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Course

-

Part 1: Dynamics: LaCasce

Chapter 7, Wallace and Hobbs + my notes

Part 2: Weather systems: Rg@sting

Chapter 8, Wallace and Hobbs + extra articles + DIANA

o -
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Dynamics

- .

1) Derive the equations which describe atmospheric motion
2) Derive approximate balances
3) Understand pressure systems, temperature gradients

4) Introduce the general circulation

o -
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Variables

-

SiX unknowns:

(u, v, w) — Wind velocities
p — Pressure
T'— Temperature

© o o o

p — Density

o -
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Pressure

LT Mon 25 Jan 2010

-
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Temperature

Current Temperatures Find Local Weather

‘C 50 -40 10 20 30 50

F -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60,'70 80 90 100 110 120 130

25/01/2010 0825 UTC
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Y 4
PV Do = it I i -

Wind 10m GFS (kts) Mon 25/01,/10 Q8GMT (Mon 0B+00)
510 15 20 25 30 35 40 45 50 55 69 @weatheronline.co.uk

-
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Primitive equations

- .

Momentum equations <« F = ma
Thermodynamic energy equation <« T
Continuity < p

|deal gas law

o -
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Primitive equations

m

omentum:
%u+ﬁ-Vu—|—fyw_fo: —%a%erNQu
%v+ﬁ- Vo + fou= _%%eryvzv
%w+ﬁ-vw—fyuz_%%p—g+Vv2w

o -

GEF 2220: Dynamics — p.9/29



Primitive equations

-

Continuity:

%erﬁ-VerpV-ﬁ:O

|deal gas:
p = pRT
Thermodynamic energy:

i’ | da _ dI_ dp _ dq
“ar P TPy Yw T @

o -
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-

S

olve the equations numerically with weather models

Prediction

Issues:

9
9
9
9
9

Numerical resolution
Vertical coordinate
Small scale mixing
Convection

Clouds

Goal: forecasting

o

=

-
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-

S

Dynamics

olve a simplified set of equations

9
9
N
9

|ldentify dominant balances

Simplify the equations

Obtain solutions (analytical, numerical)
Look for similiarities with observations

Goal: understanding the atmosphere

o

-
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Derivatives

-

Consider an air parcel, with temperature T'=T'(z, y, z, )

The change in temperature, from the chain rule:

oT ~  OT oT oT
T = g4+ == 9 or
AT = oy dt+ 5o dot 5 dy + 7 d

So:

ar_or _ or or  or
i ot oz v@y Yoz

o1
— 4+ g-YT
at+uv

o -
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Derivatives

=

(u, v, w) are the wind velocities in the (z, y, z) directions
% IS the “Lagrangian” derivative

9 + 1 -V is the “Eulerian” derivative

-
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T(ty)

L agrangian

\

T(t2)




Eulerian




Momentum eguations

m=pV




Momentum equations

.

he acceleration in the z-direction Is:
_3F
Qr = — :
X m . 1
1
Two types of force:

#» Real
® Apparent

o -
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Forces
R

#® Pressure gradient

eal forces

o Gravity
® Friction

Apparent forces

® Coriolis
o Centrifugal

o -
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Pressure gradient

FL = pA e

0z

Xo ¥y %0

OV = ox 0y 0z

OX




Pressure gradient

o -

Using a Taylor series, we can write the pressure on the right
side of the box:

Op ox

pr = p(Z0, Yo, 20) + 97 9 T

Similarly, the pressure on left side of the box is:

Op ox

pr. = p(x0, Yo, 20) — 9 9 T

o -
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Pressure gradient

-

Fr = —prA = [p(z0, Y0, 20) + %%] 0Yoz
On left side:
Fr, = prA = [p(zo, yo, 20) — %%] 0Yyo0z
So the net force Is:
Fy=Fr + Fr = —@5:13@5,2

\— ox

The force on the right hand side (directed inwards):

-
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Pressure gradient
E

he volume weighs:

m = poxroyoz

So:

Cle—: —

du Iy 1 Op
m p Ox

Same derivation for the y and =z directions.

Note this is a Lagrangian derivative

o

-
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Momentum equations

fMomentum with pressure gradients: T
du 10
dt p(?:l:p
dv_ 10
dt payp
dw 19
dt pazp

o -
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Gravity
-

Acts downward (toward the center of the earth):

F,

a, = — = —¢
m

dw 10

o -
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Friction

B -
I OTzx0Z
0z 2

T

0z

______________________

_ OTzx0Z 5
6z 2 | y

TZX

o -
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Friction
E

he stress causes an accerleration:

du _ 10
dt p 0z

We don’t know the stress. So we parameterize it:

1(97233_V8_2u

0 0z 022
(for example with molecular mixing). In 3 dimensions:

du 62 82 82 2

o -
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Momenutum equations

-

With all the real forces, we have:

du 0 . B 1 0 2
d’U a 18 2
_— = — TR = ——— v
o athru Vv p@prrV v
dw 0 L 10 9

-
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Apparent forces

Space Earth



Rotation




Rotation

- .

00 = ot

Assume 2 = const. (reasonable for the earth)

Change in A is 0 A, the arc-length:

5A = | A|sin(7)60 = Q|A|sin(y)dt = ( x A) 6t

o -
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Rotation

So:

—

dA

T _Ox A
it :

This Is the motion of a fixed vector. For a moving vector:

dA dA L
(E)F = (E)RJFQ X A

So the velocity in the fixed frame Is equal to that in the
rotating frame plus the rotational movement

o -

GEF 2220: Dynamics — p.32/29



Rotation

o .

If A =7, the position vector, then:

If A=, we getthe acceleration:

du du S d
(—Sf)F:(%)RJFQX’JF:[E(uRJrQX’F)]RJeruF
duR =

= (—— o )R+2(2><uR+Q><Q

o -
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Rotation
R

earranging:

duR duF

— 20 Q x Q x
(dt) (dt)F X Up — € X

Two additional terms:

® Coriolis acceleration — —20 x iip

#® Centrifugal acceleration — —Q x Q x 7

o
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Centrifugal acceleration

. .

Rotation requires a force towards the center of
rotation—the centripetal acceleration

From the rotating frame, the sign is opposite—the
centrifugal acceleration

Acceleration points out from the earth’s radius of rotation

So has components in the radial and N-S directions

o -
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Centrifugal




Centrifugal
-

The earth is not spherical, but has deformed into an oblate
spheroid

=

There is a component of gravity which exactly balances the
centrifugal force in the N-S direction

Defines surfaces of constant geopotential

The locally vertical centrifugal acceleration can be
absorbed into gravity:

o -
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Centrifugal
-

Example: What is the centrifugal acceleration for a parcel o
air at the Equator?

-

—Ox QO x7=-Qx(Qr) =%

with:
r. = 6.378 x 10° m
and:
2
() = 7T sec™ !
3600(24)

o -
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Centrifugal

So:

O%r, = 0.034 m/sec?

This is much smaller than g = 9.8 m?/sec

e Only a minor change to absorb into ¢’

o -
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Cartesan coordinates

- .

So can use spherical coordinates

qguatorial radius is only 21 km larger than at poles

However, we will use Cartesian coordinates

# Simplifies the math
#® Neglected terms are unimportant at weather scales

o -
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Cartesian coordinates




Coriolisforce

=

fRotation vector projects onto local vertical and meridional
directions:

20) = 2Q0c0s0 7 + 2Q0sind k = fy§'+fz k

So the Coriolis force is:

—20 x i = —(0, fy, [2) X (u,v,w)

— _(fyw _ fzva fzua _fyu)

o -
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Coriolisforce

-

Example: What is the Coriolis acceleration on a parcel
moving eastward at 10 m/sec at 45 N?

We have:

fu = 2Qcos(45) = 5.142 x 107° sec™ !
f. = 2Qsin(45) = 5.142 x 107° sec™ !

