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Primitive equations

m

omentum:
%u+ﬁ-Vu—|—fyw_fo: —%a%erNQu
%v+ﬁ- Vo + fou= _%%eryvzv
%w+ﬁ-vw—fyuz_%%p—g+Vv2w
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Primitive equations

-

Continuity:

%erﬁ-VerpV-ﬁ:O

|deal gas:
p = pRT
Thermodynamic energy:

i’ | da _ dI_ dp _ dq
“ar P TPy Yw T @

o -
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Primitive equations

-

Six equations, six unknowns:

® (u,v,w)— velocities
® p— pressure

® p— density

® T — temperature

o -
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Primitive equations

- .

Momentum equations <« F = ma
Continuity <« p
Thermodynamic energy equation <« T

|deal gas law relates p, p and T

o -
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-

S

olve the equations numerically with weather models

Prediction

Issues:

9
9
9
9
9

Numerical resolution
Vertical coordinate
Small scale mixing
Convection

Clouds

Goal: forecasting

o

=

-
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-

S

Dynamics

olve a simplified set of equations

9
9
N
9

|ldentify dominant balances

Simplify the equations

Obtain solutions (analytical, numerical)
Look for similiarities with observations

Goal: understanding the atmosphere

o

-
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Momentum equations

.

ake the x-momentum equation:

which is like:

/



Momentum equations

- .

Two types of forces:

1) Real 2) Apparent

Two ways to write the derivative:

1) Lagrangian  2) Eulerian

o -
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Derivatives

-

Consider an air parcel, with temperature T
T=T(x,y,z,1)

The change in temperature, from the chain rule:

0 oT oT oT
dl' = —T o o S
> d+8xdx+8ydy+8zdz

o -
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Derivatives

So:
d_T—gT_|_ a_T_|_ 8_T_|_ 6_T
dt Ot " or U&’y Y52
0,
= —T +u-VT
. +u-V

4 is the “Lagrangian” derivative

% + u - V Is the “Eulerian” representation

o -
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T(ty)

L agrangian

\

T(t2)




Eulerian




-

Real forces

#® Pressure gradients
o Gravity

® Friction



Pressure gradient

oy

0z

Xo ¥, Zo

OX

OV = o0x 0y 0z



Pressure gradient

-

Use Taylor series:

oG 1 0*G _
G(SC()—F(SCC)—G(ZCQ)—F%&C—I—g@&C + ...

Pressure on the right side of the box:

Op ox

p = p(zo, Yo, 20) + 97 9 T

Pressure on left side of the box:

Op 0x

p = p(zo,Y0,20) — —— + ...
L oxr 2 J
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Pressure gradient

-

The force on the right hand side (directed inwards):

Op ox
p = —[p(z0, Yo, 20) + %7] 0Y0z
On left side:
Op ox
p = |[p(x0, Yo, 20) — %7] dydz
So the net force Is:
F,. = —@ 0T 0Y 02

o o -
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Pressure gradient
E

he volume weighs:

m = poxroyoz
So:
F; 1 Op
Uy = — = —— —
m p Ox

Same derivation for the y and =z directions.

o -
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Momentum eguations

fMomentum: T

dw_ 10
dt paxp
dv 10 N
dt p@yp
dw 10 N
dt p@zp

o -
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Gravity
-

Acts downward (toward the center of the earth):

F,

a, = — = —¢
m

dw 10

o -
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Friction

B -
I OTzx0Z
0z 2

T

0z

______________________

_ OTzx0Z 5
6z 2 | y

TZX

o -
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Friction

-

Net viscous force (stress x area) of the boundaries acting
on the fluid :

=

0T,y 02 OT.p 02
(sz‘|‘ - 2)5I5y—(7'2$— 5, 2)5:17(5y
a;'zx 0T 0Y 02

Divide by the mass of the box:

1 OTsy
F,,=-

o -
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Friction

-

Similar derivations for 7., 7.4, ...

Applied to z-direction:

@ B 1 (073333 0Ty 87'23;)
dt p° Ox 0y 0z

Problem: we don’t know the stresses (..., etc.)!

o -
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Friction

-

So we parameterize the stress, assuming molecular mixing:

-

101, 10  Ou

0 0z = ;(‘9,2(“82)
If 1. IS constant:
Lor, _ | O
p 0z 922

where the molecular viscosity is:

y="1 —146x1075 m?/sec

p

o -
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Friction
A

pplied to the z-direction:

du O?
=V —1

dt 022

e Friction acts to diffuse momentum

e Reduces the velocity shear.

o -
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Momenutum equations

-

With the friction terms, have:

du 2 2 2 ,

dv 92 92 92 ,
%—V(@U—I—a_ﬁv"_ﬁv)—yvv
duw 2 92 ,
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S

o far:

Momentum equations

du 0 . 10 9
E—afcm—u-VU——;%p%—uv U
dv 0 . 10 9
%—EU—FUwVU— payp—l—VVv
dw 0 . 10 5
E—aw—l—u-Vw— ;gp g+ vV-ow

-
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Apparent forces

Space Earth



Rotation




Rotation

- .

00 = ot

Assume 2 = const. (reasonable for the earth)

Change in A is 0 A, the arc-length:

5A = | A|sin(7)60 = Q|A|sin(y)dt = ( x A) 6t

o -
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Rotation

So:

—

dA

T _Ox A
it :

This Is the motion of a fixed vector. For a moving vector:

dA dA L
(E)F = (E)RJFQ X A

So the velocity in the fixed frame Is equal to that in the
rotating frame plus the rotational movement

o -
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Rotation

o .

If A =7, the position vector, then:

If A=, we getthe acceleration:

du du S d
(—Sf)F:(%)RJFQX’JF:[E(uRJrQX’F)]RJeruF
duR =

= (—— o )R+2(2><uR+Q><Q

o -
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Rotation
R

earranging:

duR duF

— 20 Q x Q x
(dt) (dt)F X Up — € X

Two additional terms:

® Coriolis acceleration — —20 x iip

#® Centrifugal acceleration — —Q x Q x 7

o
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Centrifugal acceleration

. .

Rotation requires a force towards the center of
rotation—the centripetal acceleration

From the rotating frame, the sign is opposite—the
centrifugal acceleration

Acceleration points out from the earth’s radius of rotation

So has components in the radial and N-S directions

o -
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Centrifugal




Centrifugal
-

The earth is not spherical, but has deformed into an oblate
spheroid

=

As a result, there is a component of gravity which exactly
balances the centrifugal force in the N-S direction

Defines surfaces of constant geopotential

The locally vertical centrifugal acceleration can be
absorbed into gravity:

g ~g—QOxQx7

o -
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Centrifugal
-

Example: What is the centrifugal force for a parcel of air at
the Equator?

=

—Ox QO x7=-Qx(Qr) =%

with:
r. = 6.378 x 10° m
and:
2
() = i sec
3600(24)

o -
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Centrifugal

So:

O%r, = 0.034 m/sec?

This is much smaller than g = 9.8 m?/sec

e Only a minor change to absorb into ¢’

o -
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Geopotential

-

Gravity represented as the gradient of a potential:

Vo =—g
Because § = —gk, then ¢ = ¢(z)

If we set ¢ = 0 at sea level, then:

qﬁ(Z):/Ongz

o -
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Cartesan coordinates

=

fEarth radius at equator is only 21 km larger than at the
poles

So can use spherical coordinates

However, we will primarily use Cartesian coordinates

# Simplifies the math
#® Neglected terms are unimportant at weather scales

o -
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Cartesian coordinates




Coriolisforce

=

fRotation vector projects onto local vertical and meridional
directions:

20) = 2Q0c0s0 7 + 2Q0sind k = fy§'+fz k

So the Coriolis force is:

—20 x i = —(0, fy, [2) X (u,v,w)

— _(fyw T fzva fzua _fyu)

o -
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Momentum equations

-

Move Coriolis terms to the LHS:

1
%u—l—ﬁ- Vu+ fyw — fzv = —;—aaxp—i—VVQU
1
%U+E-Vv+fzu: —;(%p%—uV%
0 . 10
aw—ku-Vw—fyu: —;Ep—g%—VV%U

o -
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Coriolisforce

-

Example: What is the Coriolis force on a parcel moving
eastward at 10 m/sec at 45 N?

