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1. FLUID MECHANICS 
 

1.1  Particle motion relative to the rotating earth 
 

 To follow the motion of individual material particles, their positions must refer to some 

kind of reference or coordinate system. Let us consider the following reference systems: 

 

(X, Y, Z) - Inertial reference (axes fixed in space).  

 Motion in (X, Y, Z) is called absolute motion. 

   

(x, y, z) - Relative reference (axes fixed to the rotating earth). 

   Motion in (x, y, z) is called relative motion. 

 

Fig. 1.1 shows a model sketch with the earth moving around the sun whilst rotating about its 

own axis with angular velocity 


. 

 

 
 
Fig. 1.1   Model sketch. 

 

Consider the motion of a small particle with mass m . We introduce the following notation: 

 

absa


- acceleration of m measured in (X, Y, Z) 

rela


-  acceleration of m measured in (x, y, z). 

 

Generally, if 


= const., we have (see the Appendix): 

 

                                            .arvaa relrelabs 0)Ω(ΩΩ2


                                   (1.1.1) 

 

Here we have defined 
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 Newton’s 2. law of motion can be stated as  

 

   ,amF abs


        (1.1.3) 

 

where F


 is the sum of the Newtonian forces acting on the particle. By inserting for the 

absolute acceleration from (1.1.1), we find that    

 

                            .Famrmvmam relrel


  0)(2                             (1.1.4) 

 

Here, by definition 

 

                                        Correl Fvm


  2   (the Coriolis force) 

                                        cenFrm


  )(  (the centrifugal force) 

                                        iFam


  0   (the force of inertia). 

 

The Newtonian forces can be subdivided in the following way: 
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We define the apparent force of gravity: 

 

                            ),(
2

rmi
r

MmG
FKF rcengeg


 


                                  (1.1.5) 

 

where M is the mass of the earth, G is the universal gravity constant, and the unit vector ri


is 

defined in Fig.1.2. 

 

 

 
 
Fig. 1.2   Sketch of the centrifugal force. 
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The acceleration due to the (apparent) gravity force is denoted by g


, and defined by 

 

.g


mFg              (1.1.6) 

 

From (1.1.5) and (1.1.6) we obtain 

 

                                                )Ω(Ω
2

ri
r

GM
g r


,                                      (1.1.7) 

 

where   is called the geopotential. The tidal force is defined by 

 

    .gsmit KFF


               (1.1.8) 

 

Here 0amFi


   is the force of inertia (it is a centrifugal force due to the motion around the 

sun which is independent of the particle’s position on the earth), and gsmK


 the force of gravity 

due to the sun and the moon (this force varies with the position of the particle on the earth). 

The tidal effect from the sun is sketched below. 

 

 

 

 
 
Fig. 1.3   Tidal effect from the sun. 

 

Due to the large distance between the earth and the sun, the position vector pR


for a particle, 

measured from the common centre of mass (which in practice is that of the sun), is very nearly 

parallel to the vector R


joining the two centres of mass. In Fig. 1.3 we have for the magnitudes 

of the forces 
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
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          (1.1.9) 

and 
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The tangential component of the vector sum of these forces yields a tendency for the fluid (air, 

water) to assemble in areas closest to and furthest from the sun, as indicated in Fig. 1.3.  This 

explains in principle the semi-diurnal equilibrium tide in the atmosphere and the ocean. 

 In summary we obtain for the motion of a particle relative to the rotating earth 

 

              
.Ω2 fptrel

fptgCorrel

FFFgmvm

FFFFFam











                           (1.1.11) 

 

When applied to a fluid, such as water or air, we must utilize the theory of fluids to determine 

( relrel av


, ) and the contact forces fp FF


 , . The tidal force tF


 is obtained from astronomical 

observations.  

 

 

1.2 The concept of fluids and fluid particles 

 

 The matter relevant to the geophysical problems discussed here is composed of 

molecules. For solids like ice or rocks, the molecules are essentially bound in a lattice, and 

cannot move freely. In a gas, or a mixture of gases such as air, single molecules move 

independently in a random, chaotic way. In liquids like water, there are bonds between 

adjacent molecules, or groups of molecules. However, these bonds easily break and re-form, 

so we need not differentiate between gases and liquids in this context. They will both be 

referred to as fluids. 

The (absolute) temperature of a fluid is a measure of the kinetic energy of the 

molecules; higher temperature means higher speed. When the absolute temperature is zero, the 

molecules are practically at rest, although they possess a finite amount of kinetic energy (zero 

point energy). The absolute temperature is measured in Kelvins (K). The conversion to deg. 

Celsius (
o
C) is: 0K = 273.15

o
C. Furthermore, since the molecules move in a chaotic, random 

way, any surface in contact with the fluid will be bombarded by molecules. Among other 

things, this bombardment gives rise to a force normal to the surface. This force per unit area is 

called pressure. The pressure becomes higher the more molecules there are per unit volume of 

the fluid.  It should be mentioned that molecules do not actually have to be reflected at an 

impermeable, material surface to create pressure forces.  Such forces also arise when 

molecules move across immaterial surfaces and the motion is accompanied by a rate of 

change of momentum across the surface. 

Fortunately, we need not work on a molecular level to describe the macroscopic 

motion of a fluid. Instead, we introduce the concept of fluid particles. A fluid particle has a 

given mass. That means by definition that it does not exchange matter with the surroundings. 

The particles are taken to be so small that the fluid composed of them can be considered as a 

continuous medium in which the unknown quantities and their derivatives exist in every point. 

In practice, however, the particle dimensions will be large compared to the mean free path 

travelled by the molecules in the fluid. This means that each particle contains many 

molecules! 

There are essentially two ways of studying fluid motion. The first is to try to follow the 

path of individual (labelled) fluid particles. This is called the Lagrangian method. The second 

is to determine the fluid motion at each geometrical point in fluid space without considering 

the whereabouts of individual particles. The latter is the Eulerian method. (They were actually 
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both introduced by the Swiss mathematician Leonard Euler (1707-83).) Each method has its 

advantages (and disadvantages). In the analyses which follow later in this text, we shall use 

the Eulerian description of fluid motion. This approach usually turns out to be the simplest. 

So why does a fluid move?  Since a fluid can be considered as composed of individual 

particles, the fluid motion is quite simply the resultant motion of all these particles. 

Furthermore, since a fluid particle possesses inertia, it moves according to the laws of physics. 

The velocities in question are always much smaller than the speed of light, so the mechanics 

developed by the English mathematician and astronomer Sir Isaac Newton (1642-1727) can 

be applied to each fluid particle (in exactly the same way as to a single object in space such as 

a planet or satellite). According to Newton’s 2. law of motion, it is the sum of forces on the 

particle that determines its acceleration, or the rate of change of velocity with respect to time 

as stated in (1.1.3). 

One of the basic problems of geophysical fluid mechanics is to determine the forces in 

the fluid. This is by no means simple, since each fluid particle is surrounded by neighbouring 

particles that act to compress it as well as deform its shape. In terms of forces, the 

compression is associated with the effect of pressure and the change of shape with friction or 

viscosity. 

 

 

1.3 Velocity and acceleration of fluid particles 

 

 As explained in the previous section, a fluid consists of infinitely many particles, each 

having a constant mass. Let an individual fluid particle m move a distance rD


in time dt ; 

see the sketch below. 

 

 

 
 

 

Fig. 1.4   Motion of an individual fluid particle. 

 

The velocity, as dt  0, becomes: 

 

  
dt

rD
vv rel




 .        (1.3.1) 

 

In an Eulerian description we have 

 

 ,)(x,y,z,tvv


         (1.3.2) 
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i.e. the velocity is a field variable. We choose a Cartesian reference, or coordinate system; see 

below. 

 

 
 

Fig. 1.5   Cartesian coordinate system. 

 

Here kji


,,  are constant unit vectors. In a Cartesian system we can write  

 

 kx,y,z,twjx,y,z,tvix,y,z,tuv


)()()(  .      (1.3.3) 

 

The rate of change of velocity for an individual fluid particle is written vD


. Hence, from a 

Taylor series development (Brook Taylor, 1685-1731): 

 

      Dz
z

v
Dy

y

v
Dx

x

v
dt

t

v
vD
























.      (1.3.4) 

 

The acceleration of a fluid particle then becomes, as dt  0: 

 

   
dt

Dz

z

v

dt

Dy

y

v

dt

Dx

x

v

t

v

dt

vD
aa rel
























.     (1.3.5) 

 

But, from our definition (1.3.1) of the velocity of an individual fluid particle, we have  

 

 ,kwjviuk
dt

Dz
j

dt

Dy
i

dt

Dx

dt

rD
v




       (1.3.6) 

 

or 

 .
dt

Dz
w,

dt

Dy
v,

dt

Dx
u                              (1.3.7) 

 

Hence we obtain from (1.3.5) 

 

    vv
t

v

z

v
w
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v
v

x

v
u

t

v

dt

vD
a










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

















 ,      (1.3.8) 

 

where the gradient operator  is defined by 

  

  
z

k
y

j
x

i
















.       (1.3.9) 
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In summary we have 

 

vv
t

v

dt

vD
a










 ,      (1.3.10) 

 

where tv  /


 is termed the local acceleration and vv


  the convective acceleration.  

 

 

1.4 Conservation of mass for a fluid 

 

 Consider the geometrically fixed volume zyxV   in Fig. 1.6. 

 

 

 

 

 
 
Fig. 1.6   Volume element fixed in space. 

 

The mass m inside the depicted volume can be written Vm   , where  is the mean 

density of the fluid within the volume. We obtain for the net flux of mass in the x-direction: 

 

 zyuuQ(x)  )( 2211  ,       (1.4.1) 

 

where 1 and 2 are the mean densities at the opposing surfaces. By a Taylor series 

development we readily obtain 

 

....xu
x

xu
x

uu 








 2

2

2

1122 )(
2

1
)(       (1.4.2) 

 

Neglecting the higher order (small) terms, we have 

 

 Vu
x

zyxu
x

Q x  )()()(









 .      (1.4.3) 

 

Similarly, in the y- and z-directions: 
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V.w
z

Q

Vv
y

Q

z

y





)(

)(

)(

)(











       (1.4.4) 

 

The net mass flux into the fixed volume V can then be written 

 

       VvVw
z

v
y

u
x

QQQQ zyx  )()()()()()()( 























 ,    (1.4.5) 

 

where the gradient operator is defined by (1.3.9).  The flux (1.4.5) is called the advective flux, 

since it is associated with the transport, or advection, of fluid particles. 

 At this stage we make the following, basic assumption: The increase of mass within V 

can only be due to a net advective flux of mass through the boundaries. This means that 

 

  V,vV
t

 )()(






       (1.4.6) 

 

or 








vvv

t


)( .                           (1.4.7) 

 

In summary, by rearranging (1.4.7), conservation of mass leads to 

 

 ,
1

dt

D
v







        (1.4.8) 

 

where   vt/dt/D


 is the rate of change of density for an individual fluid particle. 

This equation is often called the continuity equation. In explicit form it can be written 

  

                                    0
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


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
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


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



z
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v

x
u
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w

y

v

x

u 
 .                        (1.4.9)  

 

We shall return to this form of the mass conservation equation later on, and discuss the cases 

when it can be simplified.  

  

 

1.5 Contact forces in fluids: the pressure-gradient force and the viscous 

 force 
 

 We consider here the forces on a fluid particle due to the action or the presence of the 

surrounding particles. 

 

a. The pressure-gradient force 
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 The pressure (= p) is a positive quantity (it cannot be negative). The force due to the 

pressure on a surface element with outward normal vector n


 can be written 

 

 ApnApK


                   (1.5.1) 

 

i.e. the pressure force is directed towards the surface element; see the sketch in Fig. 1.7. 

 

 

 

 

 
Fig. 1.7   Sketch of surface element. 

 

Consider now the forces due to the pressure on the infinitesimal fluid element in Fig. 1.8: 

 

 

 

 

 

 
 

Fig. 1.8   Pressure force on an infinitesimal fluid element. 

 

In the x-direction we have 
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11
                         (1.5.2) 

 

The net force in the x-direction due to the pressure can be written by using a Taylor series 

expansion: 
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where we have neglected higher order terms. Similarly; in the y- and z-directions we find 
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The net force on the fluid element due to the pressure can then be written 
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)()()(                 (1.5.5) 

 

Introducing Vm   , we find 

                                                       

                                                         mpFp 


 
1

.                                                   (1.5.6) 

 

This is called the pressure-gradient force. 

 

b. The viscous force 

 

 Friction acts on any surface in the fluid. The friction force per unit area is called the 

viscous stress. The viscous stress depends on the orientation of the surface. Stresses that act 

perpendicular to a surface are called normal stresses, and stresses that act along (parallel to) a 

surface are called shear stresses; see the sketch below. 

 

 

 

Fig. 1.9   Sketch of viscous stresses on a surface with unit normal k


. 

 

It turns out that on the scales for which viscosity is important, the effect of compressibility can 

be neglected, i.e. in this case the continuity equation (1.4.8) reduces to 0 v


. On the 

surface in Fig. 1.9, we find for the stress components, when we assume that we have a 

Newtonian fluid: 
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        (1.5.7) 

 

where ),( xz and ),( yz are the shear stresses and ),( zz is the normal stress. In (1.5.7)  is the 

molecular viscosity coefficient, which is taken to be constant. Generally, we can write for the 

flows considered here: 

           .3,2,1,,),( 
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 By considering an infinitesimal element V = xyz, and applying a Taylor series 

expansion, as we did for the pressure forces in the beginning of this section, we find for the 

net viscous forces in the x-, y- and z-directions: 
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where 
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is called the Laplacian operator. The total viscous force on the fluid element then becomes 

 

.)( 22

)()()(

VvVkwjviu

FFFF zyx

f












     (1.5.11) 

 

Utilizing that m = V, and introducing the kinematic viscosity coefficient   /, we find 

for the viscous force  

 

 .2 mvFf 


        (1.5.12) 

 

For water, the value of the molecular kinematic viscosity coefficient is about 0.012 cm
2 

s
1

, 

while for air we have   0.14 cm
2 

s
1

. 

