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Primitive equations

Momentum:

∂

∂t
u+ ~u · ∇u+ fyw − fzv = −1

ρ

∂

∂x
p+ ν∇2u

∂

∂t
v + ~u · ∇v + fzu = −1

ρ

∂

∂y
p+ ν∇2v

∂

∂t
w + ~u · ∇w − fyu = −1

ρ

∂

∂z
p− g + ν∇2w

GEF 2220: Dynamics – p.2/279



Primitive equations

Continuity:

∂

∂t
ρ+ ~u · ∇ρ+ ρ∇ · ~u = 0

Ideal gas:

p = ρRT

Thermodynamic energy:

cv
dT

dt
+ p

dα

dt
= cp

dT

dt
− αdp

dt
=
dq

dt
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Primitive equations

Six equations, six unknowns:

(u, v, w) — velocities

p — pressure

ρ — density

T — temperature
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Primitive equations

Momentum equations ← F = ma

Continuity ↔ ρ

Thermodynamic energy equation ↔ T

Ideal gas law relates ρ, p and T
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Prediction

Solve the equations numerically with weather models

Issues:

Numerical resolution

Vertical coordinate

Small scale mixing

Convection

Clouds

Goal: forecasting
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Dynamics

Solve a simplified set of equations

Identify dominant balances

Simplify the equations

Obtain solutions (analytical, numerical)

Look for similiarities with observations

Goal: understanding the atmosphere
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Momentum equations

Take the x-momentum equation:

∂

∂t
u =

∂2

∂t2
x =

1

ρ

∑

i

Fi

which is like:

ax =
1

m

∑

i

Fi
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Momentum equations

Two types of forces:

1) Real 2) Apparent

Two ways to write the derivative:

1) Lagrangian 2) Eulerian
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Derivatives

Consider an air parcel, with temperature T

T = T (x, y, z, t)

The change in temperature, from the chain rule:

dT =
∂

∂t
T dt+

∂T

∂x
dx+

∂T

∂y
dy +

∂T

∂z
dz
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Derivatives

So:

dT

dt
=

∂

∂t
T + u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

=
∂

∂t
T + ~u · ∇T

d
dt is the “Lagrangian” derivative

∂
∂t + ~u · ∇ is the “Eulerian” representation
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Lagrangian

1

2

T(t  )

T(t  )
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Eulerian

T(t)

(x,y,z)
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Real forces

Pressure gradients

Gravity

Friction
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Pressure gradient

x0 y 
0
z0

zδ

yδ

xδ

δV = δx δy δz
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Pressure gradient

Use Taylor series:

G(x0 + δx) = G(x0) +
∂G

∂x
δx+

1

2

∂2G

∂x2
δx2 + ...

Pressure on the right side of the box:

p = p(x0, y0, z0) +
∂p

∂x

δx

2
+ ...

Pressure on left side of the box:

p = p(x0, y0, z0)−
∂p

∂x

δx

2
+ ...
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Pressure gradient

The force on the right hand side (directed inwards):

p = −[p(x0, y0, z0) +
∂p

∂x

δx

2
] δyδz

On left side:

p = [p(x0, y0, z0)−
∂p

∂x

δx

2
] δyδz

So the net force is:

Fx = −∂p
∂x

δx δy δz

GEF 2220: Dynamics – p.17/279



Pressure gradient

The volume weighs:

m = ρ δx δy δz

So:

ax =
Fx

m
= −1

ρ

∂p

∂x

Same derivation for the y and z directions.
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Momentum equations

Momentum:

du

dt
= −1

ρ

∂

∂x
p+ ...

dv

dt
= −1

ρ

∂

∂y
p+ ...

dw

dt
= −1

ρ

∂

∂z
p+ ...
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Gravity

Acts downward (toward the center of the earth):

az =
Fz

m
= −g

dw

dt
= −1

ρ

∂

∂z
p− g
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Friction

δz

δzδτ
2

xδ

yδ

zδ

δz

δz

δττ  +

τ  −

2

τ zx

zx
zx

zx
zx
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Friction

Net viscous force (stress × area) of the boundaries acting
on the fluid :

(τzx +
∂τzx

∂z

δz

2
) δx δy − (τzx −

∂τzx

∂z

δz

2
) δx δy

=
∂τzx

∂z
δx δy δz

Divide by the mass of the box:

Fzx =
1

ρ

∂τzx

∂z
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Friction

Similar derivations for τzy, τxx, ...

Applied to x-direction:

du

dt
=

1

ρ
(
∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
)

Problem: we don’t know the stresses (τxx, etc.)!
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Friction

So we parameterize the stress, assuming molecular mixing:

1

ρ

∂τzx

∂z
≡ 1

ρ

∂

∂z
(µ
∂u

∂z
)

If µ is constant:

1

ρ

∂τzx

∂z
= ν

∂2

∂z2
u

where the molecular viscosity is:

ν =
µ

ρ
= 1.46× 10−5 m2/sec
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Friction

Applied to the x-direction:

du

dt
= ν

∂2

∂z2
u

• Friction acts to diffuse momentum

• Reduces the velocity shear.
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Momenutum equations

With the friction terms, have:

du

dt
= ν (

∂2

∂x2
u+

∂2

∂y2
u+

∂2

∂z2
u) = ν∇2u

dv

dt
= ν (

∂2

∂x2
v +

∂2

∂y2
v +

∂2

∂z2
v) = ν∇2v

dw

dt
= ν (

∂2

∂x2
w +

∂2

∂y2
w +

∂2

∂z2
w) = ν∇2w
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Momentum equations

So far:

du

dt
=

∂

∂t
u+ ~u · ∇u = −1

ρ

∂

∂x
p+ ν∇2u

dv

dt
=

∂

∂t
v + ~u · ∇v = −1

ρ

∂

∂y
p+ ν∇2v

dw

dt
=

∂

∂t
w + ~u · ∇w = −1

ρ

∂

∂z
p− g + ν∇2w
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Apparent forces

Space Earth
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Rotation

δΑδΘ

γ

Ω

γ

Α
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Rotation

δΘ = Ωδt

Assume Ω = const. (reasonable for the earth)

Change in A is δA, the arc-length:

δ ~A = | ~A|sin(γ)δΘ = Ω| ~A|sin(γ)δt = (~Ω× ~A) δt
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Rotation

So:

d ~A

dt
= ~Ω× ~A

This is the motion of a fixed vector. For a moving vector:

(
d ~A

dt
)F = (

d ~A

dt
)R + ~Ω× ~A

So the velocity in the fixed frame is equal to that in the
rotating frame plus the rotational movement
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Rotation

If ~A = ~r, the position vector, then:

(
d~r

dt
)F ≡ ~uF = ~uR + ~Ω× ~r

If ~A = ~r, we get the acceleration:

(
d~uF

dt
)F = (

d~uF

dt
)R + ~Ω× ~uF = [

d

dt
(uR + ~Ω× ~r)]R + ~Ω× ~uF

= (
d~uR

dt
)R + 2~Ω× ~uR + ~Ω× ~Ω× ~r
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Rotation

Rearranging:

(
d~uR

dt
)R = (

d~uF

dt
)F − 2~Ω× ~uR − ~Ω× ~Ω× ~r

Two additional terms:

Coriolis acceleration→ −2~Ω× ~uR

Centrifugal acceleration→ −~Ω× ~Ω× ~r
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Centrifugal acceleration

Rotation requires a force towards the center of
rotation—the centripetal acceleration

From the rotating frame, the sign is opposite—the
centrifugal acceleration

Acceleration points out from the earth’s radius of rotation

So has components in the radial and N-S directions

GEF 2220: Dynamics – p.34/279



Centrifugal

g

g

*

Ω

Ω
2
R

R
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Centrifugal

The earth is not spherical, but has deformed into an oblate
spheroid

As a result, there is a component of gravity which exactly
balances the centrifugal force in the N-S direction

Defines surfaces of constant geopotential

The locally vertical centrifugal acceleration can be
absorbed into gravity:

g′ ≈ g − ~Ω× ~Ω× ~r
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Centrifugal

Example: What is the centrifugal force for a parcel of air at
the Equator?

