
Introduction to Physical Oceanography
GEF 2610

Pål E. Isachsen and Kai H. Christensen
University of Oslo

December 13, 2017



Contents

1 Introduction 5
1.1 The role of the ocean in the climate system . . . . . . . . . . . . 5
1.2 History of exploring the ocean . . . . . . . . . . . . . . . . . . . 7
1.3 A first quick look . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Bathymetry . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.2 Hydrography . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.3 Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.4 Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 The stratified ocean 25
2.1 Static stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Stratification and potential energy . . . . . . . . . . . . . . . . . 27

2.2.1 Potential energy of a stratified water column . . . . . . . . 27
2.2.2 Energetics of a slanted density stratification . . . . . . . . 28
2.2.3 Available potential energy—APE . . . . . . . . . . . . . 32

2.3 The oceanic equation of state . . . . . . . . . . . . . . . . . . . . 33
2.4 Water types and T-S diagrams . . . . . . . . . . . . . . . . . . . 38

3 Fluxes through the sea surface 41
3.1 Heat and freshwater fluxes . . . . . . . . . . . . . . . . . . . . . 41
3.2 Momentum fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 The effect of sea ice . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 The language of nature: Conservation equations 52
4.1 Eulerian and Lagrangian descriptions . . . . . . . . . . . . . . . 52
4.2 Coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 The full equation . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2 The Boussinesq approximation . . . . . . . . . . . . . . . 56

4.4 Conservation of salt . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 Conservation of thermal energy . . . . . . . . . . . . . . . . . . . 58
4.6 The momentum equations . . . . . . . . . . . . . . . . . . . . . . 59

4.6.1 Real forces . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6.2 The Boussinesq approximation . . . . . . . . . . . . . . . 64
4.6.3 The ficticious (!) Coriolis and centrifugal forces . . . . . . 65

4.7 Turbulent mixing and Reynolds fluxes . . . . . . . . . . . . . . . 72

2



5 Observing and modeling the ocean 79
5.1 Observation techniques . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.1 Temperature, salinity and pressure . . . . . . . . . . . . . 79
5.1.2 Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.1.3 Sea level . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.1.4 Air-sea fluxes . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Numerical ocean modeling . . . . . . . . . . . . . . . . . . . . . 89
5.2.1 From differential equations to difference equations . . . . 89
5.2.2 Data assimilation: combining observations and model . . 93

6 Simplified equations valid for large-scale flows 95
6.1 Defining large-scale geophysical flows . . . . . . . . . . . . . . . 95
6.2 The primitive equations . . . . . . . . . . . . . . . . . . . . . . . 99
6.3 Estimating the hydrostatic pressure . . . . . . . . . . . . . . . . . 100
6.4 The shallow-water equations . . . . . . . . . . . . . . . . . . . . 101

6.4.1 Stacked shallow-water layers . . . . . . . . . . . . . . . . 104
6.5 Geostrophic currents and the thermal wind . . . . . . . . . . . . . 106
6.6 Geostrophic degeneracy and vorticity dynamics . . . . . . . . . . 112

7 The large-scale wind-driven circulation 118
7.1 Ekman transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.2 Ekman-induced upwelling and downwelling . . . . . . . . . . . . 121
7.3 Wind-driven mid-latitude ocean gyres . . . . . . . . . . . . . . . 123

7.3.1 Interior Sverdrup balance . . . . . . . . . . . . . . . . . . 125
7.3.2 Western boundary currents . . . . . . . . . . . . . . . . . 129

8 The large-scale buoyancy-driven circulation 133
8.1 The need for both surface fluxes and turbulent vertical mixing . . 133
8.2 Deep western boundary currents . . . . . . . . . . . . . . . . . . 134

9 Ocean waves 139
9.1 Wave kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.2 High-frequency ocean waves . . . . . . . . . . . . . . . . . . . . 144

9.2.1 Wind-driven surface gravity waves . . . . . . . . . . . . . 148
9.2.2 Tsunamis . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.3 Ocean waves impaced by Earth’s rotation . . . . . . . . . . . . . 154
9.3.1 PoincarÃ© and Kelvin waves . . . . . . . . . . . . . . . 155
9.3.2 Tides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

3



9.4 Very low frequency (Rossby) waves . . . . . . . . . . . . . . . . 166

A Appendix: The flow in estuaries 171
A.1 Estuarine circulation . . . . . . . . . . . . . . . . . . . . . . . . 171
A.2 Types of estuaries . . . . . . . . . . . . . . . . . . . . . . . . . . 173
A.3 Real flows in estuaries . . . . . . . . . . . . . . . . . . . . . . . 176

B Wind-driven flows in equatorial and high-latitude regions 178
B.0.1 Equatorial dynamics . . . . . . . . . . . . . . . . . . . . 178
B.0.2 High-latitude dynamics . . . . . . . . . . . . . . . . . . . 179

4



1 Introduction

1.1 The role of the ocean in the climate system

The world oceans are of course the habitat of exuberant amounts of life, possibly
even dominating land areas in terms of total biomass. But here, in this course,
we will focus on the physical aspects of the ocean and, in particular, on the ocean
circulation itself. The natural tendency for flows in Earth’s atmosphere and ocean
(and on any other planet in the universe, as far as we know) is for light fluid to
spread out on top of heavier fluid. The process lowers the center of mass and
converts gravitational potential energy into kinetic energy. The kinetic energy is
then, eventually, dissipated via friction to heat. Nature steadily works towards
a state of increased entropy! Since this large-scale gravitational adjustment is
typically slanted so that also horizontal motions are involved, the end result is
also a reduction in the equator-to-pole density gradient.

In the ocean, warm and fresh waters are lighter than cold and salty waters.
Leaving salt aside for now, we can thus say that the ocean circulation tends to
spread warm waters above cold waters. So the waters warmed up by the sun in
the tropics tends to flow polewards to displace the the cold surface waters there.
The cold waters duck underneath and flow equatorward (Figure 1). The net effect
of the lateral component of these flows is a poleward heat transport that helps
moderate the climate on the planet. The same can be said for the atmospheric
flow. Were it not for this tendency, the equator-to-pole temperature contrast on
Earth would be much much larger and only a very narrow band of latitudes would
be inhabitable.

But the ocean has more roles to play in the climate system. The heat capacity
of the oceans is huge compared to that of the atmosphere. So the oceans act as a
buffer or integrator (essentially a low-pass filter) of any atmospheric temperature
variations. The ocean is therefore particularly useful as an indicator of long-term
global warming. Figure 2, for example, shows that the ocean surface temperature
as well as the depth-integrated ocean heat content have risen gradually over the
last decades. And Figure 3 shows estimates of the global-mean sea level height.
The long-term rise in sea level is attributed to a combination of melt from land
glaciers (particularly from Antarctica and Greenland) as well as water expansion
due to higher temperatures.
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Figure 1: A 2D representation of the oceanic meridional overturning circulation.
The color of the arrows indicate temperature. Warm waters flow poleward near
the surface while colder waters sink at high latitudes and flow equatorward at
depth. The background color indicates the dissolved oxygen concentration. As
indicated, the water sinking at high latitudes is also the most rich in oxygen (since
it has recently been in contact with the atmosphere).

Figure 2: Global ocean heat content and sea surface temperature (SST) over the
last decades. (Source: Talley et al., 2011, Fig. S15.17)
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Figure 3: Global sea level from tide gauges (red and blue) and from satellite
observations (black). (Source: Talley et al., 2011, Fig. S15.21)

1.2 History of exploring the ocean

It is fair to say that dedicated and systematic large-scale observations of the ocean
hydrography (the ocean composition, like temperature, salinity and other chem-
ical properties) and circulation begun with the H.M.S. Challenger expedition in
1872–1876. The expedition had multiple purposes, but the ship crossed all the
world oceans except for the very highest latitudes (for good reasons) and collected
observations of both physics, chemistry and biology (Figure 4).

Since then there have been a number of systematic observational campaigns
and programs, the largest of them all taking place during the International Geo-
physical Year in 1957–58 and during the World Ocean Circulation Experiment
(WOCE) in 1990–2002. WOCE involved observations of both currents and hy-
drography over an extensive ’grid’ of observation sections covering the world
oceans. The purpose for WOCE was not only to map out the hydrography of the
world oceans but also to make quantitive estimates of transport of mass and wa-
ter properties (e.g. heat, freshwater and nutrient transport) between the various
boxes defined by this grid of sections (Figure 5). So during WOCE observations
were made of property concentrations and about flow velocities (to make transport
estimates).

The logistical challenges of in situ (on the spot) ocean observations are daunt-
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Figure 4: The H.M.S. Challenger expedition, 1872–1876. (Sources: Wikipedia;
Talley et al., 2011, Fig. S1.1)
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Figure 5: Hydrographic sections of the World Ocean Circulation Experiment
(WOCE). (Source: http://ewoce.org)

ing. Just think of the cost of ship time, easily running into tens of thousands
of dollars per day. A true revolution in the observation of the oceans therefore
came with the advance of satellite remote sensing. Satellites today can give un-
presedented observational coverage of the sea surface, including observations of
temperature and salinity (both of which determine ocean density), ocean color
(which give information about nutrient and sediment concentrations) and, impor-
tantly, about sea surface height. As mentioned above, observations of sea surface
height give information about the heat content of the ocean. But as we will see
later they also give invaluable information about the large-scale ocean circulation
itself (specifically, about so-called geostrophic currents).

1.3 A first quick look

1.3.1 Bathymetry

As Figure 7 illustrates, the position of the continents and thus the shape of ocean
basins have constantly changed over geological time due to the process of plate
tectonics, i.e. the large-scale motion of Earth’s lithosphere (the outer crust). So
the ocean currents and their role in tempering Earth’s climate has changed over
geological time. The tectonic plates keep moving today as well (Figure 8), but
other than providing volcanic and seismic activity (including the generation of
tsunamis), the process is too slow to have any pragmatic impact on our view of
the oceans. So for our purposes, in this course, we’ll stick with the ocean basins
as they are today.
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Figure 6: Satellite (Topex/Poseidon) observations of sea surface height, including
orbital tracks. (Sources: Wikipedia; Stewart, 2008, Fig. 2.6[Stewart(2008)])
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Figure 7: Paleo reconstrictions of the continents as they have evolved over the last
170 million years. (Source: Marshall and Plumb, 2008, Fig. 12.15)
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Figure 8: The shape of Earth’s continental plates today and the direction at which
they are moving. (Source: https://whybecausescience.com)

The world ocean today consists of five major oceans: the Pacific, Atlantic, In-
dian, Arctic and Southern oceans (Figure 9). As we will discuss later, the presence
of continents to the east and the west of the Pacific, Atlantic and Indian oceans
make the dynamics of ocean currents there quite distinct from the dynamics gov-
erning large-scale atmospheric flows (which experience no such hard boundaries).
The Arctic and Southern oceans are less bounded in the east and the west and
therefore have large-scale currents that more resemble atmospheric flows. In ad-
dition to the major ocean basins there are several smaller seas which are typically
shallower and are also to a great extent surrounded by land areas; examples in-
clude the Medeterranean Sea, the Gulf of Mexico and the Nordic Seas.

A typical cross section of an ocean (as shown in Figure 10) reveals a number
of different bathymetric ’regimes’, including the shore and shallow shelf regions,
then a steep continental slope which leads out to abyssal ocean basins, possibly
intersected by very deep trences created where two tectonic plates meet. The deep
basins may also be separated by mid-ocean ridges that are created by underwater
volcanic erruptions where tectonic plates separate. Finally, as the figure illustrates,
the abyssal basins may be littered with seamounts that may even extend through
the sea surface (like Hawaii). The ocean bathymetry is every bit as complex as the
topography of the land continents.
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Figure 9: The bathymetry of the world oceans. (Source: Talley et al., 2011,
Figs. 2.1, 2.11 and 2.10)
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Figure 10: Schematic (top) and actual (middle) bottom bathymetry along an east-
west section crossing the South Pacific (bottom). (Source: Talley et al., 2011,
Fig. 2.5)
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1.3.2 Hydrography

Ocean water is salty. This ’salt’ is really dissolved non-organic and non-volatile
material (compounds that don’t easily vaporize) in the water. The salts consists
of all possible types of compounds, basically all that can be transported into the
oceans by e.g. rivers that bring with them erroded material. But sodium chloride
dominates, making up about 87% of the total. The salinity is a measure of the
concentration or, more precicely, the mass fraction of these salts. It is defined
as the mass in grams of disolved material per kilogram of water. So where one
kilogram of water contains 35 grams of salts, we give it a salinity of 35 (with units
g/kg).

Figure 11 shows satellite observations of the sea surface salinity (SSS) from
14 November 2012. The observations both large-scale and smaller-scale structure.
But most obvious is a tendency for surface waters in the tropics to be salty, a result
of exessive evaporation there which removes fresh water while leaving behind the
salts. The water salinity is dynamically important to the ocean circulation since
it, along with temperature, determines the density of water. And, as we have
mentioned above, much of the ocean circulation arrises because light waters tend
to float on top of denser waters. Salty waters are dense waters and would tend to
sink underneath fresher waters if temperature effects on density could be ignored.
So from the figure one could be lead to think that the tropical waters, salty as they
are, should dive underneath the waters at higher latitudes. But this is clearly not
the case, the reason being that water temperature plays a (big) role.

Because, of course, warm waters are lighter than cold waters. We will study
the contribution to the ocean temperature budget later, but clearly ocean waters
are colder at high latitudes than what they are in the tropics. Figure 12 shows an
example of sea surface temperatures (SST) that have been observed by satellites.
We see the expected large-scale latitudinal gradients and also smaller gradients,
both latitudinal and longitudinal, that are actually due to ocean dynamics itself
rather than solar forcing.

