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1.1 Introduction
These lecture notes provide a brief introduction to the complex topic of upper
ocean dynamics and air-sea interactions. Moreover, we put the emphasis on the-
ories and methods that are of particular relevance in operational oceanography.
There is a need for ocean forecasts much in the same way as there is a need for
weather forecasts. A main difference is that the users of ocean forecasts are typi-
cally professional, requiring decision support for offshore operations, search-and-
rescue missions, safe navigation, and so on, while weather forecasts are also rele-
vant to the general public. What ocean and weather forecasting have in common is
the focus on transient features, that is, how the states of the ocean and atmosphere
change on short timescales, ranging from hours to perhaps a few weeks. Opera-
tional ocean modeling thus differs from ocean modeling in the context of climate
research, in which the focus is often on the overall trends and not on day-to-day
variations.

One of the most important uses of ocean forecast models is to provide predictions
of drift trajectories, for example in the case of accidental oil spills or for ships
that have lost their engine power. We are, therefore, not only concerned with the
air-sea fluxes and the ocean circulation, but also on the behaviour of submersed or
floating objects, large or small. This behaviour typically depends on the surface
waves, the wind, the ocean currents, and quite often the turbulent mixing in the
upper ocean; hence, such predictions require a complex collection of modelling
tools. The purpose of these lectures is to provide an overview of such modelling
tools and not an in-depth description of them, and the lectures will be comple-
mented by project work in which some of these modelling tools are used to study
specific physical mechanisms or applications.

Our focus is thus on the upper ocean. A good working definition of the "up-
per ocean" is given by Sprintall and Cronin (2001): "the upper ocean connects
the surface forcing from winds, heat, and fresh water, with the quiescent deeper
ocean where this heat and fresh water are sequestered and released on longer time
and global scales", and they include both the surface mixed layer and the stratified
layer below as part of the upper ocean. This definition highlights the different time
rates of change of the processes in the upper and the deep ocean, respectively: up-
per ocean processes have temporal scales similar to that of the weather. We will
primarily consider vertical exchange processes and vertical dynamical balances,
that is, one-dimensional models of the upper ocean. The main reason for this
restriction is that the processes responsible for rapid changes in the upper ocean
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conditions are overwhelmingly acting in the vertical direction, and these processes
can often be efficiently described with the simpler one-dimensional models. On
the other hand, three-dimensional processes are tremendously important, both on
large and small temporal and spatial scales (see Fig. 1.1), and we will repeatedly
return to the question of how valid our one-dimensional models are. Furthermore,
we will focus on open ocean conditions here and will not consider sea-ice dynam-
ics or nearshore dynamics. Both of these topics are of course highly relevant in
operational oceanography and merit dedicated study on their own.

We assume that the students know introductory geophysical fluid dynamics. The
fundamental governing equations are, therefore, not derived in the running text,
but instead listed in the Appendix for reference. Finally, a few words on nota-
tion. We will assume that the oceanic flow can be defined as a sum of (i) a mean
flow, (ii) oscillatory motion due to surface waves, and (iii) turbulent motion. We,
therefore, write the Eulerian velocity u as

u = ū+ ũ+ u′, (1.1.1)

where the overbar denotes mean quantities, the tilde denotes wave quantities, and
the prime denotes turbulent quantities. We thus assume that the temporal scales
T and spatial scales L are well separated, with T̄ � T̃ � T ′ and L̄ � L̃ � L′.
We also assume that this separation allows us to define averaging operators for
removing turbulence and wave quantities. That is,

{A} = {Ā+ Ã+ A′} = {Ā}+ {Ã}+ {A′} = Ā, (1.1.2)

〈A〉 = 〈Ā+ Ã+ A′〉 = 〈Ā〉+ 〈Ã〉+ 〈A′〉 = Ā+ Ã, (1.1.3)

for some quantity A. The averages can be in time, space or over a wave cycle, and
the exact definitions will vary depending on the application. This scale separation
is obviously convenient for the purpose of theoretical analysis, but some caution
should be demonstrated. The kinetic energy spectrum of the ocean is continuous
with no gaps, and a clear distinction between e.g. "wave motion" and "turbulent
motion" can be hard to find. Also, processes that lead to upper ocean mixing can
have a wide range of scales. For example, Langmuir circulation cells are large and
slow compared to the surface waves that generate them, but their overall effect is
to efficiently mix the upper ocean. From the point of view that the Langmuir
cells are part of the "background turbulence1", we have in fact T̄ � T ′ � T̃ and
L̄� L′ � L̃.

1Langmuir circulation is often referred to as Langmuir turbulence.
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Figure 1.1: Blooms of cyanobacteria in the Gulf of Finland. The eddy in the mid-
dle is about 20-25 km across, and the image displays features over an impressive
range of spatial scales, demonstrating the complex three-dimensional nature of
geophysical fluid flows. Cyanobacteria (also called blue-green algae) can fixate
nitrogen directly from the atmosphere and thrive in the nutrient-rich waters of
the Baltic Sea. Image taken on July 18, 2018 from OLI/Landsat8 (NASA, Earth
Observatory).
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1.2 Dimensional analysis

1.2.1 The Pi Theorem
Dimensional analysis is a powerful tool to investigate the functional dependencies
between different physical variables. The concept is based on the fact that any
physical law needs to be unit free, that is, it should not matter what units are used
to measure the fundamental physical dimensions such as time, distance, mass, and
so on. The formal method we present here is due to Buckingham (1914) and is
based on what is usually referred to as the (Buckingham) Pi Theorem:

Theorem. Consider a physical law that includesm physical quantities q1, q2, . . . , qm.
The corresponding n fundamental dimensions are given by L1, L2, . . . , Ln. We
require that n < m. The dimensions of qi can be expressed in terms of the funda-
mental dimensions such that

[qi] = Lai11 Lai22 · · ·Lainn , i = 1, 2, . . . , n. (1.2.1)

We construct the n×m dimension matrix A from the exponents aij:

A =


a11 a12 · · · a1m
a21 a22 · · · a2m

...
... . . . ...

am1 am2 · · · anm

 .
Let r = rank(A). If

f(q1, q2, . . . , qm) = 0 (1.2.2)

is a unit free law, then we can formm−r non-dimensional quantities π1, . . . , πm−r,
and (1.2.2) is equivalent to the equation

F (π1, π2, πm−r) = 0, (1.2.3)

which is expressed solely in the nondimensional quantities.

Later on in Section 2 we will discuss surface waves in more detail, but it is in-
structive to consider the example of wave dispersion here, that is, the relation
between the wavelength and the wave period. The wave period is T = 2π/ω and
the wavelength is L = 2π/k, where ω and k are the wave frequency and wave
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number, respectively. We assume that there exists a function combining ω, k, the
acceleration of gravity g and the water depth H . The fundamental quantities are

L1 = length, (1.2.4)
L2 = time. (1.2.5)

The coefficients of the dimension matrix are

[ω] = L−12 , → a11 = 0, a21 = −1, (1.2.6)
[k] = L−11 , → a12 = −1, a22 = 0, (1.2.7)
[g] = L1

1L
−2
2 , → a13 = 1, a32 = −2, (1.2.8)

[H] = L2, → a14 = 0, a24 = 1. (1.2.9)

Hence we have

A =

[
0 −1 1 1
−1 0 −2 0

]
. (1.2.10)

The matrix equationAx = 0 has two independent solutions x1 = [−2, 1, 1, 0] and
x2 = [0, 1, 0, 1]. The dimensional variables are, therefore, given by (note that the
order of the variables is important)

π1 = ω−2k1g1H0 = gk/ω2, (1.2.11)
π2 = ω0k1g0H1 = gH. (1.2.12)

The physical law combining our physical parameters ω, k, g and H can then be
expressed as

G(π1, π2) = 0. (1.2.13)

We may solve this equation for one of the nondimensional variables, for example
π1, such that

π1 = F (π2)→
gk

ω2
= F (kH) (1.2.14)

for some unknown function F that can be determined from experiments. The
solution (1.2.14) can be compared to the dispersion relation that we obtain by
solving the dynamical equations:

gk

ω2
=

1

tanh(kH)
. (1.2.15)
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1.2.2 The Kolmogorov Spectrum
Another relevant example of dimensional analysis is that of Andrey Kolmogorov,
who in the nineteen-forties did pioneering work on turbulence. He deduced the
shape of the turbulence kinetic energy spectrum in the so-called inertial subrange.
In this subrange, the turbulence kinetic energy (TKE) is assumed to be isotropic.
The spatial scales are assumed less than the size of the dominant, energy contain-
ing eddies, and larger than the size of the smallest eddies that are dissipated into
heat by viscosity. In the inertial subrange, the energy is said to cascade from larger
to smaller scales. The TKE input is obviously on the larger scales while the TKE
loss is at the smallest scales in the range, see Fig. 1.2.

The smallest temporal and spatial scales are the so-called Kolmogorov microscales.
At these scales the relevant physical quantities are the (kinematic) viscosity, ν, and
the TKE dissipation rate, ε. The dimension of the dissipation rate is length2/time3,
while the viscosity has dimension length2/time. The only length scale we can
derive from these quantities is

lK =

(
ν3

ε

) 1
4

, (1.2.16)

which is known as the Kolmogorov length. Similarly, we can derive a Kolmogorov
time scale tK =

√
ν/ε.

In the inertial subrange we disregard viscous dissipation, however, and the funda-
mental quantities are the turbulent velocity fluctuations, v, say, and the size of the
turbulent eddies, l. These quantities can be combined into a time scale T = l/v.
We introduce the wavenumber κ = l−1 and the energy spectrum E(κ) (strictly
speaking, E is the velocity variance spectrum) such that the energy E contained
in eddies in the wavenumber range κ to κ+ dκ is given by

E = E(κ)dκ. (1.2.17)

The TKE is by definition proportional to the square of the velocity fluctuations,
that is

E ∝ v2. (1.2.18)

Now we assume that the rate at which energy is lost is constant across the inertial
subrange, which means that

E
T

=
v2

(l/v)
= const. (1.2.19)
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It follows that the turbulent velocity fluctuations and the turbulence length scales
have to be related in such a way that v ∝ l1/3 = κ−1/3. Using this result, together
with (1.2.17) and (1.2.18), we find that the TKE scales as

E(κ)dκ ∝ κ−
2
3 , (1.2.20)

which means that the TKE spectrum scales as

E(κ) ∝ κ−
5
3 . (1.2.21)

Kolmogorov’s derivation includes the dissipation rate as well (the original paper
is in Russian, so this is second-hand information, but a compact derivation along
with instructive real-life examples can be found in Ortiz-Suslow et al., 2020). As-
suming a functional relationship between E, ε and κ, straightforward application
of the Pi Theorem shows that

E(κ) = αε
2
3κ−

5
3 , (1.2.22)

where α is a constant.
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Figure 1.2: Schematic representation of the energy cascade and the inertial sub-
range. The mean flow provides the energy input on the longest scales, while energy
is dissipated at the smallest scales, which are given by the Kolmogorov length.
In the inertial subrange the turbulence kinetic energy spectrum decays as κ−5/3

(credit: "Aakash30jan"/Wikimedia Commons).
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16 CHAPTER 2. SURFACE WAVES

This chapter contains a short recap of central concepts in surface wave dynamics.
The main aim of this chapter is to introduce the Stokes drift, which is the mean
momentum in surface waves and a key component of the drift velocity in the upper
ocean.

2.1 Solution for a single wave component in deep
water

A plane wave can generally be described as a function

v = f(θ),

where θ = k · x − ωt + δ is a phase function. Here k = (k, l) is the wave
number vector, ω is the circular wave frequency (radians per second) and δ is a
constant phase shift (radians). The associated wave period and wavelength are
T = 2π/ω and λ = 2π/κ, respectively, where κ =

√
k2 + l2. The wave number

vector defines the direction of wave propagation, and the ratio between the wave
frequency and wave number, that is c ≡ ω/κ defines the propagation speed, or
phase speed of the wave. The direction of wave propagation is iκ = (k, l)/κ such
that we can define the phase velocity as c = c iκ.

The equations that describe surface wave motion can be derived in different ways.
We will here follow Gill (1982) and focus on the pressure perturbation in the
waves. We define this pressure perturbation as p̃, and take the pressure to be
p = p0 − ρgz + p̃. Assuming the fluid is incompressible, from the continuity
equation we have

∇ · v = 0, (2.1.1)

and from the linearized equations, ignoring friction and the Coriolis force (we
assume that rotational effects are negligible for the wave motion since the wave
periods are so small, but, as we shall see later on, this is not quite correct for the
wave-induced drift) we have

ρ
∂v

∂t
= −∇p̃. (2.1.2)

Taking the time derivative of (2.1.1) and combining it with (2.1.2), we find that
the perturbation pressure is governed by

∇2p̃ = 0, (2.1.3)
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hence p̃ is a harmonic function.

