GEF 2220: Dynamics

J. H. LaCasce

Department for Geosciences
University of Oslo

Course

Part 1: Dynamics: LaCasce

Chapter 7, Wallace and Hobbs + my notes
Part 2: Weather systems: Røsting
Chapter 8, Wallace and Hobbs + extra articles + DIANA

Dynamics

1) Derive the equations which describe atmospheric motion
2) Derive approximate balances
3) Understand pressure systems, temperature gradients
4) Introduce the general circulation

Variables

Six unknowns:

- (u, v, w) - Wind velocities
- p-Pressure
- T - Temperature
- ρ-Density

Pressure

Temperature

Winds

Wind 10 m GFS (kts)
51015202530354045505560

Mon 25/01/10 06GMT (Mon 05+00) © 0 weatheronline.co.uk

Primitive equations

Momentum equations $\leftarrow F=m a$
Thermodynamic energy equation $\leftrightarrow T$
Continuity $\leftrightarrow \rho$
Ideal gas law

Primitive equations

Momentum:

$$
\begin{gathered}
\frac{\partial}{\partial t} u+\vec{u} \cdot \nabla u+f_{y} w-f_{z} v=-\frac{1}{\rho} \frac{\partial}{\partial x} p+\nu \nabla^{2} u \\
\frac{\partial}{\partial t} v+\vec{u} \cdot \nabla v+f_{z} u=-\frac{1}{\rho} \frac{\partial}{\partial y} p+\nu \nabla^{2} v \\
\frac{\partial}{\partial t} w+\vec{u} \cdot \nabla w-f_{y} u=-\frac{1}{\rho} \frac{\partial}{\partial z} p-g+\nu \nabla^{2} w
\end{gathered}
$$

Primitive equations

Continuity:

$$
\frac{\partial}{\partial t} \rho+\vec{u} \cdot \nabla \rho+\rho \nabla \cdot \vec{u}=0
$$

Ideal gas:

$$
p=\rho R T
$$

Thermodynamic energy:

$$
c_{v} \frac{d T}{d t}+p \frac{d \alpha}{d t}=c_{p} \frac{d T}{d t}-\alpha \frac{d p}{d t}=\frac{d q}{d t}
$$

Prediction

Solve the equations numerically with weather models Issues:

- Numerical resolution
- Vertical coordinate
- Small scale mixing
- Convection
- Clouds

Goal: forecasting

Dynamics

Solve a simplified set of equations

- Identify dominant balances
- Simplify the equations
- Obtain solutions (analytical, numerical)
- Look for similiarities with observations

Goal: understanding the atmosphere

Derivatives

Consider an air parcel, with temperature $T=T(x, y, z, t)$
The change in temperature, from the chain rule:

$$
d T=\frac{\partial T}{\partial t} d t+\frac{\partial T}{\partial x} d x+\frac{\partial T}{\partial y} d y+\frac{\partial T}{\partial z} d z
$$

So:

$$
\begin{aligned}
\frac{d T}{d t}=\frac{\partial T}{\partial t} & +u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y}+w \frac{\partial T}{\partial z} \\
& =\frac{\partial T}{\partial t}+\vec{u} \cdot \nabla T
\end{aligned}
$$

Derivatives

(u, v, w) are the wind velocities in the (x, y, z) directions
$\frac{d}{d t}$ is the "Lagrangian" derivative
$\frac{\partial}{\partial t}+\vec{u} \cdot \nabla$ is the "Eulerian" derivative

Lagrangian

Eulerian

Momentum equations

Momentum equations

The acceleration in the x-direction is:

$$
a_{x}=\frac{1}{m} \sum_{i} F_{i}
$$

Two types of force:

- Real
- Apparent

Forces

Real forces

- Pressure gradient
- Gravity
- Friction

Apparent forces

- Coriolis
- Centrifugal

Pressure gradient

Pressure gradient

Using a Taylor series, we can write the pressure on the right side of the box:

$$
p_{R}=p\left(x_{0}, y_{0}, z_{0}\right)+\frac{\partial p}{\partial x} \frac{\delta x}{2}+\ldots
$$

Similarly, the pressure on left side of the box is:

$$
p_{L}=p\left(x_{0}, y_{0}, z_{0}\right)-\frac{\partial p}{\partial x} \frac{\delta x}{2}+\ldots
$$

Pressure gradient

The force on the right hand side (directed inwards):

$$
F_{R}=-p_{R} A=\left[p\left(x_{0}, y_{0}, z_{0}\right)+\frac{\partial p}{\partial x} \frac{\delta x}{2}\right] \delta y \delta z
$$

On left side:

$$
F_{L}=p_{L} A=\left[p\left(x_{0}, y_{0}, z_{0}\right)-\frac{\partial p}{\partial x} \frac{\delta x}{2}\right] \delta y \delta z
$$

So the net force is:

$$
F_{x}=F_{L}+F_{R}=-\frac{\partial p}{\partial x} \delta x \delta y \delta z
$$

Pressure gradient

The volume weighs:

$$
m=\rho \delta x \delta y \delta z
$$

So:

$$
a_{x} \equiv \frac{d u}{d t}=\frac{F_{x}}{m}=-\frac{1}{\rho} \frac{\partial p}{\partial x}
$$

Same derivation for the y and z directions.
Note this is a Lagrangian derivative

Momentum equations

Momentum with pressure gradients:

$$
\begin{aligned}
\frac{d u}{d t} & =-\frac{1}{\rho} \frac{\partial}{\partial x} p \\
\frac{d v}{d t} & =-\frac{1}{\rho} \frac{\partial}{\partial y} p \\
\frac{d w}{d t} & =-\frac{1}{\rho} \frac{\partial}{\partial z} p
\end{aligned}
$$

Gravity

Acts downward (toward the center of the earth):

$$
\begin{aligned}
a_{z} & =\frac{F_{z}}{m}=-g \\
\frac{d w}{d t} & =-\frac{1}{\rho} \frac{\partial}{\partial z} p-g
\end{aligned}
$$

Friction

Friction

The stress causes an accerleration:

$$
\frac{d u}{d t}=\frac{1}{\rho} \frac{\partial \tau_{z x}}{\partial z}
$$

We don't know the stress. So we parameterize it:

$$
\frac{1}{\rho} \frac{\partial \tau_{z x}}{\partial z}=\nu \frac{\partial^{2}}{\partial z^{2}} u
$$

(for example with molecular mixing). In 3 dimensions:

$$
\frac{d u}{d t}=\nu\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) u=\nu \nabla^{2} u
$$

Momenutum equations

With all the real forces, we have:

$$
\begin{gathered}
\frac{d u}{d t}=\frac{\partial}{\partial t} u+\vec{u} \cdot \nabla u=-\frac{1}{\rho} \frac{\partial}{\partial x} p+\nu \nabla^{2} u \\
\frac{d v}{d t}=\frac{\partial}{\partial t} v+\vec{u} \cdot \nabla v=-\frac{1}{\rho} \frac{\partial}{\partial y} p+\nu \nabla^{2} v \\
\frac{d w}{d t}=\frac{\partial}{\partial t} w+\vec{u} \cdot \nabla w=-\frac{1}{\rho} \frac{\partial}{\partial z} p-g+\nu \nabla^{2} w
\end{gathered}
$$

Apparent forces

Rotation

Rotation

$$
\delta \Theta=\Omega \delta t
$$

Assume $\Omega=$ const. (reasonable for the earth)
Change in A is δA, the arc-length:

$$
\delta \vec{A}=|\vec{A}| \sin (\gamma) \delta \Theta=\Omega|\vec{A}| \sin (\gamma) \delta t=(\vec{\Omega} \times \vec{A}) \delta t
$$

Rotation

So:

$$
\frac{d \vec{A}}{d t}=\vec{\Omega} \times \vec{A}
$$

This is the motion of a fixed vector. For a moving vector:

$$
\left(\frac{d \vec{A}}{d t}\right)_{F}=\left(\frac{d \vec{A}}{d t}\right)_{R}+\vec{\Omega} \times \vec{A}
$$

So the velocity in the fixed frame is equal to that in the rotating frame plus the rotational movement

Rotation

If $\vec{A}=\vec{r}$, the position vector, then:

$$
\left(\frac{d \vec{r}}{d t}\right)_{F} \equiv \vec{u}_{F}=\vec{u}_{R}+\vec{\Omega} \times \vec{r}
$$

If $\vec{A}=\vec{r}$, we get the acceleration:

$$
\begin{gathered}
\left(\frac{d \vec{u}_{F}}{d t}\right)_{F}=\left(\frac{d \vec{u}_{F}}{d t}\right)_{R}+\vec{\Omega} \times \vec{u}_{F}=\left[\frac{d}{d t}\left(u_{R}+\vec{\Omega} \times \vec{r}\right)\right]_{R}+\vec{\Omega} \times \vec{u}_{F} \\
=\left(\frac{d \vec{u}_{R}}{d t}\right)_{R}+2 \vec{\Omega} \times \vec{u}_{R}+\vec{\Omega} \times \vec{\Omega} \times \vec{r}
\end{gathered}
$$

Rotation

Rearranging:

$$
\left(\frac{d \vec{u}_{R}}{d t}\right)_{R}=\left(\frac{d \vec{u}_{F}}{d t}\right)_{F}-2 \vec{\Omega} \times \vec{u}_{R}-\vec{\Omega} \times \vec{\Omega} \times \vec{r}
$$

Two additional terms:

- Coriolis acceleration $\rightarrow-2 \vec{\Omega} \times \vec{u}_{R}$
- Centrifugal acceleration $\rightarrow-\vec{\Omega} \times \vec{\Omega} \times \vec{r}$

Centrifugal acceleration

Rotation requires a force towards the center of rotation-the centripetal acceleration

From the rotating frame, the sign is opposite-the centrifugal acceleration

Acceleration points out from the earth's radius of rotation
So has components in the radial and N-S directions

Centrifugal

Centrifugal

The earth is not spherical, but has deformed into an oblate spheroid

There is a component of gravity which exactly balances the centrifugal force in the N -S direction

Defines surfaces of constant geopotential
The locally vertical centrifugal acceleration can be absorbed into gravity:

$$
g^{\prime}=g-\vec{\Omega} \times \vec{\Omega} \times \vec{r}
$$

Centrifugal

Example: What is the centrifugal acceleration for a parcel of air at the Equator?

$$
-\vec{\Omega} \times \vec{\Omega} \times \vec{r}=-\Omega \times(\Omega r)=\Omega^{2} r
$$

with:

$$
r_{e}=6.378 \times 10^{6} \mathrm{~m}
$$

and:

$$
\Omega=\frac{2 \pi}{3600(24)} \sec ^{-1}
$$

Centrifugal

So:

$$
\Omega^{2} r_{e}=0.034 \mathrm{~m} / \sec ^{2}
$$

This is much smaller than $g=9.8 \mathrm{~m}^{2} / \mathrm{sec}$

- Only a minor change to absorb into g^{\prime}

Cartesian coordinates

Equatorial radius is only 21 km larger than at poles

So can use spherical coordinates
However, we will use Cartesian coordinates

- Simplifies the math
- Neglected terms are unimportant at weather scales

Cartesian coordinates

Coriolis force

Rotation vector projects onto local vertical and meridional directions:

$$
2 \vec{\Omega}=2 \Omega \cos \theta \hat{j}+2 \Omega \sin \theta \hat{k} \equiv f_{y} \hat{j}+f_{z} \hat{k}
$$

So the Coriolis force is:

$$
\begin{gathered}
-2 \vec{\Omega} \times \vec{u}=-\left(0, f_{y}, f_{z}\right) \times(u, v, w) \\
=-\left(f_{y} w-f_{z} v, f_{z} u,-f_{y} u\right)
\end{gathered}
$$

Coriolis force

Example: What is the Coriolis acceleration on a parcel moving eastward at $10 \mathrm{~m} / \mathrm{sec}$ at 45 N ?

We have:

$$
\begin{gathered}
f_{y}=2 \Omega \cos (45)=5.142 \times 10^{-5} \sec ^{-1} \\
f_{z}=2 \Omega \sin (45)=5.142 \times 10^{-5} \mathrm{sec}^{-1} \\
-2 \vec{\Omega} \times \vec{u}=-\left(0, f_{y}, f_{z}\right) \times(u, 0,0)=-f_{z} u \hat{j}+f_{y} u \hat{k} \\
=\left(0,-5.142 \times 10^{-4}, 5.142 \times 10^{-4}\right) \mathrm{m} / \mathrm{sec}^{2}
\end{gathered}
$$

Coriolis force

Vertical acceleration is negligible compared to gravity ($g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$), so has little effect in z

But unbalanced in the horizontal direction
Note acceleration is to the south

- Coriolis acceleration is most important in the horizontal
- Acts to the right in the Northern Hemisphere

Coriolis force

In the Southern hemisphere, $\theta<0$. Same problem, at 45 S :

$$
\begin{aligned}
& f_{y}=2 \Omega \cos (-45)=5.142 \times 10^{-5} \mathrm{sec}^{-1} \\
& f_{z}=2 \Omega \sin (-45)=-5.142 \times 10^{-5} \mathrm{sec}^{-1} \\
& \quad-2 \vec{\Omega} \times \vec{u}=-f_{z} u \hat{j}+f_{y} u \hat{k} \\
& =\left(0,+5.142 \times 10^{-4}, 5.142 \times 10^{-4}\right) \mathrm{m} / \mathrm{sec}^{2}
\end{aligned}
$$

Acceleration to the north, to the left of the parcel velocity.