—20 x @ = —(0, fy, f2) X (4,0,0) = —fouj + fyuk
= (0, —5.142 x 107%,5.142 x 10™%) m/sec?

o -
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Coriolisforce
| o

Vertical acceleration is negligible compared to gravity
(g = 9.8 m/sec?), so has little effect in z

But unbalanced in the horizontal direction

Note acceleration is to the south

# Coriolis acceleration is most important in the horizontal
# Acts to the right in the Northern Hemisphere

o -
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Coriolisforce

-

In the Southern hemisphere, 6 < 0. Same problem, at 45 S:

=

fuy = 2Qcos(—45) = 5.142 x 107° sec™ !
fr = 2Qsin(—45) = —5.142 x 107° sec™ !

—2?2><ﬁ:—fzu§+fyu/%

= (0,+5.142 x 107%,5.142 x 10~*) m/sec?

Acceleration to the north, to the left of the parcel velocity.

o -
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Momentum equations

-

Move Coriolis terms to the LHS:

1
%u—l—ﬁ- Vu+ fyw — fzv = —;—aaxp—i—VVQU
1
%U+E-Vv+fzu: —;(%p%—uV%
0 . 10
aw—ku-Vw—fyu: —;Ep—g+uv2w

o -
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Continuity

Xo ¥, %0

0z

OX

-
-
-
-
-
-
-
-~
~
~
~
~
~

-
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Continuity
-

Consider a fixed volume

Density flux through the left side:

0 Ox
pu = 5-(pu) =] 0y 0z

Through the right side:

0 Ox
pu+ 5 (pu)—-] oy oz

o -
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Continuity
- o

So the net rate of change in mass is:

0 0 0 Ox

9= a(ﬂaﬂf Oy 0z) = |pu — g(ﬂu)j] Jy 0%
0 oz 0
—[pu + %(pu)T] 0y 0z = —%(pu)ﬁm Oy 0z

The volume §V Is constant, so:

= (ou)
at" ~ " or

o -
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Continuity
-

Taking the other sides of the box:

o) = 5 (0) 5 (pw) = =V -

Can rewrite:
V. (pu)=pV-u+1u-Vp.
So:

+4-Vp+p(V-u)=0

o -
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Continuity
-

Can also derive using a Lagrangian box

As the box moves, it conserves it mass. So:

1 d 1 d 1dp | 1 dsV _

mai 7™ = v a V) = S w T

Expand the volume term:

1 doV 1 d5 N 1 d5 N 1 d5
SV dt odxzdl T oydt” " szdt

Lo, 1y 1ode u G0, G
Cdx dt Sy dt Sz dt bz

o -
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Continuity
A

So— 0:

Su b dw  du o w
ox oy bz Ox Oy 0Oz

So:

Ldp
P AVY-d=0
o dt + U

Change in density proportional to the velocity divergence.

If volume changes, density changes to keep mass constant.

o -
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|deal Gas L aw

-

Five of the equations are prognostic: they describe the time
evolution of fields.

=

But we have one diagnostic relation.

This relates the density, pressure and temperature

o -
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|deal Gas L aw
o

or dry air:

p = pRT

where

R =287 Jkg 'K~}



Moist air
-

Law moist air, can write (Chp. 3):

p = pR1y

where the virtual temperature is:

T T
" 1—e/p(l—¢)
Ry
= — = (0.622
€ R

We will ignore moisture. But remember that we can take it
Linto account in this way. J
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Primitive equations

-

Continuity:

%erﬁ-VerpV-ﬁ:O

|deal gas:
p = pRT
Thermodynamic energy:

i’ | da _ dI_ dp _ dq
“ar P TPy Yw T @

o -
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Thermodynamic eguation

-

o b
O
O SR
O° 4 o | | - F
o , O
O O
o Qoo
OOQOOO 77777777 B




First law of ther modynamics

-

Change in internal energy = heat added - work done:

de = dqg — dw

Work is done by expanding against external forces:

dw = Fdx = pAdx = pdV

If 4V > 0, the volume is doing the work

o -
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First law of ther modynamics

o .

ssume the volume has a unit mass, so that:

pV =1
Then:

1

dV = d(
0

) = da

where « Is the specific volume. So:

de = dq — pda

o -

GEF 2220: Dynamics — p.59/29



First law of ther modynamics

-

Add heat to the volume, the temperature rises. The specific
heat (c,) determines how much. If the volume is held
constant:

=

dq, = c,dT’

With dV = 0, equas the change in internal energy:

dq, = de, = c,dT

o -
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First Law of thermodynamics

-

Joule’s Law: e only depends on temperature for an ideal
gas. So even if V changes:

=

de = c,dT

So:

dq = c,dT + pda
Divide by dt to find the theromdynamic energy equation:

o -
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First law of ther modynamics
N

ow imagine we keep the pressure constant: T

dqp = cpdT

We let the volume expand while keeping p constant. This

requires more heat to raise the temperature. Rewrite the
work term:

pda = d(pa) — adp
S0:

dq = c,dT + d(pa) — adp

o -
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First law of ther modynamics

-

The ideal gas law Is:

=

p=pRT = o 'RT

So:

d(pa) = RdT

Thus:

dq = (cy + R)dT — adp



First law of ther modynamics
o o

t constant pressure, dp = 0, SO:

dgy, = (cy + R)dT = c,pdT

So the specific heat at constant pressure is greater than at
constant volume. For dry air:

co = TITJkg ' K™, ¢, = 1004Jkg 'K~

SO.

R =287 Jkg 1K1

o -
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First law of ther modynamics

-

So we can also write:

dq = cpdl — adp

Dividing by dt, we have:



Basic balances

=

fNot all terms in the momentum equations are equally
Important for weather systems.

Will simplify the equations by identifying primary balances
(throw out as many terms as possible).

Begin with horizontal momentum equations.

o -
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Scaling
=

General technique: scale eguations using estimates of the
various parameters. Take the x-momentum equation,
without friction:

=

2uJruiuJrvguthgquf w — fou = 19
ot ox 0y 0z Y T pox
U U? U UW AgP
r z L o MU

o -
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Scaling
N

ow use typical values. Length scales:

L~10%n, D= 10*m

Horizontal scale is 1000 km, the synoptic scale (of weather
systems).

Velocities:

UV ~10m/sec, W = 1cm/sec

Notice the winds are quasi-horizontal

o -
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Scaling
=

Pressure term, from measurements:

A P/p ~ 10°m?/sec?

Time scale:

T =L/U ~ 10°sec

Called an “advective time scale” (~ 1 day).

o -
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Scaling
=

Coriolis terms:

(fy, [2) = 2€Q(cos0, sind)
with

O = 271(86400) Lsec™?
Assume at mid-latitudes:

fy = [z~ 10" %sec™!

o -
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lug In:
0 0 0 0 10
pre + Up U va—yu + WU + fyw — fov = —— 5P
U U? U? UW NP
T ©» 1 b WY T
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Geostrophy

Keeping only the 1073 terms:

J20=——p
1 0

U = ———7P

/ p Oy

These are the geostrophic relations.

Balance between the pressure gradient and Coriolis force.

o -
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Geostrophy

. .

undamental momentum balance at synoptic scales

#® Low pressure to left of the wind in Northern Hemisphere
#® Low pressure to right in Southern Hemisphere

But balance fails at equator, because f, = 2Q2sin(0) = 0

There we must keep other terms

o -
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Geostrophy

Coriolis force

-
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Geostrophy




Geostrophy




Geostrophy
-

Example: If the pressure difference is 0.37 kPa over 100
km, how strong are the winds? Imagine we’re at 45 N.

=

fr = 2Qsin(45) = 1.414%(7.27x107°) sec™t = 1.03x10™* sec™?

Op  0.37 x 10° N/m?
ol 105m

—3.7%x 107 N/m’

So:

1 Op 1
 — _

N - 3.7x1073 N/m?
pof. Ol (1.2 kg/m3)(1.03 x 10_4860_1)( X /m?)