We are primarily interested in surface gravity waves in deep water and take the
water depth to be infinite. In practice we only need to require that the ratio be-
tween the wavelength λ and the local water depth H is such that λ/H � 1, but
the above assumption simplifies the analysis. Thus, as z → −∞, we require
that the pressure perturbation and the velocities vanish. At the surface z = η,
we have one kinematic boundary condition and one dynamic boundary condition.
The kinematic boundary condition simply expresses that the vertical velocity at
the surface is the same as the vertical velocity of the surface itself. To leading
order this becomes

w =
∂η

∂t
, z = 0. (2.1.4)

The dynamic boundary condition expresses that the pressure at the surface is equal
to the atmospheric pressure p0. Since we have p(z = η) = p0 − ρgη + p̃, we have

p̃ = ρgη, z = η. (2.1.5)

The perturbation pressure p̃ in a single wave component can be found postulating
a solution

p̃ = G(z) cos(kx+ ly − ωt+ δ). (2.1.6)

Inserting (2.1.6) into (2.1.3), and using the requirement that p̃ → 0 as z → −∞,
we obtain

p̃ = Aeκz cos(kx+ ly − ωt+ δ), (2.1.7)

where κ =
√
k2 + l2 is the wave number and A is a constant1. We now assume

that the surface elevation is given by

η = a cos(kx+ ly − ωt+ δ), (2.1.8)

that is, in phase with the pressure perturbation. Here a is the amplitude of the wave
component. Combining (2.1.2), (2.1.4) and (2.1.8), we find for the integration
constant A:

A = ρ
aω2

κ
. (2.1.9)

1More general solutions can be found assuming G = G(z, t), in which case A can be a function
of time. It is also possible to allow G to be a function of all the spatial coordinates, assuming small
amplitude changes over the length and time scales given by the wavelength and wave period.
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The ratio between the wave height and the wavelength is expressed by the wave
steepness, ε ≡ aκ. The propagation speed, or phase speed, of the waves is given
by c = ω/κ. Hence we can write the pressure perturbation in the waves as

p̃ = ρεc2eκz cos(kx+ ly − ωt+ δ). (2.1.10)

We note that the pressure is linear in the wave steepness, quadratic in the phase
speed, and that it vanishes at a depth of O(κ−1), which is proportional to the
wavelength λ. The Stokes depth (2κ)−1 is often used as a typical depth scale for
the influence of the waves. Recall, however, that we are here only considering
gravity waves in deep water. In shallow water (λ ≥ H) the wave motion extends
throughout the water column (e.g. Gill, 1982).

The next thing we need to do is to find the relation between ω and κ. We linearize
(2.1.10), noting that p̃(z = η) = p̃(z = 0) +O(a2). Combining with the dynamic
boundary condition (2.1.5), we obtain

ω2 = gκ. (2.1.11)

This is the dispersion relation that enables us to relate the wave frequency to the
wavelength. Note that (2.1.11) is a special case of the relation (1.2.14) that we
derived using dimensional analysis. For the phase speed we have

c = ±
√
g

κ
= ±

√
gλ

2π
. (2.1.12)

2.2 Mass, momentum and energy transport in sur-
face gravity waves

The energy in a wave component is the sum of the potential and kinetic energy.
The velocities can be obtained from the linearized momentum equation (2.1.2),
and the kinetic energy is

Ek =

∫ η

−∞

ρ

2
{ũ2} dz =

1

4
ρga2, (2.2.1)

where we have used the dispersion relation (2.1.11). Setting the reference level at
the undisturbed surface z = 0, the potential energy is given by

Ep =

∫ η

0

ρgz dz =
1

4
ρga2. (2.2.2)
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We see that the kinetic and potential energies are equal. This is a general property
of surface waves and is usually referred to as the “equipartition principle”. The
total energy in the waves becomes Etot = Ek + Ep = (ρga2)/2.

The transport of energy in the waves is a curious concept. We have already estab-
lished that a single wave component propagates with a speed c, but in reality the
sea state is the sum of many wave components with different phases, amplitudes,
periods, wavelengths and directions, which leads to some interesting results. The
classical way of introducing the energy transport in surface waves is to add two
components of nearly equal wave frequencies and wave numbers. Consider two
such wave components propagating in the positive x-direction. From standard
trigonometric identities we can write this sum as

a cos[(k −∆k)x− (ω −∆ω)t) + a cos[(k + ∆k)x− (ω + ∆ω)t) = (2.2.3)
2a cos(kx− ωt) cos(∆kx−∆ωt).

The result is a wave of twice the amplitude 2a cos(kx− ωt) that is modulated by
the function cos(∆kx − ∆ωt). This function is in itself just like a single wave
component, but with a speed given by ∆ω/∆k. Since ∆k and ∆ω are assumed
small, this wave component is much longer than both of the original components,
and with much longer period. Hence we can view the sum of the two nearly
equal wave components as one wave component with twice the amplitude and the
average wave number and wave frequency, which is enveloped by a much longer
wave. The energy in the waves are contained within this envelope, or wave group,
and hence advected with the propagation speed ∆ω/∆k. We now use the limits
∆k → 0 and ∆ω → 0 and define the group velocity

cg =
∂ω

∂κ
. (2.2.4)

For deep water waves it is easy to show from (2.1.11) that cg = c/2. As the waves
propagate into shallower water, the ratio cg/c increases until we have cg = c in
the limit kH → 0 when the wavelength is much larger than the local depth.

Static figures like 2.1 can illustrate the "groupiness" of surface waves, but cannot
really be used to illustrate the difference between the phase and group velocities.
There are some excellent animations on the Internet, however, see for example the
Wikipedia entry for the group velocity2.

2https://en.wikipedia.org/wiki/Group_velocity

https://en.wikipedia.org/wiki/Group_velocity
https://en.wikipedia.org/wiki/Group_velocity
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Figure 2.1: The functions sin(1.1x) (dotted), sin(0.9x) (dashed), and their sum
(solid).

The trajectories of fluid parcels due to the waves can, as a first approximation, be
obtained by integrating the velocities in time:

x̃ = (x̃, ỹ, z̃) =

(∫
ũ dt,

∫
ṽ dt,

∫
ṽ dt

)
. (2.2.5)

Inserting for the wave velocities the fluid parcels describe closed trajectories. For
deep water waves propagating in the positive x-direction:

(x̃, z̃) = ae−kz (cos(kx− ωt), sin(kx− ωt)) , (2.2.6)

indicating that the deep water wave trajectories are perfect circles with radii that
decay exponentially with depth. We will see below that this is only correct to first
order in the wave steepness.

It appears from (2.2.6) that there is no net transport of mass in the waves. Any fluid
parcel will return to its initial position after a wave period. We do know, however,
that surface waves (and many other types of waves) are associated with a mean
drift velocity. Consider any point in the fluid that is above the wave troughs, that
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Figure 2.2: In a linear description of the wave motion the particles travel in closed
orbits. Here this is illustrated by the two circles at depths z = 0 and z = −z0,
implying that these are deep water waves (the orbits become increasingly elliptic
towards shallow water). Any particle under the wave crest will have a velocity in
the wave propagation direction, while the velocity is against the wave propagation
direction under the wave troughs. Eulerian (fixed point) measurements of the
velocity of the water in the three locations indicated on the right will show that at
(A) there is air for most of the wave cycle, with intermittent flow of water in the
wave propagation direction associated with passing crests; at (B) there is water
for most of the wave cycle, with velocities in both horizontal directions, but on
average in the wave propagation direction; while at (C) there is water during the
whole wave cycle with an average velocity of zero.

is z > −a. Under the wave crest, we have zero vertical velocity and maximum
horizontal velocity in the wave propagation direction. Under the wave trough,
we also have zero vertical velocity and maximum velocity opposite to the wave
propagation direction. Above the wave trough there is only air, however, which
means that there is no transport of water. At any specific point above the wave
troughs, the transport of water is, therefore, on average going in the wave propa-
gation direction, while below the wave troughs the net mass transport is zero (see
Fig. 2.2).

The description above is based on the Eulerian description of the fluid motion.
It is more instructive, and also more relevant to oceanic transport problems, to
consider the wave-induced drift from a Lagrangian perspective. In the Lagrangian
description we label each fluid parcel and follow them in time, in contrast to the



22 CHAPTER 2. SURFACE WAVES

Eulerian description in which we stay in fixed positions and note the velocities of
the fluid parcels that happen to flow by. It is clear that we do not need to consider
the somewhat awkward case "sometimes air, sometimes water" if we are using a
Lagrangian description of the motion. We are, after all, following individual fluid
parcels that maintain their material properties.

A direct Lagrangian approach has its merits, in particular when studying wave-
induced drift (Weber, 2019), but we will not use it here. We will instead use a
quasi-Lagrangian description introduced by Longuet-Higgins (1953). The point
is to evaluate the Eulerian velocities at the positions traced by the fluid parcels.
That is, we write the Lagrangian velocity as

uL = u(x+ x̃, t). (2.2.7)

The next thing we do is to make a first order Taylor expansion of the righthand-
side, such that

u(x+ x̃, t) ≈ u(x, t) + x̃ ·∇u. (2.2.8)

Recall that the Eulerian velocity consists of mean, wave and turbulent parts so that
u = ū+ ũ+u′, and that curly brackets imply averaging over a wave cycle. When
averaging, we get from (2.2.8)

{u(x, t) + x̃ ·∇u} = ū+ {x̃ ·∇ũ}. (2.2.9)

The latter part is called the Stokes drift velocity (Stokes, 1847), which we will
denote by ūS. For deep water waves we have

ūS = {x̃ ·∇ũ} = (ε2c)e−2κz. (2.2.10)

The difference between the Eulerian and Lagrangian description of the Stokes drift
is illustrated in Fig. 2.3. We define the Lagrangian mean velocity ūL. Correct to
second order in the wave steepness, we now have

ūL = ū+ ūS. (2.2.11)

A couple of comments are in place here. First of all, the Lagrangian mean ve-
locity is the drift velocity of any neutrally buoyant object that is in the water, and
which is sufficiently small so that inertia can be neglected. This is the case for
some types of nutrients, plankton and pollution, and approximately the case also
for many types of buoyant small objects (e.g. pelagic fish eggs or oil droplets),
although, as we will see later on, the vertical motion of such objects relative to
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Figure 2.3: The mean drift velocity in deep water surface waves with amplitude
of 1 m and a period of 6 s. In the Eulerian description, the transport is confined
to the region between the wave trough and wave crest since the average wave
velocities below this region are zero. In the Lagrangian description, however, the
wave drift is represented by the Stokes drift, which for deep water waves decays
exponentially away from the surface. The total transport, and hence the mean
wave momentum, is the same in both the Lagrangian and Eulerian descriptions.
From Broström et al. (2014).

the water is very important for determining the horizontal mean drift because of
the high vertical shear close to the surface. Second, numerical ocean circulation
models are overwhelmingly using an Eulerian framework, solving for ū. Hence
the Lagrangian mean velocity that is so important for oceanic drift modeling will
need to be calculated using (2.2.11), which generally requires additional output
from a numerical wave prediction model for calculating ūS.

Finally, since there is a mean forward drift velocity in the waves, it follows that
the waves possess mean momentum. The total mean momentum in the waves (per
unit surface area) is given by

Mw = ρUS = ρ

∫ 0

∞
ūS dz. (2.2.12)

The wave field thus acts as a reservoir of mean momentum, and spatial and tem-
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poral changes in the wave field is associated with momentum fluxes between the
waves and the atmosphere, and the waves and the mean oceanic flows, a subject
that will be discussed in more detail in Sec. 4.
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In this chapter we focus on the spectral representation of the surface wave field
and the energy balance equation. The source terms in this equation describe the
growth and dissipation of the waves, as well as the transfer of energy between
different wave components. The source terms are also used to quantify the wave-
induced momentum and energy fluxes that influence the mean flows in the ocean.

3.1 Statistical properties of the surface wave field
By assuming that the wave field is stationary and homogeneous, that is, its statisti-
cal properties are unchanging in time and space—clearly an unrealistic assumption—
and by furthermore assuming that the wave field decorrelates in a finite distance,
we can formally employ the Fourier transform to define a power density spectrum
of a time series of the surface elevation. Less formally, and hopefully more un-
derstandably, what this means is that we can identify those waves (sinusoids to a
first approximation) that make up the wave field. In a one-dimensional sea (which
literally never occurs), we can simplify this picture further to those waves that
travel either to the left or to the right.

3.1.1 The variance of a monochromatic wave
Consider first a monochromatic wave whose elevation is η = a cos(kx− ωt+ δ),
similar to Eq (2.1.8), but in one spatial dimension, x, only. The mean square or
variance (since η has zero mean) is found by taking the temporal average over one
wave period T = 2π/ω, that is, by integrating η2 over one wave period T and
dividing by T ,

{η2} =
1

T

∫ T

0

a2 cos2
2πt

T
dt. (3.1.1)

Since we know [see e.g. Gradshteyn and Ryzhik 2007, Eq (2.513-11), p 154] that∫ 2π

0

cos2 t dt = π, (3.1.2)

it follows after an elementary variable substitution of u = 2πt/T which leads to
dt = Tdu

2π
(the integral now goes from u0 = 0 to u1 = 2πT

T
= 2π) that {η2} =

a2/2. This demonstrates that the variance of the surface elevation is proportional
to the square of the amplitude for a monochromatic wave (a single sine wave). It
also shows that by multiplying the wave variance by ρg we get the total energy,
Etot, see Eqs (2.2.1)–(2.2.2).
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Superposition

Figure 3.1: Eight sinusoids (blue) with different frequencies and phases δn super-
posed create a complex-looking time series (red).