−~Ω× ~Ω× ~r = −Ω× (Ωr) = Ω2r

with:

re = 6.378× 106 m

and:

Ω =
2π

3600(24)
sec
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Centrifugal

So:

Ω2re = 0.034 m/sec2

This is much smaller than g = 9.8 m2/sec

• Only a minor change to absorb into g′
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Geopotential

Gravity represented as the gradient of a potential:

∇φ = −~g
Because ~g = −gk̂, then φ = φ(z)

If we set φ = 0 at sea level, then:

φ(z) =

∫ z

0

g dz
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Cartesian coordinates

Earth radius at equator is only 21 km larger than at the
poles

So can use spherical coordinates

However, we will primarily use Cartesian coordinates

Simplifies the math

Neglected terms are unimportant at weather scales
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Cartesian coordinates

Ωcosθ
Ω    sinθ

θ

Ω
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Coriolis force

Rotation vector projects onto local vertical and meridional
directions:

2~Ω = 2Ωcosθ ĵ + 2Ωsinθ k̂ ≡ fy ĵ + fz k̂

So the Coriolis force is:

−2~Ω× ~u = −(0, fy, fz)× (u, v, w)

= −(fyw − fzv, fzu,−fyu)
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Momentum equations

Move Coriolis terms to the LHS:

∂

∂t
u+ ~u · ∇u+ fyw − fzv = −1

ρ

∂

∂x
p+ ν∇2u

∂

∂t
v + ~u · ∇v + fzu = −1

ρ

∂

∂y
p+ ν∇2v

∂

∂t
w + ~u · ∇w − fyu = −1

ρ

∂

∂z
p− g + ν∇2w
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Coriolis force

Example: What is the Coriolis force on a parcel moving
eastward at 10 m/sec at 45 N?

We have:

fy = fz = 2Ωcos(45) = (7.292× 10−5)(0.7071)

= 5.142× 10−5 sec−1

− ~2Ω× ~u = −(0, fy, fz)× (u, 0, 0) = −fzu ĵ + fyuk̂

= (0,−5.142× 10−4, 5.142× 10−4) m/sec2
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Coriolis force

Vertical acceleration is negligible compared to gravity
(g = 9.8 m/sec2), so has little effect in z

Horizontal acceleration is to the south

Coriolis acceleration is most important in the horizontal
direction

Acts to the right in the Northern Hemisphere
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Coriolis force

In the Southern hemisphere, θ < 0. Same problem, at 45 S:

fy = 2Ωcos(−45) = −5.142× 10−5 sec−1 = −fz

− ~2Ω× ~u = (0,+5.142× 10−4,−5.142× 10−4) m/sec2

Acceleration is to the north, to the left of the parcel velocity.
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Continuity

x0 y 
0
z0

yδ

xδ

zδ
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Continuity

Consider a fixed volume

Density flux through the left side:

[ρu− ∂

∂x
(ρu)

∂x

2
] δy δz

Through the right side:

[ρu+
∂

∂x
(ρu)

∂x

2
] δy δz
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Continuity

So the net rate of change in mass is:

∂

∂t
(ρ ∂x ∂y ∂z) = [ρu− ∂

∂x
(ρu]

∂x

2
) ∂y ∂z

−[ρu+
∂

∂x
(ρu)

∂x

2
] ∂y ∂z = − ∂

∂x
(ρu)∂x ∂y ∂z

The volume δV is constant, so:

∂

∂t
ρ = − ∂

∂x
(ρu)
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Continuity

Taking the other sides of the box:

∂ρ

∂t
= −∇ · (ρ~u)

Can rewrite:

∇ · (ρ~u) = ρ∇ · ~u+ ~u · ∇ρ .

So:

∂ρ

∂t
+ ~u · ∇ρ+ ρ(∇ · ~u) = 0
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Continuity

Can also derive using a Lagrangian box

As the box moves, it conserves it mass. So:

1

∂M

d

dt
(∂M) =

1

ρδV

d

dt
(ρδV ) =

1

ρ

dρ

dt
+

1

δV

dδV

dt
= 0

Expand the volume term:

1

δV

dδV

dt
=

∂

δx

δx

dt
+

∂

δy

δy

dt
+

∂

δz

δz

dt
=
∂u

∂x
+
∂v

∂y
+
∂w

∂z

GEF 2220: Dynamics – p.51/279



Continuity

So:

1

ρ

dρ

dt
+∇ · ~u = 0

Same as before

The change in density is proportional to the velocity
divergence.

If the volume changes, the density changes to keep the
mass constant.
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Ideal Gas Law

Five of the equations are prognostic: they describe the time
evolution of fields.

But one “diagnostic” relation.

Relates the density, pressure and temperature
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Ideal Gas Law

For dry air:

p = ρRT

where

R = 287 Jkg−1K−1
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Moist air

Law moist air, can write (Chp. 3):

p = ρRTv

where the virtual temperature is:

Tv ≡
T

1− e/p(1− ǫ)

ǫ ≡ Rd

Rv
= 0.622

Hereafter, we neglect moisture effects
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Primitive equations

Continuity:

∂

∂t
ρ+ ~u · ∇ρ+ ρ∇ · ~u = 0

Ideal gas:

p = ρRT

Thermodynamic energy:

cv
dT

dt
+ p

dα

dt
= cp

dT

dt
− αdp

dt
=
dq

dt
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Thermodynamic equation

F

q
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First law of thermodynamics

Change in internal energy = heat added - work done:

de = dq − dw

Work is done by expanding against external forces:

dw = Fdx = pAdx = pdV

If dV > 0, the volume is doing the work
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First law of thermodynamics

If volume has a unit mass, then:

ρV = 1

so:

dV = d(
1

ρ
) = dα

where α is the specific volume. So:

dq = p dα+ de
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First law of thermodynamics

Add heat to the volume, the temperature rises. The specific
heat determines how much. At constant volume:

cv ≡
dq

dT
|v

This is also the change in internal energy:

cv =
de

dT
|v
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First Law of thermodynamics

Joule’s Law: e only depends on temperature for an ideal
gas. So even if V changes:

cv =
de

dT

Result is the First Law:

dq = cvdT + p dα
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First law of thermodynamics

At constant pressure:

cp ≡
dq

dT
|p

Volume expands keeping p constant. Requires more heat to
raise the temperature. Rewrite the first law:

dq = cvdT + d(pα)− αdp
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First law of thermodynamics

The ideal gas law is:

p = ρRT = α−1RT

So:

d(pα) = RdT

Thus:

dq = (cv +R)dT − αdp
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First law of thermodynamics

At constant pressure, dp = 0, so:

dq

dT
|p = cp = cv +R

So the specific heat at constant pressure is greater than at
constant volume. For dry air:

cv = 717Jkg−1K−1, cp = 1004Jkg−1K−1

so:

R = 287 Jkg−1K−1
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First law of thermodynamics

So First Law can also be written:

dq = cpdT − αdp

Obtain the thermodynamic equation by dividing by dt:

dq

dt
= cv

dT

dt
+ p

dα

dt
= cp

dT

dt
− αdp

dt
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Basic balances

Not all terms in the momentum equations are equally
important for weather systems.

Will simplify the equations by identifying primary balances
(throw out as many terms as possible).

Begin with horizontal momentum equations.
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Scaling

General technique: scale equations using estimates of the
various parameters. Take the x-momentum equation,
without friction:

∂

∂t
u+ u

∂

∂x
u+ v

∂

∂y
u+ w

∂

∂z
u+ fyw − fzv = −1

ρ

∂

∂x
p

U

T

U2

L

U2

L

UW

D
fW fU

△HP

ρL
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Scaling

Now use typical values. Length scales:

L ≈ 106m, D ≈ 104m

Horizontal scale is 1000 km, the synoptic scale (of weather
systems).

Velocities:

U ≈ V ≈ 10m/sec, W ≈ 1 cm/sec

Winds are quasi-horizontal
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Scaling

Pressure term:

△HP/ρ ≈ 103m2/sec2

A typical horizontal difference.

Time scale:

T = L/U ≈ 105sec

Called an “advective time scale” (≈ 1 day).
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Scaling

Coriolis terms:

(fy, fz) = 2Ω(cosθ, sinθ)

with

Ω = 2π(86400)−1sec−1

Assume at mid-latitudes:

fy ≈ fz ≈ 2Ωsin(45) ≈ 10−4sec−1
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Scaling

Plug in:

∂

∂t
u+ u

∂

∂x
u+ v

∂

∂y
u+ w

∂

∂z
u+ fyw − fzv = −1

ρ

∂

∂x
p

U

T

U2

L

U2

L

UW

D
fW fU

△HP

ρL

10−4 10−4 10−4 10−5 10−6 10−3 10−3
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Geostrophy

Keeping only the 10−3 terms:

fzv =
1

ρ

∂

∂x
p

fzu = −1

ρ

∂

∂y
p

These are the geostrophic relations.

Balance between the pressure gradient and Coriolis force.