We have:

fy = f» = 2Qcos(45) = (7.292 x 107°)(0.7071)

— 5.142 x 107° sec !

20 x @ = —(0, fy, f-) X (1,0,0) = —fou j + fyuk
= (0, —5.142 x 1074, 5.142 x 10™%) m/sec?

o -
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Coriolisforce

- .

Vertical acceleration is negligible compared to gravity
(g = 9.8 m/sec?), so has little effect in z

Horizontal acceleration is to the south

o Coriolis acceleration is most important in the horizontal
direction

# Acts to the right in the Northern Hemisphere

o -
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Coriolisforce

-

In the Southern hemisphere, 6 < 0. Same problem, at 45 S:

=

fy — QQCOS(—45) — —5H.142 x 10_5 sec Ll = — 1,
—20) x @ = (0,45.142 x 1074 =5.142 x 10~%) m/sec?

Acceleration is to the north, to the left of the parcel velocity.

o -
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Continuity

Xo ¥, %0

0z

OX

-
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Continuity
-

Consider a fixed volume

Density flux through the left side:

0 Ox
pu = 5-(pu) =] 0y 0z

Through the right side:

0 Ox
pu+ 5 (pu)—-] oy oz

o -
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Continuity
- o

So the net rate of change in mass is:

0 0 Ox

5y (P01 0y 0z) = [pu — ——(pul—-) 9y 0z
0 oz 0
—[pu + %(pu)T] 0y 0z = —%(pu)ﬁm Oy 0z

The volume §V Is constant, so:

= (ow
at" ~ " or

o -
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Continuity
-

Taking the other sides of the box:

%Z—V(pﬁ)
Can rewrite:
V. (pu)=pV-u+1u-Vp.
So:
%Jrﬁ-vwrp(va‘):o

o -
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Continuity
-

Can also derive using a Lagrangian box

As the box moves, it conserves it mass. So:

1 d 1 d ldp 1 dsV

o ™M= a7

Expand the volume term:

1d5V_35:C 0 0y 852’_@+(%+6w
oV dt _5:z:dt oy dt (5zdt_c?a7 oy 0z

o -
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Continuity
So: T

Same as before

The change in density Is proportional to the velocity
divergence.

If the volume changes, the density changes to keep the
mass constant.

o -
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|deal Gas L aw

-

Five of the equations are prognostic: they describe the time
evolution of fields.

=

But one “diagnostic” relation.

Relates the density, pressure and temperature

o -
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r

or dry air:

where

|deal Gas L aw

p = pRT

R =287 Jkg 'K~}



Moist air
-

Law moist air, can write (Chp. 3):

p = pR1,

where the virtual temperature is:

T
T, =
1 —e/p(1—c¢)
Ry
= — = 0.622
€ R

Hereafter, we neglect moisture effects

o -
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Primitive equations

-

Continuity:

%erﬁ-VerpV-ﬁ:O

|deal gas:
p = pRT
Thermodynamic energy:

i’ | da _ dI_ dp _ dq
“ar P TPy Yw T @

o -
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Thermodynamic eguation

- .

o b
O
O SR
O° 4 o | | - F
o o, ©
O O
o Qoo
OOQOOQ 77777777 B
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First law of ther modynamics

-

Change in internal energy = heat added - work done:

de = dqg — dw

Work is done by expanding against external forces:

dw = Fdx = pAdx = pdV

If 4V > 0, the volume is doing the work

o -
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First law of ther modynamics

-

If volume has a unit mass, then:

=

pV =1
SO.

1

dV = d(
0

) = da

where « Is the specific volume. So:

dq = pda + de

GEF 2220: Dyna



First law of ther modynamics

-

Add heat to the volume, the temperature rises. The specific
heat determines how much. At constant volume:

=

This Is also the change In internal energy:

de‘
ar"’

Cy =

o -
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First Law of thermodynamics

-

Joule’s Law: e only depends on temperature for an ideal
gas. So even if V changes:

=

B de
- dT

Coy

Result I1s the First Law:

dq = c,d1" + pda

o -
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First law of ther modynamics
o o

t constant pressure:

Volume expands keeping p constant. Requires more heat to
raise the temperature. Rewrite the first law:

dq = c,dT + d(pa) — adp

o -
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First law of ther modynamics

-

The ideal gas law Is:

=

p=pRT =a 'RT

So:

d(pa) = RdT

Thus:

dq = (cy + R)dT — adp
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First law of ther modynamics
o o

t constant pressure, dp = 0, SO:

dq

d_T‘p:Cp:CU+R

So the specific heat at constant pressure is greater than at
constant volume. For dry air:

co = TITJkg 'K, ¢, =1004Jkg 'K~

SO.

R =287 Jkg 'K~}

o -
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First law of ther modynamics

-

So First Law can also be written:

dq = cpdl — adp

Obtain the thermodynamic equation by dividing by dt:

dq dT—I— da dT_ dp
i Var P TPy Y

o -
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Basic balances

=

fNot all terms in the momentum equations are equally
Important for weather systems.

Will simplify the equations by identifying primary balances
(throw out as many terms as possible).

Begin with horizontal momentum equations.

o -
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Scaling
=

General technique: scale eguations using estimates of the
various parameters. Take the x-momentum equation,
without friction:

=

0 0 0 0 10

—U+U—U+V—U+ WU+ [y — [LU=———

ot ox 0y 0z p Ox
U U? U? UW AP
T . 1 =D WU =

o -
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Scaling
N

ow use typical values. Length scales:

L~10%n, D= 10*m

Horizontal scale is 1000 km, the synoptic scale (of weather
systems).

Velocities:

UV ~10m/sec, W = 1cm/sec

Winds are quasi-horizontal

o -
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Scaling
o

ressure term:

AgP/p ~10°m?/sec?

A typical horizontal difference.

Time scale:

T =L/U ~ 10°sec

Called an “advective time scale” (~ 1 day).

o

-
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Scaling
=

Coriolis terms:

(fy, [2) = 2€Q(cos0, sind)
with

QO = 27(86400) tsec!

Assume at mid-latitudes:

fy =~ [, = 2Qsin(45) = 104 sec™!

o -
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lug In:
0 0 0 0 10
pre + Up U va—yu + WU + fyw — fov = —— 5P
U U? U? UW NP
r © <1 b MY T
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Geostrophy

Keeping only the 1073 terms:

J20=——p
1 0

U = ———7P

/ p Oy

These are the geostrophic relations.

Balance between the pressure gradient and Coriolis force.

o -
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Geostrophy

. .

undamental momentum balance at synoptic scales

#® Low pressure to left of the wind in Northern Hemisphere
#® Low pressure to right in Southern Hemisphere

But balance fails at equator, because f, = 2Q2sin(0) = 0

o -
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Geostrophy




Geostrophy




Geostrophy




Geostrophy
-

Example: What pressure gradient is required at the surface
at 45 N to maintain a geostrophic wind of 30 m/sec?

=

fr = 2Qsin(45) = 1.414%(7.27x107°) sec™t = 1.03x10™* sec™?

D _ o= (12 g (L08  107* sec™)(30 m e

= 3.7 x 107° N/m?3 = .37 kPa/100km

o -
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Geostrophy

- .

e Given the pressure, can calculate the horizontal velocities

s a diagnostic relation

But geostrophy cannot be used for prediction

o -
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Approximate horizontal momentum

So we must also retain the 10~* terms: T
2quuguqtvgu—f V= 19
ot Ox 0y - p@:zzp
Qv—kugv—kvgv—kf U = 19
ot Ox 0y o p@yp

The equations are guasi-horizontal: neglect vertical motion

o -
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Other momentum balances

-

Geostrophy most important balance at synoptic scales. But
other balances possible. Consider purely circular flow:

=

o -
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Other momentum balances

-

Consider an air parcel in cylindrical coordinates.