 

 

1.6 The Navier-Stokes equation 
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 The tidal force tF


 can be omitted if we do not intend to study the generation of tides. 

Introducing dtvDarel /


 , ,)/1( mpFp  


 and mvFf 


2  into the general equation 

of motion (1.1.10), and dividing by m, we obtain 

 

vνpgvvv
t
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21
2 






.                            (1.6.1) 

 

For convenience we change the position of our coordinate system; see Fig.1.10. 

 

 

 

 
 
Fig. 1.10   Coordinate system with origin at the earth’s surface. 

 

We take the earth to be spherical in this approximation. It can be inferred from (1.1.7) that the 

centrifugal contribution to the acceleration of gravity is negligibly small (less than about 3 per 

mille) compared to the gravity part. Hence, to a good approximation we have 

 

                                                          kgg


                                                       (1.6.2) 

 

where g = 9.81 m s
2

. In this new coordinate system we can write 

 

 kjiΩ


 sincos  ,        (1.6.3) 

 

where   2/(24 hrs) and  is the latitude. Unless we are very close to the equator, an order 

of magnitude analysis shows that we can neglect the y-component of the rotation vector in the 

Coriolis force, i.e. we have approximately 

 

 
.vkf

vkviΩ






 sin22
        (1.6.4) 

 

Here f  2sin is the Coriolis parameter. With these simplifications, we can write (1.6.1): 
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This is often called the Navier-Stokes equation.  

 In our Cartesian reference system defined in Fig. 1.10, the Coriolis parameter is only a 

function of the y-coordinate. We may write approximately that 
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This is called the beta-plane approximation. As an alternative to solve our governing 

equations in spherical coordinates for large horizontal areas in the atmospheres or ocean, this 

approximation often proves very useful. If f is approximately constant in an (x, y)-area, we say 

that the motion occurs on an f-plane. 

 The Navier-Stokes equation (1.6.5) is a vector equation. It can be written in component 

form in the x, y and z-directions, respectively, as 
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Remark that the Coriolis force in our approximation only works in the horizontal directions, 

while the gravity acts in the vertical direction.   

 Together with the continuity equation (1.4.9), (1.6.8) yields 4 equations for the 5 

unknowns ,,,, pwvu . Obviously, we need one more equation to close this system. This will 

be an equation of state that connects the pressure and the density. Every fluid has an equation 

of state. For a fluid like dry air it is simple (ideal gas), while for seawater it is very 

complicated. Unfortunately, the equation of state often involves temperature and salinity as 

well, so we need in fact two more equations; one for heat and one for salt, to close the system 

(7 unknowns, 7 equations). We shall not attempt to solve this full system here, but settle for 

simplified cases which shed light on important physical and dynamical processes in the ocean-

atmosphere system. 

 Since we consider partial differential equations in time and space, a formal solution 

requires that we specify the variables at time equal zero, called the initial conditions. We must 

also apply conditions for the fluid motions at the boundaries of the fluid (the ground, the 

ocean bottom, the ocean surface, the coasts etc.) Such conditions are called boundary 

conditions. For example, at an impermeable boundary at rest, such as a vertical wall, the fluid 

cannot flow through it, and hence the velocity normal to the wall must be zero. This condition 
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is independent of the viscous properties of the fluid, and is called a kinematic boundary 

condition. For fluid motion along a rigid boundary, the presence of viscosity requires that a 

fluid particle in contact with the boundary moves with the same speed as the boundary itself 

(no-slip condition). Hence, if the boundary is at rest, all the particles at the boundary must 

have zero velocity. Similarly, at the moving boundary between two fluids, like the air-water 

interface, the viscous stresses at the ocean surface must be equal to the viscous stresses in the 

air. The no-slip condition at a rigid boundary as well as the continuity of viscous stresses at 

the interface between two fluids, are termed dynamic boundary conditions. In the problems 

that follow, we shall show examples of the application of initial as well as boundary 

conditions in solving the equations for the fluid motion. 

 

 

1.7 Simplifying the continuity equation 
 

 In the atmosphere and the ocean the surfaces of constant density are nearly horizontal. 

We can then write for the density 

                                   

                                                   ),,,(ˆ)(0 tzyxz   ,                                                  (1.7.1) 

where 
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The change of density following a fluid particle can then be approximated as 
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which is the leading term in this equation. Inserting into (1.4.9), we obtain after neglecting the 

small terms that 
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or, since 0 is only a function of z: 
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We realize that if  
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we obtain from (1.7.4) that the continuity equation reduces to 
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In this case the velocity vector is solenoidal. If the vertical velocity typically varies over a 

vertical length scale H, we obtain from (1.7.6) that 

 

                                                              sH
dzd

H 
/0

0


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,                                            (1.7.8) 

 

where Hs is the scale height. So, if the vertical velocity scale is much smaller than the scale 

height, the continuity equation reduces to (1.7.7), or 0 v


. In the ocean the scale height is 

about 40 times the ocean depth, which is the maximum length scale for the vertical motion.  

Hence (1.7.7) is always a good approximation for the ocean. However, for some atmospheric  

motions (1.7.8) is not fulfilled. In that case the form (1.7.5) of the continuity equation must be  

used. It must also be said that (1.7.7) presupposes that particle velocities and wave  

propagation velocities are much smaller than the speed of sound cs, which in the atmosphere  

is about 1sm340  , and in the ocean about 1sm1500  . 

 

 
 

2. STRUCTURE OF THE STATIC ATMOSPHERE 

AND OCEAN 
 

2.1 Static stability 

 

 Before we proceed to discuss the fluid motions we find as solutions to our governing 

equations, we consider some properties of a fluid with no motion at all. When 0v


 

everywhere, the Navier-Stokes equation (1.6.5) reduces to 

 

           kgp


 .                   (2.1.1) 

 

In general, the set of points in space where the pressure at a given time has a certain value, e.g.  

1pp  , constitutes an isobaric surface. From the horizontal components of (2.1.1), we realize 

immediately that we must have )(zpp  . The vertical component then yields )(z  . 

Accordingly, for a fluid at rest in the gravity field, the isobaric surfaces and the surfaces of  

constant density (the isopycnal sufaces) must be parallel and horizontal. Or more correctly,  

they must be parallel to the surfaces of constant gravity potential, which are called the  

geopotential surfaces; see (1.1.7). 

 In the discussion of the static stability of a fluid, one often uses the term fluid parcel, 

especially in meteorology, meaning a fluid sample of uniform temperature and composition.  

Besides, dry air and water vapour it can contain suspended or dissolved particles (aerosols) 

etc. In the present context there will be no need to distinguish between a fluid parcel and a 

fluid particle.  They will both be treated as infinitesimal elements in a continuous field. 

 We shall displace a particle a small vertical distance z  from its original position 0z . 

We disregard any changes in velocity of the particle and the surrounding fluid, and just 

consider the net acceleration of the displaced particle at its new position zz 0 . The mass 

m of the particle must be conserved, i.e. 0)( mD  , and the gravity force acting on it is 

mg . Furthermore, according to the principle discovered by Archimedes, the particle is 
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subject to an upward force (an up-thrust) which equals the weight of the fluid it has displaced 

(the displaced fluid is the fluid which originally was situated at the position zz 0 ). From 

our discussion of the pressure-gradient force in section 1.5 we understand that the force 

discovered by Archimedes is just the sum of external pressure forces over the entire surface of 

the particle. If the mass of the displaced fluid is m , the buoyant up-thrust is gm . 

Accordingly, if we neglect all other forces, which is acceptable, since we have assumed that 

the particle is at rest, it will be subject to a vertical acceleration )( za given by Newton’s 2. law 

of motion: 

 

   gmgmam z  )( .                              (2.1.2) 

 

At the initial equilibrium position, where 0zz  , we have mm   . According to (2.1.2), if 

we displace a particle upward, and mm    at the new position of the particle, then 0)( za , 

and the particle has a tendency to move back towards its original position. The equilibrium 

state is then said to be stable.  Similarly, it is stable if mm   for a downward 

displacement. 

 Since the volumes of the particle and that of the displaced fluid must always be the same 

everywhere, i.e. VV   , it is actually the difference in densities that counts. Then, from 

(2.1.2) stability requires that )()( 00 zzzz    when 0z , and 

)()( 00 zzzz     when 0z . Utilizing a Taylor series expansion and the fact that 

)()( 00 zz   , we obtain from the first two terms that the equilibrium is stable if  
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where the subscript env now replaces the prime in denoting the environment. 

 If the particle acceleration becomes zero when the particle is displaced to a new 

position, the equilibrium is said to be neutral. From (2.1.2) this may be stated mathematically 

as 
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Finally, the equilibrium is unstable if  
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The density change with height of the surrounding fluid (the environment) can be obtained 

from measurements. It is the change of density for the particle on the right-hand side of these 

inequalities which poses problems. This rate of change depends on the thermodynamics of the 

process. We shall consider this problem in the next section. 

 The stability problem may conveniently be discussed in terms of oscillations. If we 

replace the small vertical displacement z by a particle coordinate (t), then 22)( / dtda z  . 

Hence, (2.1.2) can be written  
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We now define the Brunt-Väisälä frequency (or the buoyancy frequency) N by 
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Then (2.1.6) can be written 
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We see that when the equilibrium is stable, i.e. when (2.1.3) applies, then 02 N . Hence N is 

real, and the solutions of (2.1.8) are periodic oscillations with frequency N and period N/2 . 

For an unstable equilibrium; see (2.1.5), 02 N . In that case N becomes imaginary. One of 

the solutions of (2.1.8) for the small vertical displacement then increases exponentially in 

time, and we realize that very soon our assumption of a small displacement will be violated. 

 

 

2.2 Thermodynamics 

 

 If a fluid particle receives an amount of heat q per unit mass (the mass is constant, 

remember), its volume  per unit mass ( = 1/) will change by D and its internal energy e 

per unit mass will change by De. According to the first law of thermodynamics, these changes 

are related by 

 

 .DepDq                     (2.2.1) 

 

The parameter  is also termed the specific volume. We note from (2.2.1) that if heat is 

received (q > 0) and the work done by the pressure is positive (compressing the particle, D 

< 0), both effects will tend to increase the internal energy (De > 0). Since e is proportional to 

the absolute temperature, this means that the temperature of the particle will increase in this 

case. We use here  and not D for changes in the heat since q is not a proper function of the 

state variables.  (The reader is referred to specific texts on thermodynamics for a discussion of 

this subject.) 

 At this stage we introduce yet another state variable; the entropy s per unit mass, or the 

specific entropy. According to the second law of thermodynamics, we must have 

 

 DsTq  .        (2.2.2) 

 

Combining (2.2.1) and (2.2.2) we obtain 

 

 pDDeDsT  .       (2.2.3) 
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In general, for any fluid (a gas or a liquid) we have an equation of state, expressing a relation 

between the state variables; i.e. 

 

 ,0),,,( STpf         (2.2.4) 

 

where S denotes the composition (salinity for sea water, specific humidity for air). Solving 

this for  (or ) means that when p, T and S are specified, then  is given by (2.2.4). In our 

problem with displacement of fluid particles, we shall assume that the composition does not 

change, i.e. DS = 0. This means that our thermodynamic problem in fact only has two 

independent state variables, p and T, say. Accordingly, the change of the specific entropy may 

be written 
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We define the specific heat capacity cp at constant pressure by 
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where the subscript p indicates that the pressure is kept constant. Inserting into (2.2.5), we 

obtain 
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At this stage it proves convenient to introduce the Gibbs function gi per unit mass: 

 

      Tspegi   .                  (2.2.8) 

 

For an individual fluid particle we have 
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where we have utilized (2.2.3). Since also gi is a function of the two independent state 

variables p and T, we may write 
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where the last expression has been substituted from (2.2.9). Accordingly, from (2.2.10): 
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By differentiating  partially with respect to T and s partially with respect to p, we realize 

immediately that 
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We insert this result into (2.2.7) and obtain 
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By introducing the thermal expansion coefficient T , defined by 
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we obtain from (2.2.13) that  

 

           .DpTDTcDsT Tp        (2.2.15) 

 

This particular form of the first law of thermodynamics is well suited for our purpose. 

 It should be mentioned that T defined by (2.2.14) is positive for air.  This is not always 

so for water, e. g. freshwater (S = 0) at surface level has a density maximum when T  4C.  

However, for sea water with salinity larger than 24.7 psu (psu = practical salinity unit  gram 

salt per kilo of sea water), the density increases monotonically as the temperature decreases 

towards the freezing point.  Then, in this case, 0T for the entire range of ocean 

temperatures, 2C < T <  30C, say. 

 

 

2.3 The adiabatic lapse rate 

 

 The thermodynamics we have used up to now is strictly speaking only valid for a fluid 

which is in equilibrium. However, we shall assume that the changes that occur in the ocean 

and the atmosphere are slow enough for this theory to apply. Furthermore, we shall assume 

that the time scales involved when we displace a particle vertically are so small that no heat 

(or salt or humidity) is exchanged between the particle and its surroundings. Such processes 

are said to be adiabatic. As seen from (2.2.2), when q = 0, the entropy must be constant. 

Therefore, such changes are also termed isentropic. 