L: 29.9 m/sec  (Strong!) J
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Geostrophy

- .

e Given the pressure, can calculate the horizontal velocities

s a diagnostic relation

But geostrophy cannot be used for prediction

Means that we must also retain the 10~ terms in the scaling

o -
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Approximate horizontal momentum

fSo: T

2quugunngu—fv——12
ot ox 0y o p@aﬁp
Qv%—ugv%—viv#—fu——lg
ot ox oy o p@yp

These equations are quasi-horizontal: neglect vertical
motion

Explains why the horizontal winds are so much larger than
In the vertical

o -
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Other momentum balances

-

Geostrophy most important balance at synoptic scales. But
other balances possible. Consider purely circular flow:

=

o -
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Other momentum balances

=

fMust use cylindrical coordinates. From standard text books,
can find that the acceleration in the radial direction is given

by:

d 2 10
—Ur—%—f’ue:——

dt r 0 Ep

uZ /r is the cyclostrophic term

This iIs related to centripetal acceleration.

o -
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Other momentum balances

A

ssume no radial motion: «, = 0. Then:

u’ 10
L+ fug = —5-p
r p Or
Scaling we get:
U? AP
=y =
R pR
Or:
U . ANgP
fR pfUR

-
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Other momentum balances

. .

he ratio:
v
fR

IS called the Rossby number. If ¢ < 1, the first term is very
small. So we have:

€

10
fue—lgap

The geostrophic relation.

o -
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Other momentum balances

-

If € > 1, the first term dominates.

=

A tornado at mid-latitudes has:

U~ 30m/s, f=10"4sec™!, R~ 300m — e~ 1000

L -
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Cyclostrophic wind balance

. .

hen we have:

or.

® Rotation does not enter.
# \Winds can go either way.

B :



| nertial oscillations

. .

hird possibility: there is no radial pressure gradient:

2
Ug

— 4+ fug =0
T

then:
ug = —fr

Rotation is clockwise (anticyclonic) in the Northern
Hemisphere.

o -
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| nertial oscillations

B —— ; ; . ; ; . ; ; ; ; ; ; ; -
4 !
3 !
a 25 July 00-05 UTC:
Fresh winds carry the water
{ | eastward with 25-30 cmis
28 July . omop
D | fe s P .:t\.{_:
& 26 July 05 UTC:
$ -1 = Thewinds subside
= S hutthe water
£ —2 Lo cantinues to move
= L with 10-15 cmis and
¥ -3 oo is deflectad to the right
due to the Coriolis effect
=t}
-5
25-28 July: The water is carried by the sea current
-6 | atthe same time as it rotates in ineria circles with
radii of about 1,5 km and with periods of abhout
-7 13 hours, hoth close to the theoretical values
8 !
_Q L | i ! i L i | ! i i ! i i i i 0|
-9 -8 -vy -6 -8 4 -3 -2 -1 0 1 2 3 4 5 6 7T 48
Kilometras

A drifting buoy In the Baltic Sea, July 1969. Courtesy
Persson and Broman.
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| nertial oscillations

-

2 2w 0.5 day

Ug f  |sind)

Called the “inertial period”
Strong effect in the surface ocean

Less frequently observed in the atmosphere

o

The time for a fluid parcel to complete a loop is:

-
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Gradient wind balance

-

Fourth possibility: all terms are important (e ~ 1)

2

U 1 0
%4 fug=—5p
r p Or

Solve using the quadratic formula:

o -
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Gradient wind balance

-

If u, < 0 (anticyclone), we require:

fr
< -
|ug’ 4

If u, > 0 (cyclone), there is no limit

Wind gradients can be much stronger in cyclones than in
anticyclones

o -
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Gradient wind balance
A

lternately can write:
2
Up _1o0 _

Divide through by fuy:

So if e = 0.1, the gradient wind estimate differs by 10 %

o -

GEF 2220: Dynamics — p.91/29



Gradient wind balance

- .

# At low latitudes, ¢ can be 1-10. Then the gradient wind
estimate IS more accurate.

#® Geostrophy is symmetric to sign changes: no difference
between cyclones and anticyclones

# The gradient wind balance is not symmetric to sign
change. Cyclones can be stronger.

o -
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Gradient wind balance

— \\ V
r ‘ r

\
\
\
N \ ’
\ \ ’
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Winds weaker than geostrophic for a low pressure system;
they are stronger for a high pressure system.

o -
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Gradient wind balance

An anomalous low: low pressure with clockwise flow

Usually only occurs at low latitudes, where Coriolis weak

o -
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Hydrostatic balance




Hydrostatic balance
N

ow scale the vertical momentum equation

0 0 0 0 10

&w+u%w+va—yw+waw — fyu = —;ap—g
UW ow  UW KQ U Ay P
L L L D oD 7

o -
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Hydrostatic balance

- .

We must scale:

The vertical variation of pressure much greater than the
horizontal variation:

Ay P/p =~ 10°m?/sec?

o -
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Hydrostatic balance

=

ngrugw vguﬂrwaw fyu = BRI
ot ox 0y 0z U p@zp J
UWwW ow  UW Kz U Ay P

L L L D oD 7

1077 100" 1077 1071 1073 10 10

-
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Static atmosphere
B

fDominant balance is between the vertical pressure gradient
and gravity

However, same balance if there no motion at all !

Setting (u, v, w) = 0 In the equations of motion yields:

1o 1o 0 dl
p(?xp_ p@yp_ ot~ ar
Which implies:

p=rp(z), p=pz), T=T()

o -
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Static atmosphere

-

Two equations left:
&p = —pPyg

the hydrostatic balance and

p = pRT

Equations describe a non-moving atmosphere

o -
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Static atmosphere
N

ntegrate the hydrostatic relation:
o
p(z) = / pgdz .
<

The pressure at any point is equal to the weight of air above
it. Sea level pressure is:

p(0) = 101.325 kPa (1013.25mb)

The average weight per square meter of the entire
atmospheric column

o -
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Static atmosphere

-

Say the T' = const. (an isothermal atmosphere):

9. _ P9
(9zp RT

This implies:
_ 9%

o -
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Static atmosphere

-

So that:

p=poe M

Pressure decays exponentially. The e-folding scale is the
“scale height™.

RT

H ="
g

o -
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Scaling
=

Static hydrostatic balance not interesting for weather. T
Separate the pressure and density into static and non-static
(moving) components:

p(z,y, 2, t) = po(2) + ' (x,y, 2, 1)
p(x,y, 2z, t) = po(2) + p'(z,y, 2, t)
Assume:

Pl < Ipol, 10| < |pol

o -
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hen:
1o, L o
1 p/ 0 /
~N—— U =—=)—pot+p)—yg
0 Po)az( )
1o, ,p.0 1o, [/
= ——4 —)=—po=——7p — —
po 0z po” 0z po 0z P0

— Neglect (p'p)

o -
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Scaling
-

Use these terms in the vertical momentum equation

=

But how to scale?

Vertical variation of the perturbation pressure comparable
to the horizontal perturbation:

19, AgP

%gp oD ~ 10~ 'm/sec?

o -
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Scaling
A

|so:

'] & 0.001]po|

So:

o
g~ 10 tm/sec?
PO



Scaling
B

guﬂruguﬂrvguﬂrwgw—f U = Lo, r
ot Ox Oy 0z U 52" pog

107 107" 107" 1071 1077 1071 1071

-
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Hydrostatic perturbations

- .

ominant balance still hydrostatic, but with perturbations:

gp’ = —pg
0z

thus vertical acceleration unimportant at synoptic scales

But we lost the vertical velocity! Deal with this later.

o -
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Coriolis parameter

-

So all terms with f, are unimportant
From now on, neglect f, and write f, simply as f:

f =2Qsin(0)

fy only important near the equator

o -
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Pressure coordinates

=

fThe hydrostatic balance implies an equivalence between
changes in pressure and =

Can use it to change vertical coordinates

Consider constant pressure surfaces (here in two
dimensions):

510 hPa

520 hPa
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Pressure coordinates

-

On a pressure surface:

_Op dp ,

Substitute hydrostatic relation:

dp = @dx—pgdz:()
ox
So:

Op dz 0P

ox pg% Ep%

o -
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Geopotential

-

where ¢ is the geopotential
This is the height of a given pressure surface

— Instead of pressure at a certain height, we think of the
height of a pressure surface

o -
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Geopotential

510 hPa

500 hPa
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Geostrophy
-

Removes density from the momentum equation!