3.1.2 Superposition of sinusoids—The Fourier series
Any discrete and evenly sampled time series η(ti) where the measurements are
taken at times tn = (n − 1)∆t, n = 1, 2, ..., N and the length of the domain is T
can be represented exactly as a Fourier series of cosines,

η(t) =
a0
2

+
N∑
n=1

an cos
(
2πnt
T
− δn

)
. (3.1.3)

So a sum of (co)sines with different amplitudes, frequencies and phases can be
fitted to a finite set of measurements. As shown conceptually in Fig 3.1, a surpris-
ingly small number (eight here) of sine waves when superposed can create quite
complex-looking time series.

3.1.3 The autocovariance function
Unfortunately, an infinite time series has infinite energy and cannot be represented
as a Fourier series. To represent the variance of the different wave components
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present on the sea surface, we look instead at the autocovariance of the surface.
We ask “How do water level measurements correlate with other water level mea-
surements separated by a length of time τ?”. It seems natural that measurements
that are close in time are also strongly correlated (if you measure the peak of a
wave, you expect the next measurement a fraction of a second later to also be
high, likewise, a measurement in a trough will be followed by another measure-
ment low down). If we are not specifically interested in the phase of the sine
waves, only their amplitudes, we can use the discrete autocovariance function

Rηη(τ) =
N∑
n=1

η(tn)η(tn + τ). (3.1.4)

This function will presumably die off for large τ since we don’t expect a wave
hundreds of wave periods later (or hundreds of wavelengths down-wave in space)
to be in phase with our measurement here and now. We say that waves decorrelate
in time and space. This makes the autocovariance function approach zero for large
time lags τ and its integral remain finite,∫ ∞

−∞
|Rηη|2 dτ <∞. (3.1.5)

In Fig 3.2 we see a time series of 20 minutes (and a zoom of the first 150 seconds
in Fig 3.3) sampled twice a second with a nadir-looking radar altimeter at the
Ekofisk field in the central North Sea. It is evident that the waves are irregular in
shape, but also that they have a dominant period of about 10 seconds. How will
measurements covary with other measurements taken at a later time? This is what
Eq (3.1.4) answers, and Fig 3.4 shows what the autocovariance of Fig 3.3 out to
time lags of 75 seconds is like. As expected, the autocovariance is strongest at
a time lag of zero. This simply means that measurements covary perfectly with
themselves, as of course they must! We can calculate the significant wave height
directly from the time series in Fig 3.3,

Hs = 4

√√√√ 1

N

N∑
n=1

η(tn)2. (3.1.6)

This is sometimes referred to as H4rms because it is four times the standard devia-
tion (or root-mean-square of a zero-mean process). This shows that the significant
wave height is “4σ”, which is quite far from the “average” wave height. This is
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Figure 3.2: A 2 Hz 20-minute time series of the water elevation as measured by a
SAAB radar altimeter from approximately 30.5 m height. In grey (upper panel) is
shown the distance to the sea surface (what the radar altimeter measures), and in
blue (lower panel) the elevation above a mean sea level (the inverse of the zero-
mean time series). Also shown as two red lines is the significant wave height,
Hs.
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Figure 3.3: A closer look at the first 150 seconds (left) and a histogram of the
water elevation measurements throughout the 20 minutes depicted in Fig 3.3. It is
evident from the histogram that Hs envelops a very high portion (about 95%) of
the measurements, as expected as Hs = 4σ, that is, the red lines are located as
±2σ, where σ is the standard deviation of the surface height η.
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Figure 3.4: The autocovariance function of the time series in Fig 3.3.
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easy to see in Fig 3.3 where the distance between the red lines is the significant
wave height. In fact, we can read off the variance of the time series at time lag
zero in Fig 3.4. Knowing that the significant wave height is four standard devia-
tions of the water level, and seeing that the variance is approximately 1.67 m2, we
find that Hs ≈ 4

√
1.67 ≈ 5.2 m in this case.

More to the point for our discussion of waves of different periods is the observa-
tion that the first “trough” in our autocovariance function occurs at a time lag of
about 5 seconds. This means that the strongest negative correlation between mea-
surements is found at a separation of 5 seconds. This means that measurements
separated by this time lag disagree the most, which is what we expect after half a
wave period since a measurement at a wave crest is the opposite (high) of a wave
trough. Moving on to the first peak of our autocovariance function we see that
it occurs after a time lag of about 10 seconds. This is precisely what we would
expect following our visual inspection of Fig 3.3. The measurements that are sep-
arated by about 10 seconds are mostly (but not perfectly—note the irregular shape
of the waves in Fig 3.3) in phase.

Now imagine that we take the integral of the square of the autocovariance function
in Fig 3.4. It seems to be trailing off for large time lags. In fact, it will approach
zero, although not perfectly. However, if we accept that the remaining weak co-
variance at long time lags is just the product of random coincidence, we can as-
sume that the true covariance of the wave field decays to zero. This means that
we have a function which, like we anticipated in Eq (3.1.5), is bounded, that is,
not infinite when integrated to infinite time lags. Such a function has a frequency-
domain counterpart which can be found using the Fourier transform. Defining the
frequency f = ω/2π:

G(f) =

∫ ∞
−∞

Re−i2πfτ dτ. (3.1.7)

We have now dropped the subscripts on R for brevity. This integral is generally
complex, but is real for even (symmetric) functions. Conveniently, the autoco-
variance R(τ) of a time series is even, which can most easily be understood by
imagining that we correlate observations that are separated by a negative time lag.
Clearly it shouldn’t matter whether we compare the first N − k measurements
1, 2, ..., N −k with the last N −k measurements, k+ 1, k+ 2, ..., N or vice versa.
This proves that a negative time lag τ = −k∆t should give the same result as the
positive time lag k∆t and the autocovariance must be symmetric (even) function
about zero time lag.
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3.2 The variance density spectrum
The quantity G(f) in Eq (3.1.7) is known as the power spectral density, or in our
parlance, the variance density spectrum. We are now ready to calculate it from
our time series in Fig 3.3.

First, the discrete Fourier transform of the time series is constructed,

η̂(fk) =

√
∆t

N

N−1∑
n=0

η(tn) exp (2πikn/N) (3.2.1)

The Fourier coefficients are generally complex, and there are as many frequencies
as there are points in the time series,but half of them are negative,−fk = f−k, k =
0, 1, ..., N/2. To get to the power spectral density, which is what is needed for the
variance density spectrum, we must now find the squared modulus of the positive
and negative frequencies, which is a real number,

F (fk) = |η̂(fk)|2 + |η̂(−fk)|2. (3.2.2)

This is called the periodogram method and the variance density spectrum of our
time series in Fig 3.3 is shown in Fig 3.5. The variance density spectrum shows
us how the variance is distributed over frequencies. To better understand what is
meant by this, we return to the variance density of a monochromatic wave as in
3.1.1 By integrating the spectrum we get the total variance of the time series,

E =

∫ ∞
0

F (f) df. (3.2.3)

This should then equal var(η). This is formally known as Parseval’s theorem
which here means that the total wave energy of the spectrum is the same as the
average wave energy of the time series.

Let us now look at how the variance density is related to the variance of a sin-
gle sine wave (3.1.1). If our spectrum consisted of this one frequency band, the
variance density spectrum is simply

Fk =
1

2
a2k/∆fk, (3.2.4)

and since there is only one frequency, k = 1. As we add more frequency bands,
the superposition principle tells us that they can be added to each other without
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Figure 3.5: The variance density spectrum of the time series in Fig 3.3.
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any further ado and no interaction will take place (we’ll see later that this is a
half-truth). Each frequency band accounts for a certain amount of the variance,
hence the variance of all the frequency bands must equal the total variance,

{η2} =
1

2

N∑
k=0

a2k =

N/2∑
k=0

Fk∆fk. (3.2.5)

As ∆f → 0, the summation (3.2.5) approaches the integral

{η2} =

∫ ∞
0

F (f) df. (3.2.6)

3.2.1 Spectral moments and integrated parameters
The second method for computing the wave height is the spectral estimate

Hm0 = 4
√
E. (3.2.7)

The reason it is given this strange subscript is that the spectral “moment” of order
n is defined as

mn ≡
∫ ∞
0

fnF (f) df. (3.2.8)

The zeroth moment m0 is then simply the integral E of the variance density spec-
trum (3.2.6), which we know from Eq (3.2.5) is the total wave variance. Its square
root multiplied by 4 is then “4 rms”.

3.3 Wave energy balance equation
The spectral representation and the superposition principle allows us to treat the
water surface as a sum of (weakly interacting, more later) Fourier components,
each advancing with a phase speed given by the dispersion relation (2.1.11) and
whose energy advances with the group speed (2.2.4). This means that we can see
the wave energy balance as an advection equation (cf. Sec. A.2),

∂F

∂t
+ ∇ · (cgF ) = Sin + Sds + Snl. (3.3.1)

Here Sin is an input source term that describes wave growth, Sds is a dissipation
source term that describes energy loss by white-capping etc., and Snl is a source
term that describes nonlinear wave-wave interactions and transfer of energy be-
tween different wave components.
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3.3.1 Source terms

This equation is immensely important in wave modelling. It is at the heart of
every spectral wave model. The variance (often referred to as energy) density is
a function F = F (x, y, t, f, θ). So it varies with location, time, frequency f and
direction of propagation θ. Note also that although we refer to it as the energy bal-
ance equation, the energy density is strictly speaking ρgF . To see this, start with
a single sine wave and add the potential and kinetic energy, Eqs (2.2.1)+(2.2.2) =
ρga2/2 = ρgF∆f . The latter is known from Eq (3.2.4).

Temporarily setting the source terms on the righthand-side of (3.3.1) to zero (hence
implying no wind input, no wave breaking and no nonlinear interaction between
the wave components), we see that the left hand side is simply an advection bal-
ance, that is, the amount of wave energy that comes rolling in on the group veloc-
ity minus the amount the goes out (this is what the divergence operator calculates)
must equal the local rate of change of wave energy density. In other words, if
more energy enters than leaves, the energy level must go up. The right hand side
is where the physics lies. The source terms represent wind input (in), dissipation
through wave breaking (white capping) and other processes (ds) and nonlinear
interaction between Fourier components (nl). This is where the weak interaction
comes in. If surface waves were perfectly linear this term would not exist. Then
various Fourier components would travel across the ocean, completely oblivious
of other wave components. This is not the case, however, and waves do interact,
albeit very weakly. This weak interaction is all the same enough to cause wave
energy to “propagate” in the spectrum toward lower and higher frequencies, away
from the central area (the peak frequency) where the wind feeds energy into the
wave field (parameterized here through Sin). For a more detailed description of
the source terms, see for example Holthuijsen (2007).

3.4 Wave action

If the wave is riding on a current, the Doppler effect will lead an observer standing
on the shore to see a different frequency ω = σ + k · u. Here, σ = 2πf is
the intrinsic circular frequency which an observer riding on the current would
observe. This invalidates Eq (3.3.1). Wave energy is not conserved in the presence
of a slowly changing current because energy is transferred between the wave field
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and the mean current. Fortunately, the wave action density

N ≡ F/σ (3.4.1)

does what the wave energy density cannot: it is conserved in the presence of
currents,

∂N

∂t
+ ∇ · ((cg + u)N) = 0 (3.4.2)

(again in the absence of source terms). The wave action has a number of interest-
ing properties and is reminiscent of the Planck constant in quantum physics. The
energy density is proportional to F = σN—this can be seen from the definition
(3.4.1). We now make a statement which we will prove over the following two
sections: The wave pseudo-momentum density is proportional to

F

c
=
Fk

ω
= Nk. (3.4.3)

Here we have reverted to using ω = 2πf because we assume zero currents, in
which case σ = ω.

The action balance equation Eq (3.4.2) with source terms is written

∂N

∂t
+ ∇ · ((cg + u)N) =

∑
i

Si/ω. (3.4.4)

If we now multiply Eq (3.4.4) by ρgk and integrate it we get

ρg

∫ ∞
0

∂(Nk)

∂t
dω + ρg

∫ ∞
0

∇ · ((cg + u)Nk) dω = ρg
∑
i

∫ ∞
0

k

ω
Si dω.

(3.4.5)
Here, the i sums over the different source terms.