 For an adiabatic process (q = 0 or Ds = 0) we obtain from (2.2.15) 
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We realize that if we displace a particle vertically an infinitesimal distance Dz, its change in 

pressure Dp must be equal to the change dp of the surrounding fluid (if not, the particle would 

explode or implode!). Accordingly, we can write 
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For a fluid at rest we have from (2.1.1) that 
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Inserting (2.3.3) into (2.3.2) yields 

 

 .DzgDp          (2.3.4) 

 

Finally, by substituting for Dp in (2.3.1), we obtain for the adiabatic rate of change of 

temperature with height, or the adiabatic lapse rate: 
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For fluids with a simple equation of state (which does not include sea water) it is easy to 

compute .  For dry air (ideal gas), we have 

 

                                                                 
RT

p
 ,                     (2.3.6)   

 

where R is the gas constant for dry air ( )KkgJ04.287 -1-1R ). Then, from (2.2.14), TT /1 , 

and hence  

 

pc

g
  .        (2.3.7) 

 

This is called the dry adiabatic lapse rate since we have not considered the effect of a possible 

condensation of water vapour inside the particle (or parcel). The discussion of the moist 

adiabatic lapse rate (accounting for the effect of condensation) will be left for specific courses 

in meteorology.  It suffices here to say that the value of  for a dry atmosphere is about 1C 

per 100 m, while the moist adiabatic lapse rate is generally somewhat smaller. 

 

 

2.4 Explicit form of the Brunt-Väisälä frequency 
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 Utilizing the concept of adiabatic processes for the fluid particle, we may discuss the 

static stability problem in a more explicit way. The Brunt-Väisälä frequency (2.1.7) may now 

be written 
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Generally, we have 
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Utilizing (2.3.2), (2.3.5) and the fact that (DS/Dz)ad = 0, we find by inserting (2.4.2) and 

(2.4.3) into (2.4.1) 
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Introducing the expansion coefficient S for the composition 
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and inserting for the thermal expansion coefficient T from (2.2.14), we finally obtain from 

(2.4.4): 

 

 .2

env

S

env

T
dz

dS
g

dz

dT
gN 

























        (2.4.6) 

 

Here the adiabatic lapse rate is given by (2.3.5), i.e. pT cTg / . 

 In the atmosphere one can often neglect the effect of the specific humidity on the 

stability. Then the condition for stability ( 02 N ) becomes 
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In the deep ocean we often find that (dS/dz)env  0 and S  35 psu. Here the criterion for 

stability conforms to (2.4.7). In the upper ocean (upper 1000 meters, say), the contribution 

from the salinity to the stability criterion cannot be neglected. In fact, in coastal and polar 

waters the salinity contribution in (2.4.6) may dominate. 
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 In the upper ocean we usually find that (dT/dz)env >>   0.04C km
1

. Hence the Brunt-

Väisälä frequency (2.4.6) may be written  
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where we have reinstated the density and the subscript for the environment is understood. In 

the ocean, where the density is close to 1000 kg m
3

, it is common to introduce the parameter 

t for the density at constant pressure, i.e. 

 

 ,1000),,( 0  ppSTt         (2.4.9) 

 

where 0p is the constant surface pressure. Hence, we realize that (2.4.8) can simply be written 
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This formula is often used to determine the buoyancy frequency in the oceanic pycnocline. 

Typically, both in the lower atmosphere and in the upper ocean we find 1s01.0 N . This 

means a period N/2  for vertical oscillations of about 10 minutes. 

 

 

2.5 Potential temperature and potential density 

 
 The concept of adiabatic (or isentropic) processes naturally leads to the definition of 

potential temperature.  This is defined as the temperature a particle (or parcel) of fluid would 

acquire if moved adiabatically to a reference pressure level pr, usually taken as 1 bar.  The 

potential temperature  can be obtained from (2.3.1) by integration, i.e. 
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Hence 
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For the ocean, the integral on the right-hand side may be calculated using tabulated values for 

the integrand.  For the atmosphere, an explicit expression can be obtained if ideal gas 

behaviour is assumed.  Utilizing (2.3.6) and the fact that cp is constant for an ideal gas, we 

readily obtain from (2.5.2) that 
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 In the calculation of the Brunt-Väisälä frequency (2.4.1), we now may use p and  as 

independent state variables in place of p and T. By definition, D = 0 for a particle that is 

displaced adiabatically. As before, we assume that there is no change in composition for a 

particle during this process (DS = 0). Hence, we have for the rate of change of density for a 

particle 
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The corresponding change for the environment can be written 
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For the Brunt-Väisälä frequency defined by (2.4.1) we then obtain 
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Here we have defined 
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These expansion coefficients are slightly different from those defined by (2.2.14) and (2.4.5) 

since they involve the potential temperature  and not T. The subscripts here are stated as 

reminders of what are kept constant during the differentiation. 

 In cases where the effect of composition (salt, specific humidity) can be neglected, the 

stability criterion (2.4.7) can be stated in terms of potential temperature as 
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Typically, in the lower part of the atmosphere (the troposphere) the mean distribution of T and 

 with height can be sketched as in Fig. 2.1. 
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Fig. 2.1   Typical mean profiles of T and   in the troposphere. 

 

In deep ocean trenches typical distributions of S, T and  may be found as displayed in Fig. 

2.2. 

 

 
Fig. 2.2   Profiles of S, T and   in the Mindanao Trench. 

 

Despite the apparent instability due to the decrease in the in situ temperature with height in the 

entire troposphere and in the deepest part of the ocean, we note from the corresponding 

potential temperature distribution that the equilibrium actually is stable in both cases. 

 It often proves convenient to use potential density pot instead of the in situ density .  

The potential density is defined as the density a particle of fixed composition would acquire if 

moved adiabatically to a reference pressure level pr, usually taken as 1 bar (= 10
5
 Pa).  Since 

the particle then would have a potential temperature , the potential density is simply obtained 

by replacing T by  in the general equation of state (2.2.4), solved for the density, and 

inserting p = pr.  We then find 
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Utilizing the ideal gas concept for air, we obtain from (2.3.6) that  
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Hence the potential density is inversely proportional to the potential temperature in this case. 

 In the ocean the value of pot , like , is close to 1000 kg m
3

.  It is therefore convenient 

to define a parameter  by 

 

  1000 pot .       (2.5.12) 

 

For the deep ocean, where 0/ dzdS , the stability criterion (2.5.9) can be written 

 

                                                     0































env

pot

potenv dz

d

d

d

dz

d 




.                               (2.5.13) 

 

Utilizing the fact that 0/ potdd  ; see for example (2.5.11) for an ideal gas, (2.5.13) yields 

as a condition for stability: 
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3. OSCILLATORY MOTION 
 

 We noticed in Section 2 that by displacing a particle vertically in a stably stratified fluid, 

it tended to oscillate up and down with the buoyancy frequency N, e.g. (2.1.8). In this section 

we shall investigate oscillations in fluids more accurately. We shall not disturb single particles 

from equilibrium positions as in Section 2, but study oscillatory fluid motion on the basis of 

the equations of momentum and mass conservation that we have derived in Section 1. This is 

reasonable, since it is virtually impossible to move one single particle without disturbing 

neighbouring particles as well. The associated fluid motion must then satisfy our governing 

equations. 

 

 

3.1    Purely horizontal motion: Inertial oscillations 
 

 We consider motion on an f-plane, i.e. we assume that the Coriolis parameter is 

constant. Furthermore, there are no pressure gradients in the horizontal direction, i.e. p/x = 

p/y = 0, and the effect of friction is so small that it can be neglected. We also take that the 

vertical velocity component w is zero everywhere, and that the horizontal velocity components 

do not vary in space. Then from (1.6.5): 
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Since u and v now only vary with time, we have used the symbol for ordinary differentiation 

in these equations. Multiplying (3.1.2) with the imaginary unit, i = (1)
1/2

, and introducing the 

complex velocity W  u + iv, we obtain from (3.1.1) and (3.1.2) that  

  

                                                                  .0 ifW
dt

dW
                                                 (3.1.3) 

 

We see immediately that this equation has the solution 
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where W0 is an integration constant. For solving this problem we need to specify the initial 

conditions. Assuming that u(t = 0) = 0 and v(t = 0) = v0, we find from (3.1.4) that W0 = iv0. 

Utilizing that xixix sincos)exp(  , (x real), we can write (3.1.4) on real form as 
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From this result we note that the velocity vector jviuv


  has constant magnitude, i.e. 
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Furthermore, from (3.1.5) we note that in the northern hemisphere, where f > 0, the velocity 

vector rotates clockwise with time and turns 360 after a period Ti, given by 
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This is called the inertial period, and the motion (3.1.5) having this period is referred to as 

inertial oscillations. If we introduce the pendulum day Tp, defined by 
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where sin is the local vertical component of the earth’s angular velocity at a location with 

latitude , we find that 
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i.e. the inertial period equals half a pendulum day. Accordingly, at the north pole, Ti  12 hrs, 

which at the equator, Ti  . 

 Let ),( LL yx be coordinates for an individual fluid particle (Lagrangian coordinates) in 

this case. Then 
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where u and v are given by (3.1.5). By integration, we obtain 
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where (x0, y0) are integration constants. By re-arranging (3.1.11), squaring and adding, we 

obtain 
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Hence we see that each particle moves in a circle, with centre at (x0, y0) and with 

radius fvri /0 . The radius ir  is called the inertial radius. In the ocean we have typical 

velocities .sm1.0 1

0

v  At mid latitude .s10 14 f  We then find km1~ir  in the ocean. 

The corresponding value of the inertial period, fTi /2 , is here about 15 hrs. In the 

atmosphere we have typically .sm10 1

0

v  Then we find that km100~ir in the atmosphere. 

Obviously, from (3.1.11), a particle moves in a clockwise sense (when 0f ); see Fig. 3.1. 

 

 

 
 
Fig. 3.1   Particle position and velocity vector at various times for inertial motion. 

 

If the fluid, in addition to the inertial oscillations, also possesses a uniform velocity V in the y-

direction, say, the coordinates of an individual particle can be written 

           

                                                                 

,sin

,cos

0

0

Vtft
f

v
y

ft
f

v
x

L

L





                                          (3.1.13) 

 



 31 

where we have taken 000  yx . In Fig. 3.2 we have sketched the particle trajectory in this 

case. (a): the translation velocity is smaller than the orbital speed, i.e. ,0vV   and (b): .0vV   

 

 
 
Fig. 3.2   Sketch of particle trajectories for translation plus inertial oscillation. 

 

In Fig. 3.3 we have displayed the results of some observations in the Baltic Sea by Gustafson 

and Kullenberg (1933). 

 

 
 

Fig. 3.3   Observed inertial currents in the Baltic Sea (Gustafson & Kullenberg 1933). The insert shows the 

vector diagram of the current during one inertial period (one half pendulum day) and the scale of the inertial 

circles. 

 

We notice the similarity between the observations in Fig. 3.3 and the sketch in Fig. 3.2.a. The 

fact that the radii of the inertial circles in the observations decrease in time is due to the effect 

of friction, which is present in the real ocean and a real atmosphere, but which has been 

neglected in the theoretical development presented here. 
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3.2 Oscillations in the vertical plane: interfacial gravity waves 
 

 In the previous section we studied oscillatory motion that was entirely due to the earth’s 

rotation. Since the motion was purely horizontal, the effect of gravity did not enter the 

problem. We now consider the other extreme. Here the oscillations occur in the vertical plane, 

and they are so rapid that the effect of the earth’s rotation can be neglected. So in this analysis 

we put 0f . Again we neglect the effect of friction. We consider a fluid that consists of two 

horizontal, homogeneous layers with constant densities 1  and 2 , respectively, and we study 

the motion that takes place when we disturb the interface between these two layers. In a crude 

manner these two layers could be the atmosphere and the ocean. The interface would then be 

the ocean surface. Alternatively, this configuration could model the mixed surface layer in the 

ocean overlaying denser deep water, or a cold atmospheric inversion layer near the ground 

below warmer air. In this analysis we assume that the amplitudes of the oscillations are so 

small that we, in (1.6.5), can take 
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By neglecting the convective acceleration term, which contains products of the velocity and 

the velocity gradients, and with constant density, the momentum equation becomes linear 

(contains no products of dependent variables). In each layer we then obtain from (1.6.5) 
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From the vorticity of this equation we readily obtain 

                                                           

                                                                 0



v

t


.                                                      (3.2.3) 

 

Hence if the vorticity was zero when the motion started, which we assume, it will remain zero 

for all times. A velocity field that has zero vorticity can be expressed in terms of a velocity 

potential  : 
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From the continuity equation (1.4.8) with constant density we then obtain 

 

                                                                     02   .                                                        (3.2.5) 

 

This is called the Laplace equation. We insert (3.2.4) into (3.2.2), and use that )(gzkg 


. By 

integrating the resulting equation, we easily obtain 
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where we have put an arbitrary function of time equal to zero. This constitutes the linearized 

version of the Euler equation.  

 In fact, if the vorticity in this problem is zero, we can utilize the identity 

   2/)(2/ 22 vvvvvv


 . The proof that 0 v


 for all times, if it was 

initially zero, follows from Kelvin’s circulation theorem. The proof will not be given here, but 

is found in standard textbooks in fluid mechanics. By integrating the Navier-Stokes equation 

with 0f  in space, we now obtain 
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which is the complete version of the Euler equation. In our studies here we shall be content 

with using the linearized version (3.2.6). 

 

 

3.3 Boundary conditions 
 

 We consider an oscillatory disturbance   in the form of a wave with wavelength  , and 

amplitude a along the interface between the two layers; see Fig. 3.4. 