The oceans also have complex vertical temperature and salinity structures, as
illustrated in Figure 13. The oceans are generally warmer and fresher near the
surface since these are the lightest waters. But whether temperature or salinity
dominates density actually depends on the temperature itself. So one may actu-
ally encounter regions where warm and salty waters overlie cold and fresh wa-
ters—and vice versa. Still, temperature typically dominates in setting the water
density except for at very low temperatures, i.e. at high latitudes. So the ocean
is typically temperature-stratified, meaning that it gets progressively denser with
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Figure 11: Sea surface salinity (SSS) observed by satellite. (Source:
https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4233)

Figure 12: Sea surface temperature (SST) observed by satellite. (Source:
Wikipedia)
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Figure 13: Temperature and salinity along a meridional section through the At-
lantic Ocean. (Source: Marshall and Plumb, 2008, Fig. 9.9)

depth because it gets colder with depth. And, so, Figure 13 shows large regions
where the water column appears to be statically unstable (with heavy waters re-
siding above light waters) due to its salinity structure. But in reality, these regiosn
are stable due to the temperature structure.

1.3.3 Currents

Ocean currents are the equivalent of atmospheric winds. As we will discuss at
length later, the currents are driven either by the direct frictional ’push’ of the
winds or, more typically, due to pressure gradients (since water, just like air, tends
to flow down the pressure gradient—from high to low pressure). More on this
later.

Two schematic representations of the time-mean large-scale surface currents
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of the world oceans are shown in Figure 14. In the top panel which is meant to
illustrate horizontal currents we see that the currents in the major ocean basins
are forming large-scale gyres that seem to be constrained in their extents by the
presence of eastern and western boundaries (the continents). As we will learn
later these are wind-driven gyres that indeed are constrained by the continental
boundaries. Some gyres are rotating clockwise while others are rotating counter-
clockwise. The flow in the Southern Oceans, which we call the Antarctic Circum-
polar Current (ACC), is a notable exception in that it doesn’t seem to encouter
any notable east-west obstructions. The colored arrows in the figure illustrate how
these currents transport waters having different tempereatures around. Generally,
as briefly discussed above, currents tend to do their job at moderating Earth’s
climate by transporting or advecting cold waters towards the equator and warm
waters towards the poles. In the bottom panel an attempt has been made to illus-
trate the vertical flow of large-scale currents, showing how warm currents gener-
ally flow poleward near the surface while cold currents return towards the equator
at depth. Such simplified descriptions are often called ’plumbing diagrams’ by
the sceptics who feel that they foreshaddow important dynamical aspects (i.e. the
governing physical laws) of the flow.

Figure 15gives a better illustration of what real ocean currents look like. If
anything, the time-mean currents are hard to pick out from what appears to be
a rather chaotic or turbulent ocean. The reality is that both the atmospheric and
oceanic circulation are turbulent. There are such things as large-scale and time-
mean currents (and wind systems). These definitely have a role to play, for ex-
ample in equalizing the meridional temperature contrast of the planet. But the
’macroturbulence’ which is so evident in Figure 15, and even more so in the
close-up shown in Figure 16, is also there for a reason. As we will look more
into later, the large-scale currents are hugely constrained in what they can do on a
roating planet like Earth. In fact, the ambient rotation tends to produce east-west
currents, and it is really only the presence of continental boundaries that allow
for large-scale medirional ocean currents that can bring warm waters poleward
and cold waters southward. But, importantly, the ocean macroturbulence is less
constrained by Earth’s rotation and can therefore also help transport heat pole-
ward. More generally, it helps spread the cold and warm waters away from the
mean currents, essentially enlarging the surface area they cover and thus making
exchanges with the atmosphere more efficient.
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Figure 14: Two different schematic representations of the time-mean large-scale
surface currents. (Sources: http://minesto.com; http://scitechdaily.com)
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Figure 15: Numerical model simulations of real ocean surface currents. The color
gives an indication of current strength, with red indicating high speeds. (Source:
https://www.youtube.com/watch?v=sgOgXL4GVwA)

Figure 16: A close-up snapshot of currents off the east coast of North and Cen-
tral America. (Source: https://svs.gsfc.nasa.gov/10841; also search for ’perpetual
ocean’ on youtube)
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1.3.4 Waves

The purpose of waves in nature is to transmit energy from one place to another.
With waves, energy is transmitted through a medium which itself doesn’t need to
move much. So Earth’s oceans (and atmosphere) are full of waves of all possible
frequencies and wavelengths. Waves also transmit information; they are nature’s
way of letting one place of the ocean know what happens somewhere else.

Some waves are easily observed by us, for example the high-frequency sur-

face gravity waves driven by winds. They come in the from of what is called wind

sea which are locally generated or in the form of swell which are also wind-driven
waves but waves that may have travelled hundreds if not thousands of kilome-
ters away from their generation region—before they eventually break on a beach
(Figure 17). We also now know that the periodic rise and fall of the sea surface
once or twice a day is due to tides, waves waves that are generated by the grav-
itational forces from the moon and the sun and which travel around the planet
endlessly and, to their credit, in an orderly fashion. But there are also waves that
normally escape our immediate attention, simply because their frequencies are
so low or wavelengths so long that we simply are not able to detect them as we
look out over the ocean from the beach. The so-called planetary Rossby waves

(Figure 18) are perhaps the most peculiar waves found on our planet as they owe
their very existence to the rotation of the planet. They are so huge and have such
low frequencies (or long periods) that they are really just observable by satellite
(Figure 18).

Yet other waves escape our immediate attentcan because they don’t travel on
the sea surface itself but rather at depth—as so-called internal waves. The phe-
nomenon of ’dead waters’ was studied at the turn of the last century by a Swedish
oceanographer named Vagn Walfrid Ekman. He received reports from Fritjof
Nansen that his ship Fram, on which he tried to cross the Arctic Ocean to reach the
north pole, had experienced a mysterious drag force when sailing through partic-
ularly brackish (very low salinity) waters. Ekman did laboratory experiments that
revealed that the drag was real and due to waves forming by the boat disturbing
the interface between the fresh and therefore light surface layer and denser water
layers underneath (Figure 19). Internal waves radiated energy away from where
the boat disturbed the interface, and it was this radiative loss of energy that caused
a drag on the boat.
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Figure 17: Examples of wind-generated surface gravity waves: (top)
locally-generated wind sea and (bottom) remote-generated swell. (Sources:
http://pnwcirc.org; Stewart, 2008, Fig. 17.4)
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Figure 18: A planetary Rossby wave travelling from east to west at low latitudes,
as captured by satellite observations of sea surface height. (Source: http://www-
po.coas.oregonstate.edu/research/po/research/rossby_waves/chelton.html)
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Figure 19: The phenomenon of ’dead waters’, internal waves created when a ship
sails through a light surface layer overlying denser waters. (Source: Cushman-
Roisin and Beckers, 2011, Fig. 1.4[Cushman-Roisin and Beckers(2011)])
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2 The stratified ocean

After a brief introduction to some of the main concepts related to the oceans and
their circulation, we will now step back and start to better define what we really
mean by some of the concepts raised above. What we call geophysical flows,
i.e. flows pertaining to the environment of a planet like the Earth, have at least
two characteristics that distinguish them from flows, say, in blood vessels, in our
bath tub or around an airplane wing. These two distinguishing characteristics are
that 1) the fluid is density stratified and 2) the flow is influenced by the rotation
of the planet itself. We will come back to the effect of rotation later and start here
with the concept of density stratification and how it is related to both potential
energy of a water column and, ultimately, to ocean flows themselves. We will see
that much of the large-scale flow on the planet can be understood as a result of an
uneven density field.

2.1 Static stability

A water column which is made to be lighter at depth and denser above, for ex-
ample by warming at depth and cooling above, becomes statically unstable. The
most familiar example to most is water warmed in a pot on the stove top (Fig-
ure 20). Under such conditions, if a dense fluid parcel1 from near the surface gets
a tiny kick downwards, it will soon find itself surrouned by ligther fluid parcels
than before and will hence continue to sink since it is denser than these other
parcels. And conversely with a light fluid parcel from depth which gets a small
kick upwards. The whole fluid column will spontaneously and quickly overturn

so that light water rises up and dense water sinks down. The vertical overturning
motion is called convection and the end result is a water column with lower center
of mass and lower gravitational potential energy (we’ll get back to this below).

After this convective adjustment we can repeat the same thought experiment.
If a fluid parcel from near the surface is now displaced downwards it will find
itself lighter than its new surroundings and, as a consequence, it will rise back
towards its original position. Instead of growing, vertical disturbances of any kind
are damped out. The fluid is now statically stable.

In fact, when a displaced parcel in a stably-stratified fluid returns back to its
original position it will typically overshoot that position slightly. Then, since the

1What we call a fluid ’parcel’ is a bunch of molecules of gas or liquid that we think of as
flowing together as a unit. A fluid parcel can expand, contract and deform, but it has a fixed mass.
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Figure 20: Convection in the kitchen.

overshooting brings it in contact with waters of still different densities, it will turn
and flow the other way again. The result is a vertical oscillation, and the frequency
of this oscillation increases as the vertical density gradient, the stratification, in-
creases. This buoyancy frequency is

N =

(

− g

ρ0

∂ρ

∂z

)1/2

,

where g is the gravitational accelleration, ρ0 is some reference density and ∂ρ/∂z
is the background (unperturbed) vertical density gradient. For stably-stratified
conditions ∂ρ/∂z < 0 and the buoyancy frequency is a positive real number—the
natural frequency of oscillation if the density stratification is disturbed. If instead
∂ρ/∂z > 0, i.e. if we have dense fluid on top of light fluid, N is becomes imag-
inary (from taking the square root of a negative number). Mathematically, this
indicates that disturbances don’t oscillate but will in fact grow. We have an insta-
bility which grows into the convective overturning motion. So some of the vertical
motions we can observe in the upper parts of the oceans are driven by such unsta-
ble vertical density stratifications—set up, for example, by cooling of the ocean
by the atmosphere.
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2.2 Stratification and potential energy

The gravitational potential energy2 of an individual water parcel of mass m =
ρdV , where ρ is its density and δV its volume, is

pe = mgz

= ρgzδV,

Note that z is the height above some arbitrary reference level (let’s put it to the
bottom of the ocean). Then the total potential energy (PE), summed over a bunch
of water parcels, is

PE =
∑

i

ρigziδVi,

or, in the continuous limit of infinitesimal volume elements,

PE =

∫∫∫

ρgz dV,

where the integral is over all space, say the entire volume of the ocean. So the
geographic distribution of the height of the density field determines the PE. The
higher up dense waters are and the lower down light waters are, the higher is the
PE.

2.2.1 Potential energy of a stratified water column

Figure 21 shows three water columns that all have the same height and the same
total mass. But the mass is distributed differently with height, i.e. the water density
is distributed differently with height, in the three cases. The gravitational potential
energy of each water column (per unit horizontal area) is

PE =

∫

ρgz dz,

where the integral is now taken over the height of the colum. It can be shown (try
it out!) that the ’well-mixed’ column in the figure, where the density is the same
from top to bottom, ρ = ρ, has the highest PE. The column where density changes

2A water parcel also has internal potential energy caused by the pressure field, but we ignore
this here.
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linearly with height, from ρ1 = ρ −∆ρ at the top to ρ2 = ρ + ∆ρ at the bottom,
has a somewhat lower PE. In other words, the gravitational center of mass of this
column, defined by

z̄ =

∫
ρz dz
∫
ρ dz

,

is lower than in the well-mixed column. Finally, if the total mass is separated into
two well-mixed slabs of equal thickness and with densities ρ1 and ρ2, the center
of mass and PE are even lower. The stronger the stratification, i.e. the stronger the
density jump, the lower the PE.

2.2.2 Energetics of a slanted density stratification

We have seen that a water column with dense water lying on top of light water
is statically-unstable and will overturn until it is again statically stable. In the
process potential energy is converted into kinetic energy (the convective motion).
When all settles down in the end the kinetic energy has been lost into heat (created
by friction). So the end state is one of a water column with lower PE than it had
to begin with. Conversely, if one starts with a statically stable water column in
which the density field is also completely flat, then reorganizing water parcels
in the vertical, i.e. replacing lighter parcels near the top with heavier parcels from
deeper down, will raise the PE. In other words, stirring or mixing the water column
vertically is energetially costly, requiring an external source of mechanical energy
that can do work against gravity. In contrast, horizontal stirring of water parcels
in such a flat density field does not raise the PE and is therefore easily done—the
only work done is that fighting friction.

When the density field is slanted or tilted, as illustrated in Figure 22, the situ-
ation becomes a little bit more complex. Moving water parcels around can either
raise PE (requiring an external mechanical energy source to do so) or it can release
PE and set off motion.

Let’s consider the three fluid parcels A, B and C shown in Figure 22. Parcel
C is the lightest one, parcel A has an intermediate density while parcel B is the
heaviest one. Exchanging parcels A and C means lifting a relatively dense parcel
(A) while lowering a relatively light parcel (C). The end result is a heightening of
the center of mass and an increased PE. Work must be done on the fluid to acheive
this. If instead exchanging parcels A and B, a parcel with relatively low density
(A) is lifted and a parcel with relatively high density is lowered. The end result
is a lowering of the center of mass and a decreased PE. Finally, if parcel A was
exchanged with another parcel having the same density, i.e. being situated in the
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Figure 21: The gravitational potential energy for three different density stratifica-
tions. (Source: Knauss, 2005, Fig. 2.6[Knauss(2005)])
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Figure 22: The exchange of fluid parcels, either between points A and C or be-
tween points A and B. (Source: Vallis, 2006, Fig. 6.9[Vallis(2006)])

same layer in the figure (not shown in the figure), the net effect would be a zero
change in PE.

