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Chapter 5

Outline

 Understand the concept of radiation balance between intake
and loss of energy by the earth and atmosphere

 Observed climatology of atmospheric temperature, pressure,
humidity, ad wind.

Readings: Chapter 5



Energy is transferred by

* radiation (no mass exchange, no medium required, radiation moves at the speed of
light);

* conduction (no mass exchanged, heat transferred by vibration and collision among
atoms and molecules), and

* convection (mass exchanged, fluid parcels with different amounts of energy change
places, the net movement of mass is not necessary for energy to be transferred).
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The General Circulation
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The role of the general circulation is to redistribute energy from
the tropics (surplus) to the poles (deficit)



Meridional transport -> local energy balance -> transport of energy
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Figure 5.6: The northward energy transport deduced by top of the

atmosphere measurements of incoming and outgoing solar and

terrestrial radiation from the ERBE satellite. The units are in

PW = 10"°W (see Trenberth and Caron, 2001). This curve is

deduced by integrating the “net radiation” plotted in Fig. 5.5

meridionally. See Chapter 11 for a more detailed discussion.
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Meridional transport -> local energy balance -> transport of energy
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Meridional winds - Hadley’s suggestion
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Figure 5.19: The circulation envisaged
by Hadley (1735) comprising one giant
meridional cell stretching from equator
to pole. Regions where Hadley
hypothesized westerly (W) and easterly
(E) winds are marked.
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The General Circulation - Tropics

The Hadley circulation
describes a large (almost half
the surface of the Earth)
thermal circulation
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(Fig. 5.18 and 5.19 Marshall and Plumb)




The General Circulation - Tropics
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Figure 5.18: Drying due to convection. Within the updraft, air
becomes saturated and excess water is rained out. The
descending air is very dry. Because the region of ascent is rather
narrow and the descent broad, convection acts as a drying agent
for the atmosphere as a whole.
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* With updraft air became saturated ->
producing precipitation

* Top cloud -> lower T than ground ->
lost most its water




http://www.nasa.gov/topics/earth/features/vapor_warming.html
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The distribution of atmospheric water vapor, a significant greenhouse gas, varies across the
globe. During the summer and fall of 2005, this visualization shows that most vapor collects at
tropical latitudes, particularly over south Asia.




Zonal-Average Specific Humidity (g/kg)
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Figure 5.15: Zonally averaged specific humidity g, Eq. 4-23, in g kg™' under annual mean

conditions. Note that almost all the water vapor in the atmosphere is found where T> 0°C
(see Fig. 5.7).
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specific humidity mass of water vapor to the mass of air per
unit volume defined thus:



ZO N A L W I N D S Zonal-Average, Zonal-Wind (m/s)

Pressure [mbar)

Pressure [mbar]

Pressure [mbar)

Figure 5.20: Meridional cross-section of zonal-average zonal wind (ms™") under
annual mean conditions (top), DJF (December, January, February) (middle) and
JJA (June, July, August) (bottom) conditions.
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ZONAL WINDS
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Meridional Overturning Circulation (10° kg/s)
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Figure 5.21: The meridional overturning streamfunction ? of the atmosphere in
annual mean, DJF, and JJA conditions. [The meridional velocities are related
toy by v=—(pacosp)! dy/dz;w=(pa®cos )’ i/ dp Units are in 10° kg s,
or Sverdrups, as discussed in Section 11.5.2. Flow circulates around positive
(negative) centers in a clockwise (anticlockwise) sense. Thus in the annual
mean, air rises just north of the equator and sinks around +30°.
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TEMPERATURE IN THE TROPOSPHERE

Zonal-Average Temperature (°C)
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Figure 5.7: The zonally averaged annual-mean temperature in °C.
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Annual mean pole-equator temperature difference of 40 degrees Celsius



POTENTIAL TEMPERATURE
DRY OR SUPERSATURATED CONDITIONS

Perfect gas law p = pRT

First law of thermodynamics 60 = c,dT + pdV

3

Under adiabatic conditions: K = R/Cp =2/7

0 T p D

Cp:specific heat capacity

The potential temperature of a parcel of fluid at pressure is the temperature that the parcel
would acquire if adiabatically brought to a standard reference pressure, usually 1000 millibars.