The relation between the wave momentum as defined through the Stokes drift in
(2.2) and our definition of wave momentum here is best explained as follows. The
Stokes transport equals the mean wave momentum, as shown in Eq (2.2.12). For
a single sine wave in intermediate water depth (Phillips, 1977), the Stokes drift is

uS(z) = a2ωk
cosh(2k(z + h))

2 sinh2(kh)
, (3.4.6)
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where h is the water depth. In deep water, where the general dispersion relation
reduces to (2.1.11), that is where ω2 = gk tanh kh ≈ gk when kh → ∞ (short
waves in deep water), this simplifies to

uS(z) = ωka2e2kz. (3.4.7)

Since the amplitude is related to the spectrum as a2/2 = F (ω)dω, we see that the
Stokes drift of a spectrum of deep-water waves is

uS(z) = 2

∫ ∞
0

ωke2kzF (ω) dω. (3.4.8)

The Stokes transport is the vertical integral of the Stokes drift,

US = 2

∫ 0

−∞

∫ ∞
0

kωe2kzF (ω) dω dz =

∫ ∞
0

ωF (ω) dω. (3.4.9)

Substituting ω = gk/ω for deep-water waves (2.1.11), we can now write

US = g

∫ ∞
0

k

ω
F (ω) dω. (3.4.10)

We now finally get to the end of this by noting that the wave momentum defined
in Eq (2.2.12) is

Mw = ρUS = ρg

∫ ∞
0

k

ω
F (ω) dω. (3.4.11)
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In this chapter we discuss the air-sea fluxes of mass, momentum and energy,
briefly describing common parameterisations. More importantly, we connect the
air-sea momentum and energy fluxes to the surface waves dynamics and the two-
dimensional wave spectrum described in the previous chapter.

4.1 Air-sea fluxes
The air-sea interface controls the transfer of matter, momentum and energy be-
tween the atmosphere and the ocean. This includes the transfer of heat, momen-
tum, salt (freshwater), trace gases (e.g. CO2), between the ocean and atmosphere.
The rate per unit area of these elements is termed flux. With regards to the air-
sea interface there are two primary distinctions for types of flux: radiative and
turbulent.

4.1.1 Radiative flux
Radiative fluxes are the absorption and emittance of electromagnetic (EM) radia-
tion and only contribute to the heat flux. There are two prominent bands of EM
radiation for air-sea interaction: shortwave (SW), which is the visible band origi-
nating from the sun, and longwave (LW), which is the infrared band that is emitted
by clouds and the ocean interface. The two bands are absorbed very differently
by the ocean with LW mostly being absorbed in the upper mm while SW can
penetrate on the order of 100 m depending on the biology.

The net heat flux is the sum of the radiative fluxes and two other sources which
will vary with turbulent processes: sensible heat (due to temperature difference
between ocean and atmosphere) and latent heat (due to evaporation). The net heat
flux is given by the equation

Qnet = QSW +QLW +QSH +QLH, (4.1.1)

where QSW is the net shortwave radiation, QLW is the net longwave radiation,
QSH is the net sensible heat, and QLH is the net latent heat.

The net shortwave is the difference between the downwelling and upwelling SW
radiation,

QSW = QSW ↓ −QSW ↑
= (1− α)QSW ↓,

(4.1.2)
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where α is the albedo defined as QSW ↑ /QSW ↓.

QLW = QLW ↓ −QLW ↑
= QLW ↓ −εLWσSBT 4

s − (1− εLW)QLW ↓
= εLW

(
QLW ↓ −σSBT 4

s

)
,

(4.1.3)

where εLW is the LW surface emissivity (εLW = 1 for black-body emission), σSB =
5.67 × 10−8 W m−2 K−4 is the Stefan-Boltzmann constant, and Ts is the surface
(skin) temperature, which is generally slightly cooler than the bulk fluid beneath.

4.1.2 Turbulent flux

Turbulent fluxes are, as the name suggests, fluxes which are controlled by turbu-
lent processes. Turbulent processes are important for the transfer of matter, mo-
mentum and energy. Air-sea fluxes we are focused on the vertical transport and
these are calculated from the correlation of the property (e.g. heat, momentum,
gas concentration) and the vertical velocity. This becomes,

Φx = 〈(x̄+ x′)(w̄ + w′)〉,
= 〈x̄w̄ + x′w̄ + x̄w′ + x′w′〉,
= 〈x′w′〉, (4.1.4)

where Φx is the flux, x̄ and x′ are the mean and variable components of the prop-
erty and w̄ and w′ are the mean and variable components of the vertical velocity.
By definition 〈x′〉 = 〈w′〉 = 0 and assuming the mean vertical velocity is 0
(w̄ = 0) then it is easy to show that only the turbulent components are important.

Figure 4.1 shows two timeseries with zero mean to represent two turbulent signals.
They are positively correlated so the associated flux would be positive. There can
exist large spikes in the instantaneous flux that are significantly larger than the
mean flux. This is referred to as intermittency, which is related to the statistical
distribution of the turbulent fluctuations.

So, the turbulent fluxes in the vertical direction for momentum, sensible heat, and
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Figure 4.1: Sample turbulent time series and their correlation.

latent heat are

τx = ρau′w′ (4.1.5)

τy = ρav′w′ (4.1.6)

QSH = ρacPθ′w′ (4.1.7)

QLH = ρaLEq′w′. (4.1.8)

where ρa is the air density, cP is the specific heat of air at constant pressure, and
LE is the latent heat of vaporization.

These fluxes, if measured directly (more on that in a bit), are measured on the
air-side of the air-sea interface and are assumed to be horizontally homogeneous
(i.e. turbulence statistics do not vary locally) and are continuous across the air-
sea interface. As the horizontally homogeneous assumption is with regards to
turbulence statistics this is generally valid in the ocean. The continuity assumption
is also generally valid, with the exception of the momentum flux as surface gravity
waves can influence the momentum balance between the ocean and atmosphere.
In general, waves are in equilibrium with the momentum stress in the atmosphere
and ocean (i.e. wave growth = wave dissipation), but there are a few instances,
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such as when waves are growing or swell propagation with no wind, that the waves
are either a net sink or source of momentum respectively.
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4.1.3 Bulk flux parameterizations

There are many challenges to directly measuring turbulent fluxes out at sea, and
such observations are, therefore, relatively rare. Amongst the many challenges are
having instruments with sufficient accuracy and precision to detect the turbulent
components of a given signal. Due to the increased resolution of the measure-
ments, other sources of noise, e.g. most notably flow distortion from the instru-
ment platform, must be accounted for. While such measurements are invaluable
for studying air-sea interaction, they are ultimately of limited use for many appli-
cations, most notably for ocean forecasting/prediction that do not directly solve
the turbulent components of the physical fields. It is, therefore, practical to look
for parameterizations for the turbulent fluxes using the mean values as these mean
values are easier to measure and can also be resolved by numerical models. These
parameterizations are called "bulk flux" parameterizations as they relate turbu-
lent processes with mean values of the bulk of the fluid. These parameterizations
are very important for climate modeling as uncertainties can accumulate to large
levels over climactic time scales.

At its simplest, we approximate the turbulent transfer using the associated mean
values, i.e.

w′x′ = c1/2x c
1/2
d S∆X, (4.1.9)

where x′ is any turbulent quantity as mentioned previously, cx is the transfer co-
efficient for the quantity x′, cd is momentum transfer, and ∆X is the difference
in the mean quantities of X across the air-sea interface. Often cx and cd are com-
bined to make a single turbulent transfer coefficient. The scale S denotes the
scalar difference in velocity across the air-sea interface

S2 = (ūa − ūo)2 + (v̄a − v̄o)2 + u2g, (4.1.10)

where the subscripts a and o denote the atmosphere and ocean respectively. In Eq.
(4.1.10) ug is a “gustiness” factor is added in order to have non-zero momentum
fluxes at low winds by parameterizing the effect of convection on momentum
transfer. Ths gustiness parameter is typically related to atmospheric stability and
a linear function of the convective velocity scale.

The classical form of the bulk fluxes for momentum, sensible heat and latent heat
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of vaporization are

τx = ρacdS∆ū, (4.1.11)
τy = ρacdS∆v̄, (4.1.12)

QSH = ρacPchS∆θ, (4.1.13)
QLH = ρaLEceS∆q, (4.1.14)

where ∆ denotes the difference across the air-sea interface, ρa is the air density, cP
is the specific heat of air at constant pressure, L is the latent heat of vaporization
and cd, ch and ce are the turbulent transfer coefficients for momentum, sensible
heat and latent heat of vaporization. Equations (4.1.11)-(4.1.14) are sometimes
also written in terms of the "turbulent scale value", which is denoted by a ∗ sub-
script, i.e.

τx = ρu2∗∆ū/S, (4.1.15)
τy = ρu2∗∆v̄/S, (4.1.16)

QSH = ρcPu∗θ∗, (4.1.17)
QLH = ρLEu∗q∗. (4.1.18)

4.1.4 Turbulent transfer coefficients
The key components in determining the turbulent transfer coefficient are the height
in the boundary layer where the bulk measurements are made z, the roughness
length of the the air-sea interface z0 and the stability of the atmospheric boundary
layer Φx(z/L) where L is the Obukhov length scale (L is the level where convec-
tive and shear forcing are similar). The stability function and Obukhov length will
be described in more detail in Chapter 5. For the general form of Eq. (4.1.9), the
transfer coefficient is

c1/2x =
κ

ln (z/z0x)− Φx (z/L)
, (4.1.19)

where κ is the von Kármán constant and is typically about 0.40. Equation (4.1.19)
assumes that under neutral stability (i.e. no convection or stratification) the the
turbulent velocity has a logarithmic profile, also referred to as "law of the wall",
at the height of the bulk measurements. Also, in (4.1.19) the roughness length z0x
will be different for momentum, sensible heat, etc. Therefore, we can write the
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turbulent transfer coefficients as

cd =

(
κ

ln (z/z0u) + Φu (z/L)

)2

, (4.1.20)

ch =

(
κ

ln (z/z0u) + Φu (z/L)

)(
κ

ln (z/z0t) + Φh (z/L)

)
, (4.1.21)

ce =

(
κ

ln (z/z0u) + Φu (z/L)

)(
κ

ln (z/z0q) + Φq (z/L)

)
, (4.1.22)

where the subscripts u, t and q denote momentum, sensible heat and latent heat.
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4.2 Wave-induced momentum and energy fluxes
Breaking waves inject turbulence kinetic energy into the ocean, and parameteri-
zations of this effect can be found in e.g. Gemmrich et al. (1994) and Craig and
Banner (1994). With some variations, in both cases the flux is made dependent
on the friction velocity u∗, but ultimately the energy flux into the ocean is by way
of the wave field. Since surface waves possess mean momentum (represented by
the Stokes transport), they also influence the air-sea momentum fluxes. We will
briefly describe the sea state dependent momentum and energy fluxes for the case
of a two-dimensional spectral representation of the wave field.

The total atmospheric flux of momentum, here denoted τa, is responsible both
for wave growth and also for accelerating the upper ocean mean currents through
turbulent drag. Thus we introduce the partition

τa = τao + τaw, (4.2.1)

where τao represents the direct acceleration of the mean Eulerian currents and τaw

represents the momentum flux into the wave field. As demonstrated by Longuet-
Higgins (1953), dissipation of the waves is associated with a momentum flux from
the waves to the mean Eulerian current, which is usually referred to as the ‘virtual
wave stress’ (Longuet-Higgins, 1969; Weber, 2001). We denote this momentum
flux τwo. The total flux of momentum into the mean Eulerian current, here denoted
τo, consequently has two sources:

τo = τao + τwo, (4.2.2)

that is, both the direct forcing by turbulent drag and the transfer of momentum
from dissipating waves. This partitioning of the momentum fluxes between the
atmosphere, the waves, and the Eulerian mean current is illustrated in Figure 4.2.

The equation for conservation of mean wave momentum is (Weber et al., 2006)

∂Mw

∂t
+∇h · Fw = τaw − τwo. (4.2.3)

Here Fw represents the advection of mean wave momentum by the group velocity
cg, i.e. for a monochromatic wave we have Fw = cgMw. Equation (4.2.3) is a
variant of the wave action equation (3.4.4), which is solved by numerical wave
prediction models. If the total atmospheric flux τa and the wave field is know,
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Figure 4.2: Partitioning of momentum fluxes for the case of deep water waves.
The nomenclature of the subscripts is ‘a’—total flux from the atmosphere, ‘ao’—
atmosphere to ocean, ‘aw’—atmosphere to waves, ‘wo’—waves to ocean, ‘o’—
total momentum flux into the ocean. The momentum flux from the atmosphere to
the waves may very well be negative, for example swell driven wind, the main
point is that the total momentum of the atmosphere-wave-ocean system must be
conserved.
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Eqs. (4.2.1), (4.2.2) and (4.2.3) can be combined to yield the effective stress into
the ocean:

τo = τa −
∂Mw

∂t
−∇h · Fw. (4.2.4)

If we integrate the momentum density defined in Section 3.1, Eq (3.4.3), now
dropping the “pseudo” warning, and multiply by ρg we get

Mw ≡ ρg

∫ ∞
0

k

ω
F (ω) dω = ρg

∫ ∞
0

kN(ω) dω, (4.2.5)

which has units [kg m s−1 m−2], ie, momentum per area. This is the spectral rep-
resentation of the wave momentum in Eq (2.2.12). The momentum fluxes into
the ocean, which drive the mean oceanic flows, can thus be expressed in terms of
the source functions in the wave action balance equation. The flux of turbulence
kinetic energy due to breaking waves can also be expressed in terms of the source
functions.