=

Now the geostrophic balance is:

9,
= —
Iv ox
0
= ——
Ju 7y

o -
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Geostrophy

500 hPa
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Vertical velocities

-

Different vertical velocities:

dz y dp
- —  —
dt dt

w




Geopotential
L

agrangian derivative Is now:

d 0 dx O dy@ dp(?

i ot dtor  dt 8y+dt Op

0 0 0 0
— —+tU— +tUV— +w_—

ot ox 0y Op

o -
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Continuity
E

Consider a Lagrangian box:

his changes too in pressure coordinates.

V =0z oyoz = —5:C5y5—p
Py

with a mass:

m = pV = —dxdydp/g

o -
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Continuity
-

Conservation of mass:

iim g d (5:1353/5]9) 0
m dt 0xdyop dt g
Using the chain rule:
dx dy dp
(5 5 5
ox (dt) 5y (dt) op (dt) 0

o -
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Continuity
L

etd — 0O:

@+8v+8w
or Oy Op

=0

The flow Is incompressible in pressure coordinates

Much simpler to work with!

o -
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So:

Hydrostatic balance

dp _
dz

using the ldeal Gas Law

o



Summary: Pressure coordinates

fGeostrophy: T
0 0
f’U = %Cb, fu = —a—yq)
Continuity:
@ v Odw 0
or Oy Op
Hydrostatic:
@ _ _RT
dp p

o -
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Diagnosing vertical motion

-

Lost the vertical acceleration. But can find the velocity, w,
by integrating the continuity equation:

P 0 0
W= — —u -+ —v)dp
é*(&b oy )

=

If the top of the atmosphere, px = 0, SO:

P o s,
= — —u+ —v)d
W /O(qu+8yv> i

So vertical motion occurs when there is horizontal
divergence.

o -
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Divergence




Vertical motion

-

How does w relate to the actual vertical velocity?

_@_0o 9 .9 .9
B T T T S W B o

Using the hydrostatic relation:

d_p 0 ‘|—U2 —|—’02 w
at ot Vet T Vgt TP

For geostrophic motion:

uptvp = (— o p) (2 p) (2 p) (o) = 0
e 3yp pf@yp o pf@mp 8yp B

o -
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Vertical motion

So

0
W= —p— pguw
8tp Py

Also:

%p ~ 10hPa/day

pgw =~ (1.2kg/m?) (9.8m/sec®)(0.01m/sec) ~ 100hPa/day

o -
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Vertical motion

-

So:

W R —pguw

This is accurate within 10 % in the mid-troposphere
Less accurate near the ground, due to topography

At the surface:

0 0
Wg = U—2Z5 + V—24

Ox 0y

o -
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Vertical motion

Topography most important for w in the lowest 1-2 km of the
troposphere

o -
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Thermal wind

. .

Geostrophy tells us what the velocities are if we know the
geopotential on a pressure surface

What about the velocities on other pressure surfaces?

Say we have information on the 500 hPa surface, but we
wish to estimate winds on the 400 hPa surface

Requires knowing the velocity shear

This shear is determined by the thermal wind relation

o -

GEF 2220: Dynamics — p.130/29



Thermal wind
r

rom the hydrostatic balance:

0®  RT

Op p
Now take the derivative wrt pressure of the geostrophic
relation:

9, 0P
3_19 (fvg — %)
But:

00d 90D  ROT

dpdr 9z dp  p Ox

-
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Or:

So:

Thermal wind

Ovg _ _ROT
Pop = 7 o
Jvg __ _ROT
dln(p)  f Ox

# Shear is proportional to the temperature gradient

o

-
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Thermal wind

- .

If we know the velocity at pg, can calculate it at p;

Integrate between two pressure levels:

R [P* 0T

vg(p1) — vg(po) = G /po I dIn(p)

R O [Pt
- 22 ra
- 5 / n(p)

o -

GEF 2220: Dynamics — p.133/29



-

Then:

Similarly:

o

Mean temper ature

pl " Td(Inp)

fpl lnp

Define the mean temperature in layer between py and p;:

fzi)l T d(Inp)

p1
In(5:)

=

-
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Thermal wind

=

fAlternately we can use geostrophy to calculate the shear
between py and p;:

o,
”Ug(pl) — ”Ug(po) = % %((Dl — Pg) = % 8:1:210

and:
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Thermal wind

where:

1
Z10 = p (®1 — o)

IS the layer thickness between pg and p;.

# Shear proportional to gradients of layer thickness

o -
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Thermal wind
E

hus:
R po. 0T g O
vg(P1) — vg(po) = I ln(pl) 9 I %Zlo
So:
ZlO = E ln(@ T
g P1

# Layer thickness is proportional to the mean temperature

o -
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L ayer thickness




Barotropic atmosphere

fExample 1: temperature Is constant on pressure surfaces T
Then VI'=0 — no vertical shear

Velocities don’t change with height

Also: all layers have equal thickness: stacked like pancakes

o -
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Equivalent barotropic

- .

xample 2: temperature and geopotential contours parallel:

o,
Uy || Uy

Op
Wind changes magnitude but not direction with height

Low / High

B | B
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Equivalent barotropic

-

Consider the zonal-average temperature :

1 2T

- T d
2T 0 ¢

Decreases from the equator to the pole
9
SO a_yT <0

Thermal wind — winds increase with height

o

-
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Jet Stream
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Jet Stream
-

fExample: At 30N, the zonally-averaged temperature

gradient is 0.75 Kdeg~!, and the average wind is zero at the
earth’s surface. What is the mean zonal wind at the level of
the jet stream (250 hPa)?

g (p1) = g (p0) = g (1) = =7 () or

287 ln(lOOO) (— 0.75 )
2Qsin(30) 250 1.11 x 105m

o -
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1g(250) =

= 36.8 m/sec



Baroclinic atmosphere

fExample 3: Temperature not parallel to geopotential T

Geostrophic wind has a component normal to the
temperature contours (iIsotherms)

Produces geostrophic temperature advection

Winds blow from warm to cold or vice versa

o -
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Temperature advection

Warm

Cold




Temperature advection

- .

Warm advection — veering
e Anticyclonic (clockwise) rotation with height
Cold advection — backing

e Cyclonic (counter-clockwise) rotation with height

o -
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Summary

- .

Geostrophic wind parallel to geopotential contours
e high pressure to the right (North Hemisphere)

Thermal wind parallel to mean temperature (thickness)
contours

e high thickness to the right

o -
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Divergence

-

Continuity equation:

dp
g—va-U—
or.
1@——V-u= ou Ov Ow

A (et 9, T3

e Density changes due to divergence

o -
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Divergence

<~ °u>0 < °u<o




Example

. .

he divergence in a region is constant and positive:

V-u=D>0

What happens to the density of an air parcel?

o -
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Density decreases exponentially in time

o -
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Vorticity
-

Central quantity in dynamics

—

(=Vxu

P dw v ou
Oy 020z Ox’0x Oy

Most important at synoptic scales is vertical component:

o -
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Vorticity

( =-0u/ldy<0

-
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Vorticity

¢>0

_/




Example

-

What is the vorticity of a typical tornado? Assume solid T

body rotation, with a velocity of 100 m/sec, 20 m from the
center.

In cylindrical coordinates, the vorticity Is:

10 rvg 10v,

r Or r 00
For solid body rotation, v, = 0 and

Vg = Wr

with w =const.

o -
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Vorticity

So:

10rvg 1 0wr?