As seen, the outcome, i.e. whether PE is increased or decreased, depends on
the angle of the movement relative to the angle of tilt of the density field. If the
angle of the exchange (relative to the horizontal) is bigger than the angle of the
stratification, then PE is increased. If, however, the angle is smaller than that of
the stratification (but still larger than zero with respect to the horizontal) PE is
released and motion can be induced. This type of motion is sometimes called
slantwise convection.

A little extra:
Let’s quantify the change in PE when parcels A and C are interchanged.

It is the PE after the exchange minus the PE before the exchange. If ρA and
ρC are the densities of the two parcels (let’s assume that the volumes are the
same) and zA and zC are the heights before the exchange, then the change in
potential energy (per unit volume) is

∆PE =

after
︷ ︸︸ ︷

(gρAzC + gρCzA)−
before

︷ ︸︸ ︷

(gρAzA + gρCzC)

= −g [(ρC − ρA) (zC − zA)]

= −g∆ρ∆z.

30



For small displacements ∆z we can write

∆ρ =
∂ρ

∂z
∆z,

where ∂ρ/∂z is the background vertical density gradient (the density gradient
before we start exchanging fluid parcels). So we get

∆PE = −g
∂ρ

∂z
(∆z)2,

and for ∆z > 0 (since point C is higher than point A initially) and ∂ρ/∂z < 0
(since the vertically density stratification is stable) we get ∆PE > 0. So
potential energy increases, as we argued informally above.

When considering the exchange between particles A and B, we also have
to account for density changes in the horizontal direction. For small displace-
ments ∆x and ∆z, the change in PE becomes

∆PE = −g

(
∂ρ

∂x
∆x+

∂ρ

∂z
∆z

)

∆z.

If we now introduce the slope of the exchange path

sex =
∆z

∆x

and the slope of the background density field

sρ = −∂ρ/∂x

∂ρ/∂z
,

the expression becomes

∆PE = −g

(

−sρ
∂ρ

∂z
∆x+

∂ρ

∂z
sex∆x

)

sex∆x

= −g
∂ρ

∂z
(∆x)2 (sex − sρ) sex.

For a stable density stratification (∂ρ/∂z < 0) the sign of ∆PE depends
on the size of sex relative to that of sρ. For sex > sρ we get ∆PE > 0,
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an increase of PE. As with the exchanges between A and C, work must be
done on the fluid to acheive this. When sex = sρ there is no change in PE, as
discussed above. Fluid parcels can easily (at low energetical cost) travel along
layers of constant density. Finally, and this is the more interesting situation,
for 0 < sex < sρ we get ∆PE < 0, i.e. a lowering of PE. This exchange is
hydrodynamically unstable (parcel A will continue to rise and parcel B will
continue to sink), so the process will speed up.

2.2.3 Available potential energy—APE

So we have seen that it is possible to release PE from a tilted density stratification
under certain types of exchange of fluid parcels. Let’s look again at this again,
but now in a bulk or integral sense. Consider the two configurations of a two-
layer stratification in Figure 23. The two cases have exactly the same volumes of
fluid with density ρ1 and ρ2. But a relatively straightforward calculation will show
that the configuration where the interface separating the two density layers is flat
has a lower total gravitational potential energy than the configuration where the
interface is tilted. Getting from the highest to the lowest PE configuration requires
exchanges of water parcels within each density layer, exchanges that must obey

the relationship between slopes that we discussed above.
The kinetic energy of these flows is equal to the PE which is released by the

flattening. So if friction is negligible

∆KE +∆PE = 0.

This potential energy that can be extracted and converted to kinetic energy by
slantwise convection is termed available potential energy (APE). So, to use the
terminology introduced above, slantwise convection releases APE.

Most of the large-scale motions in the atmosphere and also much of the mo-
tions in the ocean are forms of slantwise convection. Just think about how the un-
even warming from the sun creates large-scale latitudinal density gradients. Ver-
tical convection ensures that the vertical density gradient is almost always stable
and, as a result, we are left with a tilted density field—which nature tries to flatten
out to lower APE. The end result, if this process gets to act alone, is a flat density
field. Such a flat field has, by definition, zero APE.
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Figure 23: The concept of Available Potential Energy (APE) as the difference
between the arrengement of the two fluid layers in panel a and b. (Source: Knauss,
2005, Fig. 2.7)

2.3 The oceanic equation of state

Now that we’ve been introduced to the importance of density variations in influ-
encing the ocean energetics and even the ocean circulation, we will finally move
on to density itself. In the discussions above we have repeatedly mentioned how
warm waters are light waters. But it’s now time to get more precise and acknowl-
edge that density of sea water is a complex function of temperature, salinity and
pressure. So we write

ρ = ρ(T, S, p).

Roughly speaking, density decreases with rising temperature while it increases
with rising salinity and pressure. But unlike for the atmosphere, where the ideal
gas law can often be used, we only have imperically-derived polynomial expres-
sions for the oceanic equation of state. So water density as a function of temper-
ature, salinity and pressure is measured carefully in laboratory experiments and
the data are then fit in some least-squares sense to polynomial functions. The in-
ternationally agreed definition have changed over time. Currently it is termed the
Thermodynamic Equation Of Seawater - 2010 (TEOS-10).

As it turns out, ocean water has a density that is always higher than 1000 kgm−3.
So to save a little bit of space and time oceanographers typically subtract one thou-
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sand and report ocean densities in terms of the density anomaly

σ(T, S, p) = ρ(T, S, p)− 1000 kgm−3.

However, one often just says or writes ’density’ when in fact one means density
anomaly.

When studying the distribution of ocean density to assess whether the water
column is statically stable or not, special care must be taken. When doing the
thought experiments mentioned above of moving a water parcel vertically to see
whether it becomes denser or lighter than the new surrounding parcels, we can
assume that the parcel keeps its original salinity and, approximately, its original
temperature (for adiabatic motion with no heat exchange). But it will experi-
ence a different pressure at the new level, and the density adjustment to this new
pressure—it will contract, increasing its density, if moved downward—will be in-
stantaneous, moving with the speed of sound. The point is that all other water
parcels that our parcel encounters at the new level will also have adjusted to the
pressure at that level. So the direct pressure effect on density will be the same for
all parcels.3

If we want to compare the density of two water parcels, to see which is lighter
than the other, we therefore need to compare them as if they were situated at the
same pressure. In practice, what this means when we wish to study the static sta-
bility of an entire water column (from observations of salinity and temperature as
functions of pressure), is that we need to compare the densities as if all parcels
were situated at the same pressure. We simply ignore the pressure effect on den-
sity and ask “what density would all these parcels have if they were brought to
some common pressure, say to the surface?”. So instead of comparing σ(T, S, p)
one would compare σ(T, S, p0) where the reference pressure p0 is fixed. The sur-
face pressure is the most common reference pressure, and the density anomaly
referenced to the surface has been termed “sigma-tee”, σt = σ(T, S, 0).

Slight additional complications arise since the temperature of a water parcel
is itself a function of pressure. The first law of thermodynamics dictates that an
increase in pressure in an adiabatic process (no heat flow) will do work on a water
parcel and therefore cause an increase in the internal energy of the parcel. The

3In an ocean (or bathtub) where all the water has the same salinity and temperature, the water
at the bottom will still be denser than the water on the top due to the higher pressure at depth. But
if we moved a water parcel from the top down, it would not bounce up again. It would instead
(nearly) instantaneously adjust its density to the new pressure to attain the same density as the
parcels further down. We would not see convection, neither waves, but steady motion of our
parcel (given by the initial push we gave it) until it got slowed down by friction.
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internal energy is proportional to the temperature (a measure of the intensity of
random movement of molecules) and, so, the temperature will increase. Hence, if
a water parcel originally found near the sea surface is moved adiabatically down
to greater depts, where the pressure is also greater, its temperature will rise. One
may therefore encounter situations where the in situ temperature (the tempera-
ture measured by a probe lowered down through the water column) increases with
depth—just from this pressure effect. One therefore gets the impression that den-
sity decreases with depth and that the water column is unstable. Not necessarily
so! The adjustment to a change in pressure is instantaneous (just as the density
adjustment itself is), so if a water parcel is displaced vertically it imediately ad-
justs its temperature to the pressure at the new depth—and so have all the other
water parcels at that same depth done. To assess the real static stability of a wa-
ter column, or part of a water column, one has to remove the pressure effect on
temperature and density.

To remove this additional pressure effect we introduce potential temperature4

θ(T, p, p0) which is the temperature the water would have if moved adiabatically
from pressure p to reference pressure p0. Then the corresponding potential density

and potential density anomaly is a function of potential temperature, salinity and
the (fixed) reference pressure, i.e.

σθ = σ(θ, S, p0). (1)

So plotting the potential temperature and potential density of a set of measure-
ments is like plotting the temperature and pressures the various parcels would
have if they were all brought (adiabatically) to the same pressure level where they
could meet and compare temperature and density. Only then, with the pressure
effect removed, can we assess the true static stability properties of the water col-
umn. An example is shown in Figure 24. We see, from the data plotted, that the in

situ temperature increases at great depths and that σt decreases accordingly, giv-
ing the impression of an unstable water column at depth. Plotting instead potential
temperature and potential density—using potential temperature—shows that the
water column is in fact stable.

Normally one choses the sea surface as reference pressure (and potential den-
sity is then termed σ0 or simply σθ), but it is also possible to use other reference
pressures, e.g. 1000 dbar (approximately 1000 m depth5), 2000 dbar or 5000 dbar

4The newest thermodynamic equation of sea water, TEOS-10, uses the term conservative tem-

perature instead.
5The unit of pressure commonly used in oceanography is the decibar (1 dbar = 0.1 bar =
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Figure 24: Deep temperature profiles (left) from the Pacific Ocean, showing both
in situ temperature (t) and potential temperature (θ). Also shown (right) are pro-
files of potential density anomaly, using in situ temperature (σt) and potential
temperature (σθ). (Source: Stewart, 2008, Fig. 6.9)
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Figure 25: Potential density in the western Atlantic, referenced to two different
pressures, 0 dbar (top) and 4000 dbar (bottom). (Source: Stewart, 2008, Fig. 6.10)

(σ1, σ2, σ5), etc. In fact, when assessing the stability of the water column at great
depths, a shallow reference pressure like 0 dbar may give wrong answers. An ex-
ample of this is shown in Figure 25. Plotting potentidal density referenced to the
sea surface, 0 dbar, gives the impression that waters below about 3000–4000 m
are statically unstable. Plotting the same data but now referenced to 4000 dbar
shows that deep waters are indeed stable.

As mentioned above, the equation of state is complicated. But for some ap-
plications where only small density deviations are of intereste, e.g. in the study
of internal waves where the background density stratification moves up and down
with the waves, a a linear equation of state can be used for potential density. We
then write

ρ = ρ0 [1− α (T − T0) + β (S − S0)] ,

where ρ0 is a reference density and α and β are the thermal expansion coefficient

104Pa). As it turns out, the pressure increases about 1 dbar for each additional meter deeper one
goes down into the water column. So the pressure at 1000 m depth is around 1000 dbars.
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and the haline contration coefficient, respectively. Both are positive numbers that
themselves depend on temperature, salinity and pressure. This linear fit to the full
equation of state shows us what we expect, namely that water density decreases
with temperature and increases with salinity.

2.4 Water types and T-S diagrams

Salinity and temperature (or, more frequently, potential temperature) observations
are sometimes plotted in so-called T-S diagrams, with salinity on the x-axis and
temperature on the y-axis (e.g. Figure 26). So these are scatter plots of temperature
vs. salinity. Such a plot can often be used to identify water masses in the data set.
A water mass is defined by a rather narrow range of temperature and salinity that
was set when the water in question was exposed to the atmosphere before it sunk
deeper into the ocean. So the properties of water masses are primarily set by
air-sea fluxes and, as one can imagine, the T-S signature of water masses formed
at high latitudes is different from that of water masses formed at lower latitudes.
Waters modified by heat and freshwater fluxes at the sea surface in the Arctic
certainly take on different T-S properties than waters modified by air-sea fluxes in
the Mediterranean Sea.

So water masses often show up as extrema in T-S diagrams. The gradual mix-
ing that occurs in the ocean interior then connects these extrema (as shown in
Figure 26). When isolines of (potential) density are also added to the T-S dia-
gram, one can also see which water masses are denser than others and whether
the mixing between water masses is primarily isopycnal (taking place while con-
serving potential density) or diapycnal (associated with a density change). These
properties of the T-S relation can then be tied to discussions on the energetics of
mixing, as discussed in the sections above.

Note also that if one has obtained a lot of T-S observations and then keep track
of the volume of different T-S classes, one can make so-called T-S-V plots which
show the relative volume of various T-S classes. An example, based on a global
temperature and salinity dataset, is shown in Figure 27. The plot illustrates that
the range of T-S values in the world oceans is relatively modest and that each
of the big oceans have their own T-S signature. The Pacific Ocean dominates in
terms of volume, simply because it is the biggest ocean of them all. But we also
see that the Atlantic and Southern/Indian oceans also have their distinct positions
in T-S space. This indicates that air-sea fluxes as well as internal mixing processes
in the different oceans are distinct.

Note, incidentally, that the Atlantic Ocean water masses are saltier than those
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Figure 26: Temperature and salinity observations from a hydrographic pro-
file plotted (left) as a function of depth and (right) in a so-called T-
S diagram. Whereas potential density is also plotted as a function fo
depth to the left it is instead contoured in the T-S diagram. (Source:
http://www.soes.soton.ac.uk/teaching/courses/oa631/hydro.html)

in the Pacific Ocean6. Because of the higher salt content in the Atlantic, there is a
higher production of dense waters there. In fact, the large-scale vertical overturn-
ing circulation through the Atlantic Ocean, the Atlantic Meridional Overturning
Circulation (AMOSC) is much stronger than the corresponding circulation in the
Pacific Ocean (PMOC).

