-periodic.

So integrating:

∫ H

0

∫ M

O
vq dydz = ψyψx|M0 +

f 20
N 2

ψzψx|H0 = 0 (338)

because ψx vanishes on the meridional boundaries and ψz on the vertical

boundaries. Note we didn’t have to invoke the conservation of PV—the

integral vanishes because of the choice of boundary conditions.

Now say we have a mean flow, which has an associated PV field, qs(y, z).

Then we can write:

q(x, y, z, t) = qs(y, z) + q′(x, y, z, t) (339)

where q′(x, y, z, t) is the perturbation about the mean. If an air parcel

is initially at a latitude y = y0, its perturbation PV must change if it is

displaced from that latitude, in order to conserve the total PV. Define the

displacement to be η = y − y0. If η is small, then we can write:

q′(x, y0 + η, z, t) = qs(y0, z)− qs(y0 + η, z) ≈ −(
∂

∂y
qS)η (340)

(ignoring terms in η2 and higher).

Now the parcel’s meridional velocity is just:

v =
d

dt
η (341)

So the meridional flux of perturbation PV is:

vq′ = −(
∂

∂y
qS)η

d

dt
η
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= −(
∂

∂y
qS)

d

dt

1

2
η2 (342)

From section (9.1), we recognize that:

d

dt

1

2
η2 = κy (343)

is the diffusivity in the meridional direction. So we can represent the PV

flux as a meridional diffusion. The diffusivity is thus defined:

κy = − vq′

∂
∂yqS

(344)

If the RHS side is constant, so is the diffusivity. And if the diffusivity is

positive, the mixing is down the mean PV gradient. So mixing tends to

weaken the mean PV gradient.

From equation (334), we have:
∫ H

0

∫ M

O
vq dydz =

∫ H

0

∫ M

O
vqs dydz +

∫ H

0

∫ M

O
vq′ dydz = 0 (345)

It’s easy to show that the integral of the mean PV vanishes on its own, so

we have: ∫ H

0

∫ M

O
vq′ dydz = 0 (346)

Thus: ∫ H

0

∫ M

O
(
∂

∂y
qS)

d

dt

1

2
η2 dydz = 0 (347)

Now, we can substitute in for η if we know what the velocity looks like.

The full Lagrangian equation for η is:

d

dt
η = v (348)

We can linearize this about the mean by writing:

(
∂

∂t
+ U

∂

∂x
)η = v (349)
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The velocity on the RHS derives from the Eulerian field, which itself is a

solution to the PV equation, like in (227). Let’s write that as a streamfunc-

tion:

ψ(x, y, z, t) = Re[φ(z, t)eik(x−ct)sin(
nπy

M
)] (350)

where Re[] denotes the real part. This is the type of solution we use when

studying Rossby waves, for example. Note the sine factor ensures that the

streamfunction vanishes at the northern and southern walls. Given this, the

meridional velocity is:

v =
∂

∂x
ψ = Re[ikψ] = Re[ikφ(z, t)eik(x−ct)sin(

nπy

M
)] (351)

Now if the meridional velocity depends on eik(x−ct), then so does η. So:

(
∂

∂t
+ U

∂

∂x
)η = (−ikc+ ikU)ηeik(x−ct) (352)

Combining:

η = Re[
φ

U − c
eik(x−ct)] (353)

Note that c can be complex:

c = cr + ici

If the imaginary component, ci, is greater than zero, the solution grows

exponentially in time:

eik(x−ct) = eik(x−crt)+cit (354)

Then the solution is unstable.

Using this, we can write:

κy =
1

2

d

dt
η2 = −1

2
Re[ikc|η|2e2kcit] =

1

2

|φ|2kci
|U − c|2

e2kcit (355)
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The diffusivity is positive if ci > 0, i.e. if there is unstable growth. So

there is a (remarkable) connection between lateral mixing and instability.

Substituting into (347), we get:

∫ H

0

∫ M

O

1

2
(
∂

∂y
qS)
|φ|2kci
|U − c|2

e2kcit dy dz = 0 (356)

If ci > 0, then the only way this integral can be zero is if ∂
∂yqs changes sign

somewhere in the interior of the fluid. This is the Charney-Stern criterion

for instability [38, 22]. Normally when deriving this, one has to do numer-

ous integration by parts. Here it comes out naturally in terms of particle

diffusion.

So our notions about Lagrangian diffusion are also useful when talk-

ing about an active tracer, like potential vorticity. Mixing tends to hap-

pen down the mean gradient, reducing that gradient. And the diffusivity

emerges as a natural measure. Note though that the above development is

linear—in this way, the results are consistent with linear stability theory.

But the actual mixing in the atmosphere and ocean need not be small in

amplitude—then models are required to diagnose the mixing.
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