Momentum equations

Move Coriolis terms to the LHS:

$$
\begin{gathered}
\frac{\partial}{\partial t} u+\vec{u} \cdot \nabla u+f_{y} w-f_{z} v=-\frac{1}{\rho} \frac{\partial}{\partial x} p+\nu \nabla^{2} u \\
\frac{\partial}{\partial t} v+\vec{u} \cdot \nabla v+f_{z} u=-\frac{1}{\rho} \frac{\partial}{\partial y} p+\nu \nabla^{2} v \\
\frac{\partial}{\partial t} w+\vec{u} \cdot \nabla w-f_{y} u=-\frac{1}{\rho} \frac{\partial}{\partial z} p-g+\nu \nabla^{2} w
\end{gathered}
$$

Continuity

Continuity

Consider a fixed volume

Density flux through the left side:

$$
\left[\rho u-\frac{\partial}{\partial x}(\rho u) \frac{\partial x}{2}\right] \delta y \delta z
$$

Through the right side:

$$
\left[\rho u+\frac{\partial}{\partial x}(\rho u) \frac{\partial x}{2}\right] \delta y \delta z
$$

Continuity

So the net rate of change in mass is:

$$
\begin{gathered}
\frac{\partial}{\partial t} m=\frac{\partial}{\partial t}(\rho \partial x \partial y \partial z)=\left[\rho u-\frac{\partial}{\partial x}(\rho u) \frac{\partial x}{2}\right] \partial y \partial z \\
-\left[\rho u+\frac{\partial}{\partial x}(\rho u) \frac{\partial x}{2}\right] \partial y \partial z=-\frac{\partial}{\partial x}(\rho u) \partial x \partial y \partial z
\end{gathered}
$$

The volume δV is constant, so:

$$
\frac{\partial}{\partial t} \rho=-\frac{\partial}{\partial x}(\rho u)
$$

Continuity

Taking the other sides of the box:

$$
\frac{\partial \rho}{\partial t}=-\frac{\partial}{\partial x}(\rho u)-\frac{\partial}{\partial y}(\rho v)-\frac{\partial}{\partial z}(\rho w)=-\nabla \cdot(\rho \vec{u})
$$

Can rewrite:

$$
\nabla \cdot(\rho \vec{u})=\rho \nabla \cdot \vec{u}+\vec{u} \cdot \nabla \rho .
$$

So:

$$
\frac{\partial \rho}{\partial t}+\vec{u} \cdot \nabla \rho+\rho(\nabla \cdot \vec{u})=0
$$

Continuity

Can also derive using a Lagrangian box
As the box moves, it conserves it mass. So:

$$
\frac{1}{m} \frac{d}{d t}(\partial m)=\frac{1}{\rho \delta V} \frac{d}{d t}(\rho \delta V)=\frac{1}{\rho} \frac{d \rho}{d t}+\frac{1}{\delta V} \frac{d \delta V}{d t}=0
$$

Expand the volume term:

$$
\begin{aligned}
& \frac{1}{\delta V} \frac{d \delta V}{d t}=\frac{1}{\delta x} \frac{d}{d t} \delta x+\frac{1}{\delta y} \frac{d}{d t} \delta y+\frac{1}{\delta z} \frac{d}{d t} \delta z \\
= & \frac{1}{\delta x} \delta \frac{d x}{d t}+\frac{1}{\delta y} \delta \frac{d y}{d t}+\frac{1}{\delta z} \delta \frac{d z}{d t}=\frac{\delta u}{\delta x}+\frac{\delta v}{\delta y}+\frac{\delta w}{\delta z}
\end{aligned}
$$

Continuity

As $\delta \rightarrow 0:$

$$
\frac{\delta u}{\delta x}+\frac{\delta v}{\delta y}+\frac{\delta w}{\delta z} \rightarrow \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}
$$

So:

$$
\frac{1}{\rho} \frac{d \rho}{d t}+\nabla \cdot \vec{u}=0
$$

Change in density proportional to the velocity divergence.
If volume changes, density changes to keep mass constant.

Ideal Gas Law

Five of the equations are prognostic: they describe the time evolution of fields.

But we have one diagnostic relation.
This relates the density, pressure and temperature

Ideal Gas Law

For dry air:

$$
p=\rho R T
$$

where

$$
R=287 \mathrm{Jkg}^{-1} K^{-1}
$$

Moist air

Law moist air, can write (Chp. 3):

$$
p=\rho R T_{v}
$$

where the virtual temperature is:

$$
\begin{aligned}
& T_{v} \equiv \frac{T}{1-e / p(1-\epsilon)} \\
& \epsilon \equiv \frac{R_{d}}{R_{v}}=0.622
\end{aligned}
$$

We will ignore moisture. But remember that we can take it into account in this way.

Primitive equations

Continuity:

$$
\frac{\partial}{\partial t} \rho+\vec{u} \cdot \nabla \rho+\rho \nabla \cdot \vec{u}=0
$$

Ideal gas:

$$
p=\rho R T
$$

Thermodynamic energy:

$$
c_{v} \frac{d T}{d t}+p \frac{d \alpha}{d t}=c_{p} \frac{d T}{d t}-\alpha \frac{d p}{d t}=\frac{d q}{d t}
$$

Thermodynamic equation

First law of thermodynamics

Change in internal energy = heat added - work done:

$$
d e=d q-d w
$$

Work is done by expanding against external forces:

$$
d w=F d x=p A d x=p d V
$$

If $d V>0$, the volume is doing the work

First law of thermodynamics

Assume the volume has a unit mass, so that:

$$
\rho V=1
$$

Then:

$$
d V=d\left(\frac{1}{\rho}\right)=d \alpha
$$

where α is the specific volume. So:

$$
d e=d q-p d \alpha
$$

First law of thermodynamics

Add heat to the volume, the temperature rises. The specific heat (c_{v}) determines how much. If the volume is held constant:

$$
d q_{v}=c_{v} d T
$$

With $d V=0$, equas the change in internal energy:

$$
d q_{v}=d e_{v}=c_{v} d T
$$

First Law of thermodynamics

Joule's Law: e only depends on temperature for an ideal gas. So even if V changes:

$$
d e=c_{v} d T
$$

So:

$$
d q=c_{v} d T+p d \alpha
$$

Divide by $d t$ to find the theromdynamic energy equation:

$$
\frac{d q}{d t}=c_{v} \frac{d T}{d t}+p \frac{d \alpha}{d t}
$$

First law of thermodynamics

Now imagine we keep the pressure constant:

$$
d q_{p}=c_{p} d T
$$

We let the volume expand while keeping p constant. This requires more heat to raise the temperature. Rewrite the work term:

$$
p d \alpha=d(p \alpha)-\alpha d p
$$

So:

$$
d q=c_{v} d T+d(p \alpha)-\alpha d p
$$

First law of thermodynamics

The ideal gas law is:

$$
p=\rho R T=\alpha^{-1} R T
$$

So:

$$
d(p \alpha)=R d T
$$

Thus:

$$
d q=\left(c_{v}+R\right) d T-\alpha d p
$$

First law of thermodynamics

At constant pressure, $d p=0$, so:

$$
d q_{p}=\left(c_{v}+R\right) d T=c_{p} d T
$$

So the specific heat at constant pressure is greater than at constant volume. For dry air:

$$
c_{v}=717 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}, \quad c_{p}=1004 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}
$$

SO:

$$
R=287 \mathrm{Jkg}^{-1} K^{-1}
$$

First law of thermodynamics

So we can also write:

$$
d q=c_{p} d T-\alpha d p
$$

Dividing by $d t$, we have:

$$
\frac{d q}{d t}=c_{v} \frac{d T}{d t}+p \frac{d \alpha}{d t}=c_{p} \frac{d T}{d t}-\alpha \frac{d p}{d t}
$$

Basic balances

Not all terms in the momentum equations are equally important for weather systems.

Will simplify the equations by identifying primary balances (throw out as many terms as possible).

Begin with horizontal momentum equations.

Scaling

General technique: scale equations using estimates of the various parameters. Take the x-momentum equation, without friction:

$$
\begin{aligned}
& \frac{\partial}{\partial t} u+u \frac{\partial}{\partial x} u+v \frac{\partial}{\partial y} u+w \frac{\partial}{\partial z} u+f_{y} w-f_{z} v=-\frac{1}{\rho} \frac{\partial}{\partial x} p \\
& \frac{U}{T} \quad \frac{U^{2}}{L} \quad \frac{U^{2}}{L} \quad \frac{U W}{D} \quad f_{y} W \quad f_{z} U
\end{aligned} \frac{\frac{\triangle_{H} P}{\rho L}}{l} l
$$

Scaling

Now use typical values. Length scales:

$$
L \approx 10^{6} \mathrm{~m}, \quad D \approx 10^{4} \mathrm{~m}
$$

Horizontal scale is 1000 km , the synoptic scale (of weather systems).

Velocities:

$$
U \approx V \approx 10 \mathrm{~m} / \mathrm{sec}, \quad W \approx 1 \mathrm{~cm} / \mathrm{sec}
$$

Notice the winds are quasi-horizontal

Scaling

Pressure term, from measurements:

$$
\triangle_{H} P / \rho \approx 10^{3} \mathrm{~m}^{2} / \sec ^{2}
$$

Time scale:

$$
T=L / U \approx 10^{5} \mathrm{sec}
$$

Called an "advective time scale" (≈ 1 day).

Scaling

Coriolis terms:

$$
\left(f_{y}, f_{z}\right)=2 \Omega(\cos \theta, \sin \theta)
$$

with

$$
\Omega=2 \pi(86400)^{-1} \sec ^{-1}
$$

Assume at mid-latitudes:

$$
f_{y} \approx f_{z} \approx 10^{-4} \sec ^{-1}
$$

Scaling

Plug in:

$$
\begin{aligned}
& \frac{\partial}{\partial t} u+u \frac{\partial}{\partial x} u+v \frac{\partial}{\partial y} u+w \frac{\partial}{\partial z} u+f_{y} w-f_{z} v=-\frac{1}{\rho} \frac{\partial}{\partial x} p \\
& \frac{U}{T} \quad \frac{U^{2}}{L} \quad \frac{U^{2}}{L} \quad \frac{U W}{D} \quad f W \quad f U \quad \frac{\triangle_{H} P}{\rho L} \\
& 10^{-4} \quad 10^{-4} \quad 10^{-4} \quad 10^{-5} \quad 10^{-6} \quad 10^{-3} \quad 10^{-3}
\end{aligned}
$$

Geostrophy

Keeping only the 10^{-3} terms:

$$
\begin{aligned}
f_{z} v & =\frac{1}{\rho} \frac{\partial}{\partial x} p \\
f_{z} u & =-\frac{1}{\rho} \frac{\partial}{\partial y} p
\end{aligned}
$$

These are the geostrophic relations.
Balance between the pressure gradient and Coriolis force.

Geostrophy

Fundamental momentum balance at synoptic scales

- Low pressure to left of the wind in Northern Hemisphere
- Low pressure to right in Southern Hemisphere

But balance fails at equator, because $f_{z}=2 \Omega \sin (0)=0$
There we must keep other terms

Geostrophy

Geostrophy

L

H

Geostrophy

Geostrophy

Example: If the pressure difference is 0.37 kPa over 100 km, how strong are the winds? Imagine we're at 45 N .

$$
\begin{gathered}
f_{z}=2 \Omega \sin (45)=1.414 *\left(7.27 \times 10^{-5}\right) \mathrm{sec}^{-1}=1.03 \times 10^{-4} \mathrm{sec}^{-1} \\
\frac{\partial p}{\partial l}=\frac{0.37 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}}{10^{5} \mathrm{~m}}=3.7 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{3}
\end{gathered}
$$

So:
$u=\frac{1}{\rho_{0} f_{z}} \frac{\partial p}{\partial l}=\frac{1}{\left(1.2 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(1.03 \times 10^{-4} \mathrm{sec}^{-1}\right)}\left(3.7 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{3}\right)$
$=29.9 \mathrm{~m} / \mathrm{sec}$ (Strong!)