6Why this is so is an active topic of research in the climate community. It may simply be
because the Pacific Ocean is larger and can therefore get more dilluted by rain
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Figure 27: A T-S-V plot, illustraing the volume of various T-S classes found in
the world oceans. (Source: Stewart, 2008, Fig. 6.1)
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3 Fluxes through the sea surface

The ocean circulation is driven by heat and freshwater fluxes through the sea sur-
face and by the wind stress. An uneven distribution of heat and freshwater fluxes
sets up temperature and salinity gradients, i.e. density gradients that can drive
flows, as discussed in the previous section. And the wind stress sets up a drag on
the ocean surface that can drive the circulation directly. What is really going on is
a little more complicated, involving horizontal pressure gradients, as we will see
later. But we now first have a look at the various fluxes themselves.

3.1 Heat and freshwater fluxes

The total or net heat flux into the ocean through the ocean surface is the sum of
four contributions: shortwave radiation from the sun (always into the ocean, so
positive), longwave radiation (can go both ways), a ’latent’ heat loss when water
evaporates (always out of the ocean, so negative) and a ’sensible’ heat flux due to
temperature differences between ocean and atmosphere (can go both ways). So
we write ∑

Q = Rsw +Rlw +Ql +Qs. (2)

The two first fluxes are purely radiative while the two last involve turbulent fluid
motions in boundary layers at the bottom of the atmosphere and the top of the
ocean.

The global-mean ocean temperature doesn’t change much from year to year.
So, to a first approximation there is a global and yearly mean balance between
incomming short wave radiation from the sun and a heat loss from the other terms,
i.e.

< Rsw >= −
(
< Rlw > + < Ql > + < Qs >

)
,

where < · >indicates the spatial (global) average whereas · indicates the time
(yearly) average. But, of course, there need not be a balance at any one location,
not even when averaged over a year. In the yearly mean, low latitudes receive
more heat by shortwave radiation than what is lost via local vertical fluxes, and
the situation is opposite at high latitudes. This is where the ocean circulation and
its poleward heat transport comes into play.

Shortwave radiation (and a bit of marine optics) Shortwave radiation is the
radiation emitted by the sun. The incoming solar radiation that hits Earth’s surface
a given latitude varies during the year because of the inclination of the Earth’s
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axis of rotation, as shown in Figure 28. The incoming radiation in the southern
hemisphere during austral summer is slightly stronger than that in the northern
hemisphere during boreal summer due to the eccentricity of Earth’s orbit around
the sun. Other asymmetries between the radiation that reaches the ocean surface
is largely due to asymmetries in the distribution of land masses and atmospheric
absorption.

The sun emits electromagnetic radiation as a black body7 at a temperature of
5800–5900 K. As a result, and according to Plank’s law for such black bodies
(describing the energy emitted as a function of frequency or wavelength), most of
this radiated energy is in what we call the ’visible band’, having wavelengths of
400–700 nm. Absorption and scattering in Earth’s atmosphere reduces the energy
density that reaches the ocean and land surface, but the irradiance spectrum, or
downward energy flux as a function of wavelength (having units of W m−2m−1),
still resembles that of the original black body (Figure 29). Of course, the short-
wave flux intensity that eventually hits the ocean in a particular position on one
given day is a function of the local cloud cover. A dense cloud cover increases
both atmospheric absorption and scattering, leaving less energy to reach the sur-
face.

The shortwave radiation that penetrates through the sea surface is of course
also scattered and absorbed by the molecules in the sea water. So the downward
irradiance is attenuated with depth. The absorption is in fact much more severe
in water than in air and, as shown in Figure 30, at 100 m depth there is not much
downward energy flux left.

The irradiance Γ decays approximately as

∂Γ

∂z
= −εΓ,

where ε is called the attenuation coefficient (having units of m−1). So for a con-
stant ε the irradiance decays exponentially with depth, and the relationship be-
tween the irradiance at depths z1 and z2 becomes

Γ(z2) = Γ(z1)e
−ε(z2−z1).

Both absorption and scattering are wavelength-dependent. So the attenuation
coefficient ε is also wavelength-dependent. For clear sea water, water having very
little particulate matter in it, the absorption has a minimum around 450 nm, in the

7A black body, precicely defined, is a body which absorbs absolutely all radiation it receives
and which then emits radiation out again according to its own temperature.
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Figure 28: The seasonal variation in incomming solar radiation due to Earth’s
inclined rotation axis relative to the orbital plane around the sun. The values
contoured in the lower panel are the downward energy flux (having units Wm−2)
into the ocean as a function of month of the year and latitude (Source: Stewart,
2008, Figs. 4.1 and 5.3)
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Figure 29: The irradiance spectrum at the top of the atmosphere and at Earth’s
surface. The theoretical black body spectrum, given a solar temperature of 5900 K
is also shown. (Source: Stewart, 2008, Fig. 5.2)
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Figure 30: Observations of the irradiance as a function of wavelength at 0, 1, 10
and 100 m in clear sea water. (Source: Knauss, 2005, Fig. 12.13)
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Figure 31: The absorption, measured by the attenuation coefficient ε, as a function
of wavelength for clear ocean water. (Source: Knauss, 2005, Fig. 12.11)

blue range of the visible spectrum, as illustrated in Figure 31. This is why the
only sign of downward irradiance reaching as far down as 100 m in Figure 30 is
found at those wavelengths. It is also why is why clear ocean water looks blue to
us looking at it from land. What we observe is light that has been scattered back
to us. All wavelengths are scattered back towards the surface, but the blue light is
what ’survives’ without being absorbed.

Finally it should be mentioned that particles in the water, both phytoplankton,
dead organic material and suspended sediments, absorbs short wavelengths (like
blue) more efficiently than long wavelengths. So in waters full of organic material
or full of sediments, like what is typically found in the coastal zone, the water
color we observe moves from blue towards green and even yellow-brown. This is
illustrated in Figure 32 which shows the spectral intensity of backscattered light
from the sea surface as a function of chlorophyll (and thus of phytoplankton con-
centration). As the chlorophyll concentration increases, the backscatter from short
wavelengths is drastically damped (absorbed) and the peak backscatter moves to-
wards longer wavelengths. An increased particle concentration also causes more

46



Figure 32: The intensity of light backscattered through the sea surface as a func-
tion of wavelength for various chlorophyll concentrations. (Source: Knauss, 2005,
Fig. 12.16)

total absorption (integrated over all wavelengths). But at very high chlorophyll
concentrations the backscatter intensity at very long wavelengths increase since
scattering then dominates over absorption; at such high particle concentrations
more of the incoming light is scattered back than what is being absorbed.

Details of scattering and absorption makes up the field called marine optics.
It also includes the concept of light refraction which explains why, for example,
the oar sticking into the water from a rowing boat appears to ’break’ and take on a
different angle in the water than what it had in the air. Marine optics is of course
hugely important for life in the ocean. We will, however, not pursue such details
here in this course on ocean physics and dynamics. From the above observations
we should nevertheless recall that the incoming shortwave radiation penetrates
some ways down into the water column. And the absorption at the various depths
ultimately acts as an energy source that can warm up the water there.
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Long-wave radiation The sea surface also emits black body radiation—just as
the sun does—but at much longer wavelengths (in what we call the infrared part
of the spectrum). The total energy flux emitted, integrated over all wavelengths,
waries with temperature as

Rlw = csT
4
K ,

where TK is the ocean temperature on the Kelvin scale and cs is the Stefan-
Boltzmann constant, 5.67 × 10−8 Wm−2 K−4. For a global-mean temperature
of the ocean of around 18◦C, the total outgoing longwave flux should be about
400Wm−2, i.e. much more than the global-mean incoming shortwave raditaion
(see Fig. 28). But the ocean surface also receives black body radiation from the
lower atmosphere (it too has a non-zero absolute temperature), and it is the differ-

ence between these two fluxes that makes up the net loss that goes into eqn. (2).

Latent heat flux The ocean is cooled during evaporation since the phase change
from a liquid to a glass state requires energy. A simplest possible model of the
resulting heat flux—defined to be positive when pointing into the ocean—is

Ql = ρace (ea − ew) |U |. (3)

Here ew and ea are the specific humidities of the air at the sea surface and at some
height above (typically at 10 m), |U | is the wind velocity magnitude (also typically
taken at 10 m height), ρa is the density of the air and ce is a transfer coefficient.
A lower humidity at 10 m than at the sea surface (this is the typical situation)
results in a negative flux, i.e. a latent heat loss from the ocean. Why should the
flux be proportional to the strength of the wind? The wind speed is really meant
as an indication or a surrogate of the turbulence level in the atmospheric boundary
layer; and higher tubulence levels mean faster vertical transport of the newly-
formed moist air away from the sea surface as well as faster resupply of drier
airs—ready to pick up and bring away some more water molecules.

Sensible heat flux The sensible heat flux is simply due to a temperature contrast
between the sea surface and the air masses above. This is the good old tendency
for heat to flow down the temperature gradient. So the sensible flux is typically
modeled as

Qs = ρacs (Ta − Tw) |U |, (4)
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where Tw and Ta are the air temperatures at the sea surface and at some height
above (10 m again) and cs is yet another transfer coefficient. Again the strength
of the flux is thought to be proportional to the wind speed, for the same reason:
stronger winds mean higher turbulence levels, and turbulence is a way of enhanc-
ing the vertical transport of properties (temperature) towards or away from the
surface.

Freshwater fluxes Salts are brought into the ocean by drainage (rivers) from
land, not by air-sea fluxes. But the salinity near the surface can change by either
removal or addition of freshwater, i.e. water that has no or very little salt in it.
Rain is a source of freshwater to the sea surface, and this addition of freshwater
dillutes the ocean surface layers to lower the salinity. Conversely, when water
evaporates the salt molecules are left behind—and the salinity increases. Note
that the evaporative freshwater fluxes are related to latent heat fluxes whereas the
fluxes due to rain are not.

3.2 Momentum fluxes

The winds in the lower atmosphere excerts a frictional drag on the ocean sur-
face which may accelerate the ocean (and, conversely, the ocean surface excerts
friction which decelerates the winds). This wind stress is often modelled as

τ = cDρaU |U |,
where cD is a drag coefficient. Notice how the expression has the same form as
that of fluxes of latent and sensible heat (eqns. 3 and 4). Actually, the wind stress
is a vertical flux of horizontal momentum (ρaU ) into the ocean from above. In
practice, the drag coefficient is not taken to be constant, but varying with the wind
speed and some times also with the sea state (wave height). The drag coefficient is
in general assumed to increase with wind speed, although the increase is reduced
or vanish altogether for wind speeds in excess of 25-30 m/s. The reason why the
air-sea drag coefficient cD saturates for high wind speeds is still debated, but one
suggestion is that it is associated with breaking waves and sea spray.

3.3 The effect of sea ice

The presence of sea ice modifies air-sea fluxes at high latitudes significantly. Let’s
look at momentum fluxes first and how they vary as a function of the sea ice con-
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Figure 33: Estimates of the wind stress on the ocean surface as a function of sea
ice concentration (Source: Martin et al., 2016, Fig. 9)

centration, in other words the fraction of ocean surface covered by ice. At low sea
ice concentrations any increase in the amount of sea ice will make the surface feel
rougher or bumpier to the winds. So the frictional coupling between atmosphere
and ocean is enhanced and the effective wind stress increases. At very high sea
ice concentrations however, the ice flows start bumping into eachother and are no
longer freely responding to the winds. As the ice concentration approaches one
(the entire surface is covered by ice), and in particular if the ice is also thick, the
wind can blow all it wants and the ice will still not move...and neither will the
ocean currents. There is, in other words, an optimal sea ice concentration where
the wind stress (for any given wind speed) is optimal, as shown in Figure 33.

So momentum fluxes from the atmosphere to the ocean can either be enhanced
or reduced by sea ice. In contrast, a sea ice cover always reduces air-sea heat
fluxes. Since the albedo (the fraction of reflected shortwave radiation) of sea ice
is higher than that of the ocean surface (30–95% vs. about 8%), a much larger
fraction of the incoming shortwave solar radiation is simply reflected back to the
atmosphere over sea ice. And the radiation which is absorbed by the ice only
reaches a few millimeters into it. Any heat transport through the ice itself has
to take place my molecular diffusion or conduction, a slow process compared to
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turbulent transport. In fact, the bulk of the direct heat flux between ocean and
atmosphere in ice-covered regions takes place in ’leads’ or ’polynyas’, openings
in the sea ice created when for example the wind blows sea ice away from land.
In such openings the heat fluxes may be particularly intense, reaching more than
250Wm−2 in winter.

The formation and melting of sea ice is intimately related to both heat and
freshwater fluxes through the ocean surface. Clearly, sea ice can be melted by heat
fluxes from the ocean. But sea ice formation is also associated with heat fluxes
from the ocean. During the polar night, the ocean is cooled by sensible and latent
heat fluxes to the atmosphere—and the atmosphere is warmed up and also picks
up moisture. When the surface waters have reached freezing temperatures, about
-1.9◦C, the heat transfer to the atmosphere is maintained by the energy release as
liquid water freezes to a solid. The details are subtle, and some of the latent heat

of fusion (the energy released by the phase change from liquid to solid state) is
also sent back to the upper ocean. But one thing it is easy to agree on is that the
direction of net heat fluxes is everywhere upwards, from the ocean, via a phase
transition from liquid water to ice, and eventually to the atmosphere.