GEF 2220: Dynamics – p.72/279



Geostrophy

Fundamental momentum balance at synoptic scales

Low pressure to left of the wind in Northern Hemisphere

Low pressure to right in Southern Hemisphere

But balance fails at equator, because fz = 2Ωsin(0) = 0
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Geostrophy

p/ ρ
L

H
fu
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Geostrophy

L

H
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Geostrophy

L

fu
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Geostrophy

Example: What pressure gradient is required at the surface
at 45 N to maintain a geostrophic wind of 30 m/sec?

fz = 2Ωsin(45) = 1.414∗(7.27×10−5) sec−1 = 1.03×10−4 sec−1

∂p

∂l
= ρ0fzu = (1.2 kg/m3)(1.03× 10−4 sec−1)(30 m/sec)

= 3.7× 10−3 N/m3 = .37 kPa/100km
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Geostrophy

Is a diagnostic relation

• Given the pressure, can calculate the horizontal velocities

But geostrophy cannot be used for prediction
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Approximate horizontal momentum

So we must also retain the 10−4 terms:

∂

∂t
u+ u

∂

∂x
u+ v

∂

∂y
u− fzv = −1

ρ

∂

∂x
p

∂

∂t
v + u

∂

∂x
v + v

∂

∂y
v + fzu = −1

ρ

∂

∂y
p

The equations are quasi-horizontal: neglect vertical motion

GEF 2220: Dynamics – p.79/279



Other momentum balances

Geostrophy most important balance at synoptic scales. But
other balances possible. Consider purely circular flow:
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Other momentum balances

Consider an air parcel in cylindrical coordinates.

The radial acceleration is:

d

dt
ur −

u2

θ

r
− fuθ = −1

ρ

∂

∂r
p

u2

θ is the cyclostrophic term – this is related to centripetal
acceleration.
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Other momentum balances

If constant circulation, d
dtur = 0. Then:

u2

θ

r
+ fuθ =

1

ρ

∂

∂r
p

Scale this:

U2

R
fU

△HP

ρR
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Other momentum balances

The ratio of the first and second terms is the Rossby
number:

U

fR
≡ ǫ

If ǫ≪ 1, we recover the geostrophic balance:

fuθ =
1

ρ

∂

∂r
p
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Other momentum balances

If ǫ≫ 1, the first term dominates. Happens at smaller
scales and with stronger winds.

A typical tornado at mid-latitudes has:

U ≈ 30m/s, f = 10−4sec−1, R ≈ 300m

so that:

ǫ = 1000
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Cyclostrophic wind balance

Have:

u2

θ

r
=

1

ρ

∂

∂r
p

or:

uθ = ±(
r

ρ

∂

∂r
p)1/2

Rotation does not enter.

Circulation can go either way.
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Inertial oscillations

Third possibility: there is no radial pressure gradient:

u2

θ

r
+ fuθ = 0

then:

uθ = −fr

Rotation is clockwise (anticyclonic) in the Northern
Hemisphere.
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Inertial oscillations

The time for a fluid parcel to complete a loop is:

2πr

uθ
=

2π

f
=

0.5 day

|sinθ| ,

Called the “inertial period”.

Inertial oscillations are seen in the surface layer of the
ocean, but are rarer in the atmosphere.
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Gradient wind balance

Fourth possibility: all terms are important (ǫ = O|1|).

u2

θ

r
+ fuθ =

1

ρ

∂

∂r
p

Solve using the quadratic formula:

uθ = −1

2
fr ± 1

2
(f2r2 +

4r

ρ

∂

∂r
p)1/2

= −1

2
fr ± 1

2
(f2r2 + 4 r f ug)

1/2
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Gradient wind balance

If ug < 0 (anticyclone), we require:

|ug| <
fr

4

If ug > 0 (cyclone), there is no limit

Wind gradients are stronger in cyclones than in
anticyclones
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Gradient wind balance

Alternately:

u2

θ

r
+ fuθ =

1

ρ

∂

∂r
p = fug

Then:

ug

uθ
= 1 +

uθ

fr
≈ 1 + ǫ

If ǫ = 0.1, the gradient wind estimate differs by 10 %.
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Gradient wind balance

At low latitudes, where ǫ can be 1-10, the gradient wind
estimate is more accurate.

Geostrophy is symmetric to sign changes: no difference
between cyclones and anticyclones

The gradient wind balance is not symmetric to sign change.
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Gradient wind balance

v−r
2

v−r
2

L H

p

fv
p

fv
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Gradient wind balance

Geostrophic motion has Coriolis and pressure gradient
forces opposed.

If cyclostrophic term large enough, gradient wind vortices
can have the have pressure gradient and Coriolis forces in
the same direction.

Called an anomalous low: low pressure with clockwise flow

Usually only found near the equator
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Gradient wind balance

v−r
2

L

pfv
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Hydrostatic balance

Now scale the vertical momentum equation

We must scale:

1

ρ

∂

∂z
p

The vertical variation of pressure much greater than the
horizontal variation:

△V P/ρ ≈ 105m2/sec2
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Hydrostatic balance

∂

∂t
w + u

∂

∂x
w + v

∂

∂y
w + w

∂

∂z
w − fyu = −1

ρ

∂

∂z
p− g

UW

L

UW

L

UW

L

W 2

D
fU

△V P

ρD
g

10−7 10−7 10−7 10−10 10−3 10 10
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Static atmosphere

Dominant balance is between the vertical pressure gradient
and gravity

However, same balance if there no motion at all !

Setting (u, v, w) = 0 in the equations of motion yields:

1

ρ

∂

∂x
p =

1

ρ

∂

∂y
p =

∂

∂t
ρ =

dT

dt
= 0
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Static atmosphere

Two equations left:

∂

∂z
p = −ρg

the hydrostatic balance and

p = ρRT

Equations describe a non-moving atmosphere
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Static atmosphere

Integrate the hydrostatic relation:

p(z) =

∫

∞

z
ρg dz .

The pressure at any point is equal to the weight of air above
it. Sea level pressure is:

p(0) = 101.325 kPa (1013.25mb)

The average weight per square meter of the entire
atmospheric column(!)
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Static atmosphere

Say the temperature is constant (isothermal):

∂

∂z
p = − pg

RT

This implies:

ln(p) = − gz

RT

GEF 2220: Dynamics – p.100/279



Static atmosphere

So that:

p = p0 e
−z/H

Pressure decays exponentially. The e-folding scale is the
“scale height”:

H ≡ RT

g
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Scaling

Static hydrostatic balance not interesting for weather.
Separate the pressure and density into static and non-static
(moving) components:

p(x, y, z, t) = p0(z) + p′(x, y, z, t)

ρ(x, y, z, t) = ρ0(z) + ρ′(x, y, z, t)

Assume:

|p′| ≪ |p0|, |ρ′| ≪ |ρ0|
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Scaling

Then:

−1

ρ

∂

∂z
p− g = − 1

ρ0 + ρ′
∂

∂z
(p0 + p′)− g

≈ − 1

ρ0

(1− ρ′

ρ0

)
∂

∂z
(p0 + p′)− g

= − 1

ρ0

∂

∂z
p′ + (

ρ′

ρ0

)
∂

∂z
p0 = − 1

ρ0

∂

∂z
p′ − ρ′

ρ0

g

→ Neglect (ρ′p′)
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Scaling

Use these terms in the vertical momentum equation

But how to scale?

Vertical variation of the perturbation pressure comparable
to the horizontal perturbation:

1

ρ0

∂

∂z
p′ ∝ △HP

ρ0D
≈ 10−1m/sec2
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Scaling

Also:

|ρ′| ≈ 0.001|ρ0|

So:

ρ′

ρ0

g ≈ 10−1m/sec2
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Scaling

∂

∂t
w + u

∂

∂x
w + v

∂

∂y
w + w

∂

∂z
w − fyu = − 1

ρ0

∂

∂z
p′ − ρ′

ρ0

g

10−7 10−7 10−7 10−10 10−3 10−1 10−1
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Hydrostatic perturbations

Dominant balance still hydrostatic, but with perturbations:

∂

∂z
p′ = −ρ′g

thus vertical acceleration unimportant at synoptic scales

But we lost the vertical velocity! Deal with this later.
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Coriolis parameter

So all terms with fy are unimportant

From now on, neglect fy and write fz simply as f :

f ≡ 2Ωsin(θ)

fy only important near the equator
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Pressure coordinates

Can use the hydrostatic balance to simplify equations

Constant pressure surfaces (in two dimensions):

p0
p0+dp

x

z

dz

dx
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Pressure coordinates

On a pressure surface:

dp =
∂p

∂x
dx+

∂p

∂z
dz = 0

Substitute hydrostatic relation:

dp =
∂p

∂x
dx− ρg dz = 0

So:
∂p

∂x
|z = ρg

dz

dx
|p ≡ ρ

∂Φ

∂x
|p
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Geopotential

where:

Φ ≡
∫ z

0

g dz

Instead of pressure at a certain height, think:

Height of a certain pressure field
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Geopotential

4 km

4.1 km

4.2 km

500 hPa

510 hPa

520 hPa
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Geostrophy

Removes density from the momentum equation!

du

dt
− fv = −1

ρ

∂p

∂x
= −∂Φ

∂x

Now the geostrophic balance is:

fv =
∂

∂x
Φ

fu = − ∂

∂y
Φ

GEF 2220: Dynamics – p.113/279



Geostrophy

Φ

Φ

1

2Φ
3

500 hPa
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Vertical velocities

Different vertical velocities:

w =
dz

dt
→ ω =

dp

dt

p

p

p
1

2

3
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Geopotential

Lagrangian derivative is now:

d

dt
=

∂

∂t
+
dx

dt

∂

∂x
+
dy

dt

∂

∂y
+
dp

dt

∂

∂p

=
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂p
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Continuity

Lagrangian box:

δV = δx δy δz = −δx δy δp
ρg

with a mass:

ρδV = −δx δy δp/g
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Continuity

Conservation of mass:

1

δM

d

dt
δM =

g

δxδyδp

d

dt
(
δxδyδp

g
) = 0

Rearrange:

1

δx
δ(
dx

dt
) +

1

δy
δ(
dy

dt
) +

1

δp
δ(
dp

dt
) = 0
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Continuity

Let δ → 0:

∂u

∂x
+
∂v

∂y
+
∂ω

∂p
= 0

The flow is incompressible in pressure coordinates

Much simpler to work with
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Hydrostatic balance

dp

dz
= −ρg

dp = −ρgdz = −ρdΦ
So:

dΦ

dp
= −1

ρ
= −RT

p

using the Ideal Gas Law.
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Summary

Geostrophy:

fv =
∂

∂x
Φ, fu = − ∂

∂y
Φ

Continuity:

∂u

∂x
+
∂v

∂y
+
∂ω

∂p
= 0

Hydrostatic:

dΦ

dp
= −RT

p
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Diagnosing vertical motion

Lost the vertical acceleration. But can find the velocity, ω,
by integrating the continuity equation:

ω = −
∫ p

p∗
(
∂

∂x
u+

∂

∂y
v) dp

If the top of the atmosphere, p∗ = 0, so:

ω = −
∫ p

0

(
∂

∂x
u+

∂

∂y
v) dp

So vertical motion occurs when there is horizontal
divergence.
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Divergence
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Vertical motion

How does ω relate to the actual vertical velocity?

ω =
dp

dt
=

∂

∂t
p+ u

∂

∂x
p+ v

∂

∂y
p+ w

∂

∂z
p

Using the hydrostatic relation:

ω =
dp

dt
=

∂

∂t
p+ u

∂

∂x
p+ v

∂

∂y
p− ρgw

For geostrophic motion:

u
∂

∂x
p+ v

∂

∂y
p = − 1

ρf

∂

∂y
p(
∂

∂x
p) +

1

ρf

∂

∂x
p(
∂

∂y
p) = 0
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Vertical motion

So

ω ≈ ∂

∂t
p− ρgw

Also:

∂

∂t
p ≈ 10hPa/day

ρgw ≈ (1.2kg/m3) (9.8m/sec2)(0.01m/sec) ≈ 100hPa/day
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Vertical motion

So:

ω ≈ −ρgw

This is accurate within 10 % in the mid-troposphere

In the lowest 1-2 km, topography alters the balances

At the surface:

ws = u
∂

∂x
zs + v

∂

∂y
zs
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Vertical motion

z (x,y)s
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Thermal wind

Geostrophy tells us what the velocities are if we know the
geopotential on a pressure surface

What about the velocities on other pressure surfaces?

Need to know the velocity shear

Shear is determined by the thermal wind relation
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Thermal wind

Can use geostrophy to calculate the shear between two
pressure surfaces:

vg(p1)− vg(p0) =
1

f

∂

∂x
(Φ1 − Φ0) ≡

g

f

∂

∂x
Z10

and:

ug(p1)− ug(p0) = − 1

f

∂

∂y
(Φ1 − Φ0) ≡ −

g

f

∂

∂y
Z10
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Thermal wind

where:

Z10 =
1

g
(Φ1 − Φ0)

is the layer thickness between p0 and p1.

Shear proportional to gradients of layer thickness
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Thermal wind II

From the hydrostatic balance:

∂Φ

∂p
= −RT

p

Now take the derivative wrt pressure of the geostrophic
relation:

∂

∂p
(fvg =

∂Φ

∂x
)

But:

∂

∂p

∂Φ

∂x
=

∂

∂x

∂Φ

∂p
= −R

p

∂T

∂x
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Thermal wind II

So:

p
∂vg

∂p
= −R

f

∂T

∂x

Or:

∂vg

∂ ln(p)
= −R

f

∂T

∂x

Also:

∂ug

∂ ln(p)
=
R

f

∂T

∂y
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Thermal wind II

Shear proportional to temperature gradient on p-surface

If we know the velocity at p0, can calculate it at p1

Integrate between two pressure levels:

vg(p1)− vg(p0) = −R
f

∫ p1

p0

∂T

∂x
d ln(p)

= −R
f

∂

∂x

∫ p1

p0

T d ln(p)
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Mean temperature

Define the mean temperature in the layer bounded by p0

and p1:

T ≡
∫ p1

p0

T d(lnp)
∫ p1

p0

d(lnp)
=

∫ p1

p0

T d(lnp)

ln(p1

p0
)

Then:

vg(p1)− vg(p0) =
R

f
ln(

p0

p1

)
∂T

∂x
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Thermal wind

From before:

vg(p1)− vg(p0) =
g

f

∂

∂x
Z10

so:

Z10 =
R

g
T ln(

p0

p1

)

Layer thickness proportional to its mean temperature
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Layer thickness

6

7

8

9

p

p
2

1

v

v

1

2
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Barotropic atmosphere

What if temperature constant on all pressure surfaces?

Then ∇T = 0 → no vertical shear

Velocities don’t change with height

Also: all layers have equal thickness

Stacked like pancakes
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Equivalent barotropic

If temperature and geopotential contours are parallel:

∂

∂p
~ug ‖ ~ug

Wind changes magnitude but not direction with height

Geostrophic wind increases with height if

Warm high pressure

Cold low pressure
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Equivalent barotropic

Consider the zonal-average temperature :

1

2π

∫

2π

0

T dφ

Decreases from the equator to the pole

So ∂
∂yT < 0

Thermal wind→ winds increase with height
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Jet stream

20

15

10

p
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Thermal wind

Example: At 30N, the zonally-averaged temperature
gradient is 0.75 Kdeg−1, and the average wind is zero at the
earth’s surface. What is the mean zonal wind at the level of
the jet stream (250 hPa)?

ug(p1)− ug(p0) = ug(p1) = −R
f
ln(

p0

p1

)
∂T

∂y

ug(250) = − 287

2Ωsin(30)
ln(

1000

250
) (− 0.75

1.11× 105m
) = 36.8 m/sec
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Baroclinic atmosphere

Usually:

T ∦ Φ

Geostrophic wind has a component normal to the
temperature contours (isotherms)

Produces geostrophic temperature advection

Winds blow from warm to cold or vice versa
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Temperature advection

δ

v1

v2

vT

Warm

Cold

Φ1

Φ +   Φ1

T

δ T +     T
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Temperature advection

Warm advection → veering

• Anticyclonic (clockwise) rotation with height

Cold advection → backing

• Cyclonic (counter-clockwise) rotation with height
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Summary

Geostrophic wind parallel to geopotential contours

•Wind with high pressure to the right (North
Hemisphere)

Thermal wind parallel to thickness (mean temperature)
contours

•Wind with high thickness to the right
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Divergence

Continuity equation:

dρ

dt
+ ρ∇ · u = 0

or:

1

ρ

dρ

dt
= −∇ · u = −(

∂u

∂x
+
∂v

∂y
+
∂w

∂z
)

• Density changes due to divergence
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Divergence

u < 0u > 0
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Example

The divergence in a region is constant and positive:

∇ · ~u = D > 0

What happens to the density of an air parcel?
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Example

1

ρ

dρ

dt
= −∇ · u = −D

dρ

dt
= −ρD

ρ(t) = ρ(0) e−Dt

Density decreases exponentially in time
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Vorticity

Central quantity in dynamics

~ζ ≡ ∇× ~u

~ζ = (
∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y
)

Most important at synoptic scales is vertical component:

~ζ = ζk̂ =
∂v

∂x
− ∂u

∂y
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Vorticity

= −   u/   y > 0δ δζ 

δ δζ = −   u/   y < 0

y
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Vorticity

> 0ζ
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Example

What is the vorticity of a typical tornado? Assume solid
body rotation, with a velocity of 100 m/sec, 20 m from the
center.