 

 
 
Fig. 3.4    Model sketch 

 

Such waves are called interfacial waves. For simplicity we consider two-dimensional motion, 

and let the waves propagate along the x-axis. Mathematically we can write 

 

                                                         )cos( tkxa   .                                                     (3.3.1) 

 

Here  /2k  is the wave number, and T/2  is the wave frequency, where T is the 

wave period. The motion in the upper layer cannot be independent of the motion in the lower 

layer. The variables are connected through the boundary conditions at the moving interface, 

given by z . For 0,0  k , any part of the wave (3.3.1) (crests, troughs etc.) travels in 

the positive x-direction with speed kc / , which is called the phase speed. Such travelling 

waves are generally referred to as progressive waves. 

 Consider a small material element with base A that has thickness h1 and h2 on both 

sides of a part of the interface; see Fig. 3.5. 
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Fig. 3.5   Material element at the interface.  

 

The mass m  of the element in Fig. 3.5 is Ahhm  )( 2211  . The net force due to the 

pressure in the direction normal to the interface is App )( 12  . The acceleration in this 

direction can then be written 
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If now p1  p2 when h1  0 and h2  0, then an  . This would lead to infinitely large 

velocities in the fluid, which is physically impossible. Hence, when h1, h2  0, we must have 

that p1  p2. Accordingly, at an infinitely thin material surface the pressure must be the same 

on both sides. Remember, the effect of friction will modify the normal stress; see (1.5.7), but 

that has been neglected here. Hence we must require that 
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This is the dynamic boundary condition in this problem. 

 We assume in this problem that the interface between the two layers is a material 

surface, i.e. there is no exchange of mass across the interface. The material surface is given by 

0 zF . At time t it has a given shape in space given by 0)( tF . At a little later time 

tt   all particles have move slightly, so now 0)(  ttF . Since t  is very small, we can 

write tdtDFtFttF  )/()()( . Hence 0/)(/  dtzDdtDF  . But since wdtDz /  

per definition, and yvxutdtD  ////  , we must have at both sides of the 

material interface: 
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This constitutes the kinematic boundary conditions at the interface. For waves with small 

amplitudes we can neglect the nonlinear terms, and evaluate the velocities at the mean 

position 0z . Hence we have approximately that 
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 In the present problem we assume that the wavelength is much smaller than the 

thickness of the two layers. At large distances from the interface, the effect of the interfacial 

wave will not be felt in the fluid. Mathematically this can be expressed as 
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These are the last two boundary conditions needed to close the system.  

  

 

3.4 Solutions for a Fourier component 
 

 To solve this problem it is, as in the previous section, convenient to introduce complex 

variables as a helping tool, and then choose real parts to represent the physical solution. 

Accordingly, we write the interfacial displacement (3.3.1) as complex Fourier component 
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We assume that the variables separate, and seek two-dimensional solutions of the Laplace 

equation for the velocity potential of the form 
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Then (3.2.5) reduces to 
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which is an ordinary second order differential equation with constant coefficients. The 

solution is readily obtained as 
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In the upper and lower layer we then obtain  
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Utilizing (3.3.6), we realize immediately that to avoid infinitely large solutions, we must 

require  
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Using that zw  /2,12,1   from (3.2.4), we find by inserting (3.4.6) and (3.4.7) into (3.3.5) 

that 
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Hence 
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Finally, from (3.2.6), we find for the complex pressures in the upper and lower layer 

respectively: 
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Utilizing the dynamic boundary condition (3.3.3), and assuming that 1)exp(  k , we obtain 

that 
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This is called the dispersion relation. In our statically stable situation )( 12   , it yields two 

real frequencies 
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where )/()(* 2112   gg   is termed the reduced gravity. We can write (3.3.1) as 

 

                                                           ))(cos( ctxka  ,                                              (3.4.13) 

 

where c is the phase speed given by 

                                                                   
k

c
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The positive value of the frequency in (3.4.12) corresponds to positive phase speed, i.e. a 

wave component that propagates in the positive x-direction, and the negative one to a wave 

propagating in the negative x-direction. These waves can only exist in the presence of vertical 

density differences in the gravity field. They are referred to as interfacial gravity waves. 

 From (3.4.12) and (3.4.14) we realize that the phase speed of interfacial waves depends 

on the wavelength. Such waves are called dispersive waves. For the waves considered here the 
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phase speed is proportional to the square root of the wavelength, which means that longer 

waves move faster than shorter waves. 

 Up to now we have considered one single wave component. If we have two wave 

components of the same amplitude, but with slightly different wave numbers and frequencies, 

they can be written in complex form as 
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where 1/,1/  kk . Each of the two components above is a solution to our wave 

problem. Since we work with linear theory, also the sum    of the two components 

becomes a solution. This superposition can be written 

 

                 

 

).(expcos

))(exp()(exp)(exp
2

1

tkxit
k

xka

tkxitkxitkxia




















 

              (3.4.16) 

 

We denote the real part of (3.4.16) by , representing the physical solution. We then find 
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This shows that   is an amplitude-modulated wave train consisting of series of wave groups, 

as shown in Fig. 3.6, where we have plotted a/  as a function of kx  for  kk / 0.1. 

 

 
 

Fig. 3.6.   Sketch of wave groups at a specific time (dashed envelope), moving with the group velocity. The solid 

line is the modulated wave, moving through the groups with the phase speed. 
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The individual waves in the group will propagate with the ordinary phase speed kc / , 

while the group itself will propagate with the group velocity kcg  / . In the limit when 

0k , the group velocity becomes the derivative of the frequency with respect to the wave 

number, i.e. 
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Since kc , and  /2k , we note that (3.4.18) can be written as 
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So, if the phase speed increases with increasing wavelength (normal dispersion), then ccg  . 

If the phase speed is independent of the wavelength (non-dispersive waves), we have that 

ccg  . 

 

 

3.5 Surface waves in a layer of finite depth 
 

 When we consider waves on the interface between the atmosphere and the ocean, that is 

the sea surface, we refer to these waves as surface waves. In this case the density 2 of the 

ocean is about one thousand times larger than the density 1 of the atmosphere, and we have 

that gg *  in (3.4.12). Gravity waves of the form considered here is generated at the ocean 

surface by the action of the wind, and they are often called wind waves. When surface waves 

generated by the wind in the open sea approach the coast, they feel the presence of the ocean 

bottom. If the ocean bed is flat, which we assume here, and situated at Hz  , we must have 

at the ocean bottom 
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where we for simplicity have dropped the label 2 for the lower layer. This constitutes the 

kinematic boundary condition at the ocean bottom. Utilizing that at the surface 
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we find from (3.4.1) and (3.4.5) that 
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Hence, the real parts of the velocities in the ocean can be written  
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For the real part of the pressure we find from (3.2.6) that 
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For surface waves in the ocean we can neglect the effect of the air above the water. This 

means that we can take 0p  at the surface. Hence, from the dynamic boundary condition 

0)( p , (3.5.5) yields  
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Utilizing that H , we obtain for the frequency 
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For waves propagating in the positive x-direction, we find for the phase speed of deep-water 

waves ( 1kH ) that 
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For waves in shallow water ( 1kH ), we find 
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We note that shallow-water waves are non-dispersive. It is a simple exercise to show from 

(3.4.18) and (3.5.7) that the general relation between the group velocity and the phase velocity 

for surface waves becomes 
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3.6 Standing waves 
 

 In section 3.4 we added two wave components travelling in the same direction with 

slightly different frequencies and wave numbers to obtain wave groups. The principle of 

superposition for linear waves must also be true for waves travelling in opposite directions. 
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For complex progressive wave components of equal amplitude a, the surface shape for this 

case can be written 

 

                                                             )()( tkxitkxi aeae    .                                         (3.6.1) 

 

Take that 0 . Then the first component travels in the positive x-direction, while the second 

component travels in the negative x-direction. We can also write the elevation (3.6.1) as 
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The velocity potential   for the superposition of waves is given by the Laplace equation: 

0// 2222  zx  . This suggests that we can write 
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The tsin  in this expression comes from the fact that   must satisfy the kinematic boundary 

condition (3.5.2) at the surface. At the ocean bottom Hz  , (3.5.1) leads to 
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From (3.5.2) and (3.6.2) we obtain 
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Using (3.6.4) and (3.6.5), the velocity potential for this problem can be written 
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The dynamic boundary condition is 0)( zp . Hence, from (3.2.6) for linear waves: 

0)/( 0    gt z , which yields the same dispersion relation as before 
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 However, the motion in the fluid layer is now very different from that of a progressive 

wave. This is most easily seen by introducing the stream function for this problem. Since here 
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we can define a stream function   such that 
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We note that by this definition, (3.6.8) is identically satisfied. In vector notation we can write 

for the velocity in the fluid  
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Since  is always perpendicular to the lines of constant  , we note from (3.6.10) that for 

two-dimensional motion, the velocity vector is tangential to lines of constant at every 

instant of time. Accordingly, such lines are stream lines, and that is why   is called the 

stream function. Since now zwx  //  , we easily obtain from (3.6.6), taking the 

real part: 
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By plotting lines of constant  , we can visualize the flow field in this case. We note that 

0  for Hz  , so the ocean bottom is a stream line. Also, for ..3,2,1,0,/  nknx  , we 

have that 0 , so the layer is divided into cells of width k/ , or alternatively 2/  (half a 

wavelength). This wave system is called standing waves. In the figure below we depict two 

(of infinitely many) cells 
 

 

 
 

Fig. 3.7.   Sketch of stream lines at a particular instant of time (solid lines). The dashed line on top represents the 

non-dimensional surface elevation at the same instant. 

 

From the real part of (3.6.2), we note that the surface elevation is zero for all times when  

0cos kx , i.e. ..2,1,0),2/()12(  nknx  . In Fig. 3.7 we observe two such points for 

2/kx , and 2/3kx . Points in space where the surface elevation in standing waves 

always is zero are called nodal points, or nodes. 

 Often this kind of wave system originates in closed basins with lateral walls. If we have 

impermeable vertical boundaries at 0x , and Lx  , say, we must require that 



 42 

0/  zu  at these walls. From (3.6.11) we realize that this is fulfilled at 0x , while 

the condition at the other wall requires that nkL . Accordingly, this is not possible for an 

arbitrary wave number. We note that k must belong to a discrete set 
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The corresponding possible frequencies (often called eigen-frequencies) become   
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 Such standing waves are sometimes observed in large lakes. They are often called 

seiches. We note that for the lowest mode 1n , the surfaces oscillates with frequency 
2/1

1 ))/tanh()/(( LHLg   about the mid-point of the lake (which is a node), with 

maximum amplitudes at the two ends. For most lakes we have LH  . Then the lowest 

mode reduces to LgH /)( 2/1

1    (the shallow water approximation). 

 Seiches can also occur in harbors with one open end. In this case we have standing 

waves with a node at the end ),0/( Lxxw   , and hence Lnkn /)12(  , 

,...2,1,0n  If the frequency of the tidal motion in the ocean outside the harbor coincides with 

one of the admissible eigen-frequencies, resonance can occur, leading to large vertical motion 

within the harbor.  

 

 

3.7 Energy considerations 
 

 A local wind event in the open deep ocean generates wind waves with many different 

wavelengths. Since such waves are dispersive, as seen from (3.5.8), the longest waves will 

travel fastest. For example, for a wavelength of 300 m, we find that the phase speed is nearly 

22 m/s. These waves may propagate faster than the low pressure system that generated then, 

and hence escape from the storm region. Such waves are called swell, and may propagate for 

hundreds of kilometres through the ocean till they finally reach the coast, gradually 

transforming to shallow-water waves. Finally, they break in the surf zone on the beach, and 

loose their mechanical energy. In this way we understand that waves are carriers of energy. 

They get their energy from the wind, propagate the energy over large distances, and loose it by 

doing work on the beaches in the form of beach erosion processes etc. If there is any rest 

mechanical energy, it is transferred to heat in the breaking process. 

 The total mechanical energy E per unit area in surface waves is the sum of the mean 

kinetic energy kE and the mean potential energy pE . Per definition 
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where  /2T  is the wave period. For periodic wave motion we assume that the potential 

energy is zero at the mean surface level. Hence 
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Inserting from (3.3.1) and (3.5.4), we obtain after some algebra that 
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Hence, the mechanical energy is equally partitioned between kinetic and potential energy. The 

total energy per unit area, often referred to as the energy density, becomes 

 

                                                   2

2

1
gaEEE pk  .                                              (3.7.4)                                     

 

The mean horizontal energy flux EF  is the work per unit time done by the dynamic 

(fluctuating) pressure in displacing particles horizontally. By definition 
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Applying the horizontal velocity in (3.5.4) and the dynamic pressure in (3.5.5) (leaving out the 

static part gz ), we find 
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Utilizing the phase speed definition (3.14.4), the dispersion relation (3.5.7), and the group 

velocity given by (3.5.10), we can write the mean energy flux (3.7.6) as 
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In our earlier treatment of the group velocity it was defined from a purely kinematic point of 

view. We understand from (3.7.7) that the group velocity has a much deeper significance: It is 

the velocity that the mean energy in the wave motion travels with. Accordingly, to receive a 

signal that propagates over a distance L in the form of a wave, we must wait a time gcLt / , 

before the receiver picks up the signal.  

 

 

3.8 Particle motion in progressive surface waves 
 

 In progressive waves it is the wave form which moves with the phase speed. The 

individual fluid particles move with a much smaller velocity. For surface waves, where 0z , 

we obtain from (3.5.4) in the deep-water limit ( 1kH ): 
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We note that the maximum velocity in the fluid occur at the surface 0z . Here 
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The quantity ka is referred to as the wave steepness. For the small-amplitude waves 

considered here, we always have for the steepness that 
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We thus see from (3.8.2) that the magnitude of the fluid velocity is much smaller than the 

phase speed of the wave.  