When sea ice forms it is primarily pure water that freezes. Some salts are
trapped in ’brine pockets’ inside the ice, but eventually most is rejected into the
water. So sea ice formation causes a virtual salinity flux into the ocean. At the
near-freezing temperatures the salt injection creates very dense waters which then
sink down into the water column in convective plumes. The fresh water, now in the
form of sea ice, is left behind at the very surface. And when the sea ice eventually
melts, for example next summer, the fresh water remains at the surface. It is light,
after all. So, in fact, the net effect of the seaonal cycle of sea ice formation and
melting is to distill the water, i.e. to remove the salt (sent to deeper layers of the
ocean) from the fresh water (remains at the surface).
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4 The language of nature: Conservation equations

The mathematical treatment of fluid dynamics relies on conservation equations
that all basically say that what goes in of a quantity minus what goes out of a fixed
control volume either has to balance (be of equal size) or result in an increase or
decrease of the quantity within the control volume. It makes sense, doesn it?

4.1 Eulerian and Lagrangian descriptions

The fluid conservation laws are framed as partial differential equations that involve
time derivatives and spatial derivatives. As it turns out, we can study study these
laws either with respect to freely-moving fluid parcels or with respect to control
volumes fixed in space. To see this dual possibility, consider any property of
the fluid, having a concentration (amount of the property per unit volume) which
is a function of both space and time, c = c(x, y, z, t). The change of c, as one
allows the independent variables t, x, y and z to change, is given by the partial
derivatives:

dc =
∂c

∂t
dt+

∂c

∂x
dx+

∂c

∂y
dy +

∂c

∂z
dz,

where dt, dx, dy and dz are small (“differential”) increments in time and space.
So what is the total time rate of change of c experienced by a fluid parcel (of unit
volume) as it flows around? We divide by dt and get

dc

dt
=

∂c

∂t
+

∂c

∂x

dx

dt
+

∂c

∂y

dy

dt
+

∂c

∂z

dz

dt

=
∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
,

where u, v and w are the velocity components in the x, y and z directions, re-
spectively. So the fluid parcel can experience a change in c due to a real temporal
change where it happens to be located, i.e. the ∂c/∂t term, but also due to itself
moving around through spatial gradients of c. The total or Lagrangian rate of
change experienced by the moving parcel is therefore the sum of the temporal
change at any one point, called the Eulerian rate of change, and the rate of change
due to its moving through a spatial concentration gradient, the advective rate of
change.

In fluid dynamics many like to use D/Dt (instead of d/dt) for the Lagrangian
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rate of change, so we write

Dc

Dt
︸︷︷︸

Lagrangian

=
∂c

∂t
︸︷︷︸

Eulerian

+ u
∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
︸ ︷︷ ︸

advective

,

or, in vector notation,

Dc

Dt
︸︷︷︸

Lagrangian

=
∂c

∂t
︸︷︷︸

Eulerian

+ v · ∇c
︸ ︷︷ ︸

advective

,

where v = ui + vj + wk is the three-dimensional velocity vector and ∇ is the
three-dimensional gradient operator

∇ =
∂

∂x
i+

∂

∂y
j +

∂

∂z
j.

The Lagrangian derivative is also sometimes called the material derivative. When
introducing the various concervation equations below we will sometimes start in
the Eulerian reference frame (considering budgets at a fixed point in space) and
other times start in the Lagrangian frame (following a fluid parcel).

4.2 Coordinate system

The Earth is approximately a sphere, so the conservation equations should really
be studied in a spherical coordinate system (Figure 34). If r is the radius of the
sphere and φ and λ denote latitude and longitude (both in radians), then differen-
tial (small) displacements in the zonal, meridional and radial directions will be

δx = r cosφδλ

δy = rδφ

δz = δr,

and the conservation equation above would read

Dc

Dt
=

∂c

∂t
+ u

1

r cosφ

∂c

∂λ
+ v

1

r

∂c

∂φ
+ w

∂c

∂r
,

where u, v and w are the zontal, meridional and radial velocities, respectively.
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Figure 34: Spherical and local Cartesian coordinate systems for use in oceanog-
raphy. (Source: Cushman-Roisin and Beckers, 2011, Fig. 2.9)

But working in a spherical coordinate system is cumbersome. For motions
and displacements that are much smaller than the radius of Earth, a local flat
Cartesian coordinate system is much easier to use and, for most purposes, accurate
enough. What we do is simply set up a local (x, y, z) coordinate system centered
on the latitude and longitue coordinates of the region of ocean we wish to study
(see Figure 34). Then we do our calculations on this plane, simply ignoring the
curvature of the planet.

4.3 Conservation of mass

4.3.1 The full equation

Consider a small box of volume V and density ρ, so that the mass of the box is

m = ρV.

If the box is fixed in space (so here we are in the Eulerian reference frame) and
its volume is constant, then the time rate of change of mass in the box due to flow
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Figure 35: Concervation of mass in a box of volume V = δxδyδz. (Source:
LaCasce, 2015, Fig. 1.1)

through the sides is

V
∂ρ

∂t
= [u(x)ρ(x)− u(x+ δx)ρ(x+ δx)] δyδz +

[v(y)ρ(y)− v(y + δy)ρ(y + δy)] δxδz +

[w(z)ρ(z)− w(z + δz)ρ(z +∆z)] δxδy.

Dividing both sizes by the volume V = δxδyδz gives

∂ρ

∂t
= −δ(uρ)

δx
− δ(vρ)

δy
− δ(wρ)

δz
,

where δ(uρ), δ(vρ) and δ(wρ) are the differences in density fluxes between the
sides of the cube in the x, y and z directions, respectively. In in the limit of a
control volume of infinitesimal size, we arrive at the differential equation form:

∂ρ

∂t
= −∂(uρ)

∂x
− ∂(vρ)

∂y
− ∂(wρ)

∂z
,

or, in vector notation,
∂ρ

∂t
= −∇ · (vρ) .

So the time rate of change of density in an infinitesimal control volume is given by
the convergence (negative divergence) of the density transport into it. Essentially,
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as we outlined at the beginning, the mass in the box increases if there is more
mass flowing into it than leaving it (density is just mass per unit volume).

Note that if we split up the spatial derivaties by the product rule, we can write

∂ρ

∂t
= −

(

u
∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z

)

− ρ

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

,

or
∂ρ

∂t
+

(

u
∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z

)

= −ρ

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

.

In vector notation this becomes

∂ρ

∂t
+ v · ∇ρ = −ρ∇ · v,

or, remembering our definition of the Lagrangian or material derivative,

1

ρ

Dρ

Dt
= −∇ · v. (5)

So for a fluid parcel which is being advected around by the flow around it, the
fractional change of its density is given by the convergence of the flow field. This
makes sense: a converging flow field compresses the fluid and raises the density.

4.3.2 The Boussinesq approximation

The density of air can change considerably througout the atmosphere, say between
the bottom and top of the troposphere. But water density changes very little from
a value just above one thousand kilos per cubic meter (ρ ∼ 1027 kgm−3). The
velocity field however can change by 100% over relatively small distances or over
relatively short time scales. So for most applications in oceanography, the left
hand side of Eqn. (5) is so small compared to the right hand side that it can be
ignored. This is called the Boussinesq approximation, and the mass budget then
reduces to

∇ · v = 0

or
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0,

meaning that the three-dimensional flow field is (approximately) non-divergent. If
the horizontal velocity field is convergent at some point in space, the vertical flow
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there needs to be divergent, and vice versa. So concervation of mass has instead
turned into an expression for conservation of volume. In the remainder of these
notes we will often call this expression the continuity equation.

Making the Boussinesq approximation has several other implications which
we will see below. In deriving these implications we will use the assumption that
density is a constant, say ρ0 = 1027 kgm−3, plus a much smaller deviation that
can change in space and time, i.e.

ρ = ρ0 + ρ′(x, y, z, t),

where
ρ′ ≪ ρ0.

4.4 Conservation of salt

Recall that to estimate density (which we have seen to be central to understand the
motion of the oceans) we need to find the salinity and temperature of the water.
To make predictions we therefore need mathematical expression for the evolution
of ocean salinity and temperature. Again, the basic principle is that the difference
between what comes in minus what goes out of a control volume leads to a change
in the property concentration there.

Consider again the box above but now set up a budget for the amount of salt
flowing in and out. The property to be conserved is the mass of salt per unit
volume ρS (recall that salinity S is the mass of salt per unit mass of water). The
procedure is the same as above and gives the result,

∂ (ρS)

∂t
= −∂ (uρS)

∂x
− ∂ (vρS)

∂y
− ∂ (wρS)

∂z

= −∇ · (vρS) .

We can get to an equation for conservation of salinity by invokinig the Boussinesq
approximation, i.e. by assuming that density is approximately constant so that it
drops out (it’s the same constant that can be taken out of all derivatives). The
resulting equation then becomes

∂S

∂t
= −

(
∂uS

∂x
+

∂vS

∂y
+

∂wS

∂z

)

= −∇ · (vS) .
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But there is one additional transport term that can be added to this equation.
In contrast to mass itself, salt molecules can diffuse across the walls due to ran-
dom molecular motion. The molecules move back and forth randomly, exchang-
ing properties (salinity) as they bump into each other. Since the motion of the
molecules is random, back and forth, there is no net mass transport but a trans-
port of salt down the concentration gradient (from high to low concentration). In
fact, this salt transport is proportional to the actual strength of the conentration
gradient, so that the diffusive flux can be written

F S = −κS∇S

= −κS

(
∂S

∂x
i+

∂S

∂y
j +

∂S

∂z
k

)

,

where κS is the molecular diffusion coefficient or diffusivity for salt.
Hence, the total transport of salt is the sum of the advective component (in-

volving also a net flow and mass transport) and the diffusive component (involving
no net mass transport), or

∂S

∂t
= −∇ · (vS − κS∇S) ,

The molecular diffusivity for salt is constant, so one can take it outside of the
derivatives to give

∂S

∂t
= −∇ · (vS) + κS∇2S,

where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplace operator.
Note, finally, that under the Boussinesq approximation (where ∇ · v = 0), the

salinity equation can also be written

∂S

∂t
+ v · ∇S = κS∇2S,

or
DS

Dt
= κS∇2S.

So the salinity of a parcel moving with the fluid flow changes only by diffusion.

4.5 Conservation of thermal energy

An equation for temperature stems from the first law of thermodynamics which
states that the internal energy of a system can increase if heat flows into it or
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pressure work is exterted on it. The derivation is rather complicated and makes
use of several assumptions. But an approximate and often useful final expression
in terms of potential temperature (where we don’t have to worry about the pressure
effect on temperature) is

∂θ

∂t
= −∇ · (vθ − κT∇θ + JR) .

where κT is the molecular diffusion coefficient for temperature and and JR is a
radiative temperature flux (remember, shortwave radiation is for example able to
penetrate some ways into the water column). So the expression looks similar to
that of salinity except for the extra radiative flux term. Finally, as for salinity, the
Boussinesq approximation allows one to rewrite the advective flux to give

∂θ

∂t
= −v · ∇θ −∇ · (−κT∇θ + JR) ,

or
Dθ

Dt
= −∇ · (−κT∇θ + JR) .

Again, the molecular diffusion coefficient for temperature is constant (but differ-
ent than the one for salinity8), so a final expression can be written

Dθ

Dt
= κT∇2θ −∇ · JR.

4.6 The momentum equations

What we call the momentum equations are really Newton’s second law which
states that mass times acceleration of a particle is given by the sum of forces
applied to it. On a rotating planet a fluid parcel will experience a set of real
forces and in addition virtual forces or, actually, accelerations that come about just
because of the rotation. We will look at the real forces first and now put ourselves
in the reference frame of the moving parcel, i.e. in the Lagrangian reference frame.

8The different molecular diffusivities for temperature and salt (heat diffusion is faster) can
cause some very interesting phenomena, like “double deffusive layering” and “salt fingering”.
Look it up!
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4.6.1 Real forces

Newton’s second law applied to a moving fluid parcel of mass δm = ρδV is

ρδV
Dv

Dt
=
∑

F ,

where Dv/Dt is the (Lagrangian) acceleration of the parcel and
∑

F is the sum
of forces. In terms of the three components of velocity,

ρδV
Du

Dt
=

∑

Fx,

ρδV
Dv

Dt
=

∑

Fy,

ρδV
Dw

Dt
=

∑

Fz,

where Fx, Fy and Fz are forces in the x, y and z directions. The forces experienced
by a fluid parcel are gravity, pressure gradients, and frictional stresses. Below, we
go through each in turn.

Gravity Gravity is a so-called body force, working on every mass element that
makes up the parcel. It points downward, in the negative z direction, or

F g
z = −ρδV g.

So if gravity were the only player in town, the z momentum equation (per unit
volume) would become

ρ
Dw

Dt
= −ρg.

Pressure gradient Presssure is a so-called surface force, acting on the surface
of a fluid parcel. At every point of the surface the pressure force from the sur-
rounding fluid is pointing normal to the surface, into the parcel. Consider again
the fluid parcel shown in Figure 35. The net pressure force in the positive x-
direction (to the right) is the difference between the pressure force acting on the
left face (pushing the parcel to the right) and the pressure force on the right face
(pushing the parcel to the left). Pressure is a force per unit area, so the total force
on each surface is the pressure times the area of that surface. The net force on the
parcel is therefore

F p
x = p(x)δyδz − p(x+ δx)δyδz,
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and setting this into the x component of the force balance gives

ρδV
Du

Dt
= p(x)δyδz − p(x+ δx)δyδz.

Dividing by the unit volume δV = δxδyδz gives

ρ
Du

Dt
=

p(x)− p(x+ δx)

δx
,

or, as we let the size of the control volume become infinitesimally small,

ρ
Du

Dt
= −∂p

∂x
.

The pressure forces in the other two directions take the same form,

ρ
Dv

Dt
= −∂p

∂y
,

ρ
Dw

Dt
= −∂p

∂z
.

Frictional or viscous stresses Viscous stresses also act on the surface of the
fluid parcel. We distinguish between normal stresses, which act perpendicular
to the surface, and shear stresses, which act parallel to the surface. The stresses
are often denoted τij , where the subscripts indicate in what direction the stress is
acting (i), and the orientation of the surface the stress is acting on (j), see Fig. 36.
Two important relations hold for such fluids as we consider here: (1) we have
τi(−j) = −τij , that is, stresses on the opposite side of the same surface are equal
in magnitude and oppositely directed (cf. Newton’s third law), and (2) there is a
symmetry with τij = τji, which expresses that the total moment about an arbitrary
point in the fluid must be zero.