In coupled wave-ocean modeling systems we can exploit this dependence and
let the wave model communicate sea state dependent fluxes to the ocean model,
calculated from numerical integration of the time dependent source terms. One
caveat here is that numerical wave models have a spectral cutoff. The highest
frequency such models resolve is typically around 0.5 Hz, or a wave cutoff fre-
quency ωc of about 12.5 rad/s. Janssen (2012) argues that the total fluxes from the
atmosphere are quite well known, and hence we only need a quantification of the
difference between what goes into and what comes out of the waves. Furthermore,
it is implicitly assumed that there is a balance between input and dissipation in the
diagnostic part of the wave spectrum (ω > ωc). For the momentum flux into the
ocean we then have1

τo = τa − ρg
∫ wc

0

k

ω
(Sin + Sds) dω. (4.2.6)

Similarly, if we define the total energy flux from the atmosphere as Φa, we can
express the energy flux into the ocean as

Φo = Φa − ρg
∫ wc

0

(Sin + Sds) dω. (4.2.7)

1The dissipation source term Sds is by convention defined such that it is always negative.



50 CHAPTER 4. AIR-SEA FLUXES



Chapter 5

Upper ocean turbulence

51



52 CHAPTER 5. UPPER OCEAN TURBULENCE

The turbulence in the upper part of the ocean is, directly or indirectly, generated
by wind and waves. Turbulence is suppressed by stable stratification, hence the
air-sea heat and mass fluxes play an important role. Numerical ocean circulation
models contain parameterizations of the oceanic turbulence, which is used to as-
sess the effective eddy viscosity and eddy diffusivities that influence the mean
velocities and average salinity and temperature profiles. This chapter provides an
overview of two commonly used parameterizations.

5.1 The role of stratification
Vertical mixing of stratified fluids raises the potential energy, and therefore re-
quires mechanical energy. One source of mechanical energy is due to instabilities
associated with velocity shear. In the ocean the vertical shear dominates over
horizontal shear, and the shear production is typically represented by

S2 = (∂ū/∂z)2. (5.1.1)

Buoyancy is represented by the buoyancy frequency, or the Brunt-Väisälä fre-
quency as it is often called:

N2 = − g

ρ0

∂ρ

∂z
. (5.1.2)

The Richardson number1, Ri, is a nondimensional quantity that expresses the rel-
ative importance of TKE suppression by buoyancy and TKE production by the
shear flow:

Ri =
N2

S2
. (5.1.3)

For Ri < 0, the fluid is statically unstable, while for Ri > 0, the fluid is statically
stable. As the value decreases so that Ri < 0.25, buoyancy will typically be unable
to suppress shear production, and mechanical mixing will start to homogenize the
fluid.

In the ocean, the necessary mechanical energy comes from wind and waves. Sim-
ple models for how a wind-mixed, turbulent surface layer entrains into a stratified
fluid can be derived using energy considerations and dimensional analysis. Here
we will follow Turner and Kraus (1967) and consider a situation as depicted in
Fig. 5.1. At the surface there is a constant wind stress τ with an associated fric-
tion velocity u∗ =

√
τ/ρ0. The surface layer has density ρ1 = ρ0 − ∆ρ, and a

1The specific form shown here is typically referred to as the gradient Richardson number.
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Figure 5.1: A two-layer model for the entrainment of a turbulent surface layer
into the denser water masses of the ocean interior.

thickness h. The total water depth is d. The question now is how fast the surface
layer entrains into the layer below, that is, what is v = dh/dt? Turner and Kraus
(1967) consider three cases, briefly summarized below.

In the first case it is assumed that the density difference ∆ρ is negligible. Then the
only velocity scale is u∗, hence the entrainment velocity v must be proportional to
the friction velocity. In the second case, buoyancy effects are assumed to totally
dominate at the smallest scales. Returning to the Kolmogorov microscales from
Sec. 1.2.2, we require for the accelerations (buoyancy vs. the smallest turbulent
eddies) that

g∆ρ

ρ0
� lK

t2K
=

(
ε3

ν

) 1
4

.

The small scale turbulence is very efficiently damped out, and entrainment is
caused by "large eddies sweeping away the viscous boundary at the interface",
to use their own description. In the third, intermediate case we need to employ
energy considerations. First of all we note that since the total mass is conserved,
we will have

ρ1h+ (d− h)ρ0 = const., (5.1.4)
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which implies that h∆ρ is also constant. Secondly, we calculate the potential
energy Ep:

Ep =

∫ 0

−d
ρgz dz =

1

2
∆ρgh2 − 1

2
ρ0gd

2. (5.1.5)

Now, from (5.1.4) we obtain that C = ∆ρgh is constant. When we take the time
derivative of Ep, we therefore find that

dEp

dt
=
C

2

dh

dt
=

1

2
Cv. (5.1.6)

If the wind energy input is constant, and all the mechanical energy is used to in-
crease the potential energy by mixing, then it follows from (5.1.6) that the entrain-
ment velocity v is constant, and that the thickness of the surface layer increases
linearly in time. Turner and Kraus (1967) goes on to introduce the Richardson
number, which in this case becomes

Ri =
(g∆ρ/ρ0h)

(u2∗/h
2)

, (5.1.7)

and argue on dimensional grounds that we should have v/u∗ = f(Ri). For exam-
ple, Kato and Phillips (1969) found good agreement with f = 2.5Ri−1 in a rather
neat experiment involving an annular tank with constant surface stress provided
by a rotating disk (see Fig. 5.2).

5.2 Diagnostic turbulence schemes
With diagnostic turbulence schemes we aim to find expressions for the overall
effect of the turbulent mixing. Typically these expressions include the eddy vis-
cosity and diffusivity profiles, and also the time dependent surface (or bottom)
boundary layer thickness. Such schemes are not formulated as differential equa-
tions, but rather as a set of algebraic equations that only require knowledge about
the mean flow quantities and the surface (or bottom) fluxes. In ocean models, the
diagnostic scheme that is most widely used nowadays is arguably the “K profile
parameterization” (KPP). The KPP is based on a scheme originally developed for
the atmospheric boundary layer, and adapted to the ocean by Large et al. (1994).
Their derivation is instructive and based on sound physical reasoning, and below
we provide a brief summary of how the scheme is designed (ignoring the bottom
boundary layer).
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Figure 5.2: Nondimensional entrainment velocity as a function of Richardson
number. From the experiments of Kato and Phillips (1969), demonstrating a func-
tional relationship v/u∗ = 2.5Ri−1. Note that the motion is started from rest and
the density gradient is initially constant throughout the fluid, which is not the same
situation as the one depicted in Fig. 5.1.
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With the KPP scheme we determine the boundary layer depth, h, defined as the
limit to which the boundary layer eddies can penetrate in the vertical. Other def-
initions of the boundary layer thickness exist that are more commonly used, but
we will stick to h in this context. Now we need to introduce yet another verti-
cal length scale (and more will come!), namely the Obukhov length2, L, that was
briefly mentioned in Section 4.1.3:

L = − u3∗
κBf

, (5.2.1)

where κ = 0.4 is the von Kármán constant andBf is the buoyancy flux. A physical
interpretation of the Obukhov length is that it represents the depth where turbu-
lence production by the wind-induced shear equals the production by buoyancy.
The ratio |h/L| can be used as a measure of the stability of the water column.
Small values indicate a stable water column, and as the ratio increases the col-
umn can eventually become unstable leading to overturning (e.g. Sutherland et al.,
2013).

Next we need to consider the conditions near the surface. In the Monin-Obukhov
similarity theory (MO theory) it is assumed that the most important quantities here
are the distance to the surface, d, the surface flux of momentum, τ , the surface
flux of any scalar quantities, −w′x′, and the buoyancy flux, Bf . The MO theory
should be valid in the part of the boundary layer that is closest to the surface, that
is, for d/h < ε, where a typical value is ε = 0.1. In addition to the Obukhov
length, we use the turbulence parameters u∗ and S∗ = −w′x′/u∗. The MO theory
now states that there exist universal functions of the nondimensional distance to
the surface ζ = d/L:

φm(ζ) =
κd

u∗

∂|ū|
∂z

, (5.2.2)

φs(ζ) =
κd

S∗

∂x

∂z
. (5.2.3)

These functions can be found empirically and, by integration of (5.2.2) and (5.2.3),
used to determine the vertical profiles. Using subscripts "m" and "s" for momen-

2Often referred to as the Monin-Obukhov length due to its central place in Monin-Obukhov
similarity theory.
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tum and scalar quantities, respectively:

|ū| = |ū0|+
u∗
κ

[
ln

(
d

zm

)
+ ψm(ζ)

]
, (5.2.4)

S = S0 +
S∗
κ

[
ln

(
d

zs

)
+ ψs(ζ)

]
, (5.2.5)

where subscript 0 denotes surface values, and the functions ψm and ψs depend
on the stability, being zero for neutral conditions. The values of the roughness
lengths zm and zs depend on the physical conditions of the surface. The universal
functions (5.2.2) and (5.2.3) will be used later on to determine the boundary layer
viscosity and diffusivities.

A central part of the KPP scheme is that it allows for non-local transport in the
boundary layer. That is, for any quantity x, the vertical turbulent flux is modeled
as

− w′x′ = Kx

(
∂x

∂z
− γx

)
. (5.2.6)

From this expression we see that the turbulent flux may be nonzero even in the
case where we have no vertical gradient in the mean quantity x. This non-local
transport, represented by the term γx, can be due to several processes such as
convective plumes, Kelvin-Helmholtz instabilities, horizontal roll vortices, and so
on. What these processes have in common is that they are typically anisotropic
and asymmetric. For example, Langmuir circulation cells are (roughly) aligned
with the wind, and convective plumes are typically much more narrow than the
compensating return flows.

We define a nondimensional vertical coordinate σ = d/h (recall that d is the
distance to the surface, which means that d = −z in the ocean), and assign a
prescribed vertical shape to the boundary layer diffusivity:

Kx(σ) = hwx(σ)G(σ). (5.2.7)

Here wx is a turbulent vertical velocity scale, and G is a fourth-order polynomial
such that the diffusivity and its gradients can be matched to any specific values
at the top and bottom of the boundary layer. For σ < ε the MO theory applies,
and wx can be obtained via (5.2.3) and (5.2.6). A continuous turbulent vertical
velocity scale wx, valid throughout the boundary layer, is then

wx(σ) =

{
κu∗

φx(εh/L)
, ε < σ < 1,

κu∗
φx(σh/L)

, σ < ε.
(5.2.8)
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From these expressions we see that wx is proportional to u∗. The universal func-
tions are equal to unity for neutral conditions. For stable conditions, we have
φx > 1, which reduces wx, and hence directly contributes to reducing the dif-
fusivity value and as a consequence the vertical mixing. For unstable conditions
we have the opposite case, with φx < 1 and hence enhancement of the verti-
cal mixing. Modifications to these expressions have been suggested, for example
to accommodate the effect of Langmuir circulation (McWilliams and Sullivan,
2000).

The time dependent value of h is obtained from the mean velocities and density
using a bulk Richardson number:

Rib =
(Br −B(d))d

|ūr − ū(d)|2 + V 2
t (d)

. (5.2.9)

Here subscript r indicates an average value taken in the surface layer (σ < ε),
and Vt/d represents a turbulent velocity shear that is assumed proportional to the
buoyancy frequency N (the full expression is quite complex). The turbulent ve-
locity shear dominates during convection when the mean flow shear is small. The
value of h is found as the smallest value of d when Rib becomes equal to a critical
value.

Below the boundary layer, the vertical mixing is assumed to result from three
processes: (i) resolved vertical shear, (ii) internal wave breaking, and (iii) double
diffusion, each process being parameterized as a depth dependent eddy diffusivity.
The overall eddy diffusivity is simply the sum of these such that

νx(d) = νsx(d) + νwx (d) + νdx(d). (5.2.10)

The interior diffusivity and the gradient is matched to the values in the boundary
layer. The shear instability term ν

us(d)
x is taken to be a function of the Richard-

son number (5.1.3), the internal wave breaking term νwx (d) is constant, while the
double diffusion term νdx(d) is a function of the density stability ratio, Rρ:

Rρ =
α(∂T/∂z)

β(∂S/∂z)
. (5.2.11)

Here α is the thermal expansion coefficient and β is the haline contraction coeffi-
cient. Efficient numerical implementations of the KPP scheme have been made in
community general ocean circulation models such as ROMS and HYCOM, and
in one-dimensional column models such as GOTM. The KPP scheme is typically
far less computationally costly than the prognostic schemes that we discuss in the
next section.