Geostrophy

Is a diagnostic relation

- Given the pressure, can calculate the horizontal velocities

But geostrophy cannot be used for prediction

Means that we must also retain the 10^{-4} terms in the scaling

Approximate horizontal momentum

So:

$$
\begin{aligned}
\frac{\partial}{\partial t} u+u \frac{\partial}{\partial x} u+v \frac{\partial}{\partial y} u-f_{z} v & =-\frac{1}{\rho} \frac{\partial}{\partial x} p \\
\frac{\partial}{\partial t} v+u \frac{\partial}{\partial x} v+v \frac{\partial}{\partial y} v+f_{z} u & =-\frac{1}{\rho} \frac{\partial}{\partial y} p
\end{aligned}
$$

These equations are quasi-horizontal: neglect vertical motion

Explains why the horizontal winds are so much larger than in the vertical

Other momentum balances

Geostrophy most important balance at synoptic scales. But other balances possible. Consider purely circular flow:

Other momentum balances

Must use cylindrical coordinates. From standard text books, can find that the acceleration in the radial direction is given by:

$$
\frac{d}{d t} u_{r}-\frac{u_{\theta}^{2}}{r}-f u_{\theta}=-\frac{1}{\rho} \frac{\partial}{\partial r} p
$$

u_{θ}^{2} / r is the cyclostrophic term
This is related to centripetal acceleration.

Other momentum balances

Assume no radial motion: $u_{r}=0$. Then:

$$
\frac{u_{\theta}^{2}}{r}+f u_{\theta}=\frac{1}{\rho} \frac{\partial}{\partial r} p
$$

Scaling we get:

$$
\frac{U^{2}}{R} \quad f U \quad \frac{\triangle_{H} P}{\rho R}
$$

Or:

$$
\frac{U}{f R} \quad 1 \quad \frac{\triangle_{H} P}{\rho f U R}
$$

Other momentum balances

The ratio:

$$
\frac{U}{f R} \equiv \epsilon
$$

is called the Rossby number. If $\epsilon \ll 1$, the first term is very small. So we have:

$$
f u_{\theta}=\frac{1}{\rho} \frac{\partial}{\partial r} p
$$

The geostrophic relation.

Other momentum balances

If $\epsilon \gg 1$, the first term dominates.

A tornado at mid-latitudes has:

$$
U \approx 30 \mathrm{~m} / \mathrm{s}, f=10^{-4} \sec ^{-1}, R \approx 300 \mathrm{~m} \rightarrow \epsilon \approx 1000
$$

Cyclostrophic wind balance

Then we have:

$$
\frac{u_{\theta}^{2}}{r}=\frac{1}{\rho} \frac{\partial}{\partial r} p
$$

or:

$$
u_{\theta}= \pm\left(\frac{r}{\rho} \frac{\partial}{\partial r} p\right)^{1 / 2}
$$

- Rotation does not enter.
- Winds can go either way.

Inertial oscillations

Third possibility: there is no radial pressure gradient:

$$
\frac{u_{\theta}^{2}}{r}+f u_{\theta}=0
$$

then:

$$
u_{\theta}=-f r
$$

Rotation is clockwise (anticyclonic) in the Northern Hemisphere.

Inertial oscillations

A drifting buoy in the Baltic Sea, July 1969. Courtesy Persson and Broman.

Inertial oscillations

The time for a fluid parcel to complete a loop is:

$$
\frac{2 \pi r}{u_{\theta}}=\frac{2 \pi}{f}=\frac{0.5 d a y}{|\sin \theta|}
$$

Called the "inertial period"
Strong effect in the surface ocean
Less frequently observed in the atmosphere

Gradient wind balance

Fourth possibility: all terms are important $(\epsilon \approx 1)$

$$
\frac{u_{\theta}^{2}}{r}+f u_{\theta}=\frac{1}{\rho} \frac{\partial}{\partial r} p
$$

Solve using the quadratic formula:

$$
\begin{aligned}
u_{\theta} & =-\frac{1}{2} f r \pm \frac{1}{2}\left(f^{2} r^{2}+\frac{4 r}{\rho} \frac{\partial}{\partial r} p\right)^{1 / 2} \\
& =-\frac{1}{2} f r \pm \frac{1}{2}\left(f^{2} r^{2}+4 r f u_{g}\right)^{1 / 2}
\end{aligned}
$$

Gradient wind balance

If $u_{g}<0$ (anticyclone), we require:

$$
\left|u_{g}\right|<\frac{f r}{4}
$$

If $u_{g}>0$ (cyclone), there is no limit
Wind gradients can be much stronger in cyclones than in anticyclones

Gradient wind balance

Alternately can write:

$$
\frac{u_{\theta}^{2}}{r}+f u_{\theta}=\frac{1}{\rho} \frac{\partial}{\partial r} p=f u_{g}
$$

Divide through by $f u_{\theta}$:

$$
\frac{u_{\theta}}{f r}+1=\epsilon+1=\frac{u_{g}}{u_{\theta}}
$$

So if $\epsilon=0.1$, the gradient wind estimate differs by 10%

Gradient wind balance

- At low latitudes, ϵ can be 1-10. Then the gradient wind estimate is more accurate.
- Geostrophy is symmetric to sign changes: no difference between cyclones and anticyclones
- The gradient wind balance is not symmetric to sign change. Cyclones can be stronger.

Gradient wind balance

Winds weaker than geostrophic for a low pressure system; they are stronger for a high pressure system.

Gradient wind balance

An anomalous low: low pressure with clockwise flow
Usually only occurs at low latitudes, where Coriolis weak

Hydrostatic balance

Hydrostatic balance

Now scale the vertical momentum equation

$$
\begin{aligned}
& \frac{\partial}{\partial t} w+u \frac{\partial}{\partial x} w+v \frac{\partial}{\partial y} w+w \frac{\partial}{\partial z} w-f_{y} u=-\frac{1}{\rho} \frac{\partial}{\partial z} p-g \\
& \frac{U W}{L} \quad \frac{U W}{L} \quad \frac{U W}{L} \quad \frac{W^{2}}{D} \quad f U \quad \frac{\triangle_{V} P}{\rho D} \quad g
\end{aligned}
$$

Hydrostatic balance

We must scale:

$$
\frac{1}{\rho} \frac{\partial}{\partial z} p
$$

The vertical variation of pressure much greater than the horizontal variation:

$$
\triangle_{V} P / \rho \approx 10^{5} \mathrm{~m}^{2} / \mathrm{sec}^{2}
$$

Hydrostatic balance

$$
\begin{aligned}
& \frac{\partial}{\partial t} w+u \frac{\partial}{\partial x} w+v \frac{\partial}{\partial y} w+w \frac{\partial}{\partial z} w-f_{y} u=-\frac{1}{\rho} \frac{\partial}{\partial z} p-g \\
& \frac{U W}{L} \\
& \frac{U W}{L}
\end{aligned} \frac{\frac{U W}{L}}{} \quad \frac{W^{2}}{D} \quad f U \quad \frac{\triangle_{V} P}{\rho D} \quad g
$$

Static atmosphere

Dominant balance is between the vertical pressure gradient and gravity

However, same balance if there no motion at all!
Setting $(u, v, w)=0$ in the equations of motion yields:

$$
\frac{1}{\rho} \frac{\partial}{\partial x} p=\frac{1}{\rho} \frac{\partial}{\partial y} p=\frac{\partial}{\partial t} \rho=\frac{d T}{d t}=0
$$

Which implies:

$$
\rho=\rho(z), \quad p=p(z), \quad T=T(z)
$$

Static atmosphere

Two equations left:

$$
\frac{\partial}{\partial z} p=-\rho g
$$

the hydrostatic balance and

$$
p=\rho R T
$$

Equations describe a non-moving atmosphere

Static atmosphere

Integrate the hydrostatic relation:

$$
p(z)=\int_{z}^{\infty} \rho g d z .
$$

The pressure at any point is equal to the weight of air above it. Sea level pressure is:

$$
p(0)=101.325 \mathrm{kPa}(1013.25 \mathrm{mb})
$$

The average weight per square meter of the entire atmospheric column

Static atmosphere

Say the $T=$ const. (an isothermal atmosphere):

$$
\frac{\partial}{\partial z} p=-\frac{p g}{R T}
$$

This implies:

$$
\ln (p)=-\frac{g z}{R T}
$$

Static atmosphere

So that:

$$
p=p_{0} e^{-z / H}
$$

Pressure decays exponentially. The e-folding scale is the "scale height":

$$
H \equiv \frac{R T}{g}
$$

Scaling

Static hydrostatic balance not interesting for weather. Separate the pressure and density into static and non-static (moving) components:

$$
\begin{aligned}
p(x, y, z, t) & =p_{0}(z)+p^{\prime}(x, y, z, t) \\
\rho(x, y, z, t) & =\rho_{0}(z)+\rho^{\prime}(x, y, z, t)
\end{aligned}
$$

Assume:

$$
\left|p^{\prime}\right| \ll\left|p_{0}\right|, \quad\left|\rho^{\prime}\right| \ll\left|\rho_{0}\right|
$$

Scaling

Then:

$$
\begin{gathered}
-\frac{1}{\rho} \frac{\partial}{\partial z} p-g=-\frac{1}{\rho_{0}+\rho^{\prime}} \frac{\partial}{\partial z}\left(p_{0}+p^{\prime}\right)-g \\
\approx-\frac{1}{\rho_{0}}\left(1-\frac{\rho^{\prime}}{\rho_{0}}\right) \frac{\partial}{\partial z}\left(p_{0}+p^{\prime}\right)-g \\
=-\frac{1}{\rho_{0}} \frac{\partial}{\partial z} p^{\prime}+\left(\frac{\rho^{\prime}}{\rho_{0}}\right) \frac{\partial}{\partial z} p_{0}=-\frac{1}{\rho_{0}} \frac{\partial}{\partial z} p^{\prime}-\frac{\rho^{\prime}}{\rho_{0}} g
\end{gathered}
$$

\rightarrow Neglect $\left(\rho^{\prime} p^{\prime}\right)$

Scaling

Use these terms in the vertical momentum equation
But how to scale?
Vertical variation of the perturbation pressure comparable to the horizontal perturbation:

$$
\frac{1}{\rho_{0}} \frac{\partial}{\partial z} p^{\prime} \propto \frac{\triangle_{H} P}{\rho_{0} D} \approx 10^{-1} \mathrm{~m} / \mathrm{sec}^{2}
$$

Scaling

Also:

$$
\left|\rho^{\prime}\right| \approx 0.001\left|\rho_{0}\right|
$$

So:

$$
\frac{\rho^{\prime}}{\rho_{0}} g \approx 10^{-1} \mathrm{~m} / \sec ^{2}
$$

Scaling

$$
\begin{aligned}
& \frac{\partial}{\partial t} w+u \frac{\partial}{\partial x} w+v \frac{\partial}{\partial y} w+w \frac{\partial}{\partial z} w-f_{y} u=-\frac{1}{\rho_{0}} \frac{\partial}{\partial z} p^{\prime}-\frac{\rho^{\prime}}{\rho_{0}} g \\
& 10^{-7} \\
& 10^{-7}
\end{aligned} 10^{-7} \quad 10^{-10} \quad 10^{-3} \quad 10^{-1} \quad 10^{-1} .
$$

Hydrostatic perturbations

Dominant balance still hydrostatic, but with perturbations:

$$
\frac{\partial}{\partial z} p^{\prime}=-\rho^{\prime} g
$$

thus vertical acceleration unimportant at synoptic scales
But we lost the vertical velocity! Deal with this later.

Coriolis parameter

So all terms with f_{y} are unimportant
From now on, neglect f_{y} and write f_{z} simply as f :

$$
f \equiv 2 \Omega \sin (\theta)
$$

f_{y} only important near the equator

Pressure coordinates

The hydrostatic balance implies an equivalence between changes in pressure and z

Can use it to change vertical coordinates
Consider constant pressure surfaces (here in two dimensions):

Pressure coordinates

On a pressure surface:

$$
d p=\frac{\partial p}{\partial x} d x+\frac{\partial p}{\partial z} d z=0
$$

Substitute hydrostatic relation:

$$
d p=\frac{\partial p}{\partial x} d x-\rho g d z=0
$$

So:

$$
\frac{\partial p}{\partial x}=\rho g \frac{d z}{d x} \equiv \rho \frac{\partial \Phi}{\partial x}
$$

Geopotential

where Φ is the geopotential
This is the height of a given pressure surface
\rightarrow instead of pressure at a certain height, we think of the height of a pressure surface

Geopotential

Geostrophy

Removes density from the momentum equation!

$$
\frac{d u}{d t}-f v=-\frac{1}{\rho} \frac{\partial p}{\partial x}=-\frac{\partial \Phi}{\partial x}
$$

Now the geostrophic balance is:

$$
\begin{aligned}
f v & =\frac{\partial}{\partial x} \Phi \\
f u & =-\frac{\partial}{\partial y} \Phi
\end{aligned}
$$

Geostrophy

500 hPa

Vertical velocities

Different vertical velocities:

$$
w=\frac{d z}{d t} \quad \rightarrow \quad \omega=\frac{d p}{d t}
$$

Geopotential

Lagrangian derivative is now:

$$
\begin{aligned}
\frac{d}{d t} & =\frac{\partial}{\partial t}+\frac{d x}{d t} \frac{\partial}{\partial x}+\frac{d y}{d t} \frac{\partial}{\partial y}+\frac{d p}{d t} \frac{\partial}{\partial p} \\
& =\frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+\omega \frac{\partial}{\partial p}
\end{aligned}
$$

Continuity

This changes too in pressure coordinates.
Consider a Lagrangian box:

$$
V=\delta x \delta y \delta z=-\delta x \delta y \frac{\delta p}{\rho g}
$$

with a mass:

$$
m=\rho V=-\delta x \delta y \delta p / g
$$

Continuity

Conservation of mass:

$$
\frac{1}{m} \frac{d}{d t} m=\frac{g}{\delta x \delta y \delta p} \frac{d}{d t}\left(\frac{\delta x \delta y \delta p}{g}\right)=0
$$

Using the chain rule:

$$
\frac{1}{\delta x} \delta\left(\frac{d x}{d t}\right)+\frac{1}{\delta y} \delta\left(\frac{d y}{d t}\right)+\frac{1}{\delta p} \delta\left(\frac{d p}{d t}\right)=0
$$

Continuity

Let $\delta \rightarrow 0$:

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial \omega}{\partial p}=0
$$

The flow is incompressible in pressure coordinates
Much simpler to work with!