To derive the net force due to viscous stresses, let us first consider the shear
stresses in the x-direction that acts on surfaces oriented in the positive and negative
z-directions (i.e., the "top" and "bottom" of the fluid parcel depicted in Fig. 37).
To obtain the force, we must multiply by area, hence we have

F (xz)
x = τxz(z + δz)δxδy + τx(−z)(z)δxδy.

Now, since τx(−z)(z) = −τxz(z), we get

F (xz)
x = τxz(z + δz)δxδy − τxz(z)δxδy.
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Figure 36: Normal and shear stresses acting on a volume of fluid. The direction
normal to the surface, pointing away, defines the orientation of the surface. Hence
we see here examples of (1) a normal stress, τxx, directed along positive x and
also acting on a surface oriented in the same direction, and (2) a shear stress, τxz,
which is also in the positive x-direction but acting on a surface oriented in the
direction of positive z.

We find similar relations for the other stresses in the x-direction:

F (xx)
x = τxx(x+ δx)δyδz − τxx(x)δyδz,

F (xy)
x = τxy(y + δy)δxδz − τxy(y)δxδz.

Dividing by volume, as done before, and letting the size of the parcel go to zero
gives

ρ
Du

Dt
=

∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

.

We now need to relate the stresses to the motion of the fluid using a constitu-

tive law. Here we will assume that the fluid is Newtonian, which means that the
stresses are taken to be linear in the velocity gradients. Because of the symmetry
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Figure 37: The shear stresses in the x-direction acting on surfaces oriented with
the negative and positive z-direction.

condition τij = τji we only need to specify six stresses:

τxx = 2µ
∂u

∂x
,

τyy = 2µ
∂v

∂y
,

τzz = 2µ
∂w

∂z
,

τxy = τyx = µ

(
∂u

∂y
+

∂v

∂x

)

,

τxz = τzx = µ

(
∂u

∂z
+

∂w

∂x

)

,

τyz = τzy = µ

(
∂v

∂z
+

∂w

∂y

)

,

where µ is called the dynamic viscocity. It should be noted that in the absence of
fluid deformation, there are no viscous stresses in the fluid. This fact is intuitive:
consider a specific volume of fluid which is either at rest, or passively flowing
along in a current without changing its shape, then there are no viscous stresses
acting on (or within) the volume.

Since the dynamic viscosity is constant, as for the molecular transfer coeffi-
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cients for salinity and temperature, the final expression becomes9

ρ
Du

Dt
= µ

[
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

]

= µ∇2u.

The same argumentation of course applies in the y- and z-directions. So, to sum
up, the momentum equations, when adding up all three forces, become

ρ
Du

Dt
= −∂p

∂x
+ µ∇2u

ρ
Dv

Dt
= −∂p

∂y
+ µ∇2v

ρ
Dw

Dt
= −∂p

∂z
− ρg + µ∇2w.

4.6.2 The Boussinesq approximation

We will now check whether the momentum equations can be simplified a bit un-
der the Boussinesq approximation of very small density changes. As mentioned
earlier, to do this we substitute in ρ = ρ0+ρ′(x, y, z, t) where ρ′ ≪ ρ0. In the two
horizontal momentum equations it is safe to ignore ρ′ compared to ρ0 on the left
hand side. If we then divide by ρ0 we get

Du

Dt
= − 1

ρ0

∂p

∂x
+ ν∇2u

Dv

Dt
= − 1

ρ0

∂p

∂y
+ ν∇2v,

where ν ≡ µ/ρ0 is called the kinematic viscocity. Not tremendously interesting,
perhaps.

In the vertical momentum equation we can also ignore the perturbation density
term ρ′ on the left hand side but, as it turns out, not on the right hand side where it
is multiplied by the gravitational acceleration. To show this we will compare the
typical size of some of the different terms. After ignoring ρ′ on the left hand side
and then dividing by ρ0, we have

Dw

Dt
= − 1

ρ0

∂p

∂z
−
(

1 +
ρ′

ρ0

)

g + ν∇2w.

9Here we use the continuity equation ∂u/∂x = −∂v/∂y + ∂w/∂z.
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What we will do now is compare the two gravity terms with the acceleration terms,
assuming that they are all approximately the same size as ∂w/∂t. To create some
whooping vertical accelerations we assume that vertical velocities can reach ten
centimeters per second, W ∼ 10−1ms−1, and that they can change by this amount
(i.e. change by 100%) over a time scale of a couple of minutes, T ∼ 102 s. This
gives a vertical acceleration term of approximate size

∂w

∂t
∼ W

T
∼ 10−1

102
∼ 10−3ms−2.

Then we estimate the size of the two gravity terms. The first one is simply

g ∼ 10m s−2,

in other words four orders of magnitude larger than acceleration! To estimate the
size of the second gravity term we take ρ0 ∼ 1000 kgm−3 and ρ′ ∼ 1 kgm−3.
This gives

ρ′

ρ0
g ∼ 1

103
· 10 ∼ 10−2 ms−2.

So even the gravity term involving ρ′ is larger than the acceleration term. This is
a hint of the hydrostatic approximation which we will look more closely at later.
But, for now, we have to conclude that ρ′ simply cannot be ignored when it stands
side by side with g, at least not if we want to also keep the vertical acceleration
terms. So, in summary, under the Boussinesq approximation we replace ρ with
ρ0 in all terms of the momentum equations (in both the horizontal and the vertical
components of the equations) except where it it multiplied by the gravitational
acceleration g.

4.6.3 The ficticious (!) Coriolis and centrifugal forces

Newton’s second law applies in a fixed or an inertial reference frame. That’s a
reference frame which does not accellerate. But when we observe the ocean flow,
say from a ship, we are standing on a rotating planet. And rotation is acceleration.
So we are observing the response of the ocean to forces in a rotating reference
frame, not a fixed one. The forces themselves are the same whether measured
in a fixed or rotating reference frame. What we have to be careful about is our
interpretation of the motions and accelerations we observe. What we will find
when studying the relationship between accelerations in the fixed and rotating
reference frame is of course the famous Coriolis force or, more correctly, the
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Figure 38: Two friends throwing a ball at each other, sitting on a (left) non-rotating
and a (right) rotating disk.

Coriolis acceleration. The centrifugal force, or what is actually more correctly
termed the centripetal accelleration, can be imbedded into the gravity force term,
as we’ll soon see.

The Coriolis accellertion would be easily understood by two friends sitting on
each side of a rotating disk (see Figure 38). If one throws a ball directly at the other
she would probably miss. After being released the ball would move in a straight
line—observed from someone who looks at the rotating disk from a distance. But
by the time the ball reaches the other side of the disk, what has happened? The
disked has rotated a bit...and so has the friend on that other side. To the two friends
rotating with the disk it looks as if it is the ball that acts funnily, moving along
a curved path. Not so! The aparent curved path is a virtual accelleration that is
observed only by the two friends that are themselves rotating. To them it seems
that the ball experiences a mysterious force (the Coriolis force!) that curves its
path.

On a rotating planet (rather than a rotating disk) we need to use some vector
calculus to capture the Coriolis accelleration (and the centripetal accelleration)
properly. We’ll loose sight of the rotating disk for a while, but will see how it
shows up in the math again towards the end.

Imagine a particle situated on the surface of a planet which rotates around its
own north-south axis with angular speed Ω. The situation is illustrated schemat-
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ically in Figure 39. Even if the particle is still (not moving) with respect to the
rotating planet itself it is certainly moving (in a circle, right?) with respect to the
distant stars. If r is the position vector of the particle, measured from the center
of the planet, and Ω is the rotation vector of the planet itself (the planet rotates
around Ω with rotation speed Ω = |Ω|), then the time rate of change of its position
in the inertial reference frame10 is given by the cross product

(
Dr

Dt

)

I

= Ω× r.

This relationship holds for any vector C, not just the position vector, as illustrated
in Figure 39. But here we are interested in the position vector, so that C = r.
And the time rate of change of position is of course the velocity of the particle. So
the velocity in the inertial frame is

vI = Ω× r.

Note that the velocity is at right angles to both Ω and r and that its direction is
given by the right-hand rule for the cross product. So our particle is moving along
a latitude circle on the planet.

If the particle is also moving relative to the planet itself, e.g. if it is a boat
steaming across the ocean at velocity vR, then its total velocity with respect to
distant stars is the sum of this relative velocity and its velocity due to the rotation
of the planet, or

vI = vR +Ω× r.

So, if we again write the velocity in terms a time derivative, we have
(
Dr

Dt

)

I

=

(
Dr

Dt

)

R

+Ω× r,

where the R subscript means relative to the rotating planet and the subscript I
means relative to the fixed stars (the inertial reference frame). Now, as said, the
relationship between time derivatives in the inertial and rotating frame holds for
any vector, not just r itself. So we can apply it once more, now to the velocity
vector, to arrive at an expression for the acceleration. This gives (try it!),

(
DvI

Dt

)

I

=

(
DvI

Dt

)

R

+Ω× vI .

10Here we will ignore the contribution to the total velocity from the planet’s orbiting around a
sun.
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Figure 39: The rate of change of any vector C (here we take C = r, the posi-
tion vector) with respect to a fixed or inertial reference frame when C is rotating
around the north-south axis of a planet at angular speed Ω. (Source: Vallis, 2006,
Fig. 2.1)
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Notice that the left hand side here is the acceleration in the inertial reference
frame, i.e. the acceleration that go into Newton’s second law. The trick now
is to substitute in our previous expression for for vI on the right hand side. This
gives
(
DvI

Dt

)

I

=

(
D (vR +Ω× r)

Dt

)

R

+Ω× (vR +Ω× r)

=

(
DvR
Dt

)

R

+

(
D (Ω× r)

Dt

)

R

+Ω× vR +Ω× (Ω× r)

=

(
DvR
Dt

)

R

+

(
DΩ

Dt

)

R

× r + 2Ω× vR +Ω× (Ω× r) ,

where, in the end, we have applied the product rule to the second derivative of
the second line. The second term of the final expression measures the time rate
of change of the rotation of the planet, and this we can safely ignore for our
pursposes. So we have

(
DvI

Dt

)

I

=

(
DvR
Dt

)

R

+ 2Ω× vR +Ω× (Ω× r) ,

or, in terms of accelerations,

aI = aR + 2Ω× vR +Ω× (Ω× r) .

The first term on the right hand side is the acceleration in the rotating reference
frame (the one we would observe standing on the planet). The second term is the
Coriolis acceleration; it is at right angles to both the earth’s rotation vector and
to the particle velocity. This term will follow us in our continued study of the
ocean circulation. Finally, the third term is the centripetal acceleration; it is only
a function of the planet’s rotation rate and the position of the particle. It points
inwards towards the planets rotation axis in a plane perpendicular to the planetary
rotation vector itself.

The centripetal acceleration (or centrifugal force) As it turns out, we will
not have to worry about the centripetal acceleration term since it can actually be
absorbed into the gravity force term. To see this, we move this acceleration term to
the right hand side of the momentum equations so that it appears as an additional
force, the ’centrifugal force’. The sum of this (virtual) force and the gravitational
force is shown in Figure 40. The thing to note is that the Earth is not a perfect
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Figure 40: The balance of gravity and the (virtual) centrifugal force on the oblique
Earth. The net effect is a modified gravity force which points normal to Earth’s
surface. (Source: Cushman-Roisin and Beckers, 2011, Fig. 2.2)

sphere but what’s called an oblique ellipsoid; it is bulging out a bit at the equator
because of its rotation. On this oblique ellipsoid the gravity force vector points to
the center of the planet and the centrifugal force points outwards, as shown in the
figure. The sum of these two forces is a ’modified gravity’ force

g′ = g −Ω× (Ω× r)

which points not exactly to the center of the Earth but perpendicularly to the
Earth’s surface at the point in question. This is perfect if we want to apply a local
cartesian coordinate plane there since the gravity will then point in the negative
local z direction. The actual bulging of the planet is tiny (it is exaggerated greatly
in the figure), so the correction to the actual value of the gravitational acceleration
is also small. In the following, we drop the prime for this modified gravity and set
its magnitude to g = |g| ∼ 9.8m s−2.

The Coriolis acceleration (or Coriolis force, for those who insist) The Cori-
olis acceleration, however, will stay with us. So it’s worth looking a bit more into
this one, and we will do that by examining its components in the x, y and z direc-
tions on our cartesian plane coordinate system put down tangentially on a given
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point on Earth’s surface. If the tangent plane is put at a point with latitude θ and
longitue φ, then the Earth’s rotation vector will have local components

Ω = Ωcos θj + Ωsin θk,

so that the three components of the Coriolis acceleration there become

2Ω× v =

∣
∣
∣
∣
∣
∣

i j k

0 2Ω cos θ 2Ω sin θ
u v w

∣
∣
∣
∣
∣
∣

= (2Ω cos θ w − 2Ω sin θ v) i+ 2Ω sin θ u j − 2Ω cos θ uk.

If we now, simply for convenience, introduce the notation f = 2Ω sin θ and f∗ =
2Ω cos θ, the three momentum equations to be used in our rotating reference frame
become

Du

Dt
+ f∗w − fv = − 1

ρ0

∂p

∂x
+ ν∇2u

Dv

Dt
+ fu = − 1

ρ0

∂p

∂y
+ ν∇v

Dw

Dt
− f∗u = − 1

ρ0

∂p

∂z
−
(

1 +
ρ′

ρ0

)

g + ν∇2w,

where g is really the gravitational acceleration which has been slightly modified
by the presence of the centrifugal force as discussed above. Note that when the
Coriolis acceleration is put into the equations of motion, like here, oceanogra-
phers call it the ’Coriolis force’. This is, as we now know, somewhat misleading
since it is really a virtual acceleration term that pops up since we are doing our
calculations in a non-inertial reference frame (our rotating planet). Even in these
lecture notes, or in class, the term ’Coriolis force’ may sneak itself in (and you
should then point your finger at the instructore for using such sloppy language).