In cylindrical coordinates, the vorticity is:

ζ =
1

r

∂ rvθ

∂r
− 1

r

∂vr

∂θ

For solid body rotation, vr = 0 and

vθ = ωr
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Vorticity

with ω =const. So:

ζ =
1

r

∂rvθ

∂r
=

1

r

∂ωr2

∂r
= 2ω

We have vθ = 100 m/sec at r = 20 m:

ω =
vθ

r
=

100

20
= 5 rad/sec

So:

ζ = 10 rad/sec
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Absolute vorticity

Now add rotation. The velocity in the fixed frame is:

~uF = ~uR + ~Ω× ~r

So:

~ζa = ∇× (~u+ ~Ω× ~r) = ~ζ + 2~Ω

We have an extra component because the earth is in solid
body rotation!
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Absolute vorticity

Two components:

∇× ~u — the relative vorticity

2Ω — the planetary vorticity

Vertical component is the most important:

ζa · k̂ = (
∂

∂x
v − ∂

∂y
u) + 2Ωsin(θ) ≡ ζ + f

(ζ now refers to vertical relative vorticity)
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Absolute vorticity

Scaling:

ζ ∝ U

L

So:

|ζ|
f
≈ U

fL
= ǫ

The Rossby number
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Absolute vorticity

ǫ≪ 1

Geostrophic velocities

Planetary vorticity dominates

ǫ≫ 1

Cyclostrophic velocities

Relative vorticity dominates
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Circulation

Circulation is the integral of vorticity over an area:

Γ ≡
∫ ∫

ζdA

Due to Stoke’s theorem, we can rewrite this as an integral
of the velocity around the circumference:

Γ =

∫ ∫

∇× ~u dA =

∮

~u · n̂ dl

So we can derive an equation for the circulation by
integrating the momentum equations around a closed
curve.
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Circulation

First write momentum equations in vector form. Turns out to
be simpler using the fixed frame velocity:

d

dt
~uF = −1

ρ
∇p+ ~g + ~F

Integrate around a closed area:

d

dt
ΓF = −

∮ ∇p
ρ
· ~dl +

∮

~g · ~dl +
∮

~F · ~dl
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Circulation

Gravity vanishes because can write as a potential:

~g = −gk̂ =
∂

∂z
(−gz) ≡ ∇Φg

and the closed integral of a potential vanishes:
∮

∇Φg · ~dl =

∮

dΦg = 0
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Circulation

So:

d

dt
ΓF = −

∮

dp

ρ
+

∮

~F · ~dl

Put rotation back in. The fixed velocity is:

~uF = ~uR + Ω× r
So:

ΓF =

∮

(~uR + Ω× r) · ~dl
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Circulation

Rewrite using Stoke’s theorem:
∮

(~uR + ~Ω× ~r) · ~dl =

∫ ∫

∇× (~uR + ~Ω× ~r) · n̂ dA

From before:

∇× (~Ω× ~r) = 2Ω

If the motion is quasi-horizontal, then n̂ = k̂:

ΓF =

∫ ∫

[ζ + 2Ωsin(θ)]dA =

∫ ∫

(ζ + f)dA
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Kelvin’s theorem

Thus:

d

dt
Γa = −

∮

dp

ρ
+

∮

~F · ~dl

where

Γa =

∫ ∫

(ζ + f)dA

is the absolute circulation, the sum of relative and planetary
circulation
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Kelvin’s theorem

If the atmosphere is barotropic (temperature constant on
pressure surfaces):

∮

dp

ρ
=

1

ρ

∮

dp = 0

If atmosphere is also frictionless (~F = 0), then:

d

dt
Γa = 0

The absolute circulation is conserved on the parcel
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Kelvin’s theorem

Notice that if the area is small, so that the vorticity is
approximately constant over the area, then:

d

dt
Γa ≈

d

dt
(ζ + f)A = 0

which implies:

(ζ + f)A = const.

on a parcel. Thus if a parcel’s area or latitude changes, it’s
vorticity must change to compensate.
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Kelvin’s theorem

Move a parcel north, where f is larger. Either:

Vorticity decreases

Area decreases
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Vorticity equation

Now we will derive an equation for the vorticity.

Horizontal momentum equations (p-coords):

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂p
)u− fv = − ∂

∂x
Φ + Fx

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂p
) v + fu = − ∂

∂y
Φ + Fy

Take ∂
∂x of the second, subtract ∂

∂y of the first
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Vorticity equation

Find:

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂p
) ζa

= −ζa(
∂u

∂x
+
∂v

∂y
) + (

∂u

∂p

∂ω

∂y
− ∂v

∂p

∂ω

∂x
) + (

∂

∂x
Fy −

∂

∂y
Fx)

where:

ζa = ζ + f
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Vorticity equation

The absolute vorticity can change due to three terms

1) Divergence:

−ζa(
∂u

∂x
+
∂v

∂y
)

Divergence changes the vorticity, just like density
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Convergence
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Divergence

Can absorb the divergence into the left side. Consider small
area of air:

δA = δx δy

Time change in the area is:

δA

δt
= δy

δx

δt
+ δx

δy

δt
= δy δu+ δx δv

Relative change is the divergence:

1

δA

δA

δt
=
δu

δx
+
δv

δy
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Divergence

So rewrite the divergence term:

−(
∂

∂x
u+

∂

∂y
v)ζa = −ζa

A

dA

dt

So:

d

dt
ζa = −ζa

A

dA

dt
→ d

dt
ζaA = 0

This is just Kelvin’s theorem again!
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Vorticity equation

2) The tilting term:

(
∂u

∂p

∂ω

∂y
− ∂v

∂p

∂ω

∂x
)

Differences in ω can affect the horizontal shear
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Tilting

w

x

y

GEF 2220: Dynamics – p.175/279



Vorticity equation

3) The Forcing term:

(
∂

∂x
Fy −

∂

∂y
Fx)

Say frictional forcing:

Fx = ν∇2u, Fy = ν∇2v
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Friction

Then:

(
∂

∂x
Fy −

∂

∂y
Fx) = ν∇2 (

∂v

∂x
− ∂u

∂y
) = ν∇2 ζ

Then:

d

dt
(ζ + f) = ν∇2 ζ
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Friction

If f ≈ const.:

d

dt
ζ = ν∇2 ζ

Friction diffuses vorticity

Causes cyclones to spread out and weaken

Can occur due to friction in the boundary layer
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Scaling

(
∂

∂t
+u

∂

∂x
+v

∂

∂y
+ω

∂

∂p
) ζa = −ζa(

∂u

∂x
+
∂v

∂y
)+(

∂u

∂p

∂ω

∂y
− ∂v
∂p

∂ω

∂x
)

For synoptic scale motion, away from boundary layer:

U ≈ 10m/sec ω ≈ 10hPa/day L ≈ 106m ∂p ≈ 100hPa

f0 ≈ 10−4sec−1 L/U ≈ 105sec
∂f

∂y
≈ 10−11m−1sec−1
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Scaling

ζ ∝ U

L
≈ 10−5sec−1

So the Rossby number is:

ǫ =
ζ

f0

≈ 0.1

So:

(ζ + f) ≈ f
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Scaling

∂

∂t
ζ + u

∂

∂x
ζ + v

∂

∂y
ζ ∝ U2

L2
≈ 10−10

ω
∂

∂p
ζ ∝ Uω

LP
≈ 10−11

v
∂

∂y
f ∝ U

∂f

∂y
≈ 10−10

(
∂u

∂p

∂ω

∂y
− ∂v

∂p

∂ω

∂x
) ∝ Uω

LP
≈ 10−11

(ζ + f) (
∂u

∂x
+
∂v

∂y
) ≈ f (

∂u

∂x
+
∂v

∂y
) ∝ fU

L
≈ 10−9
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Scaling

Divergence term is unbalanced! But it’s actually smaller
than it appears. We can write:

u = ug + ua, v = vg + va

From the derivation of the gradient wind:

ug

u
≈ 1 + ǫ

This implies:

|ua|
|ug|
∝ ǫ ≈ 0.1
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Ageostrophic velocities

So we can write:

u = ug + ǫũa, v = vg + ǫṽa

where ũa = ua/ǫ. So the vorticity is:

ζ =
∂

∂x
vg −

∂

∂y
ug + ǫ(

∂

∂x
ṽa −

∂

∂y
ũa)

While the divergence is:

D =
∂

∂x
ug −

∂

∂y
vg + ǫ(

∂

∂x
ũa +

∂

∂y
ṽa)

1

f

∂

∂x
(−∂Φ

∂y
) +

1

f

∂

∂y
(
∂Φ

∂x
)

+ǫ(
∂

∂x
ũa +

∂

∂y
ṽa) = ǫ(

∂

∂x
ũa +

∂

∂y
ṽa)

Geostrophic velocities don’t contribute to the divergence.
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Vertical velocities

Also:

∂

∂z
w = −D ≈ −ǫ( ∂

∂x
ũa +

∂

∂y
ṽa)

So the divergence and the vertical velocity are order
Rossby number

Rotation suppresses vertical motion
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Scaled equation

Thus the divergence estimate is ten times smaller than we
had it before. So:

(ζ + f) (
∂u

∂x
+
∂v

∂y
) ≈ f (

∂u

∂x
+
∂v

∂y
) ∝ ǫ

fU

L
≈ 10−10

Retaining the 10−10 terms yields the approximate
vorticity equation:

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
) (ζ + f) = −f (

∂u

∂x
+
∂v

∂y
)
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Forecasting

Used for forecasts in the 1930’s and 1940’s

Approach:

Assume geostrophic velocities:

u ≈ ug = − 1

f

∂Φ

∂y

v ≈ vg =
1

f

∂Φ

∂x
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Forecasting

ζ ≈ ζg =
1

f

∂vg

∂x
− ∂ug

∂y
=

1

f
(
∂2Φ

∂x2
+
∂2Φ

∂y2
) =

1

f
∇2Φ

The divergence vanishes:

(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
) (ζg + f) = −f (

∂ug

∂x
+
∂vg

∂y
) = 0

Implies ζa is conserved following the horizontal winds

Remember: on a pressure surface
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Forecasting

Now only one unknown: Φ

(
∂

∂t
+ ug

∂

∂x
+ vg

∂

∂y
) (ζg + f) = 0

becomes:

(
∂

∂t
− 1

f

∂Φ

∂y

∂

∂x
+

1

f

∂Φ

∂x

∂

∂y
) (

1

f
∇2Φ + f) = 0
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Forecasting

Can write equation:

∂

∂t
ζg + ug · ∇ζg + vg

∂

∂y
f = 0

or:

∂

∂t
ζg = −ug · ∇ζg − vg

∂

∂y
f

Can predict how ζ changes in time

Then convert ζ → Φ by inversion
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Forecasting

Method:

Obtain Φ(x, y, t0) from measurements on p-surface

Calculate ug(t0), vg(t0), ζg(t0)

Calculate ζg(t1)

Invert ζg to get Φ(t1)

Start over

Obtain Φ(t2), Φ(t3),...
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Inversion

ζg =
1

f
(
∂2Φ

∂x2
+
∂2Φ

∂y2
)

∇2Φ = fζg

Poisson’s equation

Need boundary conditions to solve

Usually do this numerically
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Inversion

Simple analytical example: a channel, with zero flow at
northern and southern boundaries. Let:

ζ = sin(3x)sin(πy)

x = [0, 2π], y = [0, 1]

So:

∂2

∂x2
Φ +

∂2

∂y2
Φ = sin(3x)sin(πy)
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Inversion

Try a particular solution:

Φ = Asin(3x)sin(πy)

This solution works in a channel, because:

Φ(x = 2π) = Φ(x = 0)

Also, at y = 0, 1:

v =
1

f0

∂Φ

∂x
= 0
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Inversion

Substitute into equation:

∂2

∂x2
Φ +

∂2

∂y2
Φ = −(9 + π2)Asin(3x)sin(πy) = sin(3x)sin(πy)

So:

Φ = − 1

9 + π2
sin(3x)sin(πy)

Then we can proceed (calculate ug, vg, etc.)
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Analytical example

Assume a barotropic atmosphere (no vertical shear) with:

Φ = −f0Uy + f0Asin(kx− ωt) sin(ly)

so that:

ug = − 1

f0

∂

∂y
Φ = U − lA sin(kx− ωt) cos(ly)

vg =
1

f0

∂

∂x
Φ = kA cos(kx− ωt) sin(ly)

Describe how the field evolves in time.
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Example

We must solve:

∂

∂t
ζg = −ug · ∇ζg − vg

∂

∂y
f

To simplify things, we make the β-plane approximation:

f ≈ f0 + βy

where:

f0 = 2Ωsin(θ0), β =
2Ω

R
cos(θ0)
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Example

So:

v
df

dy
= v

∂

∂y
(f0 + βy) = βv

In addition, we approximate:

ug = − 1

f

∂

∂y
Φ ≈ − 1

f0

∂

∂y
Φ

vg =
1

f

∂

∂x
Φ ≈ 1

f0

∂

∂x
Φ

GEF 2220: Dynamics – p.197/279



Initial geopotential

Φ = sin(2x) sin(πy)
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Example

The relative vorticity is:

ζg =
1

f0

∇2Φ = −(k2 + l2)Asin(kx− ωt) sin(ly)

Also need the derivatives:

∂

∂x
ζg = −k(k2 + l2)Acos(kx− ωt) sin(ly)

∂

∂y
ζg = −l(k2 + l2)Asin(kx− ωt) cos(ly)
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Example

Collect terms:

−u ∂
∂x
ζ − v ∂

∂y
ζ = [U − lA sin(kx− ωt) cos(ly)]×

[k(k2 + l2)Acos(kx− ωt) sin(ly)] + [kA cos(kx− ωt) sin(ly)]×

[l(k2 + l2)Asin(kx− ωt) cos(ly)]

= Uk(k2 + l2)Acos(kx− ωt) sin(ly)
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Example

Also:

−βv = −βkA cos(kx− ωt) sin(ly)

So:

∂

∂t
ζ = (U(k2 + l2)− β)kA cos(kx− ωt) sin(ly)

Also, since:

ζg =
1

f0

∇2Φ = −(k2 + l2)Asin(kx− ωt) sin(ly)
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Example

Then:

∂

∂t
ζ = ω(k2 + l2)Acos(kx− ωt) sin(ly)

Equate both sides:

ω(k2 + l2)Acos(kx− ωt) sin(y)

= (U(k2 + l2)− β)kA cos(kx− ωt) sin(ly)

We can cancel the Acos(kx− ωt) sin(y), leaving:

ω(k2 + l2) = (U(k2 + l2)− β)k
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Example

or:

ω = Uk − βk

k2 + l2

So the solution is:

Φ = Acos(kx− ωt) sin(y)

with ω given above. Thus, for a given size wave, the
frequency is determined.

This is called a dispersion relation
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Phase speed

If a travelling wave:

ψ ∝ sin(kx− ωt)

the crests move with a phase speed:

cx =
ω

k

If ω > 0, waves move toward positive x (eastward)
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Phase speed

c = 2/3

0 1 2 3 4 5 6
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A sin(3x−2t)
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Phase speed

We have:

ω = Uk − βk

k2 + l2

so:

cx =
ω

k
= U − β

k2 + l2

If U = 0:

cx = − β

k2 + l2

→ All waves propagate westward!
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Phase speed

The wavelengths in both directions are:

λx =
2π

k
, λy =

2π

l

So:

cx = − β

k2
= − β

4π2
(λ2

x + λ2

y)

Larger waves propagate faster

→ The waves are dispersive
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Phase speed

If U 6= 0, then:

cx =
ω

k
= U − β

k2 + l2

Longest waves go west while shorter waves are swept
eastward by the zonal flow, U . If:

k2 + l2 =
β

U

the wave is stationary in the background flow
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Phase speed

The westward propagation is actually a consequence of
Kelvin’s theorem

Parcels advected north/south acquire relative vorticity

The parcels then advect neighboring parcels around them

Leads to a westward shift of the wave
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Westward propagation

y=0

+

−
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Rossby waves

Solutions are called Rossby waves

Discovered by Carl Gustav Rossby (1936)

Observed in the atmosphere

Stationary Rossby waves are important for long term
weather patterns

Study more later (GEF4500)
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Divergence

Previously ignored divergence effects. But very important
for the growth of unstable disturbances (storms)

The approximate vorticity equation is:

dH

dt
(ζ + f) = −(ζ + f) (

∂u

∂x
+
∂v

∂y
)

where:

dH

dt
= (

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
)

is the Lagrangian derivative following the horizontal flow
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Divergence
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Divergence