Hydrostatic balance

$$
\begin{gathered}
\frac{d p}{d z}=-\rho g \\
d p=-\rho g d z=-\rho d \Phi
\end{gathered}
$$

So:

$$
\frac{d \Phi}{d p}=-\frac{1}{\rho}=-\frac{R T}{p}
$$

using the Ideal Gas Law

Summary: Pressure coordinates

Geostrophy:

$$
f v=\frac{\partial}{\partial x} \Phi, \quad f u=-\frac{\partial}{\partial y} \Phi
$$

Continuity:

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial \omega}{\partial p}=0
$$

Hydrostatic:

$$
\frac{d \Phi}{d p}=-\frac{R T}{p}
$$

Diagnosing vertical motion

Lost the vertical acceleration. But can find the velocity, ω, by integrating the continuity equation:

$$
\omega=-\int_{p *}^{p}\left(\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v\right) d p
$$

If the top of the atmosphere, $p *=0$, so:

$$
\omega=-\int_{0}^{p}\left(\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v\right) d p
$$

So vertical motion occurs when there is horizontal divergence.

Divergence

Vertical motion

How does ω relate to the actual vertical velocity?

$$
\omega=\frac{d p}{d t}=\frac{\partial}{\partial t} p+u \frac{\partial}{\partial x} p+v \frac{\partial}{\partial y} p+w \frac{\partial}{\partial z} p
$$

Using the hydrostatic relation:

$$
\omega=\frac{d p}{d t}=\frac{\partial}{\partial t} p+u \frac{\partial}{\partial x} p+v \frac{\partial}{\partial y} p-\rho g w
$$

For geostrophic motion:

$$
u \frac{\partial}{\partial x} p+v \frac{\partial}{\partial y} p=\left(-\frac{1}{\rho f} \frac{\partial}{\partial y} p\right)\left(\frac{\partial}{\partial x} p\right)+\left(\frac{1}{\rho f} \frac{\partial}{\partial x} p\right)\left(\frac{\partial}{\partial y} p\right)=0
$$

Vertical motion

So

$$
\omega \approx \frac{\partial}{\partial t} p-\rho g w
$$

Also:

$$
\frac{\partial}{\partial t} p \approx 10 h P a / d a y
$$

$\rho g w \approx\left(1.2 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.8 \mathrm{~m} / \mathrm{sec}^{2}\right)(0.01 \mathrm{~m} / \mathrm{sec}) \approx 100 \mathrm{hPa} / \mathrm{day}$

Vertical motion

So:

$$
\omega \approx-\rho g w
$$

This is accurate within 10% in the mid-troposphere
Less accurate near the ground, due to topography
At the surface:

$$
w_{s}=u \frac{\partial}{\partial x} z_{s}+v \frac{\partial}{\partial y} z_{s}
$$

Vertical motion

Topography most important for ω in the lowest $1-2 \mathrm{~km}$ of the troposphere

Thermal wind

Geostrophy tells us what the velocities are if we know the geopotential on a pressure surface

What about the velocities on other pressure surfaces?
Say we have information on the 500 hPa surface, but we wish to estimate winds on the 400 hPa surface

Requires knowing the velocity shear
This shear is determined by the thermal wind relation

Thermal wind

From the hydrostatic balance:

$$
\frac{\partial \Phi}{\partial p}=-\frac{R T}{p}
$$

Now take the derivative wrt pressure of the geostrophic relation:

$$
\frac{\partial}{\partial p}\left(f v_{g}=\frac{\partial \Phi}{\partial x}\right)
$$

But:

$$
\frac{\partial}{\partial p} \frac{\partial \Phi}{\partial x}=\frac{\partial}{\partial x} \frac{\partial \Phi}{\partial p}=-\frac{R}{p} \frac{\partial T}{\partial x}
$$

Thermal wind

So:

$$
p \frac{\partial v_{g}}{\partial p}=-\frac{R}{f} \frac{\partial T}{\partial x}
$$

Or:

$$
\frac{\partial v_{g}}{\partial \ln (p)}=-\frac{R}{f} \frac{\partial T}{\partial x}
$$

- Shear is proportional to the temperature gradient

Thermal wind

If we know the velocity at p_{0}, can calculate it at p_{1}
Integrate between two pressure levels:

$$
\begin{aligned}
v_{g}\left(p_{1}\right) & -v_{g}\left(p_{0}\right)=-\frac{R}{f} \int_{p_{0}}^{p_{1}} \frac{\partial T}{\partial x} d \ln (p) \\
& =-\frac{R}{f} \frac{\partial}{\partial x} \int_{p_{0}}^{p_{1}} T d \ln (p)
\end{aligned}
$$

Mean temperature

Define the mean temperature in layer between p_{0} and p_{1} :

$$
\bar{T} \equiv \frac{\int_{p_{0}}^{p_{1}} T d(\ln p)}{\int_{p_{0}}^{p_{1}} d(\ln p)}=\frac{\int_{p_{0}}^{p_{1}} T d(\ln p)}{\ln \left(\frac{p_{1}}{p_{0}}\right)}
$$

Then:

$$
v_{g}\left(p_{1}\right)-v_{g}\left(p_{0}\right)=\frac{R}{f} \ln \left(\frac{p_{0}}{p_{1}}\right) \frac{\partial \bar{T}}{\partial x}
$$

Similarly:

$$
u_{g}\left(p_{1}\right)-u_{g}\left(p_{0}\right)=-\frac{R}{f} \ln \left(\frac{p_{0}}{p_{1}}\right) \frac{\partial \bar{T}}{\partial y}
$$

Thermal wind

Alternately we can use geostrophy to calculate the shear between p_{0} and p_{1} :

$$
v_{g}\left(p_{1}\right)-v_{g}\left(p_{0}\right)=\frac{1}{f} \frac{\partial}{\partial x}\left(\Phi_{1}-\Phi_{0}\right) \equiv \frac{g}{f} \frac{\partial}{\partial x} Z_{10}
$$

and:

$$
u_{g}\left(p_{1}\right)-u_{g}\left(p_{0}\right)=-\frac{1}{f} \frac{\partial}{\partial y}\left(\Phi_{1}-\Phi_{0}\right) \equiv-\frac{g}{f} \frac{\partial}{\partial y} Z_{10}
$$

Thermal wind

where:

$$
Z_{10}=\frac{1}{g}\left(\Phi_{1}-\Phi_{0}\right)
$$

is the layer thickness between p_{0} and p_{1}.

- Shear proportional to gradients of layer thickness

Thermal wind

Thus:

$$
v_{g}\left(p_{1}\right)-v_{g}\left(p_{0}\right)=\frac{R}{f} \ln \left(\frac{p_{0}}{p_{1}}\right) \frac{\partial \bar{T}}{\partial x}=\frac{g}{f} \frac{\partial}{\partial x} Z_{10}
$$

So:

$$
Z_{10}=\frac{R}{g} \ln \left(\frac{p_{0}}{p_{1}}\right) \bar{T}
$$

- Layer thickness is proportional to the mean temperature

Layer thickness

Barotropic atmosphere

Example 1: temperature is constant on pressure surfaces
Then $\nabla T=0 \quad \rightarrow \quad$ no vertical shear
Velocities don't change with height
Also: all layers have equal thickness: stacked like pancakes

Equivalent barotropic

Example 2: temperature and geopotential contours parallel:

$$
\frac{\partial}{\partial p} \vec{u}_{g} \| \vec{u}_{g}
$$

Wind changes magnitude but not direction with height

Equivalent barotropic

Consider the zonal-average temperature :

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} T d \phi
$$

Decreases from the equator to the pole
So $\frac{\partial}{\partial y} T<0$
Thermal wind \rightarrow winds increase with height

Jet Stream

Jet Stream

Example: At 30N, the zonally-averaged temperature gradient is $0.75 \mathrm{Kdeg}^{-1}$, and the average wind is zero at the earth's surface. What is the mean zonal wind at the level of the jet stream (250 hPa)?

$$
\begin{gathered}
u_{g}\left(p_{1}\right)-u_{g}\left(p_{0}\right)=u_{g}\left(p_{1}\right)=-\frac{R}{f} \ln \left(\frac{p_{0}}{p_{1}}\right) \frac{\partial \bar{T}}{\partial y} \\
u_{g}(250)=-\frac{287}{2 \Omega \sin (30)} \ln \left(\frac{1000}{250}\right)\left(-\frac{0.75}{1.11 \times 10^{5} \mathrm{~m}}\right)=36.8 \mathrm{~m} / \mathrm{sec}
\end{gathered}
$$

Baroclinic atmosphere

Example 3: Temperature not parallel to geopotential
Geostrophic wind has a component normal to the temperature contours (isotherms)

Produces geostrophic temperature advection
Winds blow from warm to cold or vice versa

Temperature advection

Temperature advection

Warm advection \rightarrow veering

- Anticyclonic (clockwise) rotation with height

Cold advection \rightarrow backing

- Cyclonic (counter-clockwise) rotation with height

Summary

Geostrophic wind parallel to geopotential contours

- high pressure to the right (North Hemisphere)

Thermal wind parallel to mean temperature (thickness) contours

- high thickness to the right

Divergence

Continuity equation:

$$
\frac{d \rho}{d t}+\rho \nabla \cdot \underline{u}=0
$$

or:

$$
\frac{1}{\rho} \frac{d \rho}{d t}=-\nabla \cdot \underline{u}=-\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)
$$

- Density changes due to divergence

Divergence

Example

The divergence in a region is constant and positive:

$$
\nabla \cdot \vec{u}=D>0
$$

What happens to the density of an air parcel?

Example

$$
\begin{gathered}
\frac{1}{\rho} \frac{d \rho}{d t}=-\nabla \cdot \underline{u}=-D \\
\frac{d \rho}{d t}=-\rho D \\
\rho(t)=\rho(0) e^{-D t}
\end{gathered}
$$

Density decreases exponentially in time

Vorticity

Central quantity in dynamics

$$
\begin{gathered}
\vec{\zeta} \equiv \nabla \times \vec{u} \\
\vec{\zeta}=\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}, \frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}, \frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)
\end{gathered}
$$

Most important at synoptic scales is vertical component:

$$
\vec{\zeta}=\zeta \hat{k}=\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}
$$

Vorticity

Vorticity

Example

What is the vorticity of a typical tornado? Assume solid body rotation, with a velocity of $100 \mathrm{~m} / \mathrm{sec}, 20 \mathrm{~m}$ from the center.
In cylindrical coordinates, the vorticity is:

$$
\zeta=\frac{1}{r} \frac{\partial r v_{\theta}}{\partial r}-\frac{1}{r} \frac{\partial v_{r}}{\partial \theta}
$$

For solid body rotation, $v_{r}=0$ and

$$
v_{\theta}=\omega r
$$

with $\omega=$ const.