The radial acceleration Is:

uZ is the cyclostrophic term — this is related to centripetal
acceleration.

o -
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Other momentum balances

If constant circulation, %u, = 0. Then:

Scale this:

w2 1 0
%4 fug=-5p
r p Or
U2 AP
R pR

-
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Other momentum balances

-

The ratio of the first and second terms is the Rossby
number:

=

U
fR

€

If ¢ < 1, we recover the geostrophic balance:

10
fue—lgap

o -
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Other momentum balances

-

If ¢ > 1, the first term dominates. Happens at smaller
scales and with stronger winds.

=

A typical tornado at mid-latitudes has:

U 30m/s, f=10"%sec™!, R~ 300m

so that:

e = 1000

o -
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Cyclostrophic wind balance

-

Have:

=

or.

® Rotation does not enter.
# Circulation can go either way.

o -



| nertial oscillations

. .

hird possibility: there is no radial pressure gradient:

2
Ug

— 4+ fug =0
T

then:
ug = —fr

Rotation is clockwise (anticyclonic) in the Northern
Hemisphere.

o -
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| nertial oscillations

-

The time for a fluid parcel to complete a loop is:

=

2r 2w 0.5 day

Ug f |sinf]

Called the “inertial period”.

Inertial oscillations are seen in the surface layer of the
ocean, but are rarer in the atmosphere.

o -
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Gradient wind balance

-

Fourth possibility: all terms are important (e = O|1]).

2

U 1 0
%4 fug= -5
r p Or

Solve using the quadratic formula:

o -
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Gradient wind balance

-

If u, < 0 (anticyclone), we require:

fr
< -
|ug’ 4

If u, > 0 (cyclone), there is no limit

Wind gradients are stronger in cyclones than in
anticyclones

o

-
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Gradient wind balance
A

lternately:
2
Up _1o0 _
Then:
Y9 1409 w1
Up fr

If ¢ = 0.1, the gradient wind estimate differs by 10 %.

o -
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Gradient wind balance

fAt low latitudes, where ¢ can be 1-10, the gradient wind T
estimate IS more accurate.

Geostrophy is symmetric to sign changes: no difference
between cyclones and anticyclones

The gradient wind balance is not symmetric to sign change.

o -
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Gradient wind balance
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Gradient wind balance

-

Geostrophic motion has Coriolis and pressure gradient
forces opposed.

=

If cyclostrophic term large enough, gradient wind vortices
can have the have pressure gradient and Coriolis forces In
the same direction.

Called an anomalous low: low pressure with clockwise flow

Usually only found near the equator

o -
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Gradient wind balance
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Hydrostatic balance
N

We must scale:

ow scale the vertical momentum equation

The vertical variation of pressure much greater than the
horizontal variation:

Ay P/p =~ 10°m?/sec?

o -
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Hydrostatic balance

=

ngrugw v2w+waw fyu = BRI
ot ox 0y 0z v p@zp J
UWwW ow  UW Kz U Ay P

L L L D oD 7

1077 100" 1077 1071 1073 10 10

-
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Static atmosphere

-

fDominant balance is between the vertical pressure gradient
and gravity

However, same balance if there no motion at all !

Setting (u, v, w) = 0 In the equations of motion yields:

1o 19 0 _dl _ |

p(?xp: p Oy “ot’ T ar

o -
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Static atmosphere

-

Two equations left:
&p = —pPyg

the hydrostatic balance and

p = pRT

Equations describe a non-moving atmosphere

o -
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Static atmosphere
N

ntegrate the hydrostatic relation:
o
p(z) = / pgdz .
<

The pressure at any point is equal to the weight of air above
it. Sea level pressure is:

p(0) = 101.325 kPa (1013.25mb)

The average weight per square meter of the entire
atmospheric column(!)

o -
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Static atmosphere

-

Say the temperature is constant (Isothermal):

9, 1
0z RT
This implies:
__9*
In(p) = =

o -
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Static atmosphere

-

So that:

p=poe 1

Pressure decays exponentially. The e-folding scale is the
“scale height™.

RT

H ="
g

o -
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Scaling
=

Static hydrostatic balance not interesting for weather. T
Separate the pressure and density into static and non-static
(moving) components:

p(z,y, 2, t) = po(2) + ' (x,y, 2, 1)
p(x,y, 2z, t) = po(2) + p'(z,y, 2, t)
Assume:

Pl < Ipol, 10| < |pol

o -
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hen:
10 I S P
1 o 0 ,
N——0==)5-Wotp)—yg
£0 ,00)32( )
19, o 0 19, /o
= ——o —)=—po=——7p — —
po 02 po” 0z po 0z P0

— Neglect (p'p’)

o -
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Scaling
-

Use these terms in the vertical momentum equation

=

But how to scale?

Vertical variation of the perturbation pressure comparable
to the horizontal perturbation:

19, AgP

Egp 0D ~ 10~ 'm/sec?

o -
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Scaling
A

|so:

'] & 0.001]po|

So:

o
g~ 10 tm/sec?
PO



Scaling
B

guﬂruguﬂrvguﬂrwgw—f U = Lo, r
ot Ox Oy 0z U 52" pog

107 107" 107" 1071 1077 1071 1071

-
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Hydrostatic perturbations

- .

ominant balance still hydrostatic, but with perturbations:

gp’ = —pg
0z

thus vertical acceleration unimportant at synoptic scales

But we lost the vertical velocity! Deal with this later.

o -
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Coriolis parameter

-

So all terms with f, are unimportant
From now on, neglect f, and write f, simply as f:

f =2Qsin(0)

fy only important near the equator

o -
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Pressure coordinates

-

Can use the hydrostatic balance to simplify equations

Constant pressure surfaces (in two dimensions):

VA

pO+dj

dz

dx

o -
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Pressure coordinates

-

On a pressure surface:

_Op dp ,

Substitute hydrostatic relation:
9,
dp = —pdx—pgdz:()
Ox

So:
5’:1:Z_'0gd:1:p_'003:p

o -

GEF 2220: Dynamics — p.110/27'



Geopotential

where:

(I)E/ gdz
0

Instead of pressure at a certain height, think:

Height of a certain pressure field

o -
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Geopotential

510 hPa

500 hPa
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Geostrophy
-

Removes density from the momentum equation!

=

Now the geostrophic balance is:

9,
= —
Iv ox
0
= ——
Ju 7y

o -
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Geostrophy

500 hPa
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Vertical velocities

-

Different vertical velocities:

dz y dp
- —  —
dt dt

w




Geopotential
L

agrangian derivative Is now:

d 0 dx O dy@ dp(?

i ot dtor  dt 8y+dt Op

0 0 0 0
— —+tU— +tUV— +w_—

ot ox 0y Op

o -
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Continuity
L

agrangian box:

OV =0xoydz = —5:1:5y5—p
Py

with a mass:

poV = —dx dydp/g

o -
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Continuity
-

Conservation of mass:

1 d qg d ,dxoyop
— — oM = —
oM dt 0x0Ydp dt( q ) =0
Rearrange:
dx dy dp
5:135(dt) 5y5(dt) 5p5(dt) 0
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Continuity
L

etd — 0O:

@+8v+8w
or Oy Op

=0

The flow Is incompressible in pressure coordinates

Much simpler to work with

o -
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So:

Hydrostatic balance

dp _
dz

using the ldeal Gas Law.

o



-

Geostrophy:
0 0
= —& ——— 3
f’U ax ) fu ay
Continuity:
@ v Odw 0
or Oy Op
Hydrostatic:
@ _ _RT
dp p

o -

GEF 2220: Dynamics — p.121/27'



Diagnosing vertical motion

-

Lost the vertical acceleration. But can find the velocity, w,
by integrating the continuity equation:

P 0 0
W= — —u -+ —v)dp
é*(&b oy )

=

If the top of the atmosphere, px = 0, SO:

P09 9,
— — — —u)d
W /O(qu+8yv> D

So vertical motion occurs when there is horizontal
divergence.

o -
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Divergence




Vertical motion

-

How does w relate to the actual vertical velocity?