Consider flow with constant divergence:

∂

∂x
u+

∂

∂y
v = D > 0

d

dt
ζa = −ζa(

∂u

∂x
+
∂v

∂y
) = −Dζa

ζa(t) = ζa(0) e−Dt
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Divergence

So:

ζa = ζ + f → 0

ζ → −f

Divergent flow favors anticyclonic vorticity

Vorticity approaches −f , regardless of initial value
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Convergence
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Divergence

Now say D = −C

d

dt
ζa = −ζa(

∂u

∂x
+
∂v

∂y
) = Cζa

ζa(t) = ζa(0) eCt

ζa → ±∞

But which sign?
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Divergence

If the Rossby number is small, then:

ζa(0) = ζ(0) + f ≈ f > 0

So:

ζ → +∞

Convergent flow favors cyclonic vorticity

Vorticity increases without bound

•Why intense storms are cyclonic
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Summary

The vorticity equation is approximately:

d

dtH
(ζ + f) = −(ζ + f) (

∂u

∂x
+
∂v

∂y
)

or:

d

dtH
ζ + v

df

dy
= −(ζ + f) (

∂u

∂x
+
∂v

∂y
)

Vorticity changes due to meridional motion

Vorticity changes due to divergence
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Barotropic potential vorticity

Consider an atmospheric layer with constant density,
between two surfaces, at z = z1, z2 (e.g. the surface and the
tropopause)

The continuity equation is:

dρ

dt
+ ρ(∇ · ~u) = 0

If density constant, then:

(∇ · ~u) =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0
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Barotropic potential vorticity

So:

∂u

∂x
+
∂v

∂y
= −∂w

∂z

Thus the vorticity equation can be written:

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
) (ζ + f) = (ζ + f)

∂w

∂z
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Taylor-Proudman Theorem

The constant density assumption affects the shear

d

dt
u− fv = −1

ρ

∂

∂x
p

Taking a z-derivative:

d

dt
(
∂

∂z
u)− f(

∂

∂z
v) = −1

ρ

∂

∂x
(
∂

∂z
p) =

ρ

ρ

∂

∂x
g = 0

→ If there is no shear initially, have no shear at any time.
With constant density:

∂

∂z
u =

∂

∂z
v = 0
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Barotropic potential vorticity

So the integral of the vorticity equation is simply:

∫ z2

z1

(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
) (ζ + f)dz =

h(
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
) (ζ + f) = (ζ + f) [w(z2)− w(z1)]

where h = z2 − z1. Note that w = Dz/Dt. Thus:

w(z2)− w(z1) =
d

dt
(z2 − z1) =

dh

dt
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Barotropic potential vorticity

So:

h
d

dt
(ζ + f) = (ζ + f)

dh

dt

or:

1

ζ + f

d

dt
(ζ + f)− 1

h

dh

dt
= 0

d

dt
ln(ζ + f)− d

dt
lnh = 0

d

dt
ln
ζ + f

h
= 0
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Barotropic potential vorticity

Thus:
d

dt
(
ζ + f

h
) = 0

So the barotropic potential vorticity (PV):

ζ + f

h
= const.

is conserved on a fluid parcel.

Similar to Kelvin’s theorem, except includes layer thickness

If h increases, either ζ or f must also increase
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Layer potential vorticity
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Alternate derivation

Consider a fluid column between z1 and z2. As it moves,
conserves mass:

d

dt
(hA) = 0

So:

hA = const.

Because the density is constant, we can apply Kelvin’s
theorem:

d

dt
(ζ + f)A ∝ d

dt

ζ + f

h
= 0
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Potential temperature

But the atmosphere is not constant density. What use is the
potential vorticity?

As move upward in atmosphere, both temperature and
pressure change—neither is absolute.

But can define the potential temperature which is
absolute—accounts for pressure change.

The potential vorticity can then be applied in layers between
potential temperature surfaces
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Potential temperature

The thermodynamic energy equation is:

cpdT − αdp = dq

With zero heating:

cpdT = αdp =
RT

p
dp

using the ideal gas law. Rewriting:

cp dlnT = Rdlnp
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Potential temperature

If move a parcel upward from the surface, both its
temperature and pressure change. But using the surface
pressure, we can define:

cp lnT −R lnp = cp lnθ −R lnp0

where p0 is the surface pressure:

p0 = 100 kPa = 1000mb

Rearranging:

θ = T (
p0

p
)R/cp
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Potential temperature

If zero heating, a parcel conserves its potential
temperature, θ

Call a surface with constant potential temperature an
isentropic surface or an “adiabat”

θ is the temperature a parcel has if we move it adiabatically
back to the surface

Note potential temperature depends on both T and p
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Layer potential vorticity

Flow between two isentropic surfaces trapped if zero
heating

So mass in a column between two surfaces is conserved:

Aδz = const.

From the hydrostatic relation:

−Aδp
ρg

= const.

where δp is the spacing between surfaces
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Layer potential vorticity

δρ

θ

θ + δθ
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Layer potential vorticity

Rewrite δp thus:

δp = (
∂θ

∂p
)−1 δθ

Here, ∂θ
∂p is the stratification. The stronger the stratification,

the smaller the pressure difference between temperature
surfaces. Thus:

Aδp

ρg
= A(

∂θ

∂p
)−1

δθ

g
= const.
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Layer potential vorticity

From the Ideal Gas Law and the definition of potential
temperature, we can write:

ρ = pcv/cp(Rθ)−1p
R/cp

s

So the density is only a function of pressure. This means
that:

∮

dp

ρ
∝

∮

dp1−cv/cp = 0

So Kelvin’s theorem applies in the layer

GEF 2220: Dynamics – p.235/279



Layer potential vorticity

Thus:

d

dt
[(ζ + f)A] = 0

implies:

d

dt
[(ζ + f)

∂θ

∂p
] = 0

This is Ertel’s (1942) “isentropic potential vorticity equation”
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Layer potential vorticity

Remember: ζ evaluted on potential temperature surface

Very useful quantity: can label air by its PV

Can distinguish air in the troposphere which comes from
stratosphere

Ertel’s equation can also be used for prediction
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Planetary boundary layer

z=0
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Turbulence

There is a continuum of eddy scales

Largest resolved by our models, but the smallest are not.
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Boussinesq equations

Assume we can split the velocity into a mean (over some
period) and a perturbation:

u = u+ u′

Use the momentum equations with no friction:

∂

∂t
u+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −1

ρ

∂

∂x
p

∂

∂t
v + u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −1

ρ

∂

∂y
p
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Boussinesq equations

Assume density in the boundary layer approximately
constant, so that:

∂

∂x
u+

∂

∂y
v +

∂

∂z
w = 0

Substitute the partitioned velocities into the momentum
equations and then average:

∂

∂t
(u+ u′) + (u+ u′)

∂

∂x
(u+ u′) + (v + v′)

∂

∂y
(u+ u′)− f(v + v′)

+(w + w′)
∂

∂z
(u+ u′) =

1

ρ

∂

∂x
(p+ p′)
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Boussinesq equations

Now average. Note that:

u+ u′ = u

so:

∂

∂t
u+ u

∂

∂x
u+ u′

∂

∂x
u′ + v

∂

∂y
u+ v′

∂

∂y
u′+

+w
∂

∂z
u+ w′

∂

∂z
u′ +−fv =

1

ρ

∂

∂x
p
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Boussinesq equations

Because of the continuity equation, we can write:

u′
∂

∂x
u′ + v′

∂

∂y
u′ + w′

∂

∂z
u′ =

∂

∂x
u′u′ +

∂

∂y
u′v′ +

∂

∂z
u′w′

So:

∂

∂t
u+ u

∂

∂x
u+ v

∂

∂y
u+ w

∂

∂z
u− fv =

= −1

ρ

∂

∂x
p− (

∂

∂x
ρu′u′ +

∂

∂y
u′v′ +

∂

∂z
u′w′)
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Boussinesq equations

Similarly:

∂

∂t
v + u

∂

∂x
v + v

∂

∂y
v + w

∂

∂z
v + fu =

= −1

ρ

∂

∂y
p− (

∂

∂x
ρv′u′ +

∂

∂y
v′v′ +

∂

∂z
v′w′)

Terms on the RHS are the “eddy stresses”
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PBL equations

Assume the eddy stresses don’t vary horizontally. Then:

∂

∂t
u+ u

∂

∂x
u+ v

∂

∂y
u+ w

∂

∂z
u− fv = −1

ρ

∂

∂x
p− ∂

∂z
u′w′

∂

∂t
v + u

∂

∂x
v + v

∂

∂y
v + w

∂

∂z
v + fu = −1

ρ

∂

∂y
p− ∂

∂z
v′w′

GEF 2220: Dynamics – p.245/279



PBL equations

Outside the boundary layer, assume geostrophy. In the
layer, we have geostrophic terms plus vertical mixing. So
turbulence breaks geostrophy:

−fv = −1

ρ

∂

∂x
p− ∂

∂z
u′w′

= −fvg −
∂

∂z
u′w′

fu = fug −
∂

∂z
v′w′
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PBL equations

But too many unknowns! : u, v, u′, v′, w′

Must parameterize the eddy stresses.