Vorticity

So:

$$
\zeta=\frac{1}{r} \frac{\partial r v_{\theta}}{\partial r}=\frac{1}{r} \frac{\partial \omega r^{2}}{\partial r}=2 \omega
$$

We have $v_{\theta}=100 \mathrm{~m} / \mathrm{sec}$ at $r=20 \mathrm{~m}$:

$$
\omega=\frac{v_{\theta}}{r}=\frac{100}{20}=5 \mathrm{rad} / \mathrm{sec}
$$

So:

$$
\zeta=10 \mathrm{rad} / \mathrm{sec}
$$

Absolute vorticity

Now add rotation. The velocity in the fixed frame is:

$$
\vec{u}_{F}=\vec{u}_{R}+\vec{\Omega} \times \vec{r}
$$

So:

$$
\begin{gathered}
\vec{\zeta}_{a}=\nabla \times(\vec{u}+\vec{\Omega} \times \vec{r})=\vec{\zeta}+\nabla \times(\vec{\Omega} \times \vec{r}) \\
=\vec{\zeta}+\nabla \times\left(z \Omega_{y}-y \Omega_{z}, x \Omega_{z},-x \Omega_{y}\right) \\
=\vec{\zeta}+2 \vec{\Omega}
\end{gathered}
$$

Absolute vorticity

Two components:

- $\nabla \times \vec{u}$ - the relative vorticity
- 2Ω - the planetary vorticity

Vertical component is the most important:

$$
\zeta_{a} \cdot \hat{k}=\left(\frac{\partial}{\partial x} v-\frac{\partial}{\partial y} u\right)+2 \Omega_{z}=\zeta+2 \Omega \sin (\theta)=\zeta+f
$$

ζ now refers to the vertical relative vorticity

Absolute vorticity

Scaling:

$$
\zeta \propto \frac{U}{L}
$$

So:

$$
\frac{|\zeta|}{f} \approx \frac{U}{f L}=\epsilon
$$

The Rossby number

Absolute vorticity

e $\epsilon \ll 1$
Geostrophic velocities
Planetary vorticity dominates the absolute vorticity

- $\epsilon \gg 1$

Cyclostrophic velocities
Relative vorticity dominates

Circulation

Circulation is the integral of vorticity over an area:

$$
\Gamma \equiv \iint \zeta d A
$$

Due to Stoke's theorem, we can rewrite this as an integral of the velocity around the circumference:

$$
\Gamma=\iint \nabla \times \vec{u} d A=\oint \vec{u} \cdot \hat{n} d l
$$

Thus we can derive an equation for the circulation by integrating the momentum equations around a closed curve.

Circulation

First write momentum equations in vector form. Turns out to be simpler using the fixed frame velocity:

$$
\frac{d}{d t} \vec{u}_{F}=-\frac{1}{\rho} \nabla p+\vec{g}+\vec{F}
$$

Integrate around a closed area:

$$
\frac{d}{d t} \Gamma_{F}=-\oint \frac{\nabla p}{\rho} \cdot \overrightarrow{d l}+\oint \vec{g} \cdot \overrightarrow{d l}+\oint \vec{F} \cdot \overrightarrow{d l}
$$

Circulation

Gravity vanishes because can write as the gradient of a potential:

$$
\vec{g}=-g \hat{k}=\frac{\partial}{\partial z}(-g z)=\nabla \Phi_{g}
$$

and the closed integral of a potential vanishes:

$$
\oint \nabla \Phi_{g} \cdot \overrightarrow{d l}=\oint d \Phi_{g}=0
$$

Circulation

So:

$$
\frac{d}{d t} \Gamma_{F}=-\oint \frac{d p}{\rho}+\oint \vec{F} \cdot \overrightarrow{d l}
$$

Put rotation back in. The fixed velocity is:

$$
\vec{u}_{F}=\vec{u}_{R}+\Omega \times r
$$

So:

$$
\Gamma_{F}=\oint\left(\vec{u}_{R}+\Omega \times r\right) \cdot \overrightarrow{d l}
$$

Circulation

Rewrite using Stoke's theorem:

$$
\oint\left(\vec{u}_{R}+\vec{\Omega} \times \vec{r}\right) \cdot \overrightarrow{d l}=\iint \nabla \times\left(\vec{u}_{R}+\vec{\Omega} \times \vec{r}\right) \cdot \hat{n} d A
$$

From before:

$$
\nabla \times(\vec{\Omega} \times \vec{r})=2 \Omega
$$

If the motion is quasi-horizontal, then $\hat{n}=\hat{k}$:

$$
\Gamma_{F}=\iint[\zeta+2 \Omega \sin (\theta)] d A=\iint(\zeta+f) d A
$$

Kelvin's theorem

Thus:

$$
\frac{d}{d t} \Gamma_{a}=-\oint \frac{d p}{\rho}+\oint \vec{F} \cdot \overrightarrow{d l}
$$

where

$$
\Gamma_{a}=\iint(\zeta+f) d A
$$

is the absolute circulation, the sum of relative and planetary circulation

Kelvin's theorem

If the atmosphere is barotropic (temperature and density constant on pressure surfaces):

$$
\oint \frac{d p}{\rho}=\frac{1}{\rho} \oint d p=0
$$

If atmosphere is also frictionless $(\vec{F}=0)$, then:

$$
\frac{d}{d t} \Gamma_{a}=0
$$

The absolute circulation is conserved on the parcel

Kelvin's theorem

Notice that if the area is small, so that the vorticity is approximately constant over the area, then:

$$
\frac{d}{d t} \Gamma_{a} \approx \frac{d}{d t}(\zeta+f) A=0
$$

which implies:

$$
(\zeta+f) A=\text { const } .
$$

on a parcel. Thus if a parcel's area or latitude changes, it's vorticity must change to compensate.

Kelvin's theorem

Move a parcel north, where f is larger. Either:

- Vorticity decreases
- Area decreases

Kelvin's theorem

Example: An air parcel at 30 N moves to 90 N . If its initial relative vorticity is $5 \times 10^{-5} \sec ^{-1}$, what is its final vorticity?

$$
\left(\zeta_{30}+2 \Omega \sin (30)\right) A=\left(\zeta_{90}+2 \Omega\right) A
$$

So:

$$
\begin{gathered}
\zeta_{90}=\zeta_{30}+2 \Omega(\sin (30)-1)=5 \times 10^{-5}+1.45 \times 10^{-4}(0.5-1) \\
=-2.25 \times 10^{-5} \mathrm{sec}^{-1}
\end{gathered}
$$

Vorticity equation

Now we will derive an equation for the vorticity.
Horizontal momentum equations (p-coords):

$$
\begin{aligned}
& \left(\frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+\omega \frac{\partial}{\partial p}\right) u-f v=-\frac{\partial}{\partial x} \Phi+F_{x} \\
& \left(\frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+\omega \frac{\partial}{\partial p}\right) v+f u=-\frac{\partial}{\partial y} \Phi+F_{y}
\end{aligned}
$$

Take $\frac{\partial}{\partial x}$ of the second, subtract $\frac{\partial}{\partial y}$ of the first

Vorticity equation

Find (after some algebra):

$$
\begin{gathered}
\left(\frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+\omega \frac{\partial}{\partial p}\right) \zeta+v \frac{\partial}{\partial y} f \\
=\left(\frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+\omega \frac{\partial}{\partial p}\right) \zeta_{a} \\
=-\zeta_{a}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\left(\frac{\partial u}{\partial p} \frac{\partial \omega}{\partial y}-\frac{\partial v}{\partial p} \frac{\partial \omega}{\partial x}\right)+\left(\frac{\partial}{\partial x} F_{y}-\frac{\partial}{\partial y} F_{x}\right)
\end{gathered}
$$

where:

$$
\zeta_{a}=\zeta+f
$$

Vorticity equation

The absolute vorticity can change due to three terms

1) Divergence:

$$
-\zeta_{a}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)
$$

Divergence changes the vorticity, just like density

Convergence

Divergence

Can absorb the divergence into the left side. Consider small area of air:

$$
\delta A=\delta x \delta y
$$

Time change in the area is:

$$
\frac{\delta A}{\delta t}=\delta y \frac{\delta x}{\delta t}+\delta x \frac{\delta y}{\delta t}=\delta y \delta u+\delta x \delta v
$$

Relative change is the divergence:

$$
\frac{1}{\delta A} \frac{\delta A}{\delta t}=\frac{\delta u}{\delta x}+\frac{\delta v}{\delta y}
$$

Divergence

So rewrite the divergence term:

$$
-\left(\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v\right) \zeta_{a}=-\frac{\zeta_{a}}{A} \frac{d A}{d t}
$$

So:

$$
\frac{d}{d t} \zeta_{a}=-\frac{\zeta_{a}}{A} \frac{d A}{d t} \quad \rightarrow \quad \frac{d}{d t} \zeta_{a} A=0
$$

This is just Kelvin's theorem again!

Vorticity equation

2) The tilting term:

$$
\left(\frac{\partial u}{\partial p} \frac{\partial \omega}{\partial y}-\frac{\partial v}{\partial p} \frac{\partial \omega}{\partial x}\right)
$$

Differences in ω can affect the horizontal shear

Tilting

Vorticity equation

3) The Forcing term:

$$
\left(\frac{\partial}{\partial x} F_{y}-\frac{\partial}{\partial y} F_{x}\right)
$$

Say frictional forcing:

$$
F_{x}=\nu \nabla^{2} u, \quad F_{y}=\nu \nabla^{2} v
$$

Friction

Then:

$$
\left(\frac{\partial}{\partial x} F_{y}-\frac{\partial}{\partial y} F_{x}\right)=\nu \nabla^{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)=\nu \nabla^{2} \zeta
$$

Then:

$$
\frac{d}{d t}(\zeta+f)=\nu \nabla^{2} \zeta
$$

Friction

If $f \approx$ const. $:$

$$
\frac{d}{d t} \zeta=\nu \nabla^{2} \zeta
$$

Friction diffuses vorticity
Causes cyclones to spread out and weaken
Can occur due to friction in the boundary layer

Scaling

$$
\left(\frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+\omega \frac{\partial}{\partial p}\right) \zeta_{a}=-\zeta_{a}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\left(\frac{\partial u}{\partial p} \frac{\partial \omega}{\partial y}-\frac{\partial v}{\partial p} \frac{\partial \omega}{\partial x}\right)
$$

For synoptic scale motion, away from boundary layer:

$$
\begin{aligned}
& U \approx 10 \mathrm{~m} / \mathrm{sec} \quad \omega \approx 10 \mathrm{hPa} / \mathrm{day} \quad L \approx 10^{6} m \quad \partial p \approx 100 \mathrm{hPa} \\
& f_{0} \approx 10^{-4} \sec ^{-1} \quad L / U \approx 10^{5} \sec \quad \frac{\partial f}{\partial y} \approx 10^{-11} \mathrm{~m}^{-1} \sec ^{-1}
\end{aligned}
$$

Scaling

$$
\zeta \propto \frac{U}{L} \approx 10^{-5} \sec ^{-1}
$$

So the Rossby number is:

$$
\epsilon=\frac{\zeta}{f_{0}} \approx 0.1
$$

So:

$$
(\zeta+f) \approx f
$$

Scaling

$$
\begin{aligned}
& \frac{\partial}{\partial t} \zeta+u \frac{\partial}{\partial x} \zeta+v \frac{\partial}{\partial y} \zeta \propto \frac{U^{2}}{L^{2}} \approx 10^{-10} \\
& \omega \frac{\partial}{\partial p} \zeta \propto \frac{U \omega}{L P} \approx 10^{-11} \\
& v \frac{\partial}{\partial y} f \propto U \frac{\partial f}{\partial y} \approx 10^{-10} \\
& \left(\frac{\partial u}{\partial p} \frac{\partial \omega}{\partial y}-\frac{\partial v}{\partial p} \frac{\partial \omega}{\partial x}\right) \propto \frac{U \omega}{L P} \approx 10^{-11} \\
& (\zeta+f)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \approx f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \propto \frac{f U}{L} \approx 10^{-9}
\end{aligned}
$$

Scaling

Divergence term is unbalanced! But it's actually smaller than it appears. We can write:

$$
u=u_{g}+u_{a}, \quad v=v_{g}+v_{a}
$$

From the derivation of the gradient wind:

$$
\frac{u_{g}}{u} \approx 1+\epsilon
$$

This implies:

$$
\frac{\left|u_{a}\right|}{\left|u_{g}\right|} \propto \epsilon \approx 0.1
$$

Ageostrophic velocities

$$
u=u_{g}+\epsilon u_{a}, \quad v=v_{g}+\epsilon v_{a}
$$

The vorticity is:

$$
\zeta=\frac{\partial}{\partial x} v_{g}-\frac{\partial}{\partial y} u_{g}+\epsilon\left(\frac{\partial}{\partial x} v_{a}-\frac{\partial}{\partial y} u_{a}\right)
$$

While the divergence is:

$$
\begin{gathered}
D=\frac{1}{f} \frac{\partial}{\partial x}\left(-\frac{\partial \Phi}{\partial y}\right)+\frac{1}{f} \frac{\partial}{\partial y}\left(\frac{\partial \Phi}{\partial x}\right)+\epsilon\left(\frac{\partial}{\partial x} u_{a}+\frac{\partial}{\partial y} v_{a}\right) \\
=0+\epsilon\left(\frac{\partial}{\partial x} u_{a}+\frac{\partial}{\partial y} v_{a}\right)
\end{gathered}
$$

The divergence is order ϵ

Vertical velocities

Also:

$$
\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v+\frac{\partial}{\partial p} \omega=0
$$

implies:

$$
\frac{\partial}{\partial p} \omega=-D=-\epsilon\left(\frac{\partial}{\partial x} u_{a}+\frac{\partial}{\partial y} v_{a}\right)
$$

So the vertical velocity is also order ϵ
Planetary rotation suppresses vertical motion
This is why atmospheric motion is quasi-horizontal

Scaled equation

Thus the divergence estimate is smaller:

$$
(\zeta+f)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \approx f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) \propto \epsilon \frac{f U}{L} \approx 10^{-10}
$$

Retaining the 10^{-10} terms yields the approximate vorticity equation:

$$
\left(\frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}\right)(\zeta+f)=-f\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)
$$