_@_0o 9 .9 .9
B T T T S W B o

Using the hydrostatic relation:

d_p 0 ‘|—U2 —|—’02 w
at ot Vet T Vgt TP
For geostrophic motion:
u2+v£— 1a(a)+1a(a)_0
oz" ﬁyp of 8yp oz’ of oz’ ayp B

o -
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Vertical motion

So

0
w = —D — w
5P~ P9

Also:

%p ~ 10hPa/day

pgw =~ (1.2kg/m?) (9.8m/sec®)(0.01m/sec) ~ 100hPa/day

o -
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Vertical motion

-

So:

W R —pgw

This is accurate within 10 % in the mid-troposphere
In the lowest 1-2 km, topography alters the balances

At the surface:

0 0
Wg = U—2Z5 + V—24

ox 0y

o -
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Vertical motion

\ / Z,(x,



Thermal wind

-

Geostrophy tells us what the velocities are if we know the
geopotential on a pressure surface

=

What about the velocities on other pressure surfaces?
Need to know the velocity shear

Shear is determined by the thermal wind relation

o -
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Thermal wind

-

Can use geostrophy to calculate the shear between two
pressure surfaces:

vg(P1) — vg(po) = % (%(@1 — ) = % 6’:1:210

and:

o -
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Thermal wind

where:

1
Z10 = p (®1 — o)

IS the layer thickness between pg and p;.

# Shear proportional to gradients of layer thickness

o -
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Thermal wind ||
r

rom the hydrostatic balance:

0®  RT

Op p
Now take the derivative wrt pressure of the geostrophic
relation:

9, 0P
3_19 (fvg = %)
But:

00d 90  ROT

dpdr 9z dp  p Ox

-
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Thermal wind ||

So:
Ovg _ ROT
Pop = 7 o
Or:
Jvg __ _ROT
dln(p)  f Ox
Also:
Jug__ R OT
din(p) [ Oy



Thermal wind ||

- -

# Shear proportional to temperature gradient on p-surface

If we know the velocity at pg, can calculate it at p,
Integrate between two pressure levels:

R [P OT
vg(p1) — vg(po) = G / I din(p)
p

0

R O (7
- =2 [ T4l
7 on /po n(p)

o -
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Mean temper ature

-

Define the mean temperature in the layer bounded by pg
and py:

=

fplelnp) f;;le(lnp)

fpl (Inp) In(5)
Then:
R Po (‘)T
_ — ]
vg(p1) — vg(po) 7 ”(pl) I

o -
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Thermal wind

-

From before:

SO.

# Layer thickness proportional to its mean temperature

o -
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L ayer thickness




Barotropic atmosphere

o .

What if temperature constant on all pressure surfaces?
Then VI'=0 — no vertical shear

Velocities don’t change with height

Also: all layers have equal thickness

Stacked like pancakes

o -
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Equivalent barotropic

-

If temperature and geopotential contours are parallel:

=

8 — —
Uy || U

Op

Wind changes magnitude but not direction with height

Geostrophic wind increases with height if

# Warm high pressure
# Cold low pressure

o -
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Equivalent barotropic

-

Consider the zonal-average temperature :

1 2T

- T d
2T 0 ¢

Decreases from the equator to the pole
9
SO a_yT <0

Thermal wind — winds increase with height

o

-
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Jet stream
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Thermal wind

=

fExample: At 30N, the zonally-averaged temperature

gradient is 0.75 Kdeg~!, and the average wind is zero at the
earth’s surface. What is the mean zonal wind at the level of
the jet stream (250 hPa)?

g (p1) = g (p0) = g (1) = =7 () or

287 ln(lOO()) (— 0.75 )
2Qsin(30) 250 1.11 x 105m

o -
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Baroclinic atmosphere

-

Usually:

T

Geostrophic wind has a component normal to the
temperature contours (iIsotherms)

Produces geostrophic temperature advection

Winds blow from warm to cold or vice versa

o -
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Temperature advection

Warm

Cold




Temperature advection

- .

Warm advection — veering
e Anticyclonic (clockwise) rotation with height
Cold advection — backing

e Cyclonic (counter-clockwise) rotation with height

o -
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Summary

- .

Geostrophic wind parallel to geopotential contours

e Wind with high pressure to the right (North
Hemisphere)

Thermal wind parallel to thickness (mean temperature)
contours

e Wind with high thickness to the right

o -
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Divergence

-

Continuity equation:

dp
g—va-U—
or.
1@——V-u= ou Ov Ow

A (et 9, T3

e Density changes due to divergence

o -
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Divergence

<~ °u>0 < °u<o




Example

. .

he divergence in a region is constant and positive:

V-u=D>0

What happens to the density of an air parcel?

o -
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Density decreases exponentially in time

o -
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Vorticity
-

Central quantity in dynamics

—

(=Vxu

P dw v ou
Oy 020z Ox’0x Oy

Most important at synoptic scales is vertical component:

o -
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Vorticity

( =-0u/ldy<0

-
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Vorticity

¢>0

_/




Example

-

What is the vorticity of a typical tornado? Assume solid T

body rotation, with a velocity of 100 m/sec, 20 m from the
center.

In cylindrical coordinates, the vorticity Is:

~10rvg 100,

r Oor r 00

For solid body rotation, v, = 0 and

Vg = Wr

o -
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Vorticity
-

with w =const. So:

10rvg 1 0wr?

- - - - p— 2
r Or r or ~
We have vy = 100 m/sec at » = 20 m:
~vg 100
w=-_"=- = 5rad/sec

So:

¢ = 10rad/sec

-
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Absolute vorticity

-

Now add rotation. The velocity in the fixed frame Is:

=

Up =Uup +Q Xr

So:

We have an extra component because the earth is in solid
body rotation!

o -
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Absolute vorticity
. o

WO components:

® V x u— the relative vorticity
o 2() — the planetary vorticity

Vertical component is the most important:

(o o = (6%?} — %u) + 2Qsin(0) =+ f

(¢ now refers to vertical relative vorticity)

o -
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-

Scaling:

So:

Absolute vorticity

The Rossby number

o



Absolute vorticity

-

Geostrophic velocities

o L1

Planetary vorticity dominates

® c>1

Cyclostrophic velocities

Relative vorticity dominates

o -
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Circulation

o .

Circulation is the integral of vorticity over an area:

r= [ [

Due to Stoke’s theorem, we can rewrite this as an integral
of the velocity around the circumference:

F—//VxﬁdA—]{ﬁ-ﬁdl

So we can derive an equation for the circulation by
Integrating the momentum equations around a closed
curve.

o -
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Circulation

. -

First write momentum equations in vector form. Turns out to
be simpler using the fixed frame velocity:

1 S
g =—-Vp+gG+F
T UF ; ptg-+

Integrate around a closed area:

d — — — —
—I'p = — @-ler]{g’-dl—l—j{F-dl
dt 0

o -
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Circulation

-

Gravity vanishes because can write as a potential:

L .0
g=—gk = a(—gz) =V,

and the closed integral of a potential vanishes:

fv%-cﬁ:%dcbg:o

o -
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Circulation

-

So:

—FF— %——F%F dl

Put rotation back in. The fixed velocity is:

Up =urp + Q2 xr
So:

—

FF—%(uR—kar) dl

o -
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Circulation

-

Rewrite using Stoke’s theorem:

—

7{(63+QXF)-cfl://Vx(ﬁRJrﬁxF)-ﬁdA
From before:

V x ( x 7) =20

If the motion is quasi-horizontal, then 7 = k:

//(<+f)dA

o -

GEF 2220: Dynamics — p.163/27'

[p = / / ¢ 4+ 20sin(0)]dA



Kevin’stheorem
E

hus:

d dp I
—To=—¢ —+ ¢ F-di
dt 7{0+7{

ro= [ [ ¢+ naa

IS the absolute circulation, the sum of relative and planetary
circulation

where

o -
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Kevin’stheorem

-

If the atmosphere Is barotropic (temperature constant on

pressure surfaces):
d 1
P P

If atmosphere is also frictionless (F = 0), then:

=

—T =0
dt“

The absolute circulation is conserved on the parcel

o -

GEF 2220: Dynamics — p.165/27'



Kevin’stheorem

-

Notice that If the area is small, so that the vorticity Is
approximately constant over the area, then:

=

d d
_Fa % - A —

which implies:

(C + f)A = const.

on a parcel. Thus if a parcel’'s area or latitude changes, it's
vorticity must change to compensate.

o -
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Kevin’stheorem

O

Move a parcel north, where f is larger. Either:

# \orticity decreases
#® Area decreases

o -
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Vorticity equation
-

Now we will derive an equation for the vorticity.