- - - - p— 2
r Or r or ~
We have vy = 100 m/sec at » = 20 m:
~vg 100
w=-_"=- = 5rad/sec

So:

¢ = 10rad/sec

o -
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Absolute vorticity

-

ip=ip+Qx7
So:

Now add rotation. The velocity in the fixed frame Is:

-
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Absolute vorticity
. o

WO components:

® V x u— the relative vorticity
o 2() — the planetary vorticity

Vertical component is the most important:

Ca-l%:(%v—%u)+29z:§+293in(6):C+f

¢ now refers to the vertical relative vorticity

o -
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-

Scaling:

So:

Absolute vorticity

The Rossby number

o



Absolute vorticity

-

Geostrophic velocities

o L1

Planetary vorticity dominates the absolute vorticity

® c>1

Cyclostrophic velocities

Relative vorticity dominates

o -
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Circulation

o .

Circulation is the integral of vorticity over an area:

r= [ [

Due to Stoke’s theorem, we can rewrite this as an integral
of the velocity around the circumference:

F—//VxﬁdA—]{ﬁ-ﬁdl

Thus we can derive an equation for the circulation by
Integrating the momentum equations around a closed
curve.

o -

GEF 2220: Dynamics — p.161/29



Circulation

. -

First write momentum equations in vector form. Turns out to
be simpler using the fixed frame velocity:

1 S
g =—-Vp+gG+F
T UF ; ptg-+

Integrate around a closed area:

d — — — —
—I'p = — @-ler]{g’-dl—l—j{F-dl
dt 0

o -
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Circulation

-

Gravity vanishes because can write as the gradient of a
potential:

=

g=—gk = —(—92) =V,

and the closed integral of a potential vanishes:

fv%-d?:]{dcbg:o

o -
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Circulation

-

So:

—FF— %——F%F dl

Put rotation back in. The fixed velocity is:

Up =urp + Q2 xr
So:

—

FF—%(uR—kar) dl

o -
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Circulation

-

Rewrite using Stoke’s theorem:

—

7{(63+QXF)-cfl://Vx(ﬁRJrﬁxF)-ﬁdA
From before:

V x ( x 7) =20

If the motion is quasi-horizontal, then 7 = k:

//(<+f)dA

o -
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Kevin’stheorem
E

hus:

d dp I
“T,=—¢ =+ ¢ F-dl
dt 7{0+7{

ro= [ [ ¢+ naa

IS the absolute circulation, the sum of relative and planetary
circulation

where

o -
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Kevin’stheorem

-

If the atmosphere Is barotropic (temperature and density
constant on pressure surfaces):

d 1
—p:—%dp:()
PP

If atmosphere is also frictionless (F = 0), then:

=

—T =0
dt“

The absolute circulation is conserved on the parcel

o -
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Kevin’stheorem

-

Notice that If the area is small, so that the vorticity Is
approximately constant over the area, then:

=

d d
_Fa ~ — A —

which implies:

(C + f)A = const.

on a parcel. Thus if a parcel’'s area or latitude changes, it's
vorticity must change to compensate.

o -
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Kevin’stheorem

O

Move a parcel north, where f is larger. Either:

# \orticity decreases
#® Area decreases

o -
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Kevin’stheorem

-

Example: An air parcel at 30 N moves to 90 N. If its initial
relative vorticity is 5 x 10~ °sec™!, what is its final vorticity?

=

(C30 + 2Qsin(30)) A = (Coo + 20) A
So:

Coo = (30 + 2Q(sin(30) — 1) =5 x 107> 4 1.45 x 107*(0.5 — 1)

— 9295 % 10 °sec™ !

o -
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Vorticity equation
-

Now we will derive an equation for the vorticity.

Horizontal momentum equations (p-coords):

0 0 0 0 0

g L LoD u—=—Lo+F
Gttt T

0 0 0 0 0

9 il i 240l _ _ Y94 F
(at+uax+vay+w3p)v+fu 9 + F,

Take 2 of the second, subtract a% of the first

o -
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Vorticity equation
-

Find (after some algebra):

(8 +u2+vg+w£)g“+vgf
ot Ox oy Op 0y

_(2+u3 vngwg)C
- Ot Ox oy Op

ou  Ov Ooudw  O0vow 8F —QF)

- —Ca( 8y) <5’p 0y B Op 8:1:) (833 oy

where:

- Ca=C+ 1 B
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Vorticity equation

. .

1) Divergence:

he absolute vorticity can change due to three terms

ou Ov
(5

GG+ )

Divergence changes the vorticity, just like density

o -
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Convergence
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Divergence

-

Can absorb the divergence into the left side. Consider smal
area of air:

.

0A = ox oy

Time change in the area is:

0A 0x 0y
= 5y§ + (5:1:5 = 0y ou + 0x 0V

Relative change is the divergence:

1 0A odu v

| A5t bz oy o
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Divergence

-

So rewrite the divergence term:

0 0 Cq dA
Gt Ty = T aw
So:
d (q dA d B
0T T Aa O @t

This Is just Kelvin's theorem again!

o -
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Vorticity equation
- o

2) The tilting term:

Ooudw  O0vow

Differences in w can affect the horizontal shear

o -
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Tilting
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Vorticity equation
- o

3) The Forcing term:

0 0

(%Fy — a—yFw)

Say frictional forcing:

F, = vV?u, Fy, = V4

o -
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Friction
E

hen:

0 0

ov  Ou
Pb——gg

Fx) = VVQ (% — 6_y) — VV2C:

Then:

d -
a(CJrf)—VV q

o -
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Friction

-

If f ~ const.:
d 9

Friction diffuses vorticity
Causes cyclones to spread out and weaken

Can occur due to friction in the boundary layer

o -
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Scaling
- o

9, 9, 9, 9, ou Ov oudw O0vOow

(a+U%—|—U8—y+w a_p)ga — _Ca(6$+6y)+(ap ay _apailf)

For synoptic scale motion, away from boundary layer:

U~ 10m/sec w ~ 10hPa/day L ~10%n 0p ~ 100hPa

0
for~10"%sec™t  L/U ~ 10°sec a—f ~ 10" Um tsec™!
Y

o -
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Scaling
=

U
( 17 ~ 10 2sec™!

So the Rossby number is:

EZ%%Ol
So:
(C+ 1)~ ]



Scaling

0 0 0 U? 10
aCJFU%CJrU@—yC X Ty A 10
0 Uw 1
? of 10
— — =~ 1
vayf X U@y 0

Ou Ow  Ov Jw Uw 1
_____ _ ~ 1
90 3y " apor) X ID 0

a4
Y

0 0 0 0 U
C+DGa+sDmfoi+ 5 xir

10~

-
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Scaling
B

fDivergence term is unbalanced! But it's actually smaller
than it appears. We can write:

U= Ug T Ug, UV =7UVUg+ VUq

From the derivation of the gradient wind:

This implies:

L ug| | J
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Ageostrophic velocities

- .