Stability

unstable 0 <0
neutral if e =0 . (4-18)
stable ‘2 /) E > ()

Attitude to convective systems: Potential temperature is a useful measure of the stability
of the unsaturated atmosphere

If the potential temperature decreases with height, the atmosphere is unstable to
vertical motions.



Zonal-Average rFotential lemperature (K)
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Figure 5.8: The zonally averaged potential temperature in (top) the annual mean,
averaged over (middle) December, January, and February (DJF), and (bottom)
June, July, and August (JJA).
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EQUIVALENT POTENTIAL TEMPERATURE
SATURATED CONDITIONS

Under adiabatic conditions:

L
0, = Oexp C—?r ) (4-30)
p

Equivalent potential temperature 8, is conserved.

Temperature of a parcel of air that would reach if
all the water vapor in the parcel were to condense, releasing its
latent heat, and the parcel was brought adiabatically to stantdard
reference pressure 1000mbar



O, = 0exp | — (4-30)

Zonal-Average Moist Potential Temperature (K)
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Figure 5.9: The zonal average, annual mean equivalent potential temperature, ¢, Eq. 4-30.
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TEMPERATURE IN THE TROPOSPHERE AND STRATOSOPHERE
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Figure 5.10: The observed, longitudinally averaged temperature
distribution (T) at northern summer solstice from the surface to a
height of 100 km (after Houghton, 1986). Altitudes at which the
vertical T gradient vanishes are marked by the dotted lines and
correspond to the demarcations shown on the T{z) profile in Fig. 3.1.
The —60°C isopleth is thick. Note the vertical scale is in km compared
to Fig. 5.7, which is in pressure. To convert between them, use Eq. 3-8.
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Figure 1.5: Saturation vapor pressure e,
(in mbar) as a function of Tin °C (solid curve).

(From Wallace & Hobbs, (2006).)



PRESSURE COORDINATE

op qp
—_— = - 3-5
Z RT (3-5)
o0z  RT (5-1)
oo gp’ ‘
or, noting that p 52) = a]anp,
0z RT
- -_H,
dlnp g

Isothermal atmosphere:
T&H const with zand p

z varies as Inp

p varies exponentially with z



Vertical Structure — Pressure / Height
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GEOPOTENTIAL HEIGHT

where we have set z(ps) = 0

Geopotential height high in warm conditions



Monthly mean

. & /
< - e o\ A /
' - . r '.‘._ P P
= " » > 1
- b {
nif 1 RN
§ e - '_'f.’ T . 3’ 8
\_’ (‘ \ Ny _- .
e J
\ NAI60

N -1£B“=. -90
Figure 5.12: The mean height of the 500 mbar surface in January, 2003 (monthly mean).
The contour interval is 6 decameters = 60 m. The surface is 5.88 km high in the tropics and
4.98 km high over the pole. Latitude circles are marked every 10°, longitude every 30°.
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THICKNESS OF PRESSURE LAYERS

Pr. T d
Zz—Z1=RJ ——P,
P2 g p

(5-4)



TILT OF PRESSURE SURFACE
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Figure 5.14: Warm columns of air expand, cold columns
contract, leading to a tilt of pressure surfaces, a tilt which
typically increases with height in the troposphere. In
Section 7.3, we will see that the corresponding winds are
out of the paper, as marked by e in the figure.
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Each surface tilting steeper



Layer Thickness, Temperature & Wind(defined by slope)
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Summary:

We saw how warming the tropical atmosphere and cooling over the poles leads to
large scale slope of pressure surface (EQ-Pole).