Horizontal momentum equations (p-coords):

0 0 0 0 0

g L LoD u—=—Lo+F
Gttt T

0 0 0 0 0

9 il i 240l _ _ Y94 F
(at+uax+vay+w3p)v+fu 9 + F,

Take 2 of the second, subtract a% of the first

o -
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Vorticity equation

fFind:
0 8 0 0
ou  Ov oudw  Ovow 0 0
_ _ F,— —F
Ca( ay) (5’p Jy Op 8x) ((9:1: Oy 2
where:

Ca:C+f

o



Vorticity equation

. .

1) Divergence:

he absolute vorticity can change due to three terms

ou Ov
(5

GG+ )

Divergence changes the vorticity, just like density

o -
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Convergence
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Divergence

-

Can absorb the divergence into the left side. Consider smal
area of air:

.

0A = ox oy

Time change in the area is:

0A 0x 0y
5 = 5y§ + (5:1:5 = 0y ou + 0x 0V

Relative change is the divergence:

1 0A odu v

| A5t bz oy o
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Divergence

-

So rewrite the divergence term:

0 0 Cq dA
Gt Ty = T aw
So:
d (q dA d B
0T T Aa O @t

This Is just Kelvin's theorem again!

o -
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Vorticity equation
- o

2) The tilting term:

Ooudw  O0vow

Differences in w can affect the horizontal shear

o -
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Tilting

GEF 2220: Dynamics — p.175/27'



Vorticity equation
- o

3) The Forcing term:

0 0

(%Fy — a—yFw)

Say frictional forcing:

F, = vV?u, Fy, = V4

o -
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Friction
E

hen:

0 0

ov  Ou
Pb——gg

Fx) — VVQ (% — 6_y) — VV2C:

Then:

d -
a(CJrf)—VV q

o -
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Friction

-

If f ~ const.:
d 9

Friction diffuses vorticity
Causes cyclones to spread out and weaken

Can occur due to friction in the boundary layer

o -
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Scaling
- o

9, 9, 9, 9, ou Ov oudw O0vOow

(a+U%—|—U8—y+w a_p)ga — _Ca(6$+6y)+(ap ay _apailf)

For synoptic scale motion, away from boundary layer:

U~ 10m/sec w ~ 10hPa/day L ~10%n 0p ~ 100hPa

0
for~10"%sec™t  L/U ~ 10°sec a—f ~ 10" Um tsec™!
Y

o -
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Scaling
=

U
( 17 ~ 10 2sec™!

So the Rossby number is:

EZ%%Ol
So:
(C+ 1)~ ]



Scaling

0 0 0 U? 10
aCJFU%CJrU@—yC X Ty A 10
0 Uw 11
0 0f ~10
— — = 1
vayf X U@y 0

Ou Ow  0v Ow Uw 11
————— — = 1
90 3y " apor) X ID 0

a4
Y

0 0 0 0 U
C+DGa+sDmfoi+ 5 xir

10~

-
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Scaling
B

fDivergence term is unbalanced! But it's actually smaller
than it appears. We can write:

U= Ug T Ug, UV =7UVUg+ VUq

From the derivation of the gradient wind:

This implies:

L ug| | J
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Ageostrophic velocities

-

So we can write:

U = Ug + €Ug, V= Vg + €Vq

where u, = uy/€e. SO the vorticity is:

0 0 0 0

oy + (g — —ilg)

- = oz 9 Oy ox 0y
While the divergence is:

D = 2u —gv +6(£i1 +217 )13(—({)—(1)%Ll 0 ((ﬂ))
ox Y oy Y or “ Oy v foxr> Oy foy Ox
L —|—e(gﬂa + gﬂa) = e(gﬂa + 3fé}a,) J

Ox oy

GEF 2220: Dynamics — p.183/27'



Vertical velocities
A

|so:

2w = -D= —e(gﬂa — gf) )

Ox oy

So the divergence and the vertical velocity are order
Rossby number

Rotation suppresses vertical motion

o -
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Scaled equation
B

fThus the divergence estimate is ten times smaller than we
had it before. So:

ou Ov Oou Ov fU

ay) ~ f( xe— ~ 1071

(¢ + f)( %Jra—y) 7

Retaining the 10~V terms yields the approximate
vorticity equation:

0 0 ou  Ov

(atJru%Jrv—)(Cwa) f(aeray)

o -
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Forecasting

-

Used for forecasts in the 1930’s and 1940’s

Approach:

Assume geostrophic velocities:

1 0P
S
1 0O
VRS e

o -
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Forecasting

- .

1 Ov, Ou, 1 ,0°® O%® 1 _,
~ = - —— — —— = — \—= —_—a ) — (I)
S f Ox oy f(c?a: +8y 7) = fv
The divergence vanishes:
9 0 Oug Oy,

Implies ¢, iIs conserved following the horizontal winds

Remember: on a pressure surface

o -
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Forecasting
N

ow only one unknown: ¢

0 9, 0
(a‘Fug%ijga_y)(Cngf)—o

becomes:

o 100 1000 1,
A Nt W Gl v 2" _
5t " Fayar "oy 7Y o) =0

o -
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Forecasting

-

Can write equation:

9, 0
anJrug-VCngvga—yf:O

or.

Can predict how ¢ changes in time

Then convert ( — ® by inversion

o

-
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Forecasting
o

ethod:

Obtain &(z,y, tp) from measurements on p-surface
Calculate wu,(to), v4(to), ¢4(t0)

Calculate (,4(1)

Invert ¢, to get &(¢1)

Start over

Obtain ®(t2), ®(t3),...

© o o o o 0

o -
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| Nver sion

1 0% 9%
Cg = ?(67+@)

V20 = f¢,

Poisson’s equation
Need boundary conditions to solve

Usually do this numerically

o -

GEF 2220: Dynamics — p.191/27'



| Nver sion

-

Simple analytical example: a channel, with zero flow at
northern and southern boundaries. Let:

=

¢ = sin(3x)sin(mwy)
r=10,2x], y=10,1]

So:

2 0* . .
@cp 4+ a—yQCID = sin(3x)sin(my)

o -
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| Nver sion

fTry a particular solution:

¢ = Asin(3x)sin(my)

This solution works in a channel, because:

Also, at y = 0, 1.

o -

GEF 2220: Dynamics — p.193/27'



| Nver sion

-

Substitute into equation:

=

0? 0? N . . .
@q) + (9_y2(b = —(9 4+ 7°) Asin(3x)sin(mwy) = sin(3z)sin(my)

So:

1
9 4 72

d = — sin(3z)sin(my)

Then we can proceed (calculate u,4, v, etc.)

o -
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Analytical example

-

Assume a barotropic atmosphere (no vertical shear) with:

=

¢ = —foUy + foAsin(kr — wt) sin(ly)

so that:
1
Ug = —%(%CI) = U — [Asin(kx — wt) cos(ly)
_ L 0 G kA cos(kn — wi) sinly)
Ug_foc% = kA cos(kx — wt) sin(ly

Describe how the field evolves in time.

o -
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Example
w

e must solve:

0 0

atCQ 9 Cg gayf

To simplify things, we make the 5-plane approximation:
= fo+ By

where:

fo=2Qsin(0y), B = %COS(@())

o -
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So:

i 0

Vi U3—y<f0 + By) = fu
1 0 1 0

Uy = —— =D —— D

T foy fo Oy
1 0 1 0

=——d~ ——
9T For  foox

-

GEF 2220: Dynamics — p.197/27'



09

0.8

0.6

Initial geopotential

® = sin(2x) sin(Ty)




Example
E

he relative vorticity Is:

Cqg = %V2<I> = —(k* + 1*) A sin(kz — wt) sin(ly)

Also need the derivatives:

aggg — —k(k2 + l2)A cos(kx — wt) sin(ly)
T

Cg — (k2 + l2)A sin(kx — wt) cos(ly)

o -
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Example

-

Collect terms:

—u%{ — vagg = U — A sin(kx — wt) cos(ly)]x

k(k? + 1°) A cos(kx — wt) sin(ly)] + [kA cos(kx — wt) sin(ly)]x
1(k* 4 12) A sin(kz — wt) cos(ly)]

= Uk(k* + 1*) A cos(kx — wt) sin(ly)



Example

Also:
— v = —fkAcos(kx — wt) sin(ly)
SO:

%C = (U(k* 4+ 1) — B)kAcos(kx — wt) sin(ly)

Also, since:

1
(g = f_v2c1> = —(k* + ) A sin(kx — wt) sin(ly)
0
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Example
E

hen:

%Q‘ — w(kQ + l2)A cos(kx — wt) sin(ly)

Equate both sides:

w(k? + 1) A cos(kz — wt) sin(y)
= (U(k* 4+ 1%) — B)kA cos(kz — wt) sin(ly)

We can cancel the A cos(kx — wt) sin(y), leaving:

wk* +1%) = (U +1%) - Bk

o -
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Example
o -

Bk
k% 412

w=Uk —

So the solution is:

¢ = Acos(kx — wt) sin(y)

with w given above. Thus, for a given size wave, the
frequency is determined.

This is called a dispersion relation

o -
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Phase speed
=

If a travelling wave:

Y x sin(kr — wt)

the crests move with a phase speed.:

Cx:_

k

If w > 0, waves move toward positive r (eastward)

o -
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Phase speed

c=2/3

A sin(3x-2t)

1.5 b
';'V
\
\ /
\ /
\ Y~
\ o
\ /

-15F -

0 1 2 3 4 5 6
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Phase speed
w

e have:
Bk
w=Uk=55p
SO:
W B
=% U_k2+l2
If U = 0:
Cpr = — p
TR+ 12

— All waves propagate westward!

o



Phase speed
E

he wavelengths in both directions are:

2T 2T
)\x_?a )\y—T
So:
B B 9 19
r=—5=———=A+A
c k2 47T( i )

Larger waves propagate faster

— The waves are dispersive

o -
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Phase speed
=

If U £ 0, then:

g

— U —
k2 + 12

Cpr —

W
k

Longest waves go west while shorter waves are swept
eastward by the zonal flow, U. If:

k2 l2:ﬁ
i U

the wave Is stationary in the background flow

o -
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Phase speed
B o

The westward propagation is actually a consequence of
Kelvin's theorem

Parcels advected north/south acquire relative vorticity
The parcels then advect neighboring parcels around them

Leads to a westward shift of the wave

o -
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Westward propagation

-
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Rossby waves
=

Solutions are called Rossby waves
Discovered by Carl Gustav Rossby (1936)
Observed in the atmosphere

Stationary Rossby waves are important for long term
weather patterns

Study more later (GEF4500)

o -
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Divergence

-

for the growth of unstable disturbances (storms)

The approximate vorticity equation is:

dH ou ov
o T =—C+ NG +50)

where:

dH %, o o
o T ver Ve

Previously ignored divergence effects. But very important

=

~ is the Lagrangian derivative following the horizontal flow
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Divergence
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Divergence

-

Consider flow with constant divergence:

0 0
“u+—v=D
8xu+3yv > ()
ou Ov
_a—_a :_Da
= GG+ 50) = =D

Calt) = Co(0) e Pt

o -

GEF 2220: Dynamics — p.214/27'



Divergence

So:

Divergent flow favors anticyclonic vorticity

Vorticity approaches — f, regardless of initial value

o -
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Convergence
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Divergence

-

Now say D = —C

d ou Ov
d_tCa — _Ca(% + G_y) — CC&
Ca(t) = Ca(0) e

Gq — 00

But which sign?

o



Divergence

-

If the Rossby number is small, then:

Ca(0) =C(0)+ f=~ f>0
So:

§ = +00
Convergent flow favors cyclonic vorticity

Vorticity increases without bound

e Why intense storms are cyclonic

o

-
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Summary
The vorticity equation is approximately:

d ov

ou
EH(CJrf):—(CﬂLf)(awwL@y)
or.
d df ou Ov
O = —(C+ 1 (5 3y)

# \orticity changes due to meridional motion
# \Vorticity changes due to divergence

o -
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Barotropic potential vorticity
- o

Consider an atmospheric layer with constant density,
between two surfaces, at z = z1, 22 (e.g. the surface and the
tropopause)

The continuity equation is:

dp L
%—FP(V'U)—O

If density constant, then:

Jou o ou
- Ox Oy 0Oz

o -
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Barotropic potential vorticity

-

So:
ou  Ov ow

or oy 0

Thus the vorticity equation can be written:

0 0

(S u%+v—)(<+f) C+hHoe

=



Taylor-Proudman Theorem

-

The constant density assumption affects the shear

=

dy gy 10
dt " v p&’xp
Taking a z-derivative:
d 0 0 1o ,0 . po
E(au) — f(@v) = —;%(ap) = ;%9 =

— |If there is no shear initially, have no shear at any time.
With constant density:

o -
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Barotropic potential vorticity

-

So the integral of the vorticity equation is simply:

22
[ ugs g0 €+ £ =
b+ i+ 050 (1) = (1) [(ew) — ()

where h = z9 — z1. Note that w = Dz/Dt. Thus:

d dh

_(Z2 _ Zl) —

wiz2) —wlz) = 5 dt

o



or.

So:

Barotropic potential vorticity

d dh
h=(C+ )=+ =

1 L dh

D =

d d

d, (+f

a =Y




Barotropic potential vorticity

. .

hus:
d ¢+f,_
dt( h ) =0
So the barotropic potential vorticity (PV):
ﬂ = const.
h

IS conserved on a fluid parcel.
Similar to Kelvin's theorem, except includes layer thickness

If h iIncreases, either ¢ or f must also increase

o -
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L ayer potential vorticity

@/

D




Alternate derivation

-

Consider a fluid column between z; and z5. As it moves,
conserves mass:

=

d
—(hA) =
So:
hA = const.

Because the density is constant, we can apply Kelvin's
theorem:

d d¢+f
E(CJrf)Amdt ; =0

o -
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Potential temperature

=

fBut the atmosphere is not constant density. What use is the
potential vorticity?

As move upward in atmosphere, both temperature and
pressure change—neither is absolute.

But can define the potential temperature which is
absolute—accounts for pressure change.

The potential vorticity can then be applied in layers between
potential temperature surfaces

o -
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Potential temperature
E

he thermodynamic energy equation is:

cpdl — adp = dgq
With zero heating:

RT
cpdl = adp = po

using the ideal gas law. Rewriting:

cp dinT = Rdlnp

-
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Potential temperature

-

If move a parcel upward from the surface, both its
temperature and pressure change. But using the surface
pressure, we can define:

=

cpInT'— Rlnp = ¢, inb — Rinpg

where pg Is the surface pressure:

po = 100 kPa = 1000mb
Rearranging:

_ PO R/c
o — T (P0) R/
(p)

o -
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Potential temperature

-

If zero heating, a parcel conserves its potential
temperature, 6

Call a surface with constant potential temperature an
Isentropic surface or an “adiabat”

6 is the temperature a parcel has if we move it adiabatically
back to the surface

Note potential temperature depends on both T and p

o -
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L ayer potential vorticity

-

Flow between two isentropic surfaces trapped if zero
heating

=

So mass in a column between two surfaces Is conserved:

Adz = const.

From the hydrostatic relation:

Adp
——— = const.
Py

where dp Is the spacing between surfaces

o -
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L ayer potential vorticity

_ B+08
N~
~_ \—// 6p
N
~_ 7




L ayer potential vorticity
R

ewrite dp thus:
00 . _

1
— )" 00
8]9)

op = (

Here, g—g IS the stratification. The stronger the stratification,

the smaller the pressure difference between temperature
surfaces. Thus:

Adp 90 ., 80
F A
pg (@p) g
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L ayer potential vorticity

. .