U = Ug + €EUg, UV = Vg T €Vq

The vorticity Is:

C—ﬁv —gu —I—G(QU —gu)
ox Y oy Y oxr “ Oy

While the divergence is:

1 0,6 0 1 0 00 0, 0
D=55:03,) T 7aytan) T apte t 5,0
0 0,
= O -+ 6(%1@, -+ a—y?}a)

LThe divergence is order ¢ J
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Vertical velocities
A

ISo:
gu + gv + gw =0
ox 0y Op
implies:
0 0 0
_— p— —D _ — —Ugq — Vg
Gpw e(axu + ayv )

So the vertical velocity Is also order ¢
Planetary rotation suppresses vertical motion

LThis IS why atmospheric motion is quasi-horizontal J
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Scaled equation
E

hus the divergence estimate is smaller:

ou Ov Oou Ov fU

(9y) ~ f( xe— ~ 1074

(C+ f)( %Jrﬁ—y) 7

Retaining the 10~'° terms yields the approximate
vorticity equation:

0 0 ou  Ov

(at+u%+v—)(g+f) f(aeray)

o -
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Forecasting

-

Used for forecasts in the 1940’s

Approach:

Assume geostrophic velocities:

1 0P
U= TE Gy
1 0O
VR =T o

o -
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Forecasting

1 Ov, Ou, 1 ,0°® O%® 1o
~ - — — - — = — | — _ ) = — @
=T Ty Fla tar) T 7Y

The divergence vanishes identically:

Qug  Ovg,
o Ty =0
Thus the vorticity equation is:

9, 9, 9,
(a+ug%+vga—y)(§+f):0

(. IS conserved following the horizontal winds

LRemember: on a pressure surface J
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Forecasting

fNow only one unknown: ¢ T
0 0 0
(aﬂLug%‘Fvg@_y)(CJrf) =0

becomes:

o 100 1000 1,
i Tt W Gl v 22 _
5t " Fayar "oy 7Y o) =0

o -
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Forecasting

-

Can write equation:

0 0
ECJrug-VC—Fvg@—yf—O

or.

Can predict how ¢ changes in time

Then convert ( — ® by inversion

o

-
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Forecasting
o

ethod:

Obtain &(z,y, tp) from measurements on p-surface
Calculate u,(to), vy(to), ¢(to)

Calculate ((t¢1)

Invert ¢ to get ®(t)

Start over

Obtain ®(t2), ®(t3),...

© o o o o o

o -
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| Nver sion

1 0?0 0?0
¢ = ?(87+@)

ViD= f(

Poisson’s eguation
Need boundary conditions to solve

Usually do this numerically

o -
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| Nver sion

e

xample: Let:

¢ = sin(3x)sin(my)
Say we have a channel.

r=|0,27|, y=0,1]

Periodic in z and solid walls at y = 0, 1. We have:

H? 0? . .
@q) 4 5’_3/2(1) = sin(3z)sin(my)

o -
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| Nver sion

fTry a particular solution:

¢ = Asin(3x)sin(my)

This solution works in a channel, because:

Also, at y = 0, 1.

o -
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| Nver sion

-

Substitute into equation:

=

0? 0? N . . .
@q) + (9_y2(b = —(9 4+ 7°) Asin(3x)sin(mwy) = sin(3z)sin(my)

So:

1
9 4 72

d = — sin(3z)sin(my)

Then we can proceed (calculate u,4, v, etc.)

o -
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| Nver sion

-

Preferentially weights the large scale features. Say instead
we had:

=

nversion is a smoothing operation

¢ = sin(3x)sin(3y) + sin(x)sin(y)
Then:

b = 1—185271(3513)3271(3?/) + sin(x)sin(y)

The smaller wave contributes less to the geopotential

o -
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Vorticity, turbulence ssmulation




Geopotential, turbulencesimulation

-

geopotentlal t=3, Jldbluank




Examplell

-

Say the geopotential is given by:
b = foAsin(2x — wt) sin(my)

Describe how the field evolves in time

What is w?

o -
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09

0.8

0.6

Initial geopotential

® = sin(2x) sin(Ty)




Examplell
w

e must solve:

0 0

—C:—ug-VC—vga—yf

But we have a problem—f is a function of ¢, the latitude,
rather than y!

We must rewrite f in terms of y

o -
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Beta-plane
- o

If we limit the latitude range, we can expand f in a Taylor
Series about the center latitude:

d 0 — 0p)? d?
£(6) %f(eo)+(6—90)d_fg+( : 0) de]; N

We have y = R, where R Is the earth radius. Keeping the
first two terms:

f~ fo+ By —w)

where:

fo =2Qsin(by), B = %COS(QO)

o -
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Examplell

9,
» Ua—y(fo + B(y — yo)) = B

So the equation becomes:

0
¢ = —uy - VC = B,



Examplell
N

ow the velocities are:

1 0

Ug = —%a—ycb = —7mA sin(2x — wt) cos(my)
1 0
Vg o cos(2x — wt) sin(my)

And the vorticity Is:

¢ = fiVQCD = — (44 1) A sin(2x — wt) sin(my)
0

o -
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Examplell
w

e also need the derivatives:

((%g = —2(4+ 7T2)A cos(2x — wt) sin(my)

a%c = —7m(4 + 7T2)A sin(2x — wt) cos(my)

o -
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Examplell

-

Collect terms:

—u%@” — U%C = [—7m A sin(2x — wt) cos(my)] X

2(4 4+ 1) A cos(2x — wt) sin(my)] + [24 cos(2z — wt) sin(my)] x

(44 1) A sin(2x — wt) cos(my)]

= [—2nA%(4 4+ 1) + 21 A% (4 + 72)]sin(2x — wt)cos(2x — wt)

o

x sin(my)cos(my) = 0



Examplell

Also:

—0Bv = —20A cos(2x — wt) sin(my)
SO:

%C = —20A cos(2x — wt) sin(my)

Since:

= —(4+ 1) Asin(2z — wt) sin(my)



Examplell
E

hen:

%C = w4 + 1) A cos(2z — wt) sin(my)

Equate both sides:

w(4 + 1) A cos(2x — wt) sin(my)
= —20A cos(2x — wt) sin(my)
We can cancel the A cos(2x — wt) sin(wy), leaving:

w4+ 1) = =20

o -
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Examplell
o

20
w=—
4 + 2
So the solution is:
b = Asin(2x + y t) sin(my)

This is a “travelling wave”

o



Phase speed
w

e can rewrite the solution:

® = Acos|2(x +

T t)] sin(my)

This implies that the wave has a phase speed:
w f

ko 44+ 72

This I1s how fast the crests in the wave move

C —

Because ¢ < 0, waves move toward negative x (westward)

o -
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Westward

t=0
1 T
0.8
0.6
0.4
0.2
o I L L I L L
0 1 2 3 4 5 6

t=(4+10)/B

t=2(4+172)/B

-
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Phase speed
B o

The westward propagation is actually a consequence of
Kelvin's theorem

Fluid parcels advected north/south acquire relative vorticity

The parcels then advect neighboring parcels around them

Leads to a westward drift of the wave

o -
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Westward propagation

-
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Rossby waves
=

Solution Is known as a Rossby wave
Discovered by Carl Gustav Rossby (1936)
Observed in the atmosphere

Important for weather patterns

Study more later (GEF4500)

o -
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Divergence

-

Previously ignored divergence effects. But very important
for the growth of unstable disturbances (storms)

=

The approximate vorticity equation is:

(8u Ov

d
g TN =-+NG +5,)

where:

’ = (= 0 + u2 + fuﬁ)
dt ot Ox oy

~ is the Lagrangian derivative following the horizontal flow
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Divergence
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Divergence

-

Consider flow with constant divergence:

0 0
o —uv =D
8xu+3yv > ()
ou  Ov
_a—_a :_Da
= GG+ 50) = =D

Ca(t) = Ca(0) e P!

o -
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Divergence

So:

Divergent flow favors anticyclonic vorticity
Vorticity approaches — f, regardless of initial value
Vorticity cannot exceed f

o -
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Convergence
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Divergence

-

Now say D = —C

d ou Ov
d_tCa — _Ca(% + G_y) — CC&
Ca(t) = Ca(0) e

Gq — 00

But which sign?

o



Divergence

-

If the Rossby number is small, then:

Ca(0) =C(0)+ f=~ f>0
So:

§ = +00
Convergent flow favors cyclonic vorticity

Vorticity increases without bound

e Why intense storms are cyclonic

o

-
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Summary

- .