Forecasting

Used for forecasts in the 1940's
Approach:
Assume geostrophic velocities:

$$
\begin{aligned}
u & \approx u_{g}=-\frac{1}{f} \frac{\partial \Phi}{\partial y} \\
v & \approx v_{g}=\frac{1}{f} \frac{\partial \Phi}{\partial x}
\end{aligned}
$$

Forecasting

$$
\zeta \approx \zeta_{g}=\frac{1}{f} \frac{\partial v_{g}}{\partial x}-\frac{\partial u_{g}}{\partial y}=\frac{1}{f}\left(\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}\right)=\frac{1}{f} \nabla^{2} \Phi
$$

The divergence vanishes identically:

$$
\left(\frac{\partial u_{g}}{\partial x}+\frac{\partial v_{g}}{\partial y}\right)=0
$$

Thus the vorticity equation is:

$$
\left(\frac{\partial}{\partial t}+u_{g} \frac{\partial}{\partial x}+v_{g} \frac{\partial}{\partial y}\right)(\zeta+f)=0
$$

ζ_{a} is conserved following the horizontal winds
Remember: on a pressure surface

Forecasting

Now only one unknown: Φ

$$
\left(\frac{\partial}{\partial t}+u_{g} \frac{\partial}{\partial x}+v_{g} \frac{\partial}{\partial y}\right)(\zeta+f)=0
$$

becomes:

$$
\left(\frac{\partial}{\partial t}-\frac{1}{f} \frac{\partial \Phi}{\partial y} \frac{\partial}{\partial x}+\frac{1}{f} \frac{\partial \Phi}{\partial x} \frac{\partial}{\partial y}\right)\left(\frac{1}{f} \nabla^{2} \Phi+f\right)=0
$$

Forecasting

Can write equation:

$$
\frac{\partial}{\partial t} \zeta+u_{g} \cdot \nabla \zeta+v_{g} \frac{\partial}{\partial y} f=0
$$

or:

$$
\frac{\partial}{\partial t} \zeta=-u_{g} \cdot \nabla \zeta-v_{g} \frac{\partial}{\partial y} f
$$

Can predict how ζ changes in time
Then convert $\zeta \rightarrow \Phi$ by inversion

Forecasting

Method:

- Obtain $\Phi\left(x, y, t_{0}\right)$ from measurements on p -surface
- Calculate $u_{g}\left(t_{0}\right), v_{g}\left(t_{0}\right), \zeta\left(t_{0}\right)$
- Calculate $\zeta\left(t_{1}\right)$
- Invert ζ to get $\Phi\left(t_{1}\right)$
- Start over
- Obtain $\Phi\left(t_{2}\right), \Phi\left(t_{3}\right), \ldots$

Inversion

$$
\begin{gathered}
\zeta=\frac{1}{f}\left(\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}\right) \\
\nabla^{2} \Phi=f \zeta
\end{gathered}
$$

Poisson's equation

Need boundary conditions to solve
Usually do this numerically

Inversion

Example: Let:

$$
\zeta=\sin (3 x) \sin (\pi y)
$$

Say we have a channel:

$$
x=[0,2 \pi], \quad y=[0,1]
$$

Periodic in x and solid walls at $y=0,1$. We have:

$$
\frac{\partial^{2}}{\partial x^{2}} \Phi+\frac{\partial^{2}}{\partial y^{2}} \Phi=\sin (3 x) \sin (\pi y)
$$

Inversion

Try a particular solution:

$$
\Phi=A \sin (3 x) \sin (\pi y)
$$

This solution works in a channel, because:

$$
\Phi(x=2 \pi)=\Phi(x=0)
$$

Also, at $y=0,1$:

$$
v=\frac{1}{f_{0}} \frac{\partial \Phi}{\partial x}=0
$$

Inversion

Substitute into equation:

$$
\frac{\partial^{2}}{\partial x^{2}} \Phi+\frac{\partial^{2}}{\partial y^{2}} \Phi=-\left(9+\pi^{2}\right) A \sin (3 x) \sin (\pi y)=\sin (3 x) \sin (\pi y)
$$

So:

$$
\Phi=-\frac{1}{9+\pi^{2}} \sin (3 x) \sin (\pi y)
$$

Then we can proceed (calculate u_{g}, v_{g}, etc.)

Inversion

Inversion is a smoothing operation

Preferentially weights the large scale features. Say instead we had:

$$
\zeta=\sin (3 x) \sin (3 y)+\sin (x) \sin (y)
$$

Then:

$$
\Phi=\frac{1}{18} \sin (3 x) \sin (3 y)+\sin (x) \sin (y)
$$

The smaller wave contributes less to the geopotential

Vorticity, turbulence simulation

Geopotential, turbulence simulation

Example II

Say the geopotential is given by:

$$
\Phi=f_{0} A \sin (2 x-\omega t) \sin (\pi y)
$$

Describe how the field evolves in time
What is ω ?

Initial geopotential

Example II

We must solve:

$$
\frac{\partial}{\partial t} \zeta=-u_{g} \cdot \nabla \zeta-v_{g} \frac{\partial}{\partial y} f
$$

But we have a problem- f is a function of θ, the latitude, rather than y !

We must rewrite f in terms of y

Beta-plane

If we limit the latitude range, we can expand f in a Taylor Series about the center latitude:

$$
f(\theta) \approx f\left(\theta_{0}\right)+\left(\theta-\theta_{0}\right) \frac{d f}{d \theta}+\frac{\left(\theta-\theta_{0}\right)^{2}}{2} \frac{d^{2} f}{d \theta^{2}}+\ldots
$$

We have $y=R \theta$, where R is the earth radius. Keeping the first two terms:

$$
f \approx f_{0}+\beta\left(y-y_{0}\right)
$$

where:

$$
f_{0}=2 \Omega \sin \left(\theta_{0}\right), \quad \beta=\frac{2 \Omega}{R} \cos \left(\theta_{0}\right)
$$

Example II

So:

$$
v \frac{d f}{d y}=v \frac{\partial}{\partial y}\left(f_{0}+\beta\left(y-y_{0}\right)\right)=\beta v
$$

So the equation becomes:

$$
\frac{\partial}{\partial t} \zeta=-u_{g} \cdot \nabla \zeta-\beta v_{g}
$$

Example III

Now the velocities are:

$$
\begin{gathered}
u_{g}=-\frac{1}{f_{0}} \frac{\partial}{\partial y} \Phi=-\pi A \sin (2 x-\omega t) \cos (\pi y) \\
v_{g}=\frac{1}{f_{0}} \frac{\partial}{\partial x} \Phi=3 A \cos (2 x-\omega t) \sin (\pi y)
\end{gathered}
$$

And the vorticity is:

$$
\zeta=\frac{1}{f_{0}} \nabla^{2} \Phi=-\left(4+\pi^{2}\right) A \sin (2 x-\omega t) \sin (\pi y)
$$

Example II

We also need the derivatives:

$$
\begin{aligned}
\frac{\partial}{\partial x} \zeta & =-2\left(4+\pi^{2}\right) A \cos (2 x-\omega t) \sin (\pi y) \\
\frac{\partial}{\partial y} \zeta & =-\pi\left(4+\pi^{2}\right) A \sin (2 x-\omega t) \cos (\pi y)
\end{aligned}
$$

Example II

Collect terms:

$$
\begin{gathered}
-u \frac{\partial}{\partial x} \zeta-v \frac{\partial}{\partial y} \zeta=[-\pi A \sin (2 x-\omega t) \cos (\pi y)] \times \\
{\left[2\left(4+\pi^{2}\right) A \cos (2 x-\omega t) \sin (\pi y)\right]+[2 A \cos (2 x-\omega t) \sin (\pi y)] \times} \\
{\left[\pi\left(4+\pi^{2}\right) A \sin (2 x-\omega t) \cos (\pi y)\right]} \\
=\left[-2 \pi A^{2}\left(4+\pi^{2}\right)+2 \pi A^{2}\left(4+\pi^{2}\right)\right] \sin (2 x-\omega t) \cos (2 x-\omega t)
\end{gathered}
$$

$$
\times \sin (\pi y) \cos (\pi y)=0
$$

Example II

Also:

$$
-\beta v=-2 \beta A \cos (2 x-\omega t) \sin (\pi y)
$$

So:

$$
\frac{\partial}{\partial t} \zeta=-2 \beta A \cos (2 x-\omega t) \sin (\pi y)
$$

Since:

$$
\zeta=-\left(4+\pi^{2}\right) A \sin (2 x-\omega t) \sin (\pi y)
$$

Example II

Then:

$$
\frac{\partial}{\partial t} \zeta=\omega\left(4+\pi^{2}\right) A \cos (2 x-\omega t) \sin (\pi y)
$$

Equate both sides:

$$
\begin{gathered}
\omega\left(4+\pi^{2}\right) A \cos (2 x-\omega t) \sin (\pi y) \\
=-2 \beta A \cos (2 x-\omega t) \sin (\pi y)
\end{gathered}
$$

We can cancel the $A \cos (2 x-\omega t) \sin (\pi y)$, leaving:

$$
\omega\left(4+\pi^{2}\right)=-2 \beta
$$

Example II

or:

$$
\omega=-\frac{2 \beta}{4+\pi^{2}}
$$

So the solution is:

$$
\Phi=A \sin \left(2 x+\frac{2 \beta}{4+\pi^{2}} t\right) \sin (\pi y)
$$

This is a "travelling wave"

Phase speed

We can rewrite the solution:

$$
\Phi=A \cos \left[2\left(x+\frac{\beta}{4+\pi^{2}} t\right)\right] \sin (\pi y)
$$

This implies that the wave has a phase speed:

$$
c=\frac{\omega}{k}=-\frac{\beta}{4+\pi^{2}}
$$

This is how fast the crests in the wave move
Because $c<0$, waves move toward negative x (westward)

Westward

Phase speed

The westward propagation is actually a consequence of Kelvin's theorem

Fluid parcels advected north/south acquire relative vorticity
The parcels then advect neighboring parcels around them
Leads to a westward drift of the wave

Westward propagation

Rossby waves

Solution is known as a Rossby wave
Discovered by Carl Gustav Rossby (1936)
Observed in the atmosphere
Important for weather patterns
Study more later (GEF4500)

Divergence

Previously ignored divergence effects. But very important for the growth of unstable disturbances (storms)

The approximate vorticity equation is:

$$
\frac{d}{d t}(\zeta+f)=-(\zeta+f)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)
$$

where:

$$
\frac{d}{d t}=\left(\frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}\right)
$$

is the Lagrangian derivative following the horizontal flow

Divergence

Divergence

Consider flow with constant divergence:

$$
\begin{gathered}
\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v=D>0 \\
\frac{d}{d t} \zeta_{a}=-\zeta_{a}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=-D \zeta_{a} \\
\zeta_{a}(t)=\zeta_{a}(0) e^{-D t}
\end{gathered}
$$

Divergence

So:

$$
\begin{gathered}
\zeta_{a}=\zeta+f \rightarrow 0 \\
\zeta \rightarrow-f
\end{gathered}
$$

Divergent flow favors anticyclonic vorticity
Vorticity approaches $-f$, regardless of initial value
Vorticity cannot exceed f

Convergence

Divergence

Now say $D=-C$

$$
\begin{gathered}
\frac{d}{d t} \zeta_{a}=-\zeta_{a}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)=C \zeta_{a} \\
\zeta_{a}(t)=\zeta_{a}(0) e^{C t} \\
\zeta_{a} \rightarrow \pm \infty
\end{gathered}
$$

But which sign?