From the ldeal Gas Law and the definition of potential
temperature, we can write:

p = pe/o (RO) " pl/
So the density is only a function of pressure. This means

that:
P

So Kelvin's theorem applies in the layer

o -
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L ayer potential vorticity

Thus:
a[(C + f)A] =0
Implies:

d 00
G+ Ng =0

This is Ertel’s (1942) “isentropic potential vorticity equation”
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L ayer potential vorticity

. .

Remember: ( evaluted on potential temperature surface
Very useful quantity: can label air by its PV

Can distinguish air in the troposphere which comes from
stratosphere

Ertel's equation can also be used for prediction

o -
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Planetary boundary layer

z=0




Turbulence

-

There Is a continuum of eddy scales

=

Largest resolved by our models, but the smallest are not.

Q555
O PECHE O
OQOQ OQ Q

=
=

o -
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Boussinesqg equations
=

Assume we can split the velocity into a mean (over some T
period) and a perturbation:

— — /
U=+ u

Use the momentum equations with no friction:

Qﬂ+uﬁbkﬁy+uég—fw—-ig
ot Ox oy 0z B ;Dpr
0 ov Ov ov 10

o -
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Boussinesq equations

fAssume density in the boundary layer approximately T
constant, so that:
2u + gv + gw =0
ox oy 0z

Substitute the partitioned velocities into the momentum
equations and then average:

0 _ / — n O / . on0 / —

E(U—FU)—F(U—FUJ)%(U—FU)—F(U—FU)@—?J(U—FU)—f(”U—|—U)
— / 0 /
+(w+w)—z(u+u):—%(p+p)
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Boussinesqg equations
N

ow average. Note that:

|
_I_
g\
|
|

SO.

. _0_ 0 _ 0 _ 0
—ut+u—u+v—v +v—u+v—u+

ot Ox Ox Oy 0y

+@§ﬂ + w’gu’ + —fU = 195
0z 0z D e

o -
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Boussinesg equations

-

Because of the continuity equation, we can write:

=

9, 0 0 9, o—— 0
AP ! ) I~ o — oo L ooy o
uaxu +U@yu +wazu aruu —I—ayuv +8zuw
So:
o 0 _ 0 _ 0 _ _
—U+U—U+V=—U+W=—u— fU=
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Boussinesq equations

-

Similarly:

Terms on the RHS are the “eddy stresses”

o -
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PBL equations
A

ssume the eddy stresses don’t vary horizontally. Then: T

O o T+ T+ T — 5= — > — ~-
ot T ot T eyt T s RPY: L

g@+gg@+@36+wg@+fﬂ——lg_—g "w’
ot ox oy 0z B pé’yp 5z

o -
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PBL equations
-

Outside the boundary layer, assume geostrophy. In the
layer, we have geostrophic terms plus vertical mixing. So
turbulence breaks geostrophy:

_ 10 _ 0 [,
—Jv= p@xp 5z
— ) a /5,4
= — [y azuw
27 — fa7 a /5,4
Ju= fu, asz

o -
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PBL equations
-

But too many unknowns! : @, 7, v/, v, w’
Must parameterize the eddy stresses.

Two cases:

# Stable boundary layer: stratified
# Convective boundary layer: vertically mixed

o -
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Convective boundary layer

=

fDue to vertical mixing, temperature and velocity are
constant with height. So we can integrate the momentum
equation vertically:

/ — (T —7Ty)dz = — fh(T —Ty) =

—u "w'dz = u'w' |y, — u'w'|g

We can assume mixing vanishes outside of the layer:

ww'ly =0

o -
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Convective boundary layer
E

hus:

fh(v—17,) = —uu'|s

From surface measurements, can parameterize the fluxes:

ww'lg=—-CgVu, vuw'|g=—-CysVv

where C} is the "drag coefficient" and

V= (u? + 0?)l/?

o -
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Convective boundary layer

-

Thus:

fh(v—17,4) =CygVu

and:

—fh(u —uy) = CyVv



Convective boundary layer

-

Say v, = 0; then:

v:%l}u,

h
Ca

u:ug——Vv

fh

Solving equations not so simple because V = v/u? + v?

But can use iterative methods

o -
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Convective boundary layer

-

If w > 0, then v > 0

e Flow down the pressure gradient

o



Stable boundary layer
N o

ow assume no large scale vertical mixing
Wind speed and direction can vary with height

Specify turbulent velocities using mixing length theory:

u = =1 gﬂ

0z
where I’ > 0 if up.

o -
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Mixing length

by

-
N

u(z)



Stable boundary layer
fSo: T

— 0
—uw = w'l 37
uw w azu
Assume the vertical and horizontal eddy scales are

comparable

%,
r_ Y
w _l(?zv

where again V = vu? + 12

Notice w’ > 0 if I’ > 0.

o -
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Stable boundary layer
=

So:
— 0 0 0
uw'w' = (I —aZV) 5,0 = A, 550
Same argument:
0
—v'w' = A, —7v
v'w 2 (‘)zv

where A, is the “eddy exchange coefficient”

Depends on the size of turbulent eddies and mean shear

o -

GEF 2220: Dynamics — p.256/27'



Stable boundary layer

fSo we have: T
F(v =) = —[As(2) ool
~flu—ug) = A Ax(z) ]

Simplest case is If A,(z) Is constant

Studied by Swedish oceanographer V. W. Ekman (1905)

o -
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Ekman layer

-

Boundary conditions: use the “no-slip condition”:

=

u=0,v=0 at z=0

Far from the surface, the velocities approach their
geostrophic values:

U—>Ug,?]—>?}g <z — O

Assume the geostrophic flow is zonal and independent of
height:

o -
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Ekman layer
B

oundary layer velocities vary only in the vertical:

From continuity:

0 0 0 0
—u+ v+ —w=—_—w=0~0.

ox oy 0z 0z

With a flat bottom, this implies:

w =20

o -
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Ekman layer

=

fThe system is linear, so can decompose the horizontal
velocities:

Then:
—f’U — Azﬁu
fu — AZ@’U .

o -
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Ekman layer
B

oundary conditions:

uw=—-Uv=0 at 2=0

Introduce a new variable:

X = U+ 10
Then:

0? ,

5;X:ﬁgx

o -
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Ekman layer
E

he solution Is:

X = Aexp(—) exp(i—) + B exp(——) exp(—i—) ,
0F 0p o 0F
where:
2A.,
Oop = 7

This is the “Ekman depth”

Corrections should decay going up, So:

N A0 B
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Ekman layer

-

Take the real part of the horizontal velocities:

u = Re{x} = Re{B} exp(—é) ws(é>
+Im{B} exp(—é) Sin(é)
and
v =Im{x} = —Re{B} exp(—é) sin(é)
+Im{B} 6:1:1?(—%) COS(é)
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Ekman layer

-

For zero flow at z = 0, require Re{B} = —U and Im{B} = 0.
So:

=

u=U+u=U — Uexp(—i) cos(i)
O O
vV=10= Uexp(—é) sm(é) ,
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Ekman layer

0.9

0.8

0.5F

04

0.3F

0.2f

1.2

-
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Ekman spiral

The Ekman spiral (6E =0.1)

0.35 T T T T T

z=..07
0.3

0.25

0.2

0.15

V(2)

0.05f

-0.05 | | 1 | |
0

14

-
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Ekman spiral
-

The velocity veers to the left in the layer
Observations suggest u — u,4 at z = 1 km.
With f = 107*/sec, we have:

A, = 5m?/sec

If LV| =5 x 1073, the mixing length [ ~ 30 m.

As in the convective boundary layer, turbulence allows flow
from high pressure to low pressure.

o -
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Surface layer

-

Ekman layer cannot hold near surface: can’t have 30 m
eddies 10 m from surface. Introduce a surface layer where:

=

' = k2
Then:
9,
AZ_ 2 2
kz@z
So:
0 2,2 122 0 o
Agu—k \ |—u~/€ (&u)

o -
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Surface layer

-

Measurements suggest the turbulent momentum flux is
approximately constant in the surface layer:

0
gu’w’ ~ U
where u, Is the “friction velocity”. So:
0 U U 2
= — — T in(Z
8zu kz - k n(zo)

Here:

® L~ 0.4i1svon Karman’s constant
® 2 Is the “roughness length”

o

-
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Surface layer

-

Match the velocity at the top of the surface layer to that at
the base of the Ekman layer.