5.3. PROGNOSTIC TURBULENCE SCHEMES 59

5.3 Prognostic turbulence schemes
One criticism of diagnostic schemes is that they are tuned to perform well for a
limited range of environmental conditions, hence the need for turbulence schemes
with wider applicability. With commonly used prognostic schemes, we explic-
itly solve the TKE equation (A.6.2) and derive the eddy viscosity and diffusiv-
ities assuming both are proportional to k

1
2 l, with k = |u′|2/2 being the TKE

per unit mass and l the length scale of the turbulent eddies. Since we already
have the equation governing k, we only need to determine l to close the system
of equations. Estimating the length scale is not straightforward, however, and in
the so-called "two-equation models" a separate prognostic equation is introduced.
This latter equation solves for the time dependent development of l, or some other
quantity associated with the turbulence scales.

In Generic Length Scale (GLS) theory (Umlauf and Burchard, 2003), which is
commonly applied in modern ocean circulation models (e.g. Warner et al., 2005),
a generic parameter ψ is introduced:

ψ = (c0µ)pkmln. (5.3.1)

Here c0µ is a stability coefficient, and m, n and p are constants. By adjusting
these constants, the generic length scale ψ can take on different forms, and we can
recover classic turbulence schemes such as the k-ε scheme (m = 1.5, n = −1.0),
the Mellor-Yamada level 2.5 scheme (m = 1.0, n = 1.0), and the k-ω scheme
(m = 0.5, n = −1.0). In these examples, the generic length scale ψ have units
m3/s2, m2/s3, and 1/s, respectively.

Following Umlauf and Burchard (2003), we write the TKE equation as
Dk

Dt
= Dk + P +G− ε, (5.3.2)

with Dk representing the transport (diffusive) term, P shear production, G pro-
duction by buoyancy, and ε is the dissipation rate as before. An equation for ψ is
formulated on the basis of being dimensionally correct and similar to the equations
for ε and ω that are used in the k-ε and k-ω schemes (not shown here):

Dψ

Dt
= Dψ +

ψ

k
(cψ1P + cψ3G− cψ2ε) . (5.3.3)

Here the cψi are constants and Dψ is a transport term equivalent to the one in
(5.3.2). The dissipation rate is taken to be

ε = (c0µ)(3+
p
n
)k(

3
2
+m

n
)ψ−(

1
n
), (5.3.4)
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and from this expression we obtain the turbulence length scale as

l = (c0µ)3k
3
2 ε−1. (5.3.5)

Typical values of the coefficient c0µ are about 0.55, which means that l ≈ 0.17k3/2/ε.

We define the eddy viscosity νt and the eddy diffusivity κt as

νt = (k
1
2 l)SM + ν, (5.3.6)

κt = (k
1
2 l)ST + κ, (5.3.7)

where ν and κ refer to laminar and molecular values, respectively. The terms SM

and ST are typically referred to as stability functions (in some of the literature
referred to as “structure functions”). These functions are obtained using so-called
Algebraic Reynolds Stress models, in which the Reynolds stresses are explicitly
modeled with second-moment closure (e.g. Canuto et al., 2001). The details of
these algebraic models are outside the scope of this compendium, but it should be
clear at this point that the GLS model contains a number of tunable parameters.
In fact, Umlauf and Burchard (2003) argue that each parameter is an indepen-
dent constraint on the scheme’s behaviour, and hence more parameters means that
more physically diverse scenarios can be accounted for with the same turbulence
scheme. The introduction of the generic length scale, and the parameters m and
n, in that sense provide even more flexibility. Umlauf and Burchard (2003) intro-
duce a specific (“generic”) parameter set based on a range of numerical experi-
ments representing different types of oceanic flows, in particular an upper ocean
boundary layer with turbulence injection from breaking waves.

Introducing two constant turbulent Schmidt numbers σk = νt/κk and σψ = νt/κψ,
we write the transport terms as

Dk =
∂

∂z

(
κk
∂k

∂z

)
, (5.3.8)

Dψ =
∂

∂z

(
κψ
∂ψ

∂z

)
. (5.3.9)

The remaining source terms are given by

P = νt

∣∣∣∣∂ū∂z
∣∣∣∣2 , (5.3.10)

G = −κtN2, (5.3.11)
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where N is the buoyancy frequency as before.

Finally, both k and ψ need boundary conditions at the surface and the bottom. For
k a simple no-flux condition at the bottom is applied, and a surface flux condition
can accomodate injection of TKE by breaking waves as mentioned in Section 4.2.
For the generic length scale ψ it is not so straightforward. One way of implement-
ing boundary conditions is to use (5.3.1) and formulate boundary conditions for
the length scale l. Close to the boundaries it is assumed that the length scale is
associated with the surface and bottom roughness (see e.g. the implementation by
Warner et al., 2005). This method thus requires roughness length estimates. The
bottom roughness can be quantified if its physical properties are known (for ex-
ample sandy vs. rocky bottom), but what values to choose for the case of a wavy
boundary layer is unfortunately not so obvious.
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While the preceding chapters have dealt with the processes that influence the up-
per ocean drift velocities, this final chapter focuses on the drift velocities them-
selves. We briefly review a few simplified models of upper ocean transport, and
also look at the wave-induced Coriolis-Stokes force, the possible mechanisms for
damping the upper ocean flows, and finally the modeling of buoyant tracers. The
latter is particularly relevant to operational oceanography and decision support
systems for accidental oil spills and search-and-rescue operations, as well as for
the simulation of marine litter transport pathways.

6.1 Wind driven currents

The classic view of wind driven currents is attributed to Ekman (1905) who looked
at the response to the wind stress of a rotating ocean. The Ekman response is a
balance of the Coriolis term and the wind-induced stress. Assuming a steady state:

1

ρ

∂τx
∂z

= −fv, (6.1.1)

1

ρ

∂τy
∂z

= fu, (6.1.2)

where τx,y is the stress in the x and y directions, ρ is the water density, and f is
the Coriolis paramter. Furthermore, assuming the stress can be expressed using
an eddy viscosity

τx = Az
∂u

∂z
(6.1.3)

τy = Az
∂v

∂z
, (6.1.4)

whereAz is the vertical eddy viscosity. Substituting (6.1.3) and (6.1.4) into (6.1.1)
and (6.1.2) and assuming Az is a constant (as Ekman did) we get two equations
which we can solve

Az
∂2u

∂z2
= −fv, (6.1.5)

Az
∂2v

∂z2
= fu. (6.1.6)
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The solution to (6.1.5) and (6.1.6) is

uE = U0 cos

(
π

4
+

z

δE

)
ez/δEsgn (f) , (6.1.7)

vE = U0 sin

(
π

4
+

z

δE

)
ez/δE , (6.1.8)

where δE is the Ekman depth and is given by

δE =

(
Az
|f |

)1/2

, (6.1.9)

and U0 can be calculated by evaluating the surface stress condition, i.e. substitut-
ing (6.1.7) and (6.1.8) into (6.1.3) and (6.1.4)

Uo =

√
2τ

δEρ |f |
. (6.1.10)

This solution is the classic “Ekman spiral” where the surface currents are 45◦ to
the right of the wind (left in southern hemisphere) and rotate to the right and de-
crease exponentially in magnitude with greater depth. The time dependent prob-
lem is closely linked to inertial oscillations, which we will discuss more in detail
later on (see Fig. 6.1).

Spirals as predicted by Ekman are rarely observed in the ocean. The most likely
suspect is the constant eddy viscosity assumption, but others such as the steady
wind and homogeneous ocean may also play a role. Observations typically show
a smaller deflection at the surface on the order of 10-30◦ and a more rapid de-
cay and faster rotation with depth, although drifter studies show regional dif-
ferences, which may be related to differences in stratification (Röhrs and Chris-
tensen, 2015).

Another important topic is the Ekman transport, which is the vertically integrated
Ekman velocity. By integrating Eqs. (6.1.1) and (6.1.2) from the bottom of the
Ekman layer to the surface, it is easy to show that the transport is perpendicu-
lar to the wind and is to the right (left) in the northern (southern) hemisphere.
It should be noted in particular that the Ekman transport is independent of Az
and is only a function of wind stress, density and Coriolis parameter. Coastal
upwelling/downwelling are attributed to Ekman transport offshore/onshore due to
prevailing winds.
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Figure 6.1: Hodographs of the time dependent surface current in Ekman flow. The
motion starts from rests and develops in response to a sudden onset of constant
wind stress. The "Fredholm" solution assumes a constant eddy and is the one
presented in Ekman’s original work, while the other is from Madsen (1977), who
introduced an eddy viscosity that increases linearly away from the surface. In both
cases the surface currents are damped inertial oscillations that tend toward the
steady state solution. The eddy viscosity profile used by Madsen yields a smaller
angle of deflection between the wind stress and the surface current (from Madsen,
1977, Fig. 2).
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6.2 Damped slab models of the upper ocean
In most of the ocean, the vertical structure can typically be described as a well-
mixed upper layer—which can range in thickness from meters to hundreds of
meters—on top of a stratified deep ocean, with a relatively constant density gra-
dient. Models of the upper ocean which assume constant density are referred to
as “slab” models, and have been a popular model for investigating transient cur-
rents in the upper ocean (Pollard and Millard, 1970). These models assume that
the stress from the wind is transported throughout the mixed layer much faster
than timescales associated with acceleration or rotation and hence the ocean can
be reasonably be approximated as a slab.

The slab is a 1-D vertical model and assumes the upper ocean is homogeneous in
density and velocity (hence the slab). The primary forces are due to acceleration,
Coriolis, wind stress and a a dissipative term due to the transfer of energy from
the mixed layer to the deep ocean. Parameterizing the loss of energy from the
mixed layer to the deep ocean as a linear function of the mixed layer velocity and
a damping coefficient r allows for the momentum equations to be written as

∂u

∂t
− fv =

τx
Hρ
− ru, (6.2.1)

∂v

∂t
+ fu =

τy
Hρ
− rv, (6.2.2)

where H is the mixed layer thickness. The equations can be simplified further by
making use of the complex identities

Z = u+ iv, (6.2.3)

T =
τx + iτy

ρ
, (6.2.4)

α = r + if, (6.2.5)

so that equations (6.2.1) and (6.2.2) can be written as

∂Z

∂t
+ αZ =

T

H
. (6.2.6)

Equation (6.2.6) has some well known properties. For example, with no wind
(T = 0) the solution is Z(t) = Z(0)e−αt = Z(0)e−(if+r)t which describes a ve-
locity which rotates clockwise to the right (northern hemisphere) with a frequency
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f and the magnitude decays exponentially with a rate r. For a steady wind, such
that equation (6.2.6) reaches a steady state, the solution is

ZE =
T

αH
=

−iT

fH (1− ir/f)
, (6.2.7)

which is the mean Ekman velocity in the mixed layer slightly modified by the
damping coefficient r. Typically r/f � 1 and the modification due to the damp-
ing coefficient is minimal.

The total current can then be written as the sum of the steady-state current ZE and
the time-varying component, which are commonly referred to as inertial currents

ZI = Z − ZE. (6.2.8)

Substituting (6.2.8) and(6.2.7) into (6.2.6) gives the equation for the inertial oscil-
lations

∂ZI

∂t
+ αZI = − 1

α

∂(T/H)

∂t

=
T

αH

(
1

H

∂H

∂t
− 1

T

∂T

∂t

)
. (6.2.9)

6.3 The diurnal cycle in the upper ocean
The ocean has a rather large heat capacity and the diurnal range in temperature
is modest compared to that of the atmosphere. Nevertheless, when the weather is
fair there may be an appreciable impact of the solar heating. In such situations,
the wind will typically change from calm in the morning to a fresh breeze during
midday, then dropping again in the evening. The combined effects of strong solar
forcing and varying winds may lead to a curious diurnal cycle in the upper ocean.

Since the atmosphere is (mostly) transparent to shortwave radiation, the energy
is absorbed or reflected at the surface level. Shortwave radiation therefore con-
tributes to destabilizing the lower atmosphere, particularly over ground. In con-
trast, the ocean is almost opaque. The shortwave radiation can, in very clear
waters, penetrate to O(100m) depth, although most of the energy is absorbed in
the upper few meters. The surface layer heats up and the temperature stratification
that develops is stabilizing. While the solar forcing suppresses turbulence, wind-
induced shear flow produces turbulence, and the structuring of the upper ocean
changes throughout the day as these two mechanisms battle for supremacy.
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Figure 6.2: The diurnal cycle of the upper ocean during fair weather, i.e. sunny
days with calm winds. Solar heating decouples a thin surface layer from the water
below, thus creating a remnant layer that is isolated from the atmospheric forcing.
Daytime winds create near surface shear flows that erode the thermocline between
the surface and the remnant layer. At night the ocean loses heat, and overturning
resets the ocean surface boundary layer structure (from Sutherland et al., 2016).