Divergence

If the Rossby number is small, then:

$$
\zeta_{a}(0)=\zeta(0)+f \approx f>0
$$

So:

$$
\zeta \rightarrow+\infty
$$

Convergent flow favors cyclonic vorticity
Vorticity increases without bound

- Why intense storms are cyclonic

Summary

The vorticity equation is approximately:

$$
\frac{d}{d t}(\zeta+f)=-(\zeta+f)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)
$$

or:

$$
\frac{d}{d t} \zeta+v \frac{d f}{d y}=-(\zeta+f)\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)
$$

- Vorticity changes due to meridional motion
- Vorticity changes due to divergence

Barotropic potential vorticity

Consider an atmospheric layer with constant density, between two surfaces, at $z=z_{1}, z_{2}$ (e.g. the surface and the tropopause)

The continuity equation is:

$$
\frac{d \rho}{d t}+\rho(\nabla \cdot \vec{u})=0
$$

If density constant, then:

$$
(\nabla \cdot \vec{u})=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0
$$

Barotropic potential vorticity

So:

$$
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=-\frac{\partial w}{\partial z}
$$

Thus the vorticity equation can be written:

$$
\left(\frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}\right)(\zeta+f)=(\zeta+f) \frac{\partial w}{\partial z}
$$

Taylor-Proudman Theorem

The constant density assumption affects the shear

$$
\frac{d}{d t} u-f v=-\frac{1}{\rho} \frac{\partial}{\partial x} p
$$

Taking a z-derivative:

$$
\frac{d}{d t}\left(\frac{\partial}{\partial z} u\right)-f\left(\frac{\partial}{\partial z} v\right)=-\frac{1}{\rho} \frac{\partial}{\partial x}\left(\frac{\partial}{\partial z} p\right)=\frac{\rho}{\rho} \frac{\partial}{\partial x} g=0
$$

\rightarrow If there is no shear initially, have no shear at any time.
With constant density:

$$
\frac{\partial}{\partial z} u=\frac{\partial}{\partial z} v=0
$$

Barotropic potential vorticity

So the integral of the vorticity equation is simply:

$$
\begin{gathered}
\int_{z 1}^{z 2}\left(\frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}\right)(\zeta+f) d z= \\
h\left(\frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}\right)(\zeta+f)=(\zeta+f)\left[w\left(z_{2}\right)-w\left(z_{1}\right)\right]
\end{gathered}
$$

where $h=z_{2}-z_{1}$. Note that $w=D z / D t$. Thus:

$$
w\left(z_{2}\right)-w\left(z_{1}\right)=\frac{d}{d t}\left(z_{2}-z_{1}\right)=\frac{d h}{d t}
$$

Barotropic potential vorticity

So:

$$
h \frac{d}{d t}(\zeta+f)=(\zeta+f) \frac{d h}{d t}
$$

dividing by h^{2} :

$$
\frac{1}{h} \frac{d}{d t}(\zeta+f)-\frac{\zeta+f}{h^{2}} \frac{d h}{d t}=0
$$

which is the same as:

$$
\frac{d}{d t} \frac{\zeta+f}{h}=0
$$

Barotropic potential vorticity

Thus the barotropic potential vorticity (PV):

$$
\frac{\zeta+f}{h}=\text { const } .
$$

is conserved on a fluid parcel.
If h increases, either ζ or f must also increase

Layer potential vorticity

Alternate derivation

Consider a fluid column between z_{1} and z_{2}. As it moves, conserves mass:

$$
\frac{d}{d t}(h A)=0
$$

So:

$$
h A=\text { const } .
$$

Because the density is constant, we can apply Kelvin's theorem:

$$
\frac{d}{d t}(\zeta+f) A \propto \frac{d}{d t} \frac{\zeta+f}{h}=0
$$

Potential temperature

But the atmosphere is not constant density. What use is the potential vorticity?

As move upward in atmosphere, both temperature and pressure change-neither is absolute.

But can define the potential temperature which is absolute-accounts for pressure change.

The potential vorticity can then be applied in layers between potential temperature surfaces

Potential temperature

The thermodynamic energy equation is:

$$
c_{p} d T-\alpha d p=d q
$$

With zero heating, and using the ideal gas law:

$$
c_{p} d T=\alpha d p=\frac{R T}{p} d p
$$

Rewriting:

$$
c_{p} d \ln T=R d \ln p
$$

Potential temperature

Integrate up from the the surface:

$$
c_{p} \ln T-R \ln p=c_{p} \ln \theta-R \ln p_{0}
$$

where p_{0} is the surface pressure:

$$
p_{0}=100 \mathrm{kPa}=1000 \mathrm{mb}
$$

Rearranging:

$$
\theta=T\left(\frac{p_{0}}{p}\right)^{R / c_{p}}
$$

Potential temperature

If zero heating, a parcel conserves its potential temperature, θ

Call a surface with constant potential temperature an isentropic surface or an "adiabat"
θ is the temperature a parcel has if we move it adiabatically back to the surface

Note potential temperature depends on both T and p

Layer potential vorticity

Flow between two isentropic surfaces trapped if zero heating

So mass in a column between two surfaces is conserved:

$$
A \delta z=\text { const }
$$

From the hydrostatic relation:

$$
-\frac{A \delta p}{\rho g}=\text { const }
$$

where δp is the spacing between surfaces

Layer potential vorticity

Layer potential vorticity

Rewrite δp thus:

$$
\delta p=\left(\frac{\partial \theta}{\partial p}\right)^{-1} \delta \theta
$$

Here, $\frac{\partial \theta}{\partial p}$ is the stratification. The stronger the stratification, the smaller the pressure difference between temperature surfaces. Thus:

$$
\frac{A \delta p}{\rho g}=A\left(\frac{\partial \theta}{\partial p}\right)^{-1} \frac{\delta \theta}{g}=\text { const. }
$$

Layer potential vorticity

From the Ideal Gas Law and the definition of potential temperature, we can write:

$$
\rho=p^{c_{v} / c_{p}}(R \theta)^{-1} p_{s}^{R / c_{p}}
$$

So the density is a function only of pressure. This means that:

$$
\oint \frac{d p}{\rho} \propto \oint d p^{1-c_{v} / c_{p}}=0
$$

So Kelvin's theorem applies in the layer

Layer potential vorticity

Thus:

$$
\frac{d}{d t}[(\zeta+f) A]=0
$$

implies:

$$
\frac{d}{d t}\left[(\zeta+f) \frac{\partial \theta}{\partial p}\right]=0
$$

This is Ertel's (1942) "isentropic potential vorticity"

Layer potential vorticity

Remember: ζ evaluted on potential temperature surface
Very useful quantity: can label air by its PV
Can distinguish air in the troposphere which comes from stratosphere

Ertel's equation can also be used for prediction

Planetary boundary layer

Turbulence

There is a continuum of eddy scales
Largest resolved by our models, but the smallest are not.

Boussinesq equations

Assume we can split the velocity into a time mean (over some period) and a perturbation:

$$
u=\bar{u}+u^{\prime}
$$

Use the full momentum equations with no friction:

$$
\begin{aligned}
& \frac{\partial}{\partial t} u+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}-f v=-\frac{1}{\rho} \frac{\partial}{\partial x} p \\
& \frac{\partial}{\partial t} v+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}+f u=-\frac{1}{\rho} \frac{\partial}{\partial y} p
\end{aligned}
$$

Boussinesq approximation

Assume the density doesn't vary much. So we can write:

$$
\frac{1}{\rho} \frac{\partial}{\partial x} p \quad \rightarrow \quad \frac{1}{\rho_{0}} \frac{\partial}{\partial x} p
$$

In addition, the continuity equation:

$$
\frac{d \rho}{d t}+\rho(\nabla \cdot \vec{u})=0
$$

reduces to:

$$
\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v+\frac{\partial}{\partial z} w=0
$$

So the flow is incompressible

Boussinesq equations

Substitute partitioned velocities into momentum equations:

$$
\begin{gathered}
\frac{\partial}{\partial t}\left(\bar{u}+u^{\prime}\right)+\left(\bar{u}+u^{\prime}\right) \frac{\partial}{\partial x}\left(\bar{u}+u^{\prime}\right)+\left(\bar{v}+v^{\prime}\right) \frac{\partial}{\partial y}\left(\bar{u}+u^{\prime}\right)-f\left(\bar{v}+v^{\prime}\right) \\
+\left(\bar{w}+w^{\prime}\right) \frac{\partial}{\partial z}\left(\bar{u}+u^{\prime}\right)=\frac{1}{\rho_{0}} \frac{\partial}{\partial x}\left(\bar{p}+p^{\prime}\right)
\end{gathered}
$$

Then we average the whole equation. Note that:

$$
\overline{\bar{u}+u^{\prime}}=\bar{u}
$$

Boussinesq equations

$$
\begin{gathered}
\frac{\partial}{\partial t} \bar{u}+\bar{u} \frac{\partial}{\partial x} \bar{u}+\overline{u^{\prime} \frac{\partial}{\partial x} u^{\prime}}+\bar{v} \frac{\partial}{\partial y} \bar{u}+\overline{v^{\prime} \frac{\partial}{\partial y} u^{\prime}}+ \\
+\bar{w} \frac{\partial}{\partial z} \bar{u}+\overline{w^{\prime} \frac{\partial}{\partial z} u^{\prime}}+-f \bar{v}=\frac{1}{\rho_{0}} \frac{\partial}{\partial x} \bar{p}
\end{gathered}
$$

Because of the continuity equation, we can write:

$$
\overline{u^{\prime} \frac{\partial}{\partial x} u^{\prime}}+\overline{v^{\prime} \frac{\partial}{\partial y} u^{\prime}}+\overline{w^{\prime} \frac{\partial}{\partial z} u^{\prime}}=\frac{\partial}{\partial x} \overline{u^{\prime} u^{\prime}}+\frac{\partial}{\partial y} \overline{u^{\prime} v^{\prime}}+\frac{\partial}{\partial z} \overline{u^{\prime} w^{\prime}}
$$

Boussinesq equations

So:

$$
\begin{gathered}
\frac{\partial}{\partial t} \bar{u}+\bar{u} \frac{\partial}{\partial x} \bar{u}+\bar{v} \frac{\partial}{\partial y} \bar{u}+\bar{w} \frac{\partial}{\partial z} \bar{u}-f \bar{v} \\
=-\frac{1}{\rho_{0}} \frac{\partial}{\partial x} \bar{p}-\left(\frac{\partial}{\partial x} \rho_{0} \overline{u^{\prime} u^{\prime}}+\frac{\partial}{\partial y} \overline{u^{\prime} v^{\prime}}+\frac{\partial}{\partial z} \overline{u^{\prime} w^{\prime}}\right)
\end{gathered}
$$

Similarly:

$$
\begin{aligned}
& \frac{\partial}{\partial t} \bar{v}+\bar{u} \frac{\partial}{\partial x} \bar{v}+\bar{v} \frac{\partial}{\partial y} \bar{v}+\bar{w} \frac{\partial}{\partial z} \bar{v}+f \bar{u} \\
= & -\frac{1}{\rho_{0}} \frac{\partial}{\partial y} \bar{p}-\left(\frac{\partial}{\partial x} \overline{v^{\prime} u^{\prime}}+\frac{\partial}{\partial y} \overline{v^{\prime} v^{\prime}}+\frac{\partial}{\partial z} \overline{v^{\prime} w^{\prime}}\right)
\end{aligned}
$$

PBL equations

Prime terms on the RHS are the "eddy stresses"
Assume they don't vary horizontally in the PBL. Then:

$$
\begin{aligned}
& \frac{\partial}{\partial t} \bar{u}+\bar{u} \frac{\partial}{\partial x} \bar{u}+\bar{v} \frac{\partial}{\partial y} \bar{u}+\bar{w} \frac{\partial}{\partial z} \bar{u}-f \bar{v}=-\frac{1}{\rho_{0}} \frac{\partial}{\partial x} \bar{p}-\frac{\partial}{\partial z} \overline{u^{\prime} w^{\prime}} \\
& \frac{\partial}{\partial t} \bar{v}+\bar{u} \frac{\partial}{\partial x} \bar{v}+\bar{v} \frac{\partial}{\partial y} \bar{v}+\bar{w} \frac{\partial}{\partial z} \bar{v}+f \bar{u}=-\frac{1}{\rho_{0}} \frac{\partial}{\partial y} \bar{p}-\frac{\partial}{\partial z} \overline{v^{\prime} w^{\prime}}
\end{aligned}
$$

PBL equations

If the Rossby number is small, the velocities outside the boundary layer are nearly geostrophic. So in the BL, we have:

$$
-f \bar{v}=-\frac{1}{\rho_{0}} \frac{\partial}{\partial x} \bar{p}-\frac{\partial}{\partial z} \overline{u^{\prime} w^{\prime}}
$$

or:

$$
\begin{aligned}
-f \bar{v} & =-f \bar{v}_{g}-\frac{\partial}{\partial z} \overline{u^{\prime} w^{\prime}} \\
f \bar{u} & =f \bar{u}_{g}-\frac{\partial}{\partial z} \overline{v^{\prime} w^{\prime}}
\end{aligned}
$$

\rightarrow The eddies break geostrophy

PBL equations

But we have too many unknowns!: $\bar{u}, \bar{v}, u^{\prime}, v^{\prime}, w^{\prime}$
We must parameterize the eddy stresses, i.e. we must write the primed variables in terms of the unprimed variables.

There are two cases:

- Convective boundary layer
- Stable boundary layer

In a convective layer, heating from below causes the layer to overturn, mixing properties with height. The stable boundary layer is stratified.