=

Comparisons with observations are only fair (see Fig. 5.5 of
Holton)

Ekman spiral is often unstable, generating eddies that mix
away the signal

o -
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Spin-down

. .

urbulence in both stable and convective boundary layers
causes the winds to slow down

Both have flow down pressure gradient
This weakens the gradient and the geostrophic wind

Convergence/divergence in the Ekman layer causes a
vertical velocity at the top of the layer

o -
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Spin-down
N

llustrate using the barotropic vorticity equation:
D ow
Dy (C+f)=f 9%

Integrate from the top of boundary layer (> = d) to the
tropopause:

(H — d) c(C+ f) = flw(H) —w(d)) = —fu(d)

o -
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Spin-down
B

fBecause the boundary layer is much thinner than the
troposphere, this is approximately:

D f
= (C+ ) = —Fw(d)

So vertical velocity into/out of the boundary layer changes
the vorticity in the troposphere

o -

GEF 2220: Dynamics — p.273/27'



Ekman pumping

- .

xample: the Ekman layer. The continuity equation is:

0 0 0
—W=——U— =

0z Ox Oy
Integrating over the layer, we get:

d
0 0 0 0
w(d) — 0 /0(8xu+8yv)dz (%:M 8yMy

where M, and M, are the horizontal transports

o -
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-

Can show:

and:

So:

Spin-down

Ud
Myz7
Mx%—%l
d 0 0
w(d) = 5(%‘/_87;(])



Spin-down

Thus:
D ~ fd
Dy (C+f)= _Z_HC
If assume [ = const., then:
D fd
Di°~ om®

So that:

¢(t) = C(0) exp(—t/TE)

o



Spin-down

where:

IS the Ekman spin-down time. Typical values:

H =10km, f=10"*sec™!, d=0.5km
yield:

TE =~ 5 days

o

-
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Spin-down
=

Compare to molecular dissipation. Then:

0 ok
gt =
From scaling:
H*U  H*
Ty~ = —~100d
1T UK,  Kn e

The Ekman layer is much more effective at damping motion

o -
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Spin-down
- o

The vertical velocity Is part of the secondary circulation
The primary flow is horizontal, (u4, vg)

The vertical velocities, though smaller, are extremely
Important nevertheless

Stratification reduces the effective H. So the geostrophic
velocity over Ekman layer spins down more rapidly, leaving
winds aloft alone.

o -

GEF 2220: Dynamics — p.279/27'



	Primitive equations
	Primitive equations
	Primitive equations
	Primitive equations
	Prediction
	Dynamics
	Momentum equations
	Momentum equations
	Derivatives
	Derivatives
	Lagrangian
	Eulerian
	Real forces
	Pressure gradient
	Pressure gradient
	Pressure gradient
	Pressure gradient
	Momentum equations
	Gravity
	Friction
	Friction
	Friction
	Friction
	Friction
	Momenutum equations
	Momentum equations
	Apparent forces
	Rotation
	Rotation
	Rotation
	Rotation
	Rotation
	Centrifugal acceleration
	Centrifugal
	Centrifugal
	Centrifugal
	Centrifugal
	Geopotential
	Cartesian coordinates
	Cartesian coordinates
	Coriolis force
	Momentum equations
	Coriolis force
	Coriolis force
	Coriolis force
	Continuity
	Continuity
	Continuity
	Continuity
	Continuity
	Continuity
	Ideal Gas Law
	Ideal Gas Law
	Moist air
	Primitive equations
	Thermodynamic equation
	First law of thermodynamics
	First law of thermodynamics
	First law of thermodynamics
	First Law of thermodynamics
	First law of thermodynamics
	First law of thermodynamics
	First law of thermodynamics
	First law of thermodynamics
	Basic balances
	Scaling
	Scaling
	Scaling
	Scaling
	Scaling
	Geostrophy
	Geostrophy
	Geostrophy
	Geostrophy
	Geostrophy
	Geostrophy
	Geostrophy
	Approximate horizontal momentum
	Other momentum balances
	Other momentum balances
	Other momentum balances
	Other momentum balances
	Other momentum balances
	Cyclostrophic wind balance
	Inertial oscillations
	Inertial oscillations
	Gradient wind balance
	Gradient wind balance
	Gradient wind balance
	Gradient wind balance
	Gradient wind balance
	Gradient wind balance
	Gradient wind balance
	Hydrostatic balance
	Hydrostatic balance
	Static atmosphere
	Static atmosphere
	Static atmosphere
	Static atmosphere
	Static atmosphere
	Scaling
	Scaling
	Scaling
	Scaling
	Scaling
	Hydrostatic perturbations
	Coriolis parameter
	Pressure coordinates
	Pressure coordinates
	Geopotential
	Geopotential
	Geostrophy
	Geostrophy
	Vertical velocities
	Geopotential
	Continuity
	Continuity
	Continuity
	Hydrostatic balance
	Summary
	Diagnosing vertical motion
	Divergence
	Vertical motion
	Vertical motion
	Vertical motion
	Vertical motion
	Thermal wind
	Thermal wind
	Thermal wind
	Thermal wind II
	Thermal wind II
	Thermal wind II
	Mean temperature
	Thermal wind
	Layer thickness
	Barotropic atmosphere
	Equivalent barotropic
	Equivalent barotropic
	Jet stream
	Thermal wind
	Baroclinic atmosphere
	Temperature advection
	Temperature advection
	Summary
	Divergence
	Divergence
	Example
	Example
	Vorticity
	Vorticity
	Vorticity
	Example
	Vorticity
	Absolute vorticity
	Absolute vorticity
	Absolute vorticity
	Absolute vorticity
	Circulation
	Circulation
	Circulation
	Circulation
	Circulation
	Kelvin's theorem
	Kelvin's theorem
	Kelvin's theorem
	Kelvin's theorem
	Vorticity equation
	Vorticity equation
	Vorticity equation
	Convergence
	Divergence
	Divergence
	Vorticity equation
	Tilting
	Vorticity equation
	Friction
	Friction
	Scaling
	Scaling
	Scaling
	Scaling
	Ageostrophic velocities
	Vertical velocities
	Scaled equation
	Forecasting
	Forecasting
	Forecasting
	Forecasting
	Forecasting
	Inversion
	Inversion
	Inversion
	Inversion
	Analytical example
	Example
	Example
	Initial geopotential
	Example
	Example
	Example
	Example
	Example
	Phase speed
	Phase speed
	Phase speed
	Phase speed
	Phase speed
	Phase speed
	Westward propagation
	Rossby waves
	Divergence
	Divergence
	Divergence
	Divergence
	Convergence
	Divergence
	Divergence
	Summary
	Barotropic potential vorticity
	Barotropic potential vorticity
	Taylor-Proudman Theorem
	Barotropic potential vorticity
	Barotropic potential vorticity
	Barotropic potential vorticity
	Layer potential vorticity
	Alternate derivation
	Potential temperature
	Potential temperature
	Potential temperature
	Potential temperature
	Layer potential vorticity
	Layer potential vorticity
	Layer potential vorticity
	Layer potential vorticity
	Layer potential vorticity
	Layer potential vorticity
	Planetary boundary layer
	Turbulence
	Boussinesq equations
	Boussinesq equations
	Boussinesq equations
	Boussinesq equations
	Boussinesq equations
	PBL equations
	PBL equations
	PBL equations
	Convective boundary layer
	Convective boundary layer
	Convective boundary layer
	Convective boundary layer
	Convective boundary layer
	Stable boundary layer
	Mixing length
	Stable boundary layer
	Stable boundary layer
	Stable boundary layer
	Ekman layer
	Ekman layer
	Ekman layer
	Ekman layer
	Ekman layer
	Ekman layer
	Ekman layer
	Ekman layer
	Ekman spiral
	Ekman spiral
	Surface layer
	Surface layer
	Surface layer
	Spin-down
	Spin-down
	Spin-down
	Ekman pumping
	Spin-down
	Spin-down
	Spin-down
	Spin-down
	Spin-down