70 CHAPTER 6. UPPER OCEAN DRIFT CURRENTS

The diurnal cycle can be studied using simple and conceptual "Price-Weller-Pinkel
type" models (Price et al., 1986). Such models include budgets for the momen-
tum, heat, and freshwater content in the ocean surface boundary layer above the
seasonal pycnocline, and use turbulence mixing schemes based on bulk and gra-
dient Richardson numbers. An idealized depiction of the diurnal cycle is shown
in Fig. 6.2. At night the net heat flux is negative, which leads to overturning. In
the morning the boundary layer is therefore well mixed. As the sun starts to heat
the ocean, the temperature stratification and associated turbulence suppression de-
couples the upper few meters from the rest of the boundary layer, leaving behind
a remnant layer that becomes isolated from the atmospheric forcing. The wind
ramps up during the day and shear-flow turbulence starts to erode the thermocline
at the base of the surface layer, leading to a mixing of heat into the remnant layer
below. Finally, when the sun sets and the net heat flux becomes negative, the heat
loss will eventually lead to overturning and a new cycle can start next morning.

The decoupling of the surface layer means that the entire momentum flux from
the atmosphere goes into a much thinner layer than in the absence of strong solar
forcing, and thus the velocities in this layer become much larger. These strong
currents are referred to as the diurnal jet. The more intense the shortwave forcing
is, the shallower the surface layer will be, which leads to increasingly stronger jet.
On the other hand, a strong jet in a very thin layer obviously leads to large rates
of shear-flow turbulence production so that the near surface thermocline erodes
more quickly. The overall amplitudes of the diurnal cycle are therefore variable
and depend on the magnitudes of the momentum flux τ , the net heat fluxQ and the
vertical gradient in the net heat flux due to the absorption of shortwave radiation
∂Q/∂z (see also Fig. 6.3).
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Figure 6.3: Hysteresis curves (solid lines) illustrating the diurnal cycle. Data from
the West Pacific at about 30 degrees north. In the morning (indicated by the "+"
sign) both the boundary layer heat content anomaly and the difference between
the surface and bulk temperatures are close to zero. Absorption of shortwave en-
ergy increases both the heat content and the surface-bulk temperature difference.
In the afternoon the shortwave flux becomes small and wind-forced turbulent en-
trainment of heat becomes dominant, which reduces the temperature difference
but not the heat content. Finally, during the night the heat flux becomes negative
and the upper ocean heat content is reduced (from Price et al., 1986, panels 3 and
4 from their Fig. 2).
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6.4 Inertial oscillations with waves

6.4.1 The Coriolis-Stokes force
In earlier sections we discussed the mean momentum in the surface waves, and
how this momentum is represented by the Stokes drift. As we saw in Sec. 6.2,
transient changes in atmospheric forcing generate time dependent inertial cur-
rents, and these currents are influenced by the wave-induced drift as shown below.
First of all, we will derive the Coriolis-Stokes force (Ursell, 1950; Hasselmann,
1970), which is an addition to the Coriolis force that is added to the Eulerian mo-
mentum equations whenever surface waves are present. The Coriolis-Stokes force
can be derived in several ways, e.g. using a direct Lagrangian approach (Weber,
1983), quasi-Lagrangian coordinates (Broström et al., 2008) or by evaluation of
the wave Reynolds stresses as in Hasselmann (1970).

For the derivation we will ignore horizontal gradients in the mean quantities. We
will also neglect laminar stresses, assuming that the Reynolds stresses dominate.
Expanding u = ū + ũ + u′, and after averaging over the turbulence and wave
scales, the mean momentum equation becomes:

∂ū

∂t
+ f × ū = − ∂

∂z
{w̃ũh} −

∂

∂z
〈w′u′h〉. (6.4.1)

The turbulent Reynolds stresses carry the momentum fluxes from the atmosphere
and waves into the mean flow, which means that

− ∂

∂z
〈w′u′h〉 = ρ−1

∂τ

∂z
. (6.4.2)

Now we use the linearized equation for the wave motion, retaining the Coriolis
term. Noting that the pressure gradient force is orthogonal to w:

− ∂

∂z
{w̃ũh} = − ∂

∂z
{w̃
∫

(ρ−1∇hp̃− f × ũ) dt} = −f × ūS. (6.4.3)

The right-hand side here is the Coriolis-Stokes force (per unit density). It should
properly be part of the forcing in any Eulerian general ocean circulation model.
In practice the implementation of the Coriolis-Stokes force is not so straightfor-
ward, despite the fact that all the information needed is readily available. The
reason is that the Coriolis-Stokes force, just like the usual Coriolis force, acts like
a body force, and hence it needs to be distributed over the vertical layers in the
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ocean model. To do this properly we need to integrate the two-dimensional wave
spectrum over all wave directions and frequencies for every vertical level, at ev-
ery horizontal grid point, and at every output time step for which the forcing is
needed, see (3.4.8). Such computations quickly become too costly for operational
forecasting systems but fortunately good approximations to the Stokes drift profile
exist that are based on the much more readily available spectral moments (Breivik
et al., 2016; Breivik and Christensen, 2020).

We now return to the integrated momentum equations (6.2.1) and (6.2.2). For
simplicity, we ignore horizontal gradients, the Rayleigh friction terms and any
currents in the deep ocean. We define the transports such that

Ū =

∫ 0

−∞
ū dz.

Using (6.4.1), (6.4.2) and (6.4.3):

∂Ū

∂t
+ f × (Ū + ŪS) =

τo
ρ
, (6.4.4)

where τo is the effective stress acting on the ocean as defined in (4.2.4). Recall
that the mean wave momentum is the Stokes transport multiplied by the density:

Mw = ρŪS. (6.4.5)

Going back to (4.2.4), again ignoring horizontal gradients, we see that we can
write the effective stress on the ocean as

τo = τa − ρ
∂ŪS

∂t
. (6.4.6)

We now define the Lagrangian transport

ŪL =

∫ 0

−∞
(ū+ ūS) dz.

Then from (6.4.4) and (6.4.6), we finally find that

∂ŪL

∂t
+ f × ŪL =

τa
ρ
. (6.4.7)

In the absence of any atmospheric forcing of either the mean flow or the waves,
this equation simply describe inertial oscillations of the total upper ocean transport
ŪL, that is, inertial oscillations in a Lagrangian sense. The Coriolis-Stokes force
will typically contribute to some extra veering of the surface currents (Polton et al.,
2005), and since it acts at right angles to the total momentum, it does not directly
contribute to the total mean kinetic energy (Weber et al., 2015).
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6.4.2 Near inertial waves
Near inertial waves (NIW) are waves that are influenced by rotation (Sec. 8 of
Gill, 1982, is an excellent reference). One classical example is that of Poincaré
waves, which are plane surface waves with a dispersion relation

ω2 = f 2 + ω2
0, (6.4.8)

where ω0 = κ
√
gH is the frequency of shallow water gravity waves in the absence

of rotation, with κ =
√
k2 + l2 being the horizontal wave number and H the local

water depth. It is clear that ω > ω0. One property of Poincaré waves is that
the plane of motion changes from being entirely vertical to entirely horizontal
in the limits ω → ω0 and ω → f , respectively. In the former case we simply
have a shallow water gravity wave, while in the latter case we have pure inertial
motion, or inertial oscillations, so that any passively drifting object will describe
anticyclonic circular trajectories. In this limit of an infinitely long wave, the group
velocity goes to zero (the energy equipartition principle of Sec. 2.2 does not apply
to Poincaré waves).

With the exception of the simplified linear Rayleigh friction model of Sec. 6.2, we
have not discussed in what ways the upper ocean may lose energy to the deeper
layers. Internal gravity waves can propagate from the base of the mixed layer
into the ocean interior, and such waves can obviously also be influenced by ro-
tation. The generation of these internal gravity waves will typically be due to
time-varying changes in the mixed layer depth, for example associated with the
passage of a low pressure system. For a single Fourier component, the dispersion
relation of such internal waves may be written (Gill, 1982):

ω2 = f 2 +N2α2. (6.4.9)

where α = κ/m is the aspect ratio and m is the vertical wave number. N is the
buoyancy frequency as before. The dispersion relations (6.4.8) and (6.4.9) are
clearly analogous. If the horizontal component of the wave length is much larger
than the vertical (as is typically the case), we have α � 1, and hence ω will be
close to f . At the same time, the vertical component of the group velocity cgz is
approximately

cgz = −N
2α2

mf
,

so that the vertical transport of energy strongly depends on the aspect ratio and
the vertical wave number, with short vertical wave lengths implying slow vertical
transport (see e.g. Alford et al., 2016).
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We will not go into details here, but will note that the NIWs might take the
form of (i) higher mode waves that propagate downward, and are associated with
strong shear and elevated turbulence levels, and (ii) low mode (mode-1) oscilla-
tions that propagate equatorward due to the beta-effect. The presence of coast-
lines makes the problem considerably more complicated, and additional coastally
trapped modes may be generated (see e.g. Kelly, 2019).

6.5 Oceanic drift of buoyant materials

6.5.1 Vertical dynamical balance
Bouyant materials include for example plankton (e.g. fish eggs), plastics and oil
droplets. Such materials have finite size and we will in the following refer to
them as particles. In this way we can generalize and describe the dynamics of
such materials that have the same physical characteristics on short time scales
through the vertical distribution, or concentration C(x, y, z, t) given in “particles
per liter”. For small particles we usually neglect inertia. Any particle situated at a
given depth z is then advected horizontally by the Lagrangian velocity

ūL(z) = ū(z) + ūS(z). (6.5.1)

In the absence of any currents each particle will rise through the water column
with a terminal velocity wt. This velocity is a function of the buoyancy of the par-
ticle and the Reynolds number Re = wtd/ν, where d is the diameter of the particle
and ν is the kinematic viscosity. Depending on the buoyancy and the particle size,
the upward motion may be laminar or (partially) turbulent. For example, Sundby
(1983) assumes laminar flow for Re < 0.5. The terminal velocity is then given by
the Stokes equation:

wt =
1

18

gd2∆ρ

ν
, (6.5.2)

where ∆ρ is the density difference. For Re > 0.5 it is assumed that the motion is
not fully turbulent, but that there is an intermediate regime in which the terminal
velocity is

wt = KId0

(
∆ρ2

ν

)3

. (6.5.3)

Here the KI is a constant and the d0 = d−ζD, where d is the true diameter and D
is the largest diameter for which (6.5.2) applies. Finally we have the constant ζ =
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0.4, which means that the effective diameter d0 is reduced by at most 40% from
the true diameter (obviously we need to require that d > D). Other formulations
for the terminal velocity can of course be used and tested.

Assuming a steady state, the requirement that the mass is conserved leads to an
advection-diffusion equation for the particle concentration C:

∂

∂z
(wtC) =

∂

∂z

(
Kt
∂C

∂z

)
, (6.5.4)

where Kt(z) is the depth dependent eddy diffusivity. Since C → 0 and ∂C/∂z →
0 as z → −∞ (buoyant particles!) we can simply integrate (6.5.4) and we obtain

∂

∂z
(lnC) =

wt

Kt

. (6.5.5)

We have also used
1

C

∂C

∂z
=

∂

∂z
(lnC).

Defining the surface concentration C0 = C(z = 0), we can integrate this equation
and finally arrive at

C(z) = C0 exp

(
−
∫ 0

z

(wt/Kt) dz′
)
. (6.5.6)

The simplest case is that of a constant eddy diffusivity and constant rise velocity
(Sundby, 1983), then C(z) = C0 exp[(wt/Kt)z]. Large Kt and small wt means
that the material is distributed over a large depth (and vice versa) that scales as
D ∝ Kt/wt. Using the particle concentration C, we may introduce an effective
transport velocity uC and a characteristic concentration depth scale DC (Drivdal
et al., 2015):

uC =

∫ 0

−∞ ūLC dz∫ 0

−∞C dz
, (6.5.7)

DC =

∫ 0

−∞C dz

C0

. (6.5.8)

The concentration depth scale can be compared with other depth scales, for exam-
ple the Ekman depth δE, for a qualitative assessment of the horizontal dispersion.

6.5.2 Some applications
See https://opendrift.github.io/.

https://opendrift.github.io/


Appendix A

Governing equations

A.1 The material derivative
The total (material) derivative is the temporal derivative (using the chain rule)
following a material particle with velocity u,

Dγ

Dt
≡ ∂γ

∂t
+ u ·∇γ. (A.1.1)

Here, γ can be any conserved scalar or vectorial quantity.

A.2 The mass conservation equation
The mass conservation equation

∂ρ

∂t
+ ∇ · (ρu) = 0 (A.2.1)

can be considered an identity (Kundu, 1990). By rewriting it in terms of the
material derivative,

Dρ

Dt
+ ρ∇ · u = 0 (A.2.2)

we see that if the fluid is incompressible, i.e., Dρ/Dt = 0, we get the continuity
equation,

∇ · u = 0. (A.2.3)

77



78 APPENDIX A. GOVERNING EQUATIONS

The mass conservation equation (A.2.1) simply expresses that a local change in
density is a result of divergence/convergence in the advective transport. The equa-
tion (A.2.1) is given in so-called conservative or flux form, and is well suited for
implementation in numerical solvers. The mass conservation equation in (A.2.3)
is given in so-called standard form.

