
GEF2200 Atmospheric Physics

Exam 2006

Tuesday 13th of June

Solution

Problem 1

a. Potential temperature is the temperature an air parcel will have when com-
pressed or expanded adiabatically to the reference pressure p0 = 1000hPa.

The equation for it is derived by using the First law of thermodynamics, where
the heat added to the system dq is zero:

dq = cpdT − αdp = 0 (1)

and then insert α from the equation of state:

dT

T
−

R

cp

dp

p
= 0 (2)

Integrating from T , p to the reference level θ, p0 we have

∫ θ

T

dT

T
=

R

cp

∫ p0

p

dp

p
(3)

ln
θ

T
=

R

cp

ln
p0

p
= ln

(

p0

p

)
R
cp

(4)

θ = T

(

p0

p

)
R
cp

(5)

which is the equation for potential temperature.

θ is an important parameter in atmospheric thermodynamics because most of
the thermodynamic processes in the atmosphere are adiabatic, meaning that
θ is conserved.

b. Lifting condensation level (LCL) is the level where an air parcel reach satu-
ration when lifted adiabatiaclly.

To find the pressure at LCL when p1 = 900hPa and T1 = 20◦C, and T2 =
13◦C, we use the equation for potential temperature with reference level p1,
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T1 instead of p0, θ and solve for p2:

T1 = T2

(

p1

p2

)
R
cp

(6)

p1

p2

=

(

T1

T2

)

cp

R

(7)

p2 = p1

(

T1

T2

)

−
cp

R

(8)

p1 = 900hPa

(

286.15K

293.15K

)

−
1004JK−1kg−1

287JK−1kg−1

(9)

= 827hPa (10)

c. The relative humidity before lifting is given by

RH =
w(T1)

ws(T1)
100% (11)

and using the relationship between w and e

RH =
e(T1)/p1

es(T1)/p1

100% =
e(T1)

es(T1)
100% (12)

es(T1) can then be calculated directly from the equation given, but for e(T1)
we need to see that

w(p1) = ws(p2) (13)

ε
e(T1)

p1

= ε
es(T2)

p2

(14)

e(T1) = es(T2)
p1

p2

(15)

then we insert the equation for es and insert for T1 and T2:

RH =
e(T1)

es(T1)
100% =

es(T2)
p1

p2

es(T1)
100% (16)

=
es(T2)

es(T1)

p1

p2

100% (17)

=
exp

[

L
Rv

(

1

273
−

1

T1

)]

exp
[

L
Rv

(

1

273
−

1

T2

)]

p1

p2

100% (18)

=
exp

[

L
Rv

(

1

273
−

1

293.25

)

]

exp
[

L
Rv

(

1

273
−

1

286.15

)

]

900hPa

827hPa
100% (19)

= 69% (20)
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Even more elegant:

RH =
exp

[

L
Rv

(

1

273
−

1

T1

)]

exp
[

L
Rv

(

1

273
−

1

T2

)]

p1

p2

100% (21)

= exp

[

L

Rv

(

1

T2

−

1

T1

)]

p1

p2

100% (22)

= exp

[

L

Rv

(

1

293.25
−

1

286.15

)]

900hPa

827hPa
100% (23)

= 69% (24)

d. The average turbulent vertical transports of θ, q and u below 400m are

w′θ′ = 0 No transport of heat (25)

w′u′ > 0 Downward transport of momentum (26)

w′q′ < 0 Upward transport of moisture (27)

(28)

There is no transport of heat, because ∂θ/∂z = 0, so the air is neutral between
0 and 400m. Above 400m we have ∂θ/∂z > 0, so there the air is stable.

Problem 2

a. The mechanisms we have for ice particle growth in cold clouds are 1. deposition
from vapor phase, 2. riming of supercooled droplets on the crystal and 3.
aggregation.

b. The equation for growth by collision

dr

dt
=

vswlEc

4̺l

(29)

can be used for ice particle growth mechanisms which undergo collision, which
are riming (collision of ice particle and supercooled droplets) and aggregation
(collision of ice particles).

c. To find the radius of a growing ice particle that collects (collides) with super-
cooled droplets, we use Equation (29) and insert the given values.

vs =
r2̺ig0

72η
(30)

wl = 0.5g/m3 = 5 · 10−4kg/m3 (31)