 We may define Lagrangian particle coordinates ),( LL zx  in the vertical plane in the same 

way as we did for inertial oscillations in the horizontal plane. Utilizing that 
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we find from (3.8.1) that 
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 where ),( 00 zx is the mean position of the particle )0( 0 z . We then obtain 
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Hence individual fluid particles move in closed circles with radius )exp( 0kzar  . At the 

surface )0( 0 z , the radius has its maximum value a. It is easy to show from (3.5.4) that for 

finite depth, the individual particles move in closed ellipses, where the long axis is horizontal 

and the short axis is vertical. 

 

 

3.9 The Stokes drift 
 

 The result above that the particles in deep water progressive waves move in closed 

circles is correct in the present linear approach (remember we have linearized our equations). 

In reality, if we do our calculations without linearization, we find that that the individual fluid 

particles have a slow net drift in the wave propagation direction. This is because the velocity 

of the fluid particle is a little larger when it is closest to the surface, than when it is farthest 

away from it. Hence, it moves a little more forward than it moves backward. The resulting 

motion will be a forward spiral; see the sketch below. The net particle velocity described her 

is called the Stokes drift. 
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Fig. 3.8    Sketch of nonlinear motion of a fluid particle due to waves. 

 

 The Stokes drift can be obtained by considering the Lagrangian velocity, which is the 

velocity following an individual fluid particle. We denote it by Lv


. Then ),( 0 trvL


is the 

velocity of a fluid particle whose position at time 0tt   is ),,( 0000 zyxr 


. At a later time t, the 

particle has moved to a new position 
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In our former Eulerian specification the fluid velocity at time t is ),( trv L


, e.g. (1.3.2). Hence 
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By inserting for Lr


from (3.9.1), we obtain 
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We assume that the distance 0rrrD L


  travelled by the particle in the time interval 0tt   is 

small. Hence, from the two first terms of a Taylor series expansion we obtain 

 

                vrDtrvDz
z

v
Dy

y

v
Dx

x

v
trvtrv LL




















 ),(),(),( 0

000

00 ,                   (3.9.5) 

 

where ./// 000 zkyjxiL 


 If we use (3.9.2), we can write (3.9.5) as              
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The last part of the velocity on the right-hand side of (3.9.6) is called the Stokes velocity Sv


, 

while the first term is the traditional Eulerian velocity at a fixed position. Hence, in general 
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For surface waves with small wave steepness the difference between Lv


and v


is small, so to 

second order in wave steepness we can substitute the Lagrangian velocity by the Eulerian 

velocity in the integral of (3.9.6), i.e. 
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For waves with period T, the averaged Stokes velocity (denoted by an over-bar) becomes 
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The averaged Stokes velocity (3.9.9) is the aforementioned Stokes drift, and constitutes a 

mean current induced by the waves.  

 Let us return to the two-dimensional Eulerian wave field for deep water waves (3.8.1). 

Then, for calculating the Stokes drift, we have 
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In this problem 0t is arbitrary, so we take 00 t . When we average the Stokes velocity in time, 

we only get non-zero contributions from )(sin),(cos 0

2

0

2 tkxtkx    in (3.9.9). It is then 

easily seen that the Stokes drift components become 
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                    (3.9.11) 

 

We note that the vertical component of the Stokes drift is zero, while the horizontal 

component decays exponentially with depth. Furthermore, Su  has a maximum at the surface, 

where 00 z . For strong wind sea, with wavelength m100 , and amplitude m2a , we 

find from (3.9.11) that 1scm20 Su at the surface. This wave-driven current is comparable in 

magnitude to the wind- and tidally-driven currents we usually find in the world’s oceans. The 

variation with depth of the Stokes drift in this example is plotted in Fig. 3.9. 
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Fig. 3.9   Stokes drift from (3.9.11) as function of depth for deep water waves with wavelength 100 m and  

amplitude 2 m.  
 

Obviously, the Stokes drift for the standing wave in section 3.6 is identically zero. 

 

 

4. LARGE-SCALE MOTION AWAY FROM 

BOUNDARIES 

 
4.1 The hydrostatic approximation 
 

 In an attempt to simplify our governing dynamical equations, we look at a two-

dimensional model; see the sketch below. 

 

 

 

 
 
Fig. 4.1   A two-dimensional fluid model. 

 

Typical oceanic length scales in the model are L ~ 10
3
 km and H ~ 1 km, i.e.  

 

310~ 

L

H
.        (4.1.1) 
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A typical horizontal velocity scale for the ocean is given by  

 

       ,sm1.0~~ 1

0

uu        (4.1.2) 

 

and a typical time scale  

   

       .s10~days10~ 6T        (4.1.3) 

 

For this scale analysis we may apply the two-dimensional continuity equation in the form 

(1.7.7). Hence 
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Typically, we have 
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Then, from (4.1.4) 
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Hence, with these oceanic scales the typical vertical velocity is very much smaller than the 

typical horizontal velocity. This is also found to be the case in the atmosphere. 

 Away from the ground in the atmosphere and the surface/bottom in the ocean, the 

viscous forces are negligible in the momentum equation. The vertical component of the 

Navier-Stokes equation then becomes in the two-dimensional case 
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Then, by inserting typical values into (4.1.7): 
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Obviously, balance here requires to a high degree of accuracy that 
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This simplification of the vertical component of the momentum equation is called the 

hydrostatic approximation.  It expresses the balance between the vertical component of the 

pressure-gradient force and the gravity force (per unit mass), i.e. the hydrostatic balance. 

Equivalently; we may write 
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       (4.1.9) 

 

which is called the hydrostatic equation. This equation is similar to (2.3.3) for a fluid at rest, 

except for the partial derivative in (4.1.9). Now the pressure and the density may be functions 

of the horizontal coordinates and time, besides z.  

 Although the inserted values for the parameters in this example are typical for the ocean, 

it turns out that the hydrostatic approximation also works very well for large scale motion in 

the atmosphere. As indicated here, this means that the typical horizontal length scale of the 

problem must be much larger than the fluid depth, which, admittedly, is more difficult to 

define in the atmosphere than in the ocean. 

 

 

4.2 Isobaric coordinates 
 

 In cases where the hydrostatic approximation (4.1.9) applies, we may use the pressure p 

as an independent coordinate instead of z. This is widely used in meteorology. Then for any 

variable F in the fluid we can write ),,,( tpyxFF  . The variables ),,( pyx are known as 

isobaric coordinates. In meteorology one also sometimes uses the potential temperature   

instead of z. The variables ),,( yx  are then known as isentropic coordinates. We here discuss 

some of the advantages by using isobaric coordinates, which is most commonly done. 
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Introducing the geopotential  defined by (1.6.2), the hydrostatic equation (4.1.9) now 

becomes, for fixed values of x and y: 
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By multiplying (4.2.1) by dz , we obtain  ddp   for fixed x and y. Hence, in isobaric 

coordinates: 
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The fluid velocity ),,( vu  in isobaric coordinates is defined as the rate of change of the 

isobaric coordinates of a fluid particle, i.e., 
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where now pqyqvxqutqdtDq  /////   is the material derivative of any 

dependent variable q.  

 In general, we write for the total differential of the pressure in Cartesian coordinates 
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where the subscripts indicate what is kept fixed during the partial differentiation. Obviously, 

along an isobaric surface we must have 0dp . Denoting the coordinates of the isobaric 

surface by ),,( ppp zyx , we have from (4.2.4) that 
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Geometrically, the isobaric surface 0pp   may be written as ),,( 0pyxzz  . Hence, along 

this surface: 
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From (4.2.5) we then obtain                      

 

                    p

pxyxzx

p

pyyxzy

dy
y

z

z

p

y

p
dx

x

z

z

p

x

p








































































































,,,,,,

0 .        (4.2.7) 

 



 51 

Here pdx  and pdy are independent variables, so the expressions inside each bracket in (4.2.7) 

must be zero. Utilizing the hydrostatic equation, this leads to 
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Finally, by introducing the geopotential into (4.2.8), we obtain for the horizontal pressure-

gradient force per unit mass: 
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For an inviscid fluid the horizontal components of the momentum equation (1.6.6) in 

isopbaric coordinates reduce to 
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                                         (4.2.10) 

 

In later use, we simplify, and keep only the subscript p to remind ourselves that the pressure is 

constant during that specific operation. The form (4.2.10) involves no reference to the density, 

and is therefore much more amenable to use. The removal of the density from the expression 

for the pressure gradient is a major advantage of isobaric coordinates and provides one of the 

motivations for their application. 

 The mass of a small material element m  can be written in isobaric coordinates as 
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Since the mass must be conserved, we have that 
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By dividing (4.2.12) by pyx  , and applying (4.2.3) as well as the fact that g is constant, we 

find that 
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Here we have utilized that dtDqdtqD //)(   . In the limit 0pyx  , (4.2.13) becomes 
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This form of the continuity equation does not contain any reference to the density field, and 

does not involve time derivatives. It is valid for compressible fluids, although it has the same 

form as the incompressible version (1.7.7) in Eulerian coordinates. The form (4.2.14) provides 

an additional motivation for the use of isobaric coordinates. However, it must be kept in mind 

that (4.2.14) is only valid when we can make the hydrostatic approximation. 

 

 

4.3    Geostrophic flows 
  

 As mentioned before, away from the ground in the atmosphere, and from the 

surface/bottom/coast in the ocean, the effect of the viscosity is negligible. From (1.6.8) the 

horizontal components of the momentum equation can then be written 
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In such regions the time, length and velocity scales of section 4.1 are typical for large scale, 

slowly varying oceanic motion. By inserting these scales into (4.2.1), we find that the local 

and convective acceleration terms typically are of the order 27 sm10  and 28 sm10  , 

respectively. At mid-latitudes we have f ~ 10
4 

s
1

. Hence, with a horizontal velocity scale of 
11 sm10  , we find that the Coriolis terms in (4.3.1) are typically of the order 25 sm10  . 

Obviously, since this is about one thousand times larger than the acceleration terms, the only 

possible balance under these circumstances can occur between the Coriolis force and the 

horizontal components of the pressure-gradient force. This is called geostrophic balance, and 

can be stated mathematically as 
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Here the velocity jviuvg


  is the geostrophic wind or current. It can be expressed 

explicitly from (4.3.2) as 
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Thus, the knowledge of the pressure distribution at any time determines the geostrophic 

current. It is important to note that the geostrophic balance (4.3.2) is only valid away from the 

equator (where 0f ).    
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 The common visual representation of the pressure field in a horizontal plane is a map  

showing a set of isobars. An isobar is a curve containing all points in which the pressure  

attains some chosen value. The isobars are drawn for pressure values at equidistant intervals, 

i.e. ppppp  2,, 111 , etc. We note from (4.3.3) that the geostrophic wind blows along the  

isobars. If the low pressure minimum was concentrated in a point, surrounded with air of    

higher pressure, the horizontal component of the pressure gradient will be directed outwards 

from the centre. Accordingly, from (4.3.3), the geostrophic wind in the northern hemisphere  

would blow around the low pressure centre in an anti-clockwise direction. Similarly, the wind  

would blow around a high pressure centre in a clockwise manner. Such circulations are called  

cyclonic and anti-cyclonic, respectively; see the sketches in Fig. 4.2. 

 

 

 
 

Fig. 4.2   Cyclonic circulation around a low pressure centre (L), and anti-cyclonic circulation around a high pressure 

centre (H) in the northern hemisphere. The solid lines are isobars. 

  

 An alternative way to depict the pressure field is by letting horizontal planes at  

equidistant heights HHHHH  2,, 111 etc., intersect an isobaric surface. This yields a  

map showing a set of contour lines for this constant pressure surface. We note from (4.3.3) 

that the geostrophic flow is directed along the contour lines. The more closely spaced the 

contour lines become, the stronger is the geostrophic wind. In summary, the isobars yield the 

spatial pressure distribution at a particular height, and hence the geostrophic velocity at that 

height, while the contour lines yield the geostrophic flow along an isobaric surface at different  

heights. Obviously, the single isobar 1pp  drawn on 1Hz   coincides with the contour line 

at 1Hz   for the isobaric surface 1pp  . 

 The ratio between the convective acceleration and the Coriolis force is called the Rossby 

number Ro, i.e. 
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We realize that geostrophic motion implies small Rossby numbers. In the order of magnitude 

analysis above we find that 310~ Ro , which is typical for large scale motion in the 

atmosphere and the ocean.  

 For such flows in the atmosphere one often uses isobaric coordinates. From (4.2.10) the 

geostrophic current (4.3.3) can then be written 
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The advantage with this approach is that the density does not appear explicitly on the right-

hand side of the expression for the geostrophic velocity. Furthermore, if f is constant, we note 

from (4.3.5) that the horizontal divergence of the geostrophic wind at constant pressure is 

zero: 
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Then, from (4.2.14),  is independent of p.  

 

 

4.4     Cyclostrophic flow 
 

 In some intense circulation systems, like tornadoes in the atmosphere, the Coriolis force 

is too small to balance the pressure gradient force. For quasi-steady motion in such cases the 

balance of forces on a fluid particle is between the centrifugal force (the negative convective 

acceleration) and the pressure gradient force. In a typical tornado the tangential velocity V may 

be 30 1sm  at a distance m300D from the centre of the vortex. For circular motion the 

centrifugal force per unit mass becomes 
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V
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At mid-latitudes with 14s10 f , the Coriolis force per unit mass is 

 

                                                     23 sm103  fVFCor ,                                             (4.4.2) 

 

which is much less than the centrifugal force in this case. Motions in which there is a balance 

between the centrifugal force and the pressure gradient force are referred to as cyclostrophic 

flows. We note from (4.3.4) that the Rossby number in this case becomes 

 

                                                      310~/~ Corcent FFRo .                                                  (4.4.3) 

 

Hence, cyclostrophic flows are characterized by large Rossby numbers. Such flows must 

always have a pressure minimum in the centre, yielding a pressure gradient force that is 

directed inward. The circulation can in principle be cyclonic or anti-cyclonic. In both cases the 

centrifugal force becomes directed outwards, which balances the pressure gradient force. 