A.3 The momentum equation
The Navier-Stokes equation (Kundu, 1990), or momentum equation for a viscous
fluid, is

Du

Dt
= −1

ρ
∇p− gẑ + ∇ · (τ/ρ), (A.3.1)

where p is the pressure, τ the deviatoric (ie, the stress after the hydrostatic pres-
sure is removed) stress tensor and ẑ the vertical unit vector (positive upwards).
Eq (A.2.1) can be used to recast the momentum equation (A.3.1) in flux form,

∂

∂t
(ρu) + ∇ · (ρuu) = −∇p− ρgẑ + ∇ · τ . (A.3.2)

This can also be written (Kundu 1990, p 85) in tensor form as

∂ρui
∂t

+
∂

∂xj
(ρuiuj) = −∂p

xj
− ρgδi3 +

∂τij
∂xj

. (A.3.3)

The same technique is used to rewrite scalar conservation equations for salinity
and temperature.

A.4 The Coriolis effect
The fictitious Coriolis force must be included in a rotating (accelerated) frame of
reference,

Du

Dt
+ 2Ω× u = −1

ρ
∇p− gẑ + ∇ · τ . (A.4.1)

A simplified set of equations appears when we consider the f -plane approxima-
tion, where only the rotation perpendicular to the local plane on latitude φ is con-
sidered, f = 2Ω sinφ,

Du

Dt
+ f ẑ × u = −1

ρ
∇p− gẑ + ∇ · (τ/ρ). (A.4.2)
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A.5 Boussinesq approximation
The Boussinesq approximation states that density differences are negligible com-
pared with the gravitational acceleration and hence only need be accounted for in
the gravity term where it is multiplied by g (Kundu 1990, p 112). According to
Pond and Pickard (1983), p 61,

Boussinesq said that, if the density variations are fairly small, to a first
approximation we can neglect their effect on the mass (ie, inertia) of
the fluid but we must retain their effect on the weight. That is, we
must included the buoyancy effects but can neglect the variations in
horizontal accelerations for a given force due to the mass variations
with density (which are at most 3% if we use an average over the
whole ocean for ρ or α). Thus in the horizontal momentum equations
(x- and y-directions) we can use an average density over the region
being considered but in the z-equation, which reduces to the hydro-
static equation, we must use the actual in situ values when calculating
the pressure field.

A.6 The turbulence kinetic energy equation
The turbulence kinetic energy equation is derived from the momentum equation
(A.3.1) by taking the dot product with the velocity and performing Reynolds av-
eraging. It can be written as [(Stull, 1988), p 152]

De

Dt
=

g

ρw
u′3ρ

′ − u′iu′j
∂ui
∂xj
− u′iu′j

∂vi
∂xj
− ∂

∂xj
(u′je)−

1

ρw

∂

∂xi
(u′ip

′)− ε. (A.6.1)

Here, e ≡ q2/2 = u′iu
′
i/2 is the TKE per unit mass (with q the turbulent velocity)

and ε is the dissipation [see e.g. Stull (1988) p 152].

By making the gradient transport closure approximation (Stull, 1988), ignoring
advective terms and horizontal gradients, and rewriting in vectorial form we arrive
at

∂e

∂t
= −νhN2 + νmS

2 + νmS ·
∂us

∂z
− ∂

∂z
(w′e)− 1

ρw

∂

∂z
(w′p′)− ε. (A.6.2)

Here we have reverted to using z for the vertical axis and w for vertical velocities.
We recognize in Eqs (A.6.1)–(A.6.2) the familiar terms of the TKE equation [see
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Stull 1988, Eq (5.1a)], namely shear production, S2 = (∂u/∂z)2, and buoyancy
production through the Brunt-Vaisälä frequency, N2 = −(g/ρ)dρ/dz (νm,h are
turbulent viscosity and diffusion coefficients, respectively) as well as the diver-
gences of the pressure correlation term w′p′ and turbulent transport w′e. We have
also here included the shear of the Stokes drift, which is not usually included.



Bibliography

Alford, M.H., MacKinnon, J.A., Simmons, H.L., Nash, J.D., 2016. Near-Inertial
Internal Gravity Waves in the Ocean. Annual Review of Marine Science 8,
95–123.

Breivik, O.y., Bidlot, J.R., Janssen, P.A.E.M., 2016. A Stokes drift approximation
based on the Phillips spectrum. Ocean Modelling 100, 49–56.

Breivik, Ã., Christensen, K.H., 2020. A Combined Stokes Drift Profile under
Swell and Wind Sea. J. Phys. Oceanogr. 50, 2819–2833.

Broström, G., Christensen, K.H., Drivdal, M., Weber, J.E.H., 2014. Note on
Coriolis-Stokes force and energy. Ocean Dyn. 64, 1039–1045.

Broström, G., Christensen, K.H.k., Weber, J.E.H., 2008. A Quasi-Eulerian, Quasi-
Lagrangian View of Surface-Wave-Induced Flow in the Ocean. Journal of Phys-
ical Oceanography 38, 1122–1130.

Buckingham, E., 1914. On Physically Similar Systems; Illustrations of the Use
of Dimensional Equations. Physical Review 4, 345–376. doi:10.1103/
PhysRev.4.345.

Canuto, V.M., Howard, A., Cheng, Y., Dubovikov, M.S., 2001. Ocean Turbulence.
Part I: One-Point Closure Model Momentum and Heat Vertical Diffusivities. J.
Phys. Oceanogr. 31, 14.

Craig, P.D., Banner, M.L., 1994. Modeling Wave-Enhanced Turbulence in the
Ocean Surface Layer. J. Phys. Oceanogr. 24, 2546–2559.

Drivdal, M., Broström, G., Christensen, K.H., 2015. Wave-induced mixing and
transport of buoyant particles: application to the Statfjord A oil spill. Ocean
Sci. 10, 977–991.

81

http://dx.doi.org/10.1103/PhysRev.4.345
http://dx.doi.org/10.1103/PhysRev.4.345


82 BIBLIOGRAPHY

Ekman, V.W., 1905. On the influence of the earth’s rotation on ocean-currents.
Ark. Mat. Astron. Fys. 2, 1–52.

Gemmrich, J., Mudge, T., Polonichko, V., 1994. On the energy input from wind
to surface waves. J. Phys. Oceanogr. 24, 2413–2417.

Gill, A.E., 1982. Atmosphere-ocean dynamics. International geophysics series,
Academic Press, New York.

Gradshteyn, I., Ryzhik, I., 2007. Table of Integrals, Series, and Products, 7th
edition. Edited by A. Jeffrey and D. Zwillinger, Academic Press, London.

Hasselmann, K., 1970. Wave driven inertial oscillations. Geophys. Fluid Dyn. 1.

Holthuijsen, L., 2007. Waves in Oceanic and Coastal Waters. Cambridge Univer-
sity Press.

Janssen, P.A.E.M., 2012. Ocean wave effects on the daily cycle in SST. J. Geo-
phys. Res. 117, 24 pages.

Kato, H., Phillips, O.M., 1969. On the penetration of a turbulent layer into strati-
fied fluid. J. Fluid Mech. 37, 643–655.

Kelly, S.M., 2019. Coastally Generated Near-Inertial Waves. Journal of Physical
Oceanography 49, 2979–2995.

Kundu, P.J., 1990. Fluid Mechanics. Academic Press, London.

Large, W.G., McWilliams, J.C., Doney, S.C., 1994. Oceanic vertical mixing: A
review and a model with a nonlocal boundary layer parameterization. Rev.
Geophys. 32, 363–403.

Longuet-Higgins, M.S., 1953. Mass Transport in Water Waves. Phil. Trans. Roy.
Soc. A 245, 535–581.

Longuet-Higgins, M.S., 1969. A nonlinear mechanism for the generation of sea
waves. Proc. Roy. Soc. London A , 371–389.

Madsen, O.S., 1977. A realistic model of the wind-induced Ekman boundary
layer. J. Phys. Oceanogr. 7, 248–255.

McWilliams, J., Sullivan, P.P., 2000. Vertical mixing by Langmuir circulations.
Spill Science & Technology Bulletin 6, 225–237.



BIBLIOGRAPHY 83

Ortiz-Suslow, D.G., Wang, Q., Kalogiros, J., Yamaguchi, R., 2020. A method for
identifying Kolmogorov’s inertial subrange in the velocity variance spectrum.
J. Atmos. Ocean. Technol. 37, 85–102.

Phillips, O.M., 1977. The Dynamics of the Upper Ocean. 2 ed., Cambridge
University Press, Cambridge.

Pollard, R.T., Millard, R., 1970. Comparison between observed and simulated
wind-generated inertial oscillations. Deep-Sea Res I 17, 813–821.

Polton, J.A., Lewis, D.M., Belcher, S.E., 2005. The role of wave-induced
Coriolis-Stokes forcing on the wind-driven mixed layer. Journal of Physical
Oceanography 35, 444–457.

Pond, S., Pickard, G., 1983. Introductory Dynamical Oceanography, 2nd edition.
Pergamon.

Price, J.F., Weller, R.A., Pinkel, R., 1986. Diurnal cycling: Observations and
models of the upper ocean response to diurnal heating, cooling, and wind mix-
ing. J. Geophys. Res. 91, 8411.

Röhrs, J., Christensen, K.H., 2015. Drift in the uppermost part of the ocean.
Geophysical Research Letters , 8 pp.

Sprintall, J., Cronin, M., 2001. Upper Ocean Vertical Structure, in: Encyclopedia
of Ocean Sciences. Elsevier, pp. 3120–3128.

Stokes, G.G., 1847. On the theory of oscillatory waves. Trans. Cambridge Philos.
Soc. 8, 441–473.

Stull, R.B., 1988. An introduction to boundary layer meteorology. Kluwer, New
York.

Sundby, S., 1983. A one-dimensional model for the vertical distribution of pelagic
fish eggs in the mixed layer. Deep Sea Res. 30, 645–661.

Sutherland, G., Marié, L., Reverdin, G., Christensen, K.H., Broström, G., Ward,
B., 2016. Enhanced Turbulence Associated with the Diurnal Jet in the Ocean
Surface Boundary Layer. J. Phys. Oceanogr. 46, 3051–3067.

Sutherland, G., Ward, B., Christensen, K.H., 2013. Wave-turbulence scaling in
the ocean mixed layer. Ocean Sci. 9, 597–608.



84 BIBLIOGRAPHY

Turner, J.S., Kraus, E.B., 1967. A one-dimensional model of the seasonal ther-
mocline I. A laboratory experiment and its interpretation. Tellus 19, 88–97.

Umlauf, L., Burchard, H., 2003. A generic length-scale equation for geophysical
turbulence models. J. Mar. Res. 61, 235–265.

Ursell, F., 1950. On the theoretical form of ocean swell on a rotating earth. Geo-
phys. J. International 6, 1–8.

Warner, J.C., Sherwood, C.R., Arango, H.G., Signell, R.P., 2005. Performance
of four turbulence closure models implemented using a generic length scale
method. Ocean Model. 8, 81–113.

Weber, J.E., 1983. Attenuated wave-induced drift in a viscous rotating ocean. J.
Fluid Mech. 137, 115–129.

Weber, J.E., 2001. Virtual wave stress and mean drift in spatially damped surface
waves. J. Geophys. Res. 106, 11653–11657.

Weber, J.E.H., 2019. Lagrangian studies of wave-induced flows in a viscous
ocean. Deep Sea Res. 160, 68–81.

Weber, J.E.H., Broström, G., Saetra, Ø., 2006. Eulerian versus Lagrangian ap-
proaches to the wave-induced transport in the upper ocean. J. Phys. Oceanogr.
36, 2106–2118.

Weber, J.E.H., Drivdal, M., Christensen, K.H., Broström, G., 2015. Some aspects
of the Coriolis-Stokes forcing in the oceanic momentum and energy budgets.
Journal of Geophysical Research 120, 5589–5596.


	Basic concepts
	Introduction
	Dimensional analysis

	Surface waves
	Solution for a single wave component in deep water
	Mass, momentum and energy transport in surface gravity waves

	Spectral representation of surface waves
	Statistical properties of the surface wave field
	The variance density spectrum
	Wave energy balance equation
	Wave action

	Air-sea fluxes
	Air-sea fluxes
	Wave-induced momentum and energy fluxes

	Upper ocean turbulence
	The role of stratification
	Diagnostic turbulence schemes
	Prognostic turbulence schemes

	Upper ocean drift currents
	Wind driven currents
	Damped slab models of the upper ocean
	The diurnal cycle in the upper ocean
	Inertial oscillations with waves
	Oceanic drift of buoyant materials

	Governing equations
	The material derivative
	The mass conservation equation
	The momentum equation
	The Coriolis effect
	Boussinesq approximation
	The turbulence kinetic energy equation