Convective boundary layer

Due to vertical mixing, temperature and velocity do not vary with height. So we can integrate the momentum equation vertically:

$$
\begin{aligned}
& \int_{0}^{h}-f\left(\bar{v}-\bar{v}_{g}\right) d z=-f h\left(\bar{v}-\bar{v}_{g}\right)= \\
& -\int_{0}^{h} \frac{\partial}{\partial z} \overline{u^{\prime} w^{\prime}} d z=-\left.\overline{u^{\prime} w^{\prime}}\right|_{h}+\left.\overline{u^{\prime} w^{\prime}}\right|_{0}
\end{aligned}
$$

We assume mixing vanishes at the top of the layer:

$$
\left.\overline{u^{\prime} w^{\prime}}\right|_{h}=0
$$

Convective boundary layer

Thus:

$$
f h\left(\bar{v}-\bar{v}_{g}\right)=-\left.\overline{u^{\prime} w^{\prime}}\right|_{0}
$$

From surface measurements, can parameterize the fluxes:

$$
\left.\overline{u^{\prime} w^{\prime}}\right|_{0}=-C_{d} \mathcal{V} u,\left.\quad \overline{v^{\prime} w^{\prime}}\right|_{0}=-C_{d} \mathcal{V} v
$$

where C_{d} is the "drag coefficient" and

$$
\mathcal{V} \equiv\left(u^{2}+v^{2}\right)^{1 / 2}
$$

Convective boundary layer

Thus:

$$
f h\left(\bar{v}-\bar{v}_{g}\right)=C_{d} \mathcal{V} \bar{u}
$$

and:

$$
-f h\left(\bar{u}-\bar{u}_{g}\right)=C_{d} \mathcal{V} \bar{v}
$$

Convective boundary layer

Say $v_{g}=0$; then:

$$
v=\frac{C_{d}}{f h} \mathcal{V} u
$$

$$
u=u_{g}-\frac{C_{d}}{f h} \mathcal{V} v
$$

Convective boundary layer

If $u>0$, then $v>0$

- Flow down the pressure gradient

Convective boundary layer

Solving the boundary layer equations is not so simple because $\mathcal{V}=\sqrt{u^{2}+v^{2}}$

Coupled nonlinear equations
But we can use iterative methods
Make a first guess, then iteratively correct

Stable boundary layer

Now assume no large scale vertical mixing
Wind speed and direction can vary with height
Specify turbulent velocities using mixing length theory.

Mixing length

$$
u^{\prime}=-l^{\prime} \frac{\partial}{\partial z} \bar{u}
$$

where $l^{\prime}>0$ if up.

Stable boundary layer

So:

$$
-\overline{u^{\prime} w^{\prime}}=\overline{w^{\prime} l^{\prime}} \frac{\partial}{\partial z} \bar{u}
$$

Assume same vertical and horizontal eddy scales. Write:

$$
w^{\prime}=l^{\prime} \frac{\partial}{\partial z} \mathcal{V}
$$

where again $\mathcal{V}=\sqrt{u^{2}+v^{2}}$
Notice $w^{\prime}>0$ if $l^{\prime}>0$.

Stable boundary layer

So:

$$
-\overline{u^{\prime} w^{\prime}}=\left(\overline{l^{\prime 2}} \frac{\partial}{\partial z} \mathcal{V}\right) \frac{\partial}{\partial z} \bar{u} \equiv A_{z} \frac{\partial}{\partial z} \bar{u}
$$

Same argument:

$$
-\overline{v^{\prime} w^{\prime}}=A_{z} \frac{\partial}{\partial z} \bar{v}
$$

where A_{z} is the "eddy exchange coefficient"
Depends on the size of turbulent eddies and mean shear

Stable boundary layer

So we have:

$$
\begin{aligned}
& f\left(v-v_{g}\right)=\frac{\partial}{\partial z}\left[A_{z}(z) \frac{\partial}{\partial z} u\right] \\
& -f\left(u-u_{g}\right)=\frac{\partial}{\partial z}\left[A_{z}(z) \frac{\partial}{\partial z} v\right]
\end{aligned}
$$

Simplest case is if $A_{z}(z)$ is constant
Studied by Swedish oceanographer V. W. Ekman (1905)
Consider boundary layer above a flat surface

Ekman layer

Boundary conditions: use the "no-slip condition":

$$
u=0, v=0 \quad \text { at } z=0
$$

Far from the surface, the velocities approach their geostrophic values:

$$
u \rightarrow u_{g}, v \rightarrow v_{g} \quad z \rightarrow \infty
$$

Assume the geostrophic flow is zonal and independent of height:

$$
u_{g}=U, \quad v_{g}=0
$$

Ekman layer

Boundary layer velocities vary only in the vertical:

$$
u=u(z), \quad v=v(z), \quad w=w(z)
$$

From continuity:

$$
\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v+\frac{\partial}{\partial z} w=\frac{\partial}{\partial z} w=0 .
$$

With a flat bottom, this implies:

$$
w=0
$$

Ekman layer

The system is linear, so can decompose the horizontal velocities:

$$
u=U+\hat{u}, \quad v=0+\hat{v}
$$

Then:

$$
\begin{aligned}
-f \hat{v} & =A_{z} \frac{\partial^{2}}{\partial z^{2}} \hat{u} \\
f \hat{u} & =A_{z} \frac{\partial^{2}}{\partial z^{2}} \hat{v}
\end{aligned}
$$

Ekman layer

Boundary conditions:

$$
\hat{u}=-U, \hat{v}=0 \quad \text { at } z=0
$$

Introduce a new variable:

$$
\chi \equiv \hat{u}+i \hat{v}
$$

Then:

$$
\frac{\partial^{2}}{\partial z^{2}} \chi=i \frac{f}{A_{z}} \chi
$$

Ekman layer

The solution is:

$$
\chi=A \exp \left(\frac{z}{\delta_{E}}\right) \exp \left(i \frac{z}{\delta_{E}}\right)+B \exp \left(-\frac{z}{\delta_{E}}\right) \exp \left(-i \frac{z}{\delta_{E}}\right)
$$

where:

$$
\delta_{E}=\sqrt{\frac{2 A_{z}}{f}}
$$

This is the "Ekman depth"
Corrections must decay going up, so:

$$
A=0
$$

Ekman layer

Take the real part of the horizontal velocities:

$$
\begin{aligned}
& u=\operatorname{Re}\{\chi\}=\operatorname{Re}\{B\} \exp \left(-\frac{z}{\delta_{E}}\right) \cos \left(\frac{z}{\delta_{E}}\right) \\
&+ \operatorname{Im}\{B\} \exp \left(-\frac{z}{\delta_{E}}\right) \sin \left(\frac{z}{\delta_{E}}\right)
\end{aligned}
$$

and

$$
\begin{gathered}
v=\operatorname{Im}\{\chi\}=-R e\{B\} \exp \left(-\frac{z}{\delta_{E}}\right) \sin \left(\frac{z}{\delta_{E}}\right) \\
+\operatorname{Im}\{B\} \exp \left(-\frac{z}{\delta_{E}}\right) \cos \left(\frac{z}{\delta_{E}}\right)
\end{gathered}
$$

Ekman layer

For zero flow at $z=0$, require $\operatorname{Re}\{B\}=-U$ and $\operatorname{Im}\{B\}=0$.
So:

$$
\begin{gathered}
u=U+\hat{u}=U-U \exp \left(-\frac{z}{\delta_{E}}\right) \cos \left(\frac{z}{\delta_{E}}\right) \\
v=\hat{v}=U \exp \left(-\frac{z}{\delta_{E}}\right) \sin \left(\frac{z}{\delta_{E}}\right)
\end{gathered}
$$

Ekman layer, $\delta_{E}=0.1$

Ekman spiral, $\delta_{E}=0.1$

The Ekman spiral ($\delta_{\mathrm{E}}=0.1$)

Ekman velocities

Low pressure

Ekman

High pressure

Ekman spiral

The velocity veers to the left, toward low pressure
Observations suggest $u \rightarrow u_{g}$ at $z=1 \mathrm{~km}$.
If $f=10^{-4} / \mathrm{sec}$, then $A_{z} \approx 5 \mathrm{~m}^{2} / \mathrm{sec}$
Typically $\left.\frac{\partial}{\partial z} \mathcal{V} \right\rvert\, \approx 5 \times 10^{-3} \sec ^{-1}$
So the mixing length is $l \approx 30 \mathrm{~m}$.
As in the convective boundary layer, turbulence allows flow from high pressure to low pressure.

Surface layer

Ekman layer cannot hold near surface: can't have 30 m eddies 10 m from surface. Introduce a surface layer where:

$$
l^{\prime}=k z
$$

Then:

$$
A_{z}=k^{2} z^{2} \frac{\partial}{\partial z} \mathcal{V}
$$

So:

$$
A_{z} \frac{\partial}{\partial z} u=k^{2} z^{2}\left|\frac{\partial}{\partial z} V\right| \frac{\partial}{\partial z} u \approx k^{2} z^{2}\left(\frac{\partial}{\partial z} u\right)^{2}
$$

Surface layer

Measurements suggest the turbulent momentum flux is approximately constant in the surface layer:

$$
\overline{u^{\prime} w^{\prime}} \approx u_{*}^{2}
$$

where u_{*} is the "friction velocity". So:

$$
\frac{\partial}{\partial z} u=\frac{u_{*}}{k z} \rightarrow u=\frac{u_{*}}{k} \ln \left(\frac{z}{z_{0}}\right)
$$

Here:

- $k \approx 0.4$ is von Karman's constant
- z_{0} is the "roughness length"

Surface layer

Match the velocity at the top of the surface layer to that at the base of the Ekman layer.

Comparisons with observations are only fair (see Fig. 5.5 of Holton)

Ekman spiral is often unstable, generating eddies that mix away the signal

Spin-down

Turbulence in both stable and convective boundary layers generates flow down the pressure gradient

Thus both should weaken pressure systems
Consider how an Ekman layer causes a cyclone to decay in time

Central to this is that convergence in the Ekman layer causes a vertical velocity at the top of the layer, which affects the overlying flow

Spin-down

Illustrate using the barotropic vorticity equation:

$$
\frac{D}{D t}(\zeta+f) \approx f \frac{\partial w}{\partial z}
$$

Integrate from the top of boundary layer $(z=d)$ to the tropopause:

$$
(H-d) \frac{D}{D t}(\zeta+f)=f(w(H)-w(d))=-f w(d)
$$

Spin-down

Because the boundary layer is much thinner than the troposphere, this is approximately:

$$
\frac{D}{D t}(\zeta+f)=-\frac{f}{H} w(d)
$$

So vertical velocity into/out of the boundary layer changes the vorticity in the troposphere

Ekman pumping

Ekman layer. The continuity equation is:

$$
\frac{\partial}{\partial z} w=-\frac{\partial}{\partial x} u-\frac{\partial}{\partial y} v
$$

Integrating over the layer, we get:

$$
w(d)-0=-\int_{0}^{d}\left(\frac{\partial}{\partial x} u+\frac{\partial}{\partial y} v\right) d z \equiv-\frac{\partial}{\partial x} M_{x}-\frac{\partial}{\partial y} M_{y}
$$

where M_{x} and M_{y} are the horizontal transports

Spin-down

Can show:

$$
M_{y} \approx \frac{U d}{2}
$$

and:

$$
M_{x} \approx-\frac{V d}{2}
$$

So:

$$
w(d)=\frac{d}{2}\left(\frac{\partial}{\partial x} V-\frac{\partial}{\partial y} U\right)=\frac{d}{2} \zeta
$$

Spin-down

Thus:

$$
\frac{D}{D t}(\zeta+f)=-\frac{f d}{2 H} \zeta
$$

If assume $f=$ const., then:

$$
\frac{D}{D t} \zeta=-\frac{f d}{2 H} \zeta
$$

So that:

$$
\zeta(t)=\zeta(0) \exp \left(-t / \tau_{E}\right)
$$

Spin-down

where:

$$
\tau_{E} \equiv \frac{2 H}{f d}
$$

is the Ekman spin-down time. Typical values:

$$
H=10 \mathrm{~km}, \quad f=10^{-4} \mathrm{sec}^{-1}, \quad d=0.5 \mathrm{~km}
$$

yield:

$$
\tau_{E} \approx 5 \text { days }
$$

Spin-down

Compare to molecular dissipation. Then:

$$
\frac{\partial}{\partial t} u=\nu \frac{\partial^{2}}{\partial z^{2}} u
$$

where $\nu=10^{-5} \mathrm{~m}^{2} / \mathrm{sec}$. From scaling:

$$
\frac{U}{T} \approx \frac{\nu U}{L^{2}} \quad \rightarrow \quad T=\frac{L^{2}}{\nu}
$$

with $L=10^{6} \mathrm{~m}$:

$$
T \approx 10^{17} \sec \approx 3 \times 10^{9} y r!
$$

Spin-down

The vertical velocity is part of the secondary circulation
The primary flow is horizontal, $\left(u_{g}, v_{g}\right)$
The vertical velocities, though smaller, are extremely important nevertheless

Stratification reduces the effective H. So the geostrophic velocity over Ekman layer spins down more rapidly, leaving winds aloft alone.

Model Spin-up

Consider an atmospheric model
Atmosphere initially at rest
"Turn on" solar heating
See what happens...

Spin-up

Rising motion at equator Poleward motion aloft, equator motion near ground

Spin-up

Initially high/low pressure at high/low latitudes

Spin-up

Coriolis deflects the equatorward air, westwards Clouds formed in rising air

Spin-up

Spin-up

Vertical shear increases with temperature gradient Flow becomes unstable, generating storms

Spin-up

Storms transport heat toward high latitudes Reduces the temperature gradient

General circulation

Energy cycle

Solar heating produces the temperature gradient The result is potential energy

Energy cycle

Instability converts potential to kinetic energy

Energy cycle

Energy is ultimately dissipated at small scales, via turbulence