Two cases:

Stable boundary layer: stratified

Convective boundary layer: vertically mixed

GEF 2220: Dynamics – p.247/279



Convective boundary layer

Due to vertical mixing, temperature and velocity are
constant with height. So we can integrate the momentum
equation vertically:

∫ h

0

−f(v − vg) dz = −fh(v − vg) =

−
∫ h

0

∂

∂z
u′w′ dz = u′w′|h − u′w′|0

We can assume mixing vanishes outside of the layer:

u′w′|h = 0
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Convective boundary layer

Thus:

fh(v − vg) = −u′w′|s

From surface measurements, can parameterize the fluxes:

u′w′|0 = −CdV u, v′w′|0 = −CdV v

where Cd is the "drag coefficient" and

V ≡ (u2 + v2)1/2
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Convective boundary layer

Thus:

fh(v − vg) = CdV u

and:

−fh(u− ug) = CdV v
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Convective boundary layer

Say vg = 0; then:

v =
Cd

fh
V u,

u = ug −
Cd

fh
V v

Solving equations not so simple because V =
√
u2 + v2

But can use iterative methods
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Convective boundary layer

If u > 0, then v > 0

L

u

ub

g

• Flow down the pressure gradient
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Stable boundary layer

Now assume no large scale vertical mixing

Wind speed and direction can vary with height

Specify turbulent velocities using mixing length theory:

u′ = −l′ ∂
∂z
u

where l′ > 0 if up.
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Mixing length

l’

u(z)
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Stable boundary layer

So:

−u′w′ = w′l′
∂

∂z
u

Assume the vertical and horizontal eddy scales are
comparable

w′ = l′
∂

∂z
V

where again V =
√
u2 + v2

Notice w′ > 0 if l′ > 0.
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Stable boundary layer

So:

−u′w′ = (l′2
∂

∂z
V)

∂

∂z
u ≡ Az

∂

∂z
u

Same argument:

−v′w′ = Az
∂

∂z
v

where Az is the “eddy exchange coefficient”

Depends on the size of turbulent eddies and mean shear
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Stable boundary layer

So we have:

f(v − vg) =
∂

∂z
[Az(z)

∂

∂z
u]

−f(u− ug) =
∂

∂z
[Az(z)

∂

∂z
v]

Simplest case is if Az(z) is constant

Studied by Swedish oceanographer V. W. Ekman (1905)
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Ekman layer

Boundary conditions: use the “no-slip condition”:

u = 0, v = 0 at z = 0

Far from the surface, the velocities approach their
geostrophic values:

u→ ug, v → vg z →∞
Assume the geostrophic flow is zonal and independent of
height:

ug = U, vg = 0
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Ekman layer

Boundary layer velocities vary only in the vertical:

u = u(z) , v = v(z) , w = w(z)

From continuity:

∂

∂x
u+

∂

∂y
v +

∂

∂z
w =

∂

∂z
w = 0 .

With a flat bottom, this implies:

w = 0
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Ekman layer

The system is linear, so can decompose the horizontal
velocities:

u = U + û, v = 0 + v̂

Then:

−fv̂ = Az
∂2

∂z2
û

f û = Az
∂2

∂z2
v̂ .
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Ekman layer

Boundary conditions:

û = −U, v̂ = 0 at z = 0

Introduce a new variable:

χ ≡ û+ iv̂

Then:

∂2

∂z2
χ = i

f

Az
χ
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Ekman layer

The solution is:

χ = Aexp(
z

δE
) exp(i

z

δE
) +B exp(− z

δE
) exp(−i z

δE
) ,

where:

δE =

√

2Az

f

This is the “Ekman depth”

Corrections should decay going up, so:

A = 0
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Ekman layer

Take the real part of the horizontal velocities:

u = Re{χ} = Re{B} exp(− z

δE
) cos(

z

δE
)

+Im{B} exp(− z

δE
) sin(

z

δE
)

and

v = Im{χ} = −Re{B} exp(− z

δE
) sin(

z

δE
)

+Im{B} exp(− z

δE
) cos(

z

δE
)
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Ekman layer

For zero flow at z = 0, require Re{B} = −U and Im{B} = 0.
So:

u = U + û = U − U exp(− z

δE
) cos(

z

δE
)

v = v̂ = U exp(− z

δE
) sin(

z

δE
) ,
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Ekman layer
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Ekman spiral
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Ekman spiral

The velocity veers to the left in the layer

Observations suggest u→ ug at z = 1 km.

With f = 10−4/sec, we have:

Az ≈ 5m2/sec

If ∂
∂zV| = 5× 10−3, the mixing length l ≈ 30 m.

As in the convective boundary layer, turbulence allows flow
from high pressure to low pressure.
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Surface layer

Ekman layer cannot hold near surface: can’t have 30 m
eddies 10 m from surface. Introduce a surface layer where:

l′ = kz

Then:

Az = k2 z2
∂

∂z
V

So:

Az
∂

∂z
u = k2z2| ∂

∂z
V | ∂
∂z
u ≈ k2z2(

∂

∂z
u)2
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Surface layer

Measurements suggest the turbulent momentum flux is
approximately constant in the surface layer:

∂

∂z
u′w′ ≈ u2

∗

where u∗ is the “friction velocity”. So:

∂

∂z
u =

u∗
kz
→ u =

u∗
k
ln(

z

z0
)

Here:

k ≈ 0.4 is von Karman’s constant

z0 is the “roughness length”
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Surface layer

Match the velocity at the top of the surface layer to that at
the base of the Ekman layer.

Comparisons with observations are only fair (see Fig. 5.5 of
Holton)

Ekman spiral is often unstable, generating eddies that mix
away the signal
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Spin-down

Turbulence in both stable and convective boundary layers
causes the winds to slow down

Both have flow down pressure gradient

This weakens the gradient and the geostrophic wind

Convergence/divergence in the Ekman layer causes a
vertical velocity at the top of the layer
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Spin-down

Illustrate using the barotropic vorticity equation:

D

Dt
(ζ + f) ≈ f

∂w

∂z

Integrate from the top of boundary layer (z = d) to the
tropopause:

(H − d) D
Dt

(ζ + f) = f(w(H)− w(d)) = −fw(d)
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Spin-down

Because the boundary layer is much thinner than the
troposphere, this is approximately:

D

Dt
(ζ + f) = − f

H
w(d)

So vertical velocity into/out of the boundary layer changes
the vorticity in the troposphere
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Ekman pumping

Example: the Ekman layer. The continuity equation is:

∂

∂z
w = − ∂

∂x
u− ∂

∂y
v

Integrating over the layer, we get:

w(d)− 0 = −
∫ d

0

(
∂

∂x
u+

∂

∂y
v) dz ≡ − ∂

∂x
Mx −

∂

∂y
My

where Mx and My are the horizontal transports
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Spin-down

Can show:

My ≈
Ud

2

and:

Mx ≈ −
V d

2

So:

w(d) =
d

2
(
∂

∂x
V − ∂

∂y
U) =

d

2
ζ
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Spin-down

Thus:

D

Dt
(ζ + f) = − fd

2H
ζ

If assume f = const., then:

D

Dt
ζ = − fd

2H
ζ

So that:

ζ(t) = ζ(0) exp(−t/τE)
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Spin-down

where:

τE ≡
2H

fd

is the Ekman spin-down time. Typical values:

H = 10km, f = 10−4sec−1, d = 0.5km

yield:

τE ≈ 5 days
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Spin-down

Compare to molecular dissipation. Then:

∂

∂t
u = Km

∂2

∂z2
u

From scaling:

Td ≈
H2U

UKm
=
H2

Km
≈ 100 days

The Ekman layer is much more effective at damping motion
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Spin-down

The vertical velocity is part of the secondary circulation

The primary flow is horizontal, (ug, vg)

The vertical velocities, though smaller, are extremely
important nevertheless

Stratification reduces the effective H. So the geostrophic
velocity over Ekman layer spins down more rapidly, leaving
winds aloft alone.
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