 

 

4.5 Barotropic motion 

 

 When the isobaric and isopycnal surfaces in the fluid are parallel, the mass field is said 

to be barotropic. In this case the pressure can be written as a function of the density only, i.e.          

).(pp   We may define the work dW done by the pressure-gradient force per unit mass in 

displacing a particle a small distance rd


by 
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Let rd


be aligned along a closed curve   in space. Generally the total work done by the 

pressure in displacing the particle around the closed curve will be non-zero, i.e.  
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However, when the mass field is barotropic, we can write 
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When we know ),(pp  we can always find a function )(G  such that 

 

                                                              



d

dp
G

1
)(  ,                                                      (4.5.4) 

 

If H  is the anti-derivative of G, i.e. ddHG / , we can write  
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Accordingly, the line integral in (4.5.2) along the closed curve   now becomes 
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   .                                     (4.5.6) 

 

Here the value of the density s at the starting point of the integration is the same as the value 

e  at the end point (closed curve). Furthermore, from physical considerations H , which is 

related to the work, must be a single valued function. Hence, in the barotropic case 
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This means that we can write 
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For synoptic scale motion we can apply the hydrostatic balance equation (4.1.9). Combined 

with (4.5.8): 
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Hence 
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The geostrophic balance equations (4.3.2) reduce in this case to 
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In our analysis the Coriolis parameter is constant, or varies with linearly with y in the beta-

plan approximation, see (1.6.7). Since ),( yxFF  , we realize that the right-hand sides of 

(4.5.11) do not vary with the vertical z-coordinate. Accordingly, for a barotropic mass field we 

find for the geostrophic flow components that 
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Such flows are called barotropic flows.  

  

 

4.6   Baroclinic motion: density currents and the thermal wind 
 

 When the isopycnal and the isobaric surfaces intersect (mathematically when   p  

0) the mass field is said to be baroclinic. The resulting geostrophic motion is called baroclinic 

motion. In this case the horizontal velocity components vary with height. By differentiating 

both equations in (4.3.2) with respect to z: 
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In the ocean one often approximate the density on the right-hand side by a constant reference 

value r (the Boussinesq approximation; see section 5.1). By substituting the pressure from 

the hydrostatic equation (4.1.9), we obtain right away that the vertical variation of the 

baroclinic current is proportional to the horizontal gradients of the density field, i.e. 
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Such currents are called density currents.  

 In the atmosphere, applying the ideal gas law, the hydrostatic equation (4.2.1) in isobaric 

coordinates can be written 
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Differentiating the geostrophic balance (4.3.5) with respect to p, and applying (4.6.3), we find 
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or equivalently 
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These equations are often referred to as the thermal wind equations. 

 It is important to realize that it is only the vertical shear of the density current or the 

thermal wind that can be obtained from the geostrophically balanced equations in a fluid when 

the isobaric and isopycnal surfaces intersect. Accordingly, we can only determine uniquely 

velocity difference between two levels in the fluid. The velocity itself is not unique, because 

we can always add an arbitrary barotropic flow (4.5.12    ) to our solution. 

 We demonstrate this for an example that works equally well for the atmosphere as for 

the ocean. The horizontal geostrophic balance (4.3.2) and the vertical hydrostatic balance can 

be written in vector form as 

 

       ,p0  vkf


                              (4.6.6) 

 

where  = 1/ and gz  is the geopotential. We now integrate (4.6.6) along a closed path in 

the vertical plane; see Fig. 4.3. 
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Fig. 4.3   Sketch of isobaric surfaces above horizontal positions A and B. Arrows indicate direction of integration 

along closed path. 

 

The closed path here consists of the verticals I and III and the isobaric surfaces II and IV in 

Fig. 4.3. We integrate (4.6.6) along the closed path I+II+III+IV. Introducing a small vector 

displacement kdzidxrd


  along the integration path, and utilizing that dprdp 


 and 

 drd


, we obtain 
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The last integral on the right-hand side is obviously zero, since  is single-valued. 

Furthermore, it is easy to show that 
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Hence, from (4.6.7) 
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Equivalently: 
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Along I and III we have that rd

 k


, while along II and IV we find jdxkrd


 . 

Furthermore, along II and IV we have that p is constant, so here 0dp . Equation (4.6.10) 

then reduces to 
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Introducing the x-coordinates xA and xB , we obtain 

 

                                     ,
2

1

2

1

21    















p

p

p

p

AB

x

x

x

x

dpdpdxvdxvf
B

A

B

A

                               (4.6.12) 

 

where subscripts A and B refer to the horizontal positions. We can write 
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where V1, V2 are mean velocities in the y-direction along the considered isobaric surfaces.  

 In the atmosphere we can apply the equation of state, i.e. pRT / , in the right-hand 

side of (4.6.12). Furthermore, it is usual to define 21 VVV   as the thermal wind. We then 

obtain that 
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We note from (4.6.14) that the thermal wind, which is the difference in geostrophic velocity 

between two isobaric surfaces, is given by the horizontal difference of the integrated 

temperature between these two surfaces. 

 For oceanic applications it is usual to introduce the specific volume anomaly  defined 

by 

                                              

                                                          ppts ,0,35,,  ,                                            (4.6.15) 

 

where p,0,35 is a reference value for seawater with a salinity of 35 psu and a temperature of 

C0o . Since p,0,35 only varies with the pressure, the contributions from this term cancel in 

(4.6.12). Inserting from (4.6.13) and (4.6.15), we then finally obtain 
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This equation is often called Helland-Hansen’s formula. It has been developed for calculating 

geostrophic currents from observational data. To use it, we need observed values of  at 

neighbouring ocean stations A and B as function of depth.  

 It is the same problem her as in the atmosphere; we only find uniquely the difference in 

velocity between two isobaric surfaces. If we know the geostrophic velocity somewhere, for 

example V2 from direct velocity measurements, (4.6.16) yields the velocity everywhere in the 
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water column. Often V2 has been put equal to zero and the corresponding depth is referred to 

as the level of zero motion. This is a dubious approach, however, since it may very well 

happen that this level does not exist in the observational area. 

 The use of satellites to measure the sea surface slope appears to be a more reliable way 

of obtaining reference geostrophic velocities in the ocean. The forces (in the geostrophic 

approximation) on a fluid particle on an isobaric surface are depicted in Fig. 4.4. 

 

 

 

 

 
 
Fig. 4.4   Sketch of flow along an isobaric surface. 

 

In the sketch above, the isobaric surface is sloping an angle i with respect to the horizontal. 

Balance of forces on a particle in the direction along the isobaric surface yields 
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Here v is the geostrophic velocity (into the paper). Hence  
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This could have been obtained directly from (4.3.5) in isobaric coordinates, e.g., 
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For example, for f ~ 10
4 

s
1

, g = 10 m s
2

 and v ~ 1 m s
1

 (strong surface currents at mid-

latitudes), we find 
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This kind of surface slopes (typical for the Gulf Stream) can be obtained from satellite 

altimeter data. Then, if figV /tan1   from (4.6.18) at the surface where the atmospheric 

pressure Pa is constant, Helland-Hansen’s formula (4.6.16) can be written 
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Here gV is the mean geostrophic velocity at the level where the ocean pressure is p. 

 

  

4.7 Vertical velocity 
 

 For synoptic-scale motions in the atmosphere the vertical component of the velocity is 

of the order of a few centimetres per second. This is too small to be measured in situ. For 

large scale motion in the ocean the vertical velocity is 32 1010   times the atmospheric 

values. Hence, the vertical velocity in the atmosphere and the ocean must be inferred from the 

fields that can be measured directly. One apparent disadvantage of using isobaric coordinates 

in the atmosphere is that )( p  is not directly equal to the vertical velocity )(zw . In Eulerian 

coordinates we can write 
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For synoptic-scale motion the horizontal velocity is basically geostrophic. We can therefore 

write 
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where the ageostropic wind ),( aa vu is small. We use the hydrostatic approximation, and the 

fact that 0 pvg


 from (4.3.2). By inserting into (4.7.2) into (4.7.1) we obtain  
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For synoptic-scale motion we typically have 
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An order of magnitude estimate then yields 
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From this assessment we note that is a good approximation to let 
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                                                     wg  .                                                                    (4.7.6)  

 

 

 

5. BOUNDARY-LAYER FLOWS 
 

5.1   The Boussinesq approximation 
  

 Winds in the atmosphere which is influenced by the ground, or currents in the ocean 

near the ocean surface or ocean bottom, are turbulent. This will be discussed in more detail in 

the next section. The influence of the boundaries is the reason why such flows are called 

boundary-layer flows. In the atmosphere the density varies across the lowest 1000 m by about 

10 per cent, and the fluctuating component of the density deviates only a few per cent from the 

basic horizontal state, e.g. (1.7.1), (1.7.2). In the ocean the density variations in the upper 

layer, near the bottom and near the coast are even smaller, and so is also the deviation from 

the basic state. In these areas we may do some important simplifications in the dynamical 

equations. First, we take that the density in the Navier-Stokes equation is constant except in 

connection with the buoyancy term. This means that (1.6.5) is approximated by 
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where r is a constant reference value for the density. This approximation is called the 

Boussinesq approximation. In this approximation we can also assume that the velocity vector 

is solenoidal, i.e. we use the continuity equation in the form 
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5.2 Turbulence and Reynolds averaging  

 

 At small fluid velocities, the motion of individual fluid particles is regular. The particles 

often move in parallel sheets. Such motion is called laminar motion. 

 

 

 
 
Fig. 5.1   Particle trajectories in laminar motion.  
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Let typical scales for velocity and length be U and d, respectively. We define a dimensionless 

parameter Re by  

 

 .


Ud
Re          (5.2.1) 

 

In 1880 Osborn Reynolds published his experimental results, showing that the particle motion 

becomes irregular when Re increases. For sufficiently large values of Re, the particle motion 

turns out to be random and chaotic. Such flows are called turbulent flows.  The parameter Re 

has become known as the Reynolds number. 

 

 

 
Fig. 5.2   Sketch of trajectory of an individual particle in turbulent flow.    

 

Turbulence occurs for flow in pipes and channels when ),10( 3ORe  where O means the 

“order of”.  

 Let us consider two extreme cases in geodynamics; the motion of an alpine glacier, and 

the atmospheric wind near the ground. In both cases we take the layer thickness d to be 

typically 100 m, but the viscosities and the velocities are quite different. For ice, which is very 

viscous, we take that 1211 sm10~ 

i , and assume a typical velocity 1daym1.0~ 

iU . For air 

near the ground typical values are 125 sm10~ 

a , and 1sm10~ 

aU . We then obtain from 

(5.2.1) for a glacier that 1510~ Re , while for the wind 810~Re . Obviously, the streaming of 

the ice is laminar, and the air flow is turbulent.       

 The presence of turbulence is commonly seen in measurements of environmental flows. 

From time series (made at a fixed location) we often find two distinct periods; one short, t1, 

and one much longer, t2; see below for the velocity component u: 

 

 

 

 
 
Fig. 5.3   Sketch of time series. 
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Here 1t represents the period of the turbulent motion. We define a mean velocity component 

by 
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tt

tt

du
t

u  .                                                 (5.2.2) 

 

The mean quantity varies with time, but in a slow fashion. The typical time scale (period) is 

2t , where 12 tt  .  

 We write any of the dependent variables, Q, in the following way: 

 

          .QQQ                      (5.2.3) 

 

Here Q represents the turbulent fluctuation, which typically varies over the period 1t . Hence 

  

   .0Q          (5.2.4) 

 

Accordingly: 

                                                                .QQ                     (5.2.5) 

 

For the dependent variables in (5.1.1) we then may write 
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Inserting (5.2.6) into (5.1.1), we find 
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By averaging each term in this equation, i.e. integrate it from 2/1tt   to 2/1tt  , we obtain 
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We have here utilized the fact that 
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From the Boussinesq form (5.1.2) of the continuity equation, we find 
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By averaging we obtain 
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Then, for the advection term 
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Accordingly, (5.2.8) can be written 
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We define the turbulent Reynolds stress tensor  per unit mass: 

      

  vv 


.       (5.2.14) 

 

We note that the divergence of this tensor acts as a force per unit mass on the mean motion (it 

tends to accelerate a particle with mean velocity v


). The problem now is how to express  in 

terms of v


.  

 We shall here use a very simple approach to this problem.  Assuming that the functional 

dependence of the turbulent Reynolds stresses resemble those of the viscous stresses (1.5.8) 

for a Newtonian fluid, we take for the nine components of  : 
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Here A
(x)

, A
(y)

, A
(z)

 are called the turbulent eddy viscosity coefficients in the x-, y-, and z-

directions respectively (or for short; eddy viscosities). The eddy viscosities A
(x)

, A
(y) 

and A
(z)

 
are generally different, but they are all much larger than the molecular viscosity . Usually we 

have  

     

      )()()( ~ zyx AAA    .                  (5.2.16) 

 

 

5.3 Equations for the mean motion 

 

a. Variable eddy viscosity and the logarithmic wind profile 

 

 We consider the steady mean wind above a horizontal surface situated at 0z . In a 

thin, turbulent layer near the ground we may neglect the horizontal pressure gradient force, the 

Coriolis force, and the effect of molecular viscosity. The thickness of this surface layer 

depends on the vertical stability, but it is usually less than 10 per cent of the total planetary 

boundary-thickness. We take that the mean wind is parallel to the x-axis, and that the turbulent 

stresses only vary with the z-coordinate. Then the x-component of (5.2.13) in the surface layer 

reduces to 
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dz
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Hence, uw   is constant in this region. The corresponding constant turbulent shear stress 

(the turbulent Reynolds stress) is uwr
  . We can express the turbulent shear stress at 

the ground in terms of the friction velocity *u as  

                                                            

                                                             2

*00 uuw rr   .                                           (5.3.2) 

 

Alternatively, for a wind in the x-direction, the stress at the ground can be written empirically 

as: 

 

                                                                  2

100 ucDr  ,                                                     (5.3.3) 

 

where 10u  is the mean wind at 10 m height, and the drag coefficient Dc  is of order 310 . For a 

characteristic wind velocity of 10 1sm  , we find from (5.3.2) and (5.3.3) that typically 
1

* sm3.0~ u in the atmosphere.  