So where’s the rotating disk we talked about in the begining? Let’s look only
at the two horizontal momentum equations and see what happens if only the Cori-
olis terms are present. Ignoring the Coriolis term involving the verticl velocity
(vertical velocities are tiny compared to horizontal velocities, as we’ll see later),
the equations become

Du

Dt
= fv

Dv

Dt
= −fu.
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So the accellerations in the x and y directions are given by fv and −fu, respec-
tively. You’ll see that this is exactly the behavior observed by the two friends
sitting on a rotating disk throwing a ball at each other. They are in fact sitting on
a local coordinate system that is rotating around its vertical axis at angular speed
f/2. If the ball they’re throwing has a very low speed, they would have a hard
time hitting each other with it. The amount of deflection of the ball, from that of
a straight line (remember, as they observe it), depends on how much the rotating
plane they’re sitting on has been able to rotated in the time it takes the ball to
cover the distance between the two. Of course, a ball thrown at a speed of around
10 m/s between two friends standing about 10 meters apart, the deflection won’t
be very big. We only need to worry about the Coriolis term for motions whose
time scales are about the same as or longer than the rotation period of the planet.
Ocean currents definitely operate at time scales of days and longer. So they are
seriously affected!

4.7 Turbulent mixing and Reynolds fluxes

Molecular diffusion of salt and heat is an extremely slow process. One can also
show that molecular diffusion only extends over distances of a few centimeters
at the most. So when we model geophysical flows, like the ocean circulation or
ocean waves, we typically neglect the molecular diffusion terms shown above.11

The same can be said for any other tracer. If we juxtaposed two fluids of dif-
ferent color in a lab tank, say red and blue, and then let the tank in peace, the
two would eventually mix by molecular diffusion until the entire fluid takes on
the color of violet. But we would have to wait a very long time. If we instead, in
our boredom, started to stirr the two fluids by irregular movements with a paddle
wheel, a soup of violet fluid would emerge rather quickly. The stirring creates
turbulence in the fluid, chaotic motion which enhances the effective mixing of
the fluid parcels. What really goes on is that the turbulent stirring stretches fluid
elements into intertwined filaments and sheets of red and blue fluid. Continued
stretching makes the sheets progressively thinner, down to thickness scales over
which molecular diffusion actually act, and it also enhanes the area of contact be-
tween red and blue fluids. In essence, the turbulent stirring efficiently increases
the surface area—by several orders of magnitude—over which molecular diffu-
sion acts.

11One process in which molecular diffusion is important is double diffusion, or salt fingering,
as we’ve already mentioned above.
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Chaotic or turbulent motion in fluids doesn’t require vigurous stirring by a
paddle wheel to emerge. Large-scale fluid flows are turbulent by nature due to
nonlinear terms in the governing equations. Nonlinear terms are those that con-
sist of a product of two (or more) of the dependent variables. So, for example,
the advection term ∇ (v · S) in the salt equation is nonlinear since it involves a
product between velocity and salinity which are both variables that we solve for.

Turbulent motions are extremely difficult or even impossible to model accu-
rately. They are just too complex, and possess an extreme “sensitive dependence
on initial conditions” (in the words of Edward Lorenz, the father of modern chaos
theory). So we normally just give up on modeling turbulent motions in detail and
instead focus on their net effects on the the flow as a whole. This typically means
trying to predict the the net effects on scales of the flow that are larger than the
typical scales of the turbulent motion itself.

Figure 41 can illustrate this point. It shows a jet of fluid shooting out from the
left. Let’s assume it’s a river flowing out from a coast and that the color shown
indicates the salinity. Freshwater (red color) shoots out into a salty (blue) ocean.
The flow is clearly chaotic, or turbulent, with lots of small-scale structure in it. But
if we average in space with our eye we also see a systematic large-scale evolution:
the river plume gets wider and more salty as it extends from the mouth. Time-
averaging would also work. If we showed a movie of the jet we would see that the
turbulent wiggles move around chaotically. A great mess! But if we then averaged
over a long time, a time much longer than the typical time scales of each wiggle,
each individual turbulent feature would be averaged out and we would be left with
the impression of a rather smooth jet which widens and gets saltier as it extends
to the right in the figure. This graduel ’spreading’ of the fresh water, away from
the jet axis, is the net effect of turbulence which we wish to capture (having given
up on getting every little whirl right).

So if we want to try to understand the large-scale evolution of the river plume
we need equations that focus on the larger scales and treat the turbulent motions
only to the extent that they impact on the larger scales. And if we wish to model
the large-scale flow with a numerical model it may even be that our model isn’t
powerful enough to resolve all the small turbulent wiggles and whirls .

Regardless of the motivation, so whether we are really not interested in the
details of all the turbulent whirls or we simply don’t have a big enough computer
to resolved them, what we often do is this: we use conservation equations that have
been averaged over either the time or space scales of the turbulence (or preferably
both), so that they only describe the time evolution of motions that are slower and
larger than the turbulence itself.
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Figure 41: A turbulent jet of freshwater (red color) shooting out into a salty (blue)
ocean region. The grid shown can be thought of as the numerical mesh of a
numerical model used to model the jet.

Let’s go back to the turbulent plume in Figure 41 and imagine how it could
be represented in a numerical ocean model. All such models solve the governing
differential equations on a computational mesh that divides the total domain into
small cells. Such a mesh is shown in the figure. The conservation equations are
written for each cell that make up the mesh. Since the cells each have a finite
size, so that we’re not dealing with infinitesimal but rather with finite distances,
the differential equations become difference equations. We’ll discuss numerical
models in more detail later, but for now the point is that the flow field can only be
resolved down to a certain scale, i.e. the scale of the grid cells. And, as in the case
of the mesh shown in Figure 41, there will typically be turbulence that is smaller
than the size of the grid cells. How can the net effects of the unresolved turbulence
be represented in such a model?

What we do is to decompose all the dynamical variables pertaining to a given
grid cell into mean and perturbation parts. The mean of a variable is a spatial
average of that variable (say, salinity) over the size of the grid cell.12 The pertur-
bation is then meant to represent all the deviations of the variable in the grid cell
from its grid-cell mean. So, for example, the flow and salinity field pertaining to
the flow are written as

v = v + v′

S = S + S ′

12Strictly speaking it is also an ’ensemble’ mean over many realizations of the turbulence that
could take place within such a grid cell.
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where v and S are the means taken over area A of the grid cell,

v =
1

A

∫∫

v dA

S =
1

A

∫∫

S dA,

and the perturbations are then simply defined from

v′ = v − v

S ′ = S − S.

This type of averaging, over the scales of the turbulent motion (here we assume
the turbulence is taking place at scales smaller than the size of a grid cell in our
numerical model), is called Reynolds averaging. And the separation of a variable
into mean and perturbation parts is called a Reynolds decomposition.

Notice one important thing: by definition, the averages of the perturbations
are zero, or v′ = 0 and S ′ = 0. Let’s show that explicitly for salinity:

S ′ = S − S

= S − S

=
1

A

∫∫

S dA− 1

A

∫∫

S dA

=
1

A

∫∫

S dA− S
1

A

∫∫

dA

= S − S

= 0.

Note that the mean salinity S is a constant over the grid cell (by how we’ve defined
it) so that it could be taken outside the last averaging integral. Essentially, the
average of a constant is just the same constant.

But let’s get to the point and observe what happens when we Reynolds aver-
age the entire salinity equation. Plugging our two-component representations of
velocity and salinity into the equtation and then averaging the equation itself gives

∂S

∂t
= −∇ ·

[

(v + v′)
(
S + S ′

)
− κS∇S

]

,

where we have used the facts that S ′ = 0 and v = 0. The advection of salinity by
the flow field in this expression consists of the four terms

(v + v′)
(
S + S ′

)
= vS + vS ′ + v′S + v′S ′.
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But, as it turns out, vS ′ = vS ′ = 0 and v′S = v′S = 0 (show this!). So we are
left with

∂S

∂t
= −∇ ·

(
vS + v′S ′ − κS∇S

)
.

So, in the Reynolds-averaged salinity equation there is an advective transport
of the mean salinity field (Reynolds-averaged) by the mean velocity field. But
there is also an extra transport term, the the Reynolds flux of salinity, v′S ′. This is
a net transport of salinity due to the turbulent motion. The turbulence which we
thought we had averaged out (remember, v′ = 0 and S ′ = 0) can actually impact
the evolution of larger scales, and this is what we see in Figure 41. It’s pretty ap-
parent there that the turbulent motions tend to transport the fresh water out from
the plume or, alternatively, salty water into the plume. The time-mean velocity
is predominately directed along the jet axis, so the mean-flow advection of mean
salinity vS is probably not responsible for what actually looks like outward diffu-
sion of the fresh water. It’s the turbulent Reynolds fluxes that are responsible.

The turbulent transport in Figure 41 seems to be acting like enhanced molecu-
lar diffusion, transporting properties (salinity here) down the mean concentration
gradient. Precicely for this reason, the most typical way to model, or parametrize,
turbulent fluxes is as enhanced diffusion. So we write

v′S ′ = −K∇S,

where K is a turbulent diffusion coefficient or a turbulent diffusivity which is
orders of magnitude larger than the molecular diffusivity. So much bigger in fact
that the molecular diffusion term is simply ignored in the equations and replaced
by the turbulent equivalent.

Note that, whereas the molecular diffusion coefficients are intrincic properties

of the fluid, the turbulent diffusivities are properties of the flow, varying in time
and space depending on the evolution of the flow field (i.e. the intensity of the tur-
bulence). And, importantly, in a stably-stratified fluid vertical turbulent diffusion
is much more difficult, or energetically costly, than horizontal diffusion13. That
means that horizontal turbulent diffusivities should be much larger than vertical
diffusivities. So in terms of components,

v′S ′ = −KH
∂S

∂x
i−KH

∂S

∂y
j −KV

∂S

∂z
k,

13Recall our discussion about energetics from Chapter 2: Strictly speaking, when the density
stratification is tilted it is only mixing at angles steeper than this tilt that is costly. But the tilt of
the stratification is very slight, so we usually make the distinction between vertical and horizontal
mixing.
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one typically uses KH of size 102–103 m2s−1 (often assuming horizonal isotropy,
i.e. no difference between the x and y directions) and KV of size 10−5–10−3 m2s−1

(so five to eight orders of magnitude smaller than the turbulent horizontal diffusiv-
ity!). With this, the Reynolds-averaged salinity and temperature equations, with
molecular diffusivities replaced by their turbulent conterparts, become

DS

Dt
= ∇H · (KH∇HS) +

∂

∂z

(

KV
∂S

∂z

)

Dθ

Dt
= ∇H · (KH∇Hθ) +

∂

∂z

(

KV
∂θ

∂z

)

−∇ · JR,

where, in light of the differences between horizontal and vertical directions, we
have introduced the horizontal gradient operator

∇H =
∂

∂x
i+

∂

∂y
j.

Note that we have also assumed that the turbulent diffusivities of salt and heat are
the same since they are flow-dependent rather than being intrinsic properties of the
property being transported (heat or salt). And since they are flow-dependent and
may therefore vary from place to place, we have had to move them back inside
the outer derivative.

The Reynolds-averaged momentum equations are derived using the same ar-
guments used above, giving

Du

Dt
+ f∗w − fv = − 1

ρ0

∂p

∂x
+∇H · (AH∇Hu) +

∂

∂z

(

AV
∂u

∂z

)

Dv

Dt
+ fu = − 1

ρ0

∂p

∂y
+∇H · (AH∇Hv) +

∂

∂z

(

AV
∂v

∂z

)

Dw

Dt
− f∗u = − 1

ρ0

∂p

∂z
−
(

1 +
ρ′

ρ0

)

g +∇H · (AH∇Hw) +
∂

∂z

(

AV
∂w

∂z

)

,

where the use of AH and AV instead of KH and KV acknowledges that turbulent
diffusion of momentum may actually be distinct from diffusion of tracers like
salinity and temperature.

A little extra:
Exactly how turbulent diffusivities vary with the flow field is a topic of

very active oceanographic research today, and we can only scratch at the
surface here. But it is worth mentioning that the diffusivities are typically
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related to the level of turbulence in the flow and, more specifically, to how
unstable the flow is (it is instability that creates turbulence, just as static in-
stability lies behind vertical convection). Here we will only look at one pa-
rameter of the flow which is thought to impact the level of vertical turbulent
transport, i.e. vertical diffusivities. The gradient Richardson number is a rel-
ative measure of the strength of the vertical velocity shear ∂|u|/∂z (where
|u| =

√
u2 + v2) to the strength of the vertical density stratification ∂ρ/∂z.

The stratification is written in terms of the buoyancy frequency (we intro-
duced this in Chapter 2), giving

Ri =
N2

(∂|u|/∂z)2

= − g

ρ0

∂ρ/∂z

(∂|u|/∂z)2
.

So what does this ratio tell us about the turbulence level? Well, the vertical
velocity shear is a source of instability and hence of turbulence. Think about
how just about any velocity shear, e.g. the sheared flow near a wall, tends
to create turbulent whirls. Plainly, the stronger the shear, the stronger the
tendency for turbulence. The vertical density stratification, in contrast, can
both stabilize and destabilize the flow. For N2 > 0 (implying ∂ρ/∂z < 0),
the fluid is stably stratified—which, as we have discussed before, tends to
inhibit vertical exchanges. So for stably-stratified flows, there is a competi-
tion between the vertical velocity shear which tends to create turbulence and
the stratification which tends to suppress turbulence. But for statically un-
stable flows, i.e. for N2 < 0, the top-heavy stratification is itself a source of
instability and turbulence.