η = 1.7 · 10−5 (32)

g0 = 9.81ms−1 (33)

r0 = 100µm = 10−4m (34)

Ec = 0.6 (35)
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And then we get

dr

dt
=

r2̺ig0

72η

wlEc

4̺i

(36)

∫ r

r0

dr

r2
=

∫ t

0

g0wlEc

4 · 72η
(37)

−

[

1

r
−

1

r0

]

=
g0wlEc

288η
t (38)

And for t = 15min = 15 · 60 = 900s, we solve for r

1

r
=

1

r0

−

g0wlEc

288η
900s (39)

=
1

10−4m
−

9.81ms−2
· 5 · 10−4kg/m3

· 0.6

288 · 1.7 · 10−5
900s (40)

= 9459m−1 (41)

r =
1

9459
m = 1.06 · 10−4m = 106µm (42)

A particle growing by riming is a graupel.

d. Water vapor pressure over a droplet relative to a plane surface of water (and
therefore the surroundings) is given by

e′

es

= 1 +
a

r
−

b

r3
(43)

where a = 2σ
nkT

and b = 3imMw

4Msπ̺
.

e′/es Relative humidity over the droplet.

a/r Constant depending on the surface stress of the droplet divided by droplet
radius. Called the curvature effect, which is large for small droplets.

b/r3 Constant depending on the amount of salt solved in the droplet divided
by the r3. This term is called the solute effect, and is important for small
droplets, where the concentration of salt iones is large. For the smallest
droplets this effect is more important than the curvature effect, allowing
droplets to reach activation by reducing the necessary supersaturation to
form droplets.

This means that the solute effect is most important for activating a droplet.
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Problem 3

a. The sketch ...

Eλ Incoming irradiance

dEλ Absorbed irradiance

z Height

dz Thickness of layer

kλ Absorbtion coefficient

̺ Density of air

φ The zenith angle

This equation shows how much of incoming monochromatic irradiance is ab-
sorbed when passing through a layer of thickness dz. When integrated from
z = ∞ to z, we find the relationship between transmissivity and the optical
depth

ln

(

Eλ

Eλ,∞

)

= ln τ = −σλ (44)

where

σλ =

∫

∞

z

kλ̺ sec(φ)dz (45)

b. Inserting the density profile

̺(z) = ̺(0) exp

(

−z

H

)

(46)

where H =const is the scale height, into the equation of the optical thickness

σλ =

∫

∞

z

kλ̺ sec(φ)dz (47)

= ̺(0)kλ sec(φ)

∫

∞

z

exp

(

−z

H

)

dz (48)

= kλ̺(0) sec(φ)H exp

(

−z

H

)

(49)

= Hkλ̺(0) sec(φ) exp

(

−z

H

)

(50)

c. With φ = 0, sec(φ) = 1, and we have

̺(0) = 1kgm−3

H = 10km

kλ = 1kgm−2
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so that the optical thickness given by Equation (50) can be written

σλ = Hkλ̺(0) sec(φ) exp

(

−z

H

)

= 10km · exp

(

−z

10

)

(51)

and inserting for z = 40, 30, 20 and 10km, we get optical thicknesses
z [km] σλ

40 0.18
30 0.50
20 1.35
10 3.68

d. The transmissivity τ from the top of atmosphere down to the heights specified
are given by

τ =
Eλ

Eλ,∞

= exp(−σ) (52)

so we have
z [km] σλ τ
40 0.18 0.835
30 0.5 0.607
20 1.35 0.259
10 3.68 0.025

e. For an atmosphere with no scattering, the absorbtivity is related only to trans-
missivity: a = 1 − τ , giving
z [km] σλ τ a
40 0.18 0.835 0.165
30 0.5 0.607 0.393
20 1.35 0.259 0.741
10 3.68 0.025 0.975

f. Looking at where the change in absorbtivity is largest, we see that this is
between 20 and 30km.
z [km] σλ τ a ∆a
40 0.18 0.835 0.165

0.228
30 0.5 0.607 0.393

0.348
20 1.35 0.259 0.741

0.243
10 3.68 0.025 0.975

The maximum change in absorbtivity is located where the optical thickness
close to unity. In fact, it can be shown that the largest change in absorbtivity
is at an optical depth of unity.
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