The vorticity equation is approximately:

d ou Ov
GCHN=-C+ NG +3)
or.
df 5’u 6’U

# \orticity changes due to meridional motion
# \Vorticity changes due to divergence

o -
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Barotropic potential vorticity
- o

Consider an atmospheric layer with constant density,
between two surfaces, at z = z1, 22 (e.g. the surface and the
tropopause)

The continuity equation is:

dp L
%—FP(V'U)—O

If density constant, then:

w0 o
- Ox Oy 0Oz

o -
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Barotropic potential vorticity

-

So:
ou  Ov ow

or oy 0

Thus the vorticity equation can be written:

0 0

(S u%+v—)(<+f) C+hHoe

=



Taylor-Proudman Theorem

-

The constant density assumption affects the shear

=

dy gy 10
dt " v p&’xp
Taking a z-derivative:
d 0 0 1o ,0 . po
E(au) — f(@v) = —;%(ap) = ;%9 =

— |If there is no shear initially, have no shear at any time.
With constant density:

o -
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Barotropic potential vorticity

-

So the integral of the vorticity equation is simply:

22
[ ugs g0 €+ £ =
b+ i+ 050 (1) = (1) [(ew) — ()

where h = z9 — z1. Note that w = Dz/Dt. Thus:

d dh

_(Z2 _ Zl) —

wiz2) —wlz) = 5 dt

o



Barotropic potential vorticity

fSo:
d dh
h— G+ f)=(C+f)—
dividing by h?:
1 d ¢+ fdh
E%(Hf)_ 2 ar =
which is the same as:
1C+f
dt h




Barotropic potential vorticity

-

Thus the barotropic potential vorticity (PV):

=

¢+ 1/
h

IS conserved on a fluid parcel.

— const.

If h iIncreases, either ¢ or f must also increase

o -
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L ayer potential vorticity

@/




Alternate derivation

-

Consider a fluid column between z; and z5. As it moves,
conserves mass:

=

d
—(hA) =
So:
hA = const.

Because the density is constant, we can apply Kelvin's
theorem:

d Q¢+ f
E(CJrf)Amdt ; =0

o -
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Potential temperature

=

fBut the atmosphere is not constant density. What use is the
potential vorticity?

As move upward in atmosphere, both temperature and
pressure change—neither is absolute.

But can define the potential temperature which is
absolute—accounts for pressure change.

The potential vorticity can then be applied in layers between
potential temperature surfaces

o -
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Potential temperature
E

he thermodynamic energy equation is:

cpdl — adp = dgq

With zero heating, and using the ideal gas law:

RT
cpdl = adp = po

Rewriting:

cp dinT = Rdlnp

-
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Potential temperature

-

Integrate up from the the surface:

cpInT'— Rlnp = ¢, inb — Rinpg

where pg Is the surface pressure:

po = 100 kPa = 1000mb
Rearranging:

PO\R/c
9 h— - p
I (=)

-
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Potential temperature

-

If zero heating, a parcel conserves its potential
temperature, 6

Call a surface with constant potential temperature an
Isentropic surface or an “adiabat”

6 is the temperature a parcel has if we move it adiabatically
back to the surface

Note potential temperature depends on both T and p

o -
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L ayer potential vorticity

-

Flow between two isentropic surfaces trapped if zero
heating

=

So mass in a column between two surfaces Is conserved:

Adz = const.

From the hydrostatic relation:

Adp
——— = const.
Py

where dp Is the spacing between surfaces

o -
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L ayer potential vorticity

D+ 00




L ayer potential vorticity
R

ewrite dp thus:
00 . _

1
— )" 00
8]9)

op = (

Here, g—g IS the stratification. The stronger the stratification,

the smaller the pressure difference between temperature
surfaces. Thus:

Adp 90 ., 80
F A
pg (@p) g
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L ayer potential vorticity

. .

From the ldeal Gas Law and the definition of potential
temperature, we can write:

p = pe/o (RO) " pl/
So the density is a function only of pressure. This means

that:
P

So Kelvin's theorem applies in the layer

o -
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L ayer potential vorticity

Thus:
a[(C + f)A] =0
Implies:

d 00
G+ Ng =0

This is Ertel’s (1942) “isentropic potential vorticity”

o



L ayer potential vorticity

. .

Remember: ( evaluted on potential temperature surface
Very useful quantity: can label air by its PV

Can distinguish air in the troposphere which comes from
stratosphere

Ertel's equation can also be used for prediction

o -

GEF 2220: Dynamics — p.242/29



Planetary boundary layer

z=0




Turbulence

-

There Is a continuum of eddy scales

=

Largest resolved by our models, but the smallest are not.

Q25.05
O o0 O
QQQQ _/ QQ O

o -
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Boussinesqg equations
=

Assume we can split the velocity into a time mean (over T
some period) and a perturbation:

— /
U=+ u

Use the full momentum equations with no friction:

Qﬂ+uﬁbkﬁy+uég—fw—-ig
ot Ox oy 0z B ;Dpr
0 ov Ov ov 10

o -
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Boussinesq approximation

-

10 1 0
—  —a.p

p oz’ po Oz
In addition, the continuity equation:
dp

%‘FP(V'U):O

reduces to:

3fcm—gv%—gw—()
Ox oy 0z

So the flow Is iIncompressible

Assume the density doesn’t vary much. So we can write:

=

-
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Boussinesg equations

-

Substitute partitioned velocities into momentum equations:

9 N9 / N9 T
a(u+u)+(u+u)8x(u+u)+(v+v)6y(u+u) fo+7")
9, 1 0O
— n Y = n_ - Y= /
@+ )@ o) = - (1)

o -
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Boussinesg equations

o_ _0_ 0 _ 0 _ 0
—u+uv—u+ v —uv +v—u+v—u'+

ot ox ox 0y 0y

+@gﬂ + w’gu’ + —fv = 195
0z 0z oo e

Because of the continuity equation, we can write:

0 0 0 0 0 —
w—u' +v—u +uw—u = —uv+ —uv+ —vw

ox Oy 0z Ox 0y 0z

/

o -
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Boussinesq equations

So:

Similarly:
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-

PBL equations

Prime terms on the RHS are the “eddy stresses”

=

Assume they don’t vary horizontally in the PBL. Then:

T+ T+ T T — [T = —— —p— W
ot ox Oy 0z - ppdzT 0Oz
Osrilorvlovnlos fu=—~25- Lo
ot Ox oy 0z - po Oy 0z

GEF 2220: Dynamics — p.250/29



PBL equations
-

If the Rossby number is small, the velocities outside the
boundary layer are nearly geostrophic. So in the BL, we
have:

_ 1 0_ 0 [,
—Jv= po Ox 5z
or.
77— ) a /5,4
—fv=—f1, azuw
9

L—> The eddies break geostrophy

-
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PBL equations
f / / / T

But we have too many unknowns! :  w. v, v, v, w

We must parameterize the eddy stresses, I.e. we must write
the primed variables in terms of the unprimed variables.

There are two cases:

# Convective boundary layer
# Stable boundary layer

In a convective layer, heating from below causes the layer
to overturn, mixing properties with height. The stable

boundary layer is stratified. J

.
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Convective boundary layer

-

fDue to vertical mixing, temperature and velocity do not vary
with height. So we can integrate the momentum equation
vertically:

We assume mixing vanishes at the top of the layer:

ww'ly =0

o -
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Convective boundary layer
E

hus:

fh(v—7,) = —u'u'|o

From surface measurements, can parameterize the fluxes:

ww'lg=—-CgVu, vuw'|g=—-CysVv

where C} is the "drag coefficient" and

Y = (u + 02)1/2

o -
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Convective boundary layer

-

Thus:

fh(v—17,4) =CygVu

and:

—fh(u —uy) = CyVv



Convective boundary layer

Say v, = 0; then:
_ G
U = EVU,
C
U = Uy — f—ZVv

> “PBL




Convective boundary layer

-

If w > 0, then v > 0

e Flow down the pressure gradient

o



Convective boundary layer

- .