Laboratory experiments have shown that flows become turbulent approx-
imately when Ri < 0.25, and many turbulent mixing parametrizations hence
make the vertical diffusivities a function of Ri. Essentially, the lower the gra-
dient Richardson number is the higher can one expect vertical diffusivities to
be.
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5 Observing and modeling the ocean

The previous chapters have identified the dynamical equations and physical vari-
ables that define the ocean state. The dynamical variables are density, pressure
and the three velocity components. Density itself is, as we discussed in Chap-
ter 2, calculated via an equation of state from salinity, temperature and pressure.
Finally, as we saw in Chapter 3, the temperature and salinity of the oceans are
partically determined by fluxes of heat and freshwater through the sea surface.

So there is a lot to keep track of! Our knowledge and understanding of the
ocean state and its evolution rely on a combination of observing and modelling
the relationship and interplay between these variables. Observations are the fun-
damental starting point. They show us what the ’solution’ of the dynamical equa-
tions should look like. So even if obtaining ocean observations is pretty expensive,
it is also extremely important. But modeling is also key. It is our way of showing
that we understand what’s going on. But the the dynamical equations are compli-
cated (they are coupled and they are nonlinear), so obtaining analytical solutions
is next to impossible unless the problems and equations are simplified dramati-
cally. For realistic modelling, we have to rely on computers that can solve the
equations by brute force.

5.1 Observation techniques

5.1.1 Temperature, salinity and pressure

Historically, water temperature was measured with reversing mercury thermome-
ters and salinity was measured by chemical titration of water samples collected
by botteles lowered into the sea. The thermometers and bottles were clamped to
wires, and as these were lowered into the sea the thermometers were in a state
where mercury could flow freely, expanding and contracting according to temper-
ature, and the bottles were open so sea water could flow through (Figure 42). At
the required depth, and after a period allowing for the thermometer to equlilibrate,
signals were sent down to reverse the thermometers (to close the mercury flow)
and close the bottles (to encapsule the water sample). The thermometers and wa-
ter samples were then brought up to the ship for analysis. The pressure at the
observation depth was typically not known with great accuracy and the depth was
estimated by keeping track of the amount of wire sent out.

Today temperature, salinity and pressure are measured to great accuracy by
electrical instruments bundled together in so-called CTD (conductivity, tempera-
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Figure 42: The deployment of a set of ’Nansen bottles’ with reversing thermome-
ters...from back in the days.

ture and depth) sensors. Temperature is measured directly using thermistors that
contain materials whose electrical resistance is temperature-dependent. Salinity is
measured indirectly, via the electrical conductivity of the sea water. Plainly, salty
water is a better conductor than fresh water. And, finally, pressure is measured
via piezoelectric elements, materials whos resistivity is pressure-dependent. Fig-
ure 43 shows the deployment of a ’rosette’ of bottles that are used to collect water
samples (for analysis of water chemical properties other than salinity). Several
CTD sensors are also stripped on to the lower parts of the rosette frame.

So CTD sensors can be lowered into the oceans from ships. By doing repeated
CTD profiles as the ship slowly progresses from position to position one can thus
obtain information about lateral as well as vertical temperature and salinity gradi-
ents. Alternatively, CTD instruments can be moored at fixed locations (see below)
to obtain time series of temperature and salinity. Finally, hybrid observational
methods exist, as with so-called profiling floats that drift freely around with the
ocean currents while collecting CTD profiles at pre-programmed intervals. CTD
sensors can even be attached to large animals, like seals (see Figure 44). Utiliz-
ing animals has proven useful to obtain hydrographic observations from places
that are otherwise difficult to reach, for example the marginal ice zone at high
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Figure 43: A rosette of sampling bottles with CTD sensors also attached to the
rosette frame.
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Figure 44: A seal with a small CTD package (includ-
ing satellite transmitter) attached to its fur. (Source:
http://www.afsc.noaa.gov/quarterly/ond2011/divrptsNMML3.htm)

latitudes (Figure 45).
Finally, today the sea surface temperature (SST) and sea surface salinity (SSS)

of the world oceans can be measured by remote-sensing instruments attached to
orbiting satellites. The satellites measure the radiation emitted from the ocean
surface at various wavelengths, and it is from this radiation that SST and SSS
(and other properties of the ocean surface, for example its color) is deduced. But
the radiation eventually received by the satellites has also passed through an at-
mosphere, and this ’contamination’ needs to be subtracted from the signals. The
radiative transfer models used for such corrections are based on many assump-
tions about the composition of the atmosphere (e.g. its water vapor content) and
therefore have many potential sources of errors. But calibration of the satelite data
against in situ observations (e.g. from ship campaigns) are constantly improving
the satellite products. Besides, the unprecedented spatial and temporal cover-
age offered by satellite observations relative to in situ observations make them
tremendously valuable. Examples of satellite-derived SST and SSS has already
been shown in Figures 12 and 11.

5.1.2 Velocity

Observations of ocean currents can be obtained by several methods. One is to
simply drop things into the ocean and observe in what direction and with what
speeds they drift. This Lagrangian approach sounds simple but has actually pro-
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Figure 45: Tracks of profiling floats (left) and instrumented seals (right) collected
by the multinational collaborative MEOP project. (Source: Isachsen et al., 2014,
Figs. 5 and 6)

vided invaluable observations of currents in the world oceans via for example the
World Ocean Drifter Programme (Figure 46). Ocean drifters contain a floatation
device and often a drogue or sail at depth, typically at 15 meters, to make sure the
drifter is following the ocean currents and not the wind.

Another way to observe currents is by deploying current meters at fixed lo-
cations to obtain Eulerian observations. Current speeds were traditionally mea-
sured by the rotation rate of propellors, and current directions were measured by
the rotation angle of the instruments as they were allowed to adjust to the flow.
Modern-day instruments measure the flow velocity by doppler methods, i.e. by
the phase shift induced in acoustic waves as they travel from a transmitter to a
receiver through the water that flows in between the two. Such current meters
are typically attached, along with other instruments like CTDs, to oceanographic
moorings (Figure 47). This approach gives continuous observations (at least as
long as batteries last), but only for a limited number of fixed points in space,
one for each instrument. Continuous vertical profiles of velocity can also be ob-
tained from so-called Acoustic Doppler Current Profilers (ADCP). These consists
of strong sound transmitters (transducers) that emit sound waves into the ocean.
Currents can then be estimated from the doppler shift of the sound waves reflected
from various depths of the water column.
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Figure 46: The global surface drifter program: (top) a typical surface drifter
and its deployment, and (bottom) position of drifters at one given day in 2016.
(Source: http://www.aoml.noaa.gov/phod/dac)
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Figure 47: A modern current meter (top) and a schematic of an oceanographic
mooring (left) containting current meters, CTDs and (in this particular case) sed-
iment traps. A heavy anchor keeps the mooring in place while floatation devices
keep it upright. Just above the anchor is a remote-controlled release mechanism
which allows the rest of the mooring to be recovered for data retrieval and instru-
ment reuse.
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Figure 48: Acoustic Doppler Current Profiler (ADCP) observations of ocean cur-
rents.

5.1.3 Sea level

Observations of the sea level is not only important in studies of long-term changes
like those associated with climate variability and climate change. Historically
speaking, sea level observations were always made to calibrate tide prediction
charts (the theory of tides is described in a later chapter). The measurement tech-
nology is simple in principle, involving some kind of floatation device which is
allowed to move up and down while also recording its vertical position. But such
observations have, for obvious reasons, always been limited to coastal stations.
Today we obtain observations about sea level variability also in the open oceans
from satellite altimeter instruments. In fact, satellite observations of sea level
has in many ways revolutionized oceanographic research since such techniques
became available in the late 1970s. So it’s worth our while to take a slightly
closer look at the basis for such observations. Altimeter satellites have tremen-
dously good positioning systems that give their positions relative to the fixed stars
throughout their orbits around Earth. They also have very good radar sensors that
can measure their distance from the sea surface. Combining these two pieces of
observations it is possible to deduce the sea surface height with a precision of a
couple of centimeters.

As it turns out, large parts of the spatial variations of the sea surface height
that the satellites observe are arrise only from local variations in the effective
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Figure 49: The sea level variation on top of a seamount due to gravitational vari-
ations.

gravitational field and do not tell us anything about the ocean state. This is the
ocean geoid:

“The geoid is the shape that the surface of the oceans would take
under the influence of Earth’s gravitation and rotation alone, in the
absence of other influences such as winds and tides. All points on the
geoid have the same gravity potential energy (the sum of gravitational
potential energy and centrifugal potential energy). The force of grav-
ity acts everywhere perpendicular to the geoid, meaning that plumb
lines point perpendicular and water levels parallel to the geoid.” (Source:
https://en.wikipedia.org/wiki/Geoid)

As illustrated in Figure 49, a sea mount deep down in the ocean will create a bulge
in the sea surface above it. But a particle residing on the geoid, even if the geoid
is inclined like shown in the figure, feels no net force in any direction.

So the geoid is dynamically irrelevant (it has no impact on the ocean circu-
lation) and must actually be subtracted from the altimeter sea level height obser-
vations before these are used to estimate for example sea level gradients that go
into the momentum equations. In other words, the dynamic topography which
actually impacts the flow—as water will tend to flow down gradients of dynamic
topography—is given by

η = ηa − ηg,

where ηa is the ’raw’ sea level observed by the satellite and ηg is the geoid (as
illustrated in Figure 50).
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Figure 50: Satellite altimeters measure the height of the sea surface relative to a
reference ellipsoid. This sea surface height contains a large contribution from the
geoid which is caused by geographical mass variations and which is dynamically
(Source: Stewart, 2008, Fig. 3.13)

So to make good estimates of the time-mean dynamic topography and hence
time-mean ocean currents we need a good knowledge of Earth’s geoid. As it turns
out, observing and modelling the geoid is a hole research field in itself. But to us
oceanographers it is worth remembering that the geoid doesn’t change over time
(at least not over the time scales that we humans normally care about). So whereas
we have to be careful about subtracting the geoid to make reliable estimates of
time-mean currents, we don’t have to do so if we are only interested in observing
how these currents change with time.

5.1.4 Air-sea fluxes

Air-sea fluxes of importance for the dynamics include radiative and turbulent heat
fluxes, freshwater fluxes and momentum fluxes. Most of these fluxes depend on
observations of temperature, humidity, wind, precipitation and radiation collected
in the lower atmosphere. They are typically collected by instrument placed very
near the sea surface and, in some cases when vertical gradients are needed, also
some meters above. Then the fluxes, calculated from these atmospheric observa-
tions, are applied as boundary conditions at z = 0 to the equations of motion for
the ocean.
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Figure 51: Sensor for measuring quantum irradiance or photosynthetically active
radiation (PAR).

The detailed ’fate’ of shortwave raditaion as it enters the ocean may some-
times be of interest. We have seen how such radiation can penetrate some tens
of meters into the water column and that this depth impacts both the upper ocean
heat budget and biological production. As it turns out, estimates of the shortwave
penetration depth can be obtained with both advanced and less advanced methods.
Very accurate measurements of downward shortwave irradiance or photosynthet-

ically active radiation (PAR) can be obtained by a sensor lowered down through
the water column (Figure 51). It ’looks up’ and detects downward shortwave ra-
diation, integrating over the wavelengths from about 400 to 750 nanometers, and
reports back either an energy flux density (in Wm−2) or a light quantum flux
density (in µmol s−1m−2).

A somewhat less fancy method is based on lowering a metalic circular disk, a
Secci disk (Figure 52), and then observing, from the deck of the ship, the depth at
which the disk cannot be seen anymore. A rule of thumb is then that the down-
ward irradiance is 1% of the surface value at a depth of approximately two ’secci
depths’.

5.2 Numerical ocean modeling

5.2.1 From differential equations to difference equations

Numerical ocean models solve discrete versions of the governing equations. This
means that both time and space are discretized, and the continuous derivatives
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Figure 52: The Secci disk: a slightly less accruate way to measure shortwave
penetration depth.

become discrete differences. The differential equations derived in the last chapter
become difference equations. And these are solved on computational grids like
those shown in Figure 53.

Time itself is discretized. So the time at step n is

tn = t0 + n∆t,

where t0 is a start time and ∆t is a time step. Hence a variable in the ocean which
is actually continuous in time will, in the computer, be represented by a finite set
of points, as illustrated in Figure 54.

So a continuous time derivative, which is formally defined as

du

dt
= lim

∆t→0

un+1 − un

∆t
,

can be approximated by the time difference on the right hand side—for some small
time step ∆t. But on a computer ∆t can not shrink to zero and will have to take on
some finite value. Clearly the discrete approximation of the continuous derivative
becomes better the smaller ∆t is. We can quantify the error by applying a Taylor
series expansion to the function at tn (tn in the figure):

un+1 = un +
du

dt
∆t+

1

2!

d2u

dt2
∆t2 +

1

3!

d3u

dt3
∆t3 + . . .

where higher-order terms have been omitted. Putting un on the left hand side and
then dividing by ∆t gives

un+1 − un

∆t
=

du

dt
+O (∆t) .
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Figure 53: Examples of computational grids used to model (top) a turbulent jet
and (bottom) the global ocean circulation.

Figure 54: Time discretization in a numerical ocean model. (Source: Cushman-
Roisin and Beckers, 2011, Fig. 1.12)
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Figure 55: The discrete model representation of the derivative of a continuous
function for different time steps ∆t (in relation to the intrincic time scale T of the
process). (Source: Cushman-Roisin and Beckers, 2011, Fig. 1.13)

So the error is proportional to the time step