 From the definitions (5.2.15), and the fact that the turbulent shear stress is constant, we 

then obtain 
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In this expression it is not reasonable to assume that the eddy viscosity is constant. Very close 

to the ground the turbulent eddies are very small, and then increase in size as we move 
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upward. The eddy viscosity will also increase with increasing friction velocity. We can then 

assume that in this region 

 

                                                                  zuA z
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where 4.0  is von Kármán’s constant. A more solid basis for this assumption follows from 

Prandtl’s mixing length theory, which we leave for more advanced courses. From (5.3.4) and 

(5.3.5) we obtain 
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We realize that the turbulent region cannot extend right to the ground, so at some very small 

height 0z  the mean wind vanishes. Integrating (5.3.6) we then obtain 

 

                                                                











0

* ln
z

zu
u


.                                                    (5.3.7) 

 

We thus see that in the region of constant turbulent shear stress the wind profile is 

logarithmic. The length scale 0z is often called the roughness length. It is related to the friction 

velocity by 
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where b is a dimensionless constant (Charnock’s formula). The value of 0z  depends condition 

at the ground. For grassy fields, typical values are in the range 1 – 4 cm. 

 

  

b. Constant eddy viscosity 

 

 In many cases we can assume that the eddy viscosities are constant, especially when we 

are away from rigid surfaces. Then it is easy to compute the turbulent Reynolds stress terms in 

(5.2.13). For the x-component we find by applying (5.2.15): 
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Utilizing (5.2.11), we finally obtain 
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In the same way we obtain for the y- and z-components: 
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We define an operator 2

A  by 
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Then we can write 
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The equation (5.2.13) for the mean motion now becomes: 
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Since the molecular viscosity  is much smaller than A
(x)

, A
(y)

, A
(z)

, we can usually neglect the 

molecular viscosity term in (5.3.15).  For the rest of the analysis we shall only consider the 

mean quantities. With that in mind, we can for simplicity delete the over-bars. Our governing 

momentum equation for the Reynolds averaged motion with the Boussinesq approximation 

then becomes 
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5.4 The oceanic Ekman current driven by wind stress 

 
 When we have a wind blowing along the sea surface, it will induce motion in the ocean 

with a vertical length scale that usually is much smaller than the ocean depth. Since the wind-

stress can be transferred to the water only through the effect of viscosity, the turbulent friction 

terms in (5.2.13) now become important. (The additional effect of wind-generated surface 

waves complicates the problem and is left out here). If there are no horizontal pressure 

gradients, the friction force can only be balanced by the Coriolis force for non-accelerating 

flows. In this case we simplify, and assume that the eddy viscosities are constant. Hence, from 

(5.3.16), balance of forces requires 
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Obviously we here must be away from the equator, where 0f . Let typically vu ~  and take 

the current only to vary with the z-coordinate. In this direction the typical length scale is ED . 

From the definition (5.3.5), we then obtain from (5.4.1) that 
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This length scale, characterizing the depth limit of the direct wind influence in the ocean, is 

called the Ekman depth. A more precise definition is obtained from the subsequent 

mathematical treatment. 

 In this problem we assume that the horizontal axes are situated at the ocean surface, so 

here 0 z . For steady horizontal motion with velocity components that only vary with 

z, and with no horizontal pressure gradients, (5.3.16) reduces to 
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Since f and )( zA here are taken to be constants, this system of coupled, second-order, ordinary 

differential equations can be solved by inserting for v , say, in (5.4.3), thus yielding one 

fourth-order equation for u . However, to simplify the algebra, we introduce the complex 

velocity ivuW  , as we did for the inertial oscillations in section 3.1. Then, by multiplying 

(5.4.4) by the imaginary unit i, and adding the two equations, we obtain 
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                                                 (5.4.5) 

 

Hence, we need only solve one second-order differential equation for the complex velocity, 

instead of the more labour taking fourth-order equations for the velocity components. To solve 

(5.4.5) we need two boundary conditions. At the surface we let for simplicity the wind blow 

along the y-axis, exerting a constant wind-stress 0 on the water in this direction. The wind-

stress in the x-direction is zero. The dynamic boundary conditions require that these stresses 

must equal the shear stresses in the water at the surface, i.e. 
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Here the turbulent shear stresses in the water on the left-hand side have been obtained from 

(5.2.15), assuming no x- or y-dependence of the variables. By multiplying (5.3.7) by i and 

adding the two expressions, the dynamic boundary condition at the surface reduces to 
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To obtain a second condition, we assume that the Ekman depth is much smaller than the 

ocean depth. Hence, the wind-induced current will be vanishingly small at large ocean depths. 

Mathematically, this means that u  0 and v  0 when z   , or 
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The solution of (5.4.5), subject to the boundary conditions (5.4.8) and (5.4.9) is readily 

obtained. Define 
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where we assume that 0f . Then, from (5.4.5) 
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Here 1C  and 2C  are integration constants. Since we can write )2/exp( ii  , we obtain from 

(5.4.10) that 

 

                                               )1(
2

2/1

)(

4/

2/1

)(
i

A

f
e

A

f
a

z

i

z


















  .                               (5.4.12) 

 

We note that the real part of a is positive. Hence, W in (5.4.11) will grow beyond limits when  

z  , unless 02 C . So, to have a finite solution everywhere, we must require that 02 C . 

Furthermore, by differentiating (5.4.11), we find 
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By substitution from (5.4.8), we obtain 
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To make the results easy to discuss, we define the Ekman depth (5.4.2) more precisely as 
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Then the complex velocity (5.4.11) can be written 
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where 

 

                                                            .
2 0

0

Er Df
V




                                                       (5.4.17) 

 

Since by definition ivuW  , we find from (5.4.16) by equating real and imaginary parts 

that 
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The current given by (5.4.18) is called the Ekman current, after the Swedish oceanographer 

Valfried W. Ekman who first published this result in 1905. 

 The solution (5.4.18) has some interesting properties. We note by squaring and adding 

the two components that 
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i.e. the magnitude of the current vector decreases exponentially with depth. At the surface       

)0( z , we have 2/1

0 2/Vvu  . Since the wind here is blowing along the y-axis, this means 

that the Ekman current at the surface is deflected 45 to the right of the wind direction (in the 

northern hemisphere). Furthermore, the two velocity components behave differently when we 

move downward from the surface. Since the cosine-term increases with increasing depth 

)0( z  while the sine-term decreases, the velocity vector spirals to the right as we move down 

into the ocean (with exponentially decreasing magnitude). This behaviour is depicted in Fig. 

5.4. 

 

 
 
Fig. 5.4   Sketch of the Ekman current vector at various depths.     
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By projecting the current vectors on a horizontal plane, the arrows define a curve called a 

hodograph (the dotted curve in Fig. 5.4). This curve is referred to as the Ekman spiral. 

 At the Ekman depth EDz  , we find that )exp()2/( 2/1

0  Vvu . This means that 

the current here is oppositely directed to surface current, while its magnitude is reduced by a 

factor 23/1)exp(  . Accordingly, for all practical applications, the Ekman current is 

confined to a layer between the surface and EDz  . This layer is known as the Ekman layer. 

 It was actually Fridtjof Nansen who suggested the problem discussed here to Ekman. 

From his observations with the Fram in the Polar Sea 1893-1896, Nansen found that the ice 

drifted somewhat to the right of the wind direction. This Nansen attributed to the effect of the 

Coriolis force. Physically, he argued that a balance of forces on an ice floe between the wind 

stress, the bottom drag and the Coriolis force must lead to a drift direction that was to the right 

of the wind-stress direction. Similarly, he argued that a balance of forces on any thin fluid 

layer below the surface with a certain drift direction would induce a drift velocity of the layer 

beneath that was further deflected to the right, which in essence explains the Ekman spiral. 

 Since the Ekman current effectively vanishes below the Ekman layer, the ocean need not 

be "infinitely" deep for the solution (5.4.18) to be valid. It suffices that HDE  , where H  is 

the ocean depth. With a maximum estimate of 121)( sm10~ zA  and 14 s10~ f , we find that           

m140~ED , which is much less than the average ocean depth of about 4000 m. 

 In shallow seas, where EDH  , the direct wind influence will be felt through the entire 

water column. An Ekman spiral will also develop in this case, but it will be modified by the 

presence of the bottom. In particular, the surface current will be deflected less than 45 to the 

right of the wind direction. 

 The presence of the sea bottom will also influence the currents in the deep ocean. This is 

entirely analogous to how the ground modifies the wind in the atmosphere. We leave this 

problem to section 5.8, where we discuss the planetary boundary layer.   

 

 

5.5   The Ekman transport in the surface layer 
 

 Sometimes oceanographers are more interested in the total transport of seawater through 

a certain vertical section in the ocean than in the detailed current variation. For this purpose 

we define horizontal mass transport (or mass flux) components ),( )()( yx qq , by 
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Here )(xq is the mass transport along the x-axis per unit length in the y-direction, while )( yq is 

the mass transport along the y-axis per unit length in the x-direction, and H is the ocean depth. 

Obviously, the total mass flux )(xQ through a section parallel to the y-axis of width L is given 

by 

 

                                                 ,
0 0

0

)(

)()(

  




L L

yH

xx dydzudyqQ                                             (5.5.2) 

 



 73 

see the sketch in Fig. 5.5. 

 

 
Fig. 5.5   Flow through an oceanographic section. 

 

Since the density in the ocean actually varies very little, it can, as far as the mass transport is 

concerned, be set equal to a constant reference value r (= 1000 kg m
3

). We can then relate 

the mass and volume fluxes VU , per unit length by 
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Again, the total volume flux totU through the section in Fig. 5.5 is given by 
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We note that the total volume flux has dimension (length)
3 

(time)
 1

. Since the volume fluxes 

in the ocean usually are very large, we introduce the unit Sverdrup (Sv) by 

 

                                                             136 sm10Sv1  .                                                    (5.5.5) 

 

Typically, for the Gulf Stream outside Florida, we have Sv30~totU , while the Vest-

Spitzbergen Current and the East-Greenland Current both have estimated transports 

Sv7~totU . 

 The transport associated with the Ekman current in deep water )( HDE   is particularly 

interesting. This transport can be obtained directly from the governing equations (5.4.3) and 

(5.4.4). By integrating in the vertical, we find 
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Since the current and the viscous stress practically vanish below the Ekman layer, the last 

terms on the right-hand side are zero. Furthermore, if the wind-stress components are )(

0

x  
and 

)(

0

y respectively, the dynamic boundary conditions require that 
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i.e. the shear stresses on both sides of the (infinitely thin) material surface are equal. Here the 

turbulent shear stresses in the water (the right-hand side) have been obtained from (5.2.15). 

From (5.5.6) and (5.5.7) the Ekman transport components ),( )()( y

E

x

E qq then become 
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where we have utilized (5.5.8). We note that the Ekman transport is directed 90 to the right 

of the wind-stress vector when 0f . This is easily seen from (5.5.9) using the vector 

notation jqiqq y

E

x

EE

 )()(   and  ji yx
 )(

0

)(

00   . Then (5.5.9) can be written 
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which proves the point. In Fig. 5.6 we have depicted this situation. 

 

 

 

 
Fig. 5.6   Ekman transport in the northern hemisphere. The wind is directed into the paper. 
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 In fact, the expression for the Ekman transport (5.5.10) can be derived without 

introducing the concept of eddy viscosity. If we go back to our Reynolds averaged equations 

for the turbulent mean motion (5.2.13), the balance between the Coriolis force and the 

turbulent Reynolds stresses becomes 

                                                   

,
)(

,
)(

z

vw
uf

z

uw
vf

r
r

r
r

















                                                   (5.5.11) 

where ),( vu  are turbulent mean velocities. We integrate (5.5.11) in the vertical across the 

Ekman layer, and apply the boundary conditions (5.5.8) in Reynolds stress form: 
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in addition to the no-stress bottom condition: 

 

                                                  EDzvwuw  ,0 .      (5.5.13) 

  

It now follows readily from (5.5.11)-(5.5.13) that 0τkqf E


 . This makes the transport 

expression (5.5.10) more general than the Ekman current system (5.4.18), which was derived 

using a constant eddy viscosity )( zA . 

 

 

5.6    Storm surge at a straight coast 
 

             In discussing the Ekman flow, we have up to now taken the ocean to be of unlimited 

extent in the lateral directions. Therefore, near the coasts, the Ekman current system derived 

in section 5.4 is not valid. However, far away from the shore-line our solution (5.5.10) for the 

Ekman transport can be applied. By combining this with the fact that the on- or offshore 

volume transport must vanish at the coast, it is easy to realize physically what must happen in 

this case. When a constant wind blows along the coast, with the shore-line to the right, our 

computed Ekman transport (5.5.10), valid far away from the coast, must be directed onshore. 

In this analysis we assume that the ocean depth H is comparable to the Ekman depth (5.4.15). 