Solving the boundary layer equations is not so simple
because V = vu? + 02

Coupled nonlinear equations
But we can use Iterative methods

Make a first guess, then iteratively correct

o -
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Stable boundary layer
N

Wind speed and direction can vary with height

ow assume no large scale vertical mixing

Specify turbulent velocities using mixing length theory.

o -
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Mixing length

Aoy

-
v

where I’ > 0 if up.

o

/
u = -l —u

0z

u(z)



Stable boundary layer
=

So:
0

—u'w = w'l —7

0z
Assume same vertical and horizontal eddy scales. Write:

o
r g Y
w —laZV

where again V = vu? + v2

Notice w’ > 0if I’ > 0.

o -
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Stable boundary layer
=

So:
— 0 0 0
uw'w' = (I —aZV) 5,0 = A, 550
Same argument:
0
—v'w' = A, —7v
v'w 2 (‘)zv

where A, is the “eddy exchange coefficient”

Depends on the size of turbulent eddies and mean shear

o -
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Stable boundary layer
=

So we have:
%, %,
f(v—vg) = 5-[A:(2) 5l
9, 9,
—f(u—ug) = -[A:(2) 5 0]

Simplest case is If A,(z) Is constant
Studied by Swedish oceanographer V. W. Ekman (1905)

Consider boundary layer above a flat surface

o -
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Ekman layer

-

Boundary conditions: use the “no-slip condition”:

=

u=0,v=0 at z=0

Far from the surface, the velocities approach their
geostrophic values:

U—>Ug,?]—>?}g <z — O

Assume the geostrophic flow is zonal and independent of
height:

o -
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Ekman layer
B

oundary layer velocities vary only in the vertical:

From continuity:

0 0 0 0
—u+ v+ —w=—_—w=0~0.

ox oy 0z 0z

With a flat bottom, this implies:

w =20

o -
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Ekman layer

=

fThe system is linear, so can decompose the horizontal
velocities:

Then:
—f’U — Azﬁu
fiu=A53"

o -

GEF 2220: Dynamics — p.266/29



Ekman layer
B

oundary conditions:

uw=—-Uv=0 at 2=0

Introduce a new variable:

X = U+ 10
Then:

0? ,

5;X:ﬁgx

o -
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Ekman layer
E

he solution Is:

Z Z Z . R

X = Aeil?p(g) eﬂfp(ig) + B 651519(—@) 6513]?(—@@)
where:
2A,
op = 7

This is the “Ekman depth”

Corrections must decay going up, So:

N A0 B
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Ekman layer

-

Take the real part of the horizontal velocities:

u = Re{x} = Re{B} exp(—é) ws(é>
+Im{B} exp(—é) Sin(é)
and
v =Im{x} = —Re{B} exp(—é) sin(é)
+Im{B} 6:1:1?(—%) COS(é)
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Ekman layer

-

For zero flow at z = 0, require Re{B} = —U and Im{B} = 0.

=

So:
. Z 2
u=U+u=U—Uexp(———) cos(—)
OF OF
5 — Y sin( 2
v=10=U exp( 5E)Sm(5E)
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Ekman layer, 0y = 0.1

0.9

0.8

0.7F

0.6

04

0.3F

0.2f

0.1

1.2

-
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v(2)

Ekman spiral, o = 0.1

0.35

0.3

0.25

0.2

0.1

0.05

-0.05
0

The Ekman spiral (6E =0.1)

z=..07

0.2

14

-
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Ekman veocities

Low pressure

High pressure



Ekman spiral

o .

The velocity veers to the left, toward low pressure

Observations suggest u — u, at z = 1 km.
If f = 10_4/866, then A, ~ 5m2/sec
Typically £V| a5 x 1073 sec™!

So the mixing length is [ =~ 30 m.

As in the convective boundary layer, turbulence allows flow
from high pressure to low pressure.

o -
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Surface layer

-

Ekman layer cannot hold near surface: can’t have 30 m
eddies 10 m from surface. Introduce a surface layer where:

=

' = k2
Then:
9,
AZ_ 2 2
kz@z
So:
0 2,2 122 0 o
Agu—k \ |—u~/€ (&u)

o -
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Surface layer

-

Measurements suggest the turbulent momentum flux is
approximately constant in the surface layer:

W'~ u?

where u, Is the “friction velocity”. So:

o Uy Uy 2
—u = u= —In

52 v i)
Here:

® L~ 0.4i1svon Karman’s constant
® 2 Is the “roughness length”

o

-
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Surface layer

-

Match the velocity at the top of the surface layer to that at
the base of the Ekman layer.

=

Comparisons with observations are only fair (see Fig. 5.5 of
Holton)

Ekman spiral is often unstable, generating eddies that mix
away the signal

o -
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Spin-down

. .

urbulence in both stable and convective boundary layers
generates flow down the pressure gradient

Thus both should weaken pressure systems

Consider how an Ekman layer causes a cyclone to decay In
time

Central to this is that convergence in the Ekman layer

causes a vertical velocity at the top of the layer, which
affects the overlying flow

o -
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Spin-down
N

llustrate using the barotropic vorticity equation:
D ow
Dy (C+f)=f 9%

Integrate from the top of boundary layer (> = d) to the
tropopause:

(H — d) c(C+ f) = flw(H) —w(d)) = —fu(d)

o -

GEF 2220: Dynamics — p.279/29



Spin-down
B

fBecause the boundary layer is much thinner than the
troposphere, this is approximately:

D f
= (C+ ) = —Fw(d)

So vertical velocity into/out of the boundary layer changes
the vorticity in the troposphere

o -
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Ekman pumping
E

kman layer. The continuity equation is:

0 0 0
—W=——U— =

0z Ox Oy
Integrating over the layer, we get:

d
0 0 0 0
w(d) — 0 /0 (axu—l— ayv) dz (%:M 8yMy

where M, and M, are the horizontal transports

o -
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-

Can show:

and:

So:

Spin-down

Ud
Myz7
Mx%—%l
d 0 0
w(d) = 5(%‘/_87;(])



Spin-down

Thus:
D ~ fd
Dy (C+f)= _Z_HC
If assume [ = const., then:
D fd
Di°~ om®

So that:

¢(t) = C(0) exp(—t/TE)

o



Spin-down

where:

IS the Ekman spin-down time. Typical values:

H =10km, f=10"*sec™!, d=0.5km
yield:

TE =~ 5 days

o

-
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Spin-down
=

Compare to molecular dissipation. Then:

0 ok
—U =V—=—F5U

ot 022
where v = 107° m?/sec. From scaling:

[J 2
T L2 ,

with L = 10% m:

T ~ 10" sec ~ 3 x 10° yr !

o -

GEF 2220: Dynamics — p.285/29



Spin-down
- o

The vertical velocity Is part of the secondary circulation
The primary flow is horizontal, (u4, vg)

The vertical velocities, though smaller, are extremely
Important nevertheless

Stratification reduces the effective H. So the geostrophic
velocity over Ekman layer spins down more rapidly, leaving
winds aloft alone.

o -
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Modéel Spin-up
=

Consider an atmospheric model
Atmosphere initially at rest
"Turn on" solar heating

See what happens...

o -
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Spin-up

cooling
heating

cooling

Rising motion at equator
Poleward motion aloft, equator motion near ground

o -
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Spin-up

Initially high/low pressure at high/low latitudes

o



Spin-up

Coriolis deflects the equatorward air, westwards
Clouds formed in rising air

o -
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Spin-up

H L
Z7 £ >
L | H
surface upper troposphere

-
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Spin-up

u(tl) u(t2)

/ﬁ

N L
u(z) // /// /E\
/// /// \// v

, —_—T
Y — ”
~_ N
it ’ /!

Y
N

Vertical shear increases with temperature gradient
Flow becomes unstable, generating storms

o -
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Storms transport heat toward high latitudes
Reduces the temperature gradient

o -
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General circulation

Jet strea

Jet stream



Energy cycle

Potential energy

Solar heating produces the temperature gradient
The result is potential energy

o



Energy cycle

Kinetic energy

Instablility converts potential to kinetic energy

o



Energy cycle

Energy is ultimately dissipated at small scales, via
turbulence

o
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