Neglecting any return flow, the total onshore transport will gradually approach zero as we get 

closer to the coast, resulting in a change of the surface elevation. This change in surface 

elevation due to wind is called a storm surge. 

           We consider a simplified situation where a constant wind is blowing along a straight 

coast in an ocean of constant depth; see Fig. 5.7. 
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Fig. 5.7   The storm surge at the coast for the northern hemisphere. 

 

We take that the density is constant in this problem. Then the continuity equation reduces to 

(1.7.7). By integrating this equation in the vertical from the horizontal bottom to the surface 

z , we obtain 
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Obviously, the last term in (5.6.1) is zero since the bottom is horizontal and at rest. By 

applying the general rule for differentiating an integral where the upper limit is not a constant, 

(5.6.1) can be written 
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From the boundary conditions (3.3.4), we have that 
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Applying (5.6.3), and defining the volume fluxes  
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we can write (5.6.2) as 
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We assume that the horizontal scale of this problem is so much larger than the vertical scale 

that we can apply the hydrostatic approximation (4.1.9). Taking that the air pressure is 

constant and equal to 0p  along the sea surface z , we  have 
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                                                            0)( pzgp   .                                              (5.6.6) 

 

By applying (5.6.6), and assuming that the velocity is so small that we can neglect the 

nonlinear acceleration terms, the horizontal components of (5.3.16) reduce to 
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Here we have assumed that the variation of the frictional stresses is much larger in the vertical 

direction than in the horizontal direction. As depicted in Fig. 5.7, we assume that a constant 

wind stress 0

)(

0  x  is acting in the x-direction (along the coast). The boundary conditions at 

the surface then become: 
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At the bottom we take that the frictional stresses are zero, i.e. 
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As indicated in Fig. 5.7, we assume that the variables do not depend on the x-coordinate, i.e.  

0/  x . By integrating (5.6.7) from the bottom to the surface, utilizing (5.6.8), (5.6.9), and 

assuming that H , we finally obtain 
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We have here used that tUdztu
H
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 for linearized 

motion. The integrated continuity equation now reduces to 
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The set of equations (5.6.10) and (5.6.11) has a solution where the flux V in the cross-shore 

direction is independent of time (while U and   are not). By taking 0/  tV , we can 

eliminate U and   to obtain 
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We have a vertical coast at 0y . Here 0V . Furthermore, far out in the open ocean 

(mathematically, when y ) we must require that V is finite. Applying these conditions, 

the solution of (5.6.12) becomes 
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where  
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We note that the volume flux in the cross-shore direction changes over a typical length scale 

0a , given by (5.6.14). This scale is referred to as the barotropic Rossby radius of deformation. 

Far away from the coast (when y ), we have that )/(0 fV  , which is just the open 

ocean Ekman transport perpendicular to the wind stress. This is so because we have assumed 

no return flow, and neglected the frictional stress at the ocean bottom.  

            Assuming that  0  when 0t , we readily find from (5.6.11) and (5.6.13): 
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In this problem we have geostrophic balance in the direction normal to the coast. From 

(5.6.10), with 0/  tV , we find 

 

                                                               0/0 ay
e

t

yf

gH
U












.                                 (5.6.16) 

 

We thus get an alongshore velocity HUu / in the form of a jet which is limited laterally by 

the Rossby radius. 

             We note that the surface elevation (the surge) and the alongshore velocity increase 

linearly in time. Obviously, this cannot represent the solution for very long times. But for the 

relatively short duration of a passing storm, (5.6.15) is shown to yield realistic values for the 

surge at the shore (Gill, 1982, p. 397). To obtain a solution for constant wind that is valid 

when t , we must include bottom friction in the problem. This will be discussed in the 

next section. 

 

 

5.7    Downwelling/upwelling 
 

             In the previous section we assumed that the ocean depth was comparable to the 

thickness of the surface Ekman layer ED , and derived a transient solution for the sea level rise. 

For a deep ocean, where EDH  , we can imagine a steady solution of this problem 

( 0/  t  for all variables). Then, from (5.6.11), 0/  yV . Since 0)0( yV , V must be 

zero everywhere. But we do have a non-zero Ekman transport towards the shore in the surface 

layer. Hence, there must be a compensating and equally large transport in the interior ocean in 
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the offshore direction. The momentum balance in the y-direction must now be between the 

Coriolis force caused by the alongshore jet, the pressure-gradient force from the sloping 

surface, and the bottom stress. Obviously, there must be a downward vertical motion near the 

coast to maintain this circulation. We shall not go into a detailed discussion of this problem, 

but refer to Fig. 5.8 which qualitatively depicts the situation. The process, in which sinking 

water near the coast feeds the offshore interior transport, is called downwelling. 

 

 

 
 
Fig. 5.8   Downwelling at a coast. The wind direction is into the paper. (The along-shore jet is not depicted). 

 

In downwelling areas water which is saturated with oxygen and carbon dioxide is transported 

from the surface to deeper layers where it spreads horizontally. This process is very important 

for marine life in the sub-surface zone as well as for a possible storage of climate gases that 

dissolve in sea water at the ocean surface. 

  When a constant wind blows with the shore-line to the left, the Ekman transport 

(5.5.10) must be off-shore. The balance of forces is as before, but now the flow in the interior 

must be directed towards the coast. Near the coast, the in-flowing deeper water must rise to 

maintain the circulation. This process is called upwelling; see Fig. 5.9. 

 

 

 
Fig. 5.9   Upwelling at a coast. The wind direction is out of the paper. (The along-shore jet is not depicted). 

 

The upwelling process brings colder, nutrient-rich water to the euphotic zone, which is 

essential for the production of phytoplankton. This means that upwelling areas are rich in 

biologic activity. Some of the world's largest catches of fish are made here, e.g. off the coast 

of Peru and Chile. 
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 In our discussion up to now, we have assumed that the density is constant. But in the 

real ocean we have less dense water above denser water. The density stratification determines 

the width of the upwelling zone, which typically is of the order 100 km, and the upwelling 

speed may be 5 to 10 m/day. Also the depth, from which the upwelled water actually comes, 

depends very much on the stratification of the water column below the well-mixed Ekman 

layer. In many cases it may not be more than a few hundred meters. 

 If the wind along the coast stops blowing, the Ekman transport, and hence the 

upwelling/downwelling process, will cease. However, the sloping surface near the coast will 

not return to its initial horizontal position. It may stay inclined, and the balance between the 

associated pressure-gradient force and the Coriolis force will yield geostrophic currents along 

the coast, as discussed in sections 4.3, and 5.6. Of course, in the real ocean the effect of 

friction will reduce the velocity of this coastal current over time, and the surface slope will 

gradually collapse. Therefore, in reality, we need re-occurring similar wind events or 

statistically permanent wind fields to sustain such coastal currents. This is for example 

thought to be the case in the Antarctic. Here prevailing easterly winds due to the permanent 

high pressure field over the cold continent supports an ocean current close to the Antarctic 

coast. Since this current is related to on-shore Ekman transport (remember, 0f  here), the 

current direction is counter-clockwise, i.e. it flows in the wind direction. It is therefore called 

the East wind drift. 

 

 

5.8 The planetary Ekman layer 
 

 As explained in Section 5.3, we actually have a thin layer near the ground where the 

mean turbulent shear stress is constant and the mean wind profile is logarithmic. Above this 

shear-layer, we find the atmospheric Ekman layer. In this section we simplify, and let the 

Ekman layer extend down to the ground. We place the horizontal axes along the ground, so in 

this case  z0 . Above the Ekman layer, where the influence of friction can be neglected, 

we have a geostrophic barotropic wind ( gg vu , ). The flow in the Ekman layer then becomes 
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where ),( EE vu  is the part of the wind in the Ekman layer that varies with height. The equation 

for the complex Ekman flow EE ivuW   becomes exactly the same as in the ocean: 
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 We assume for simplicity that the geostrophic wind is directed along the x-axis, i.e. 

.0gv  Since we have neglected the effect of the constant-shear layer, we can assume that the 

velocity vanishes at the ground, i.e. 
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In more realistic conditions we may instead specify the turbulent stress at the ground, and 

relate it to the geostrophic wind. However, to make this problem as simple as possible, we 

assume that the velocity vanishes, which is an ideal case. Above the Ekman layer, we have the 

geostrophic wind. Mathematically, this means that 
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Now, with )(2 / zAifa  as before, and 0z , the solution of (5.8.2) satisfying (5.8.4) becomes 
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From (5.8.3) we obtain that guC  . Hence 
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Utilizing the definition (5.4.15) of the Ekman depth, we find that 
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We can then write for the mean wind in the planetary boundary layer 
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This is exactly the same solution as we obtain for the Ekman current near the bottom of the 

ocean, when the ocean depth is much larger than the Ekman depth. We realize from (5.8.8) 

that if we look along the direction of the geostrophic wind, the flow in the Ekman layer will 

be directed somewhat to the left of this direction in the northern hemisphere )0( f . Hence 

we have a left-ward spiralling flow as we move downward towards the ground. 

 

 

5.9 The transport in the planetary Ekman layer 

 
 The motion in the planetary Ekman layer to the left of the geostrophic wind is easily 

understood in terms of the horizontal balance of forces on a fluid particle. Since the effect of 

friction reduces the speed of the particle, the Coriolis force will no longer be able to balance 

pressure gradient force alone. The new balance on the particle will then be between the 

pressure gradient force, the Coriolis force and the friction force. Since the pressure gradient 

force is perpendicular to the isobars, and the friction acts against the velocity, the new velocity 

must be turned somewhat to the left of the isobars in order to generate the Coriolis force that 

is necessary for the balance of forces on the particle; see the sketch below. 
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Fig. 5.10    Balance between the pressure-gradient force, the Coriolis force, and the friction force on a small 

particle in the planetary Ekman layer. 

 

Quantitatively we find the mass transport in the planetary Ekman layer by integrating (5.8.8) 

vertically over the layer: 
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where we have used that 1)exp(  . We define the angle E  between the geostrophic 

current direction and the direction of the mass transport in the Ekman layer by 
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By inserting from (5.9.1), we find that o

E 7.10))12/(1arctan(   . Accordingly, when we 

look in the direction of the geostrophic current, we notice that the mass transport in the Ekman 

layer is directed about 11 degrees to the left of this direction in the northern hemisphere.  

 This has important consequences for large scale cyclonic or anti-cyclonic motion. In 

cyclonic motion we thus get a net mass transport near the ground towards the centre of the 

cyclone. This motion must in turn result in an upward and outward motion in the cyclone 

above the Ekman layer, making the cyclone wider. Since we can neglect the effect friction in 

the region above the Ekman layer, the absolute velocity circulation along horizontal material 

curves in cyclonic motion must be conserved. This follows from Kelvin’s circulation theorem 

in hydrodynamics. The upward and outward motion induced by the mass convergence in the 

Ekman layer thus makes these material curves above the Ekman layer wider, and hence 

longer. Therefore, the horizontal velocity in the cyclone must decrease in order to conserve the 

circulation. This means that the intensity of the cyclone will decrease, i.e. the cyclone will 

become damped. If left alone, it will finally cease to exist. For an anti-cyclone, with 

divergence in the Ekman layer, the material curves will shrink in the region above the bottom 

layer. Hence the negative relative velocity will increase till it finally becomes zero. In both 

cases the final state will thus be that of the atmosphere following the solid rotating earth, with 

no motion relative to the ground. The phenomenon discussed her is called Ekman suction, or 

Ekman pumping, and will be dealt with in detail in more advanced courses in geophysical 

fluid dynamics. 
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APPENDIX  
 

Relation between time derivatives of vectors in fixed and rotating frames 
 

 The derivations here refer to the reference systems defined in Section 1.1. To simplify 

the sketches, we consider two-dimensional motion, i.e. motion in the plane.  The derived 

results, however, are generally valid in three dimensions. In Fig. 1A we have depicted the 

displacement of a small particle with mass m. Whether this is a solid particle, or a fluid 

particle, is irrelevant at this stage. The angular velocity 


 of frame (x, y) is constant in time. 

It is here perpendicular to the plane, and directed out of the paper. 

 

 

 

 

 

 
Fig. 1A   Frames and particle displacements. 

   

First, let the particle m be at rest in the relative frame (x, y). As seen from (X, Y), the 

particle gets a displacement dr


 in time dt due to the rotation of (x, y). From Fig. 1A we 

note that this displacement is perpendicular to the position vector r


 in (x, y). The associated 

velocity, as seen from (X, Y), becomes  rdtdr


/ . In vector notation, this can be written 

r


 .  

Second, assume that the particle does move in the frame (x, y). We denote the 

displacement of m in (x, y) by  relrd


. Accordingly, the absolute velocity of m, observed 

from (X, Y), can be written 

                                     

                                                   r
dt

rd

dt

rd
v

relabs

abs





















 .                                       (A.1)                                   
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This relation is not only valid for the position vector. We have in general, for any vector )(tA


, 

that 

 

                                                                         A
dt

Ad

dt

Ad

relabs































.                                     (A.2) 

 

From (A.1) and (A.2) we then obtain for the absolute acceleration 

 

                                 

   
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                         (A.3) 

 

Accordingly, 

 

                                       )(2 rvaa relrelabs


 .                                               (A.4) 

 

If the frame (x, y), in addition to rotation, also moves with a translational velocity )(0 tv


 

relative to the fixed frame (X, Y), the absolute acceleration of m gets an additional term, 

which is 

 

                                                             
absdt

vd
a 








 0

0




.                                                          (A.5) 

 

Hence, the relation between accelerations measured in fixed (absolute) frames and relative 

frames may be written 

 

                                         0)(2 arvaa relrelabs


 .                                       (A.6) 

 

As mentioned before, we have here assumed that the angular velocity is constant in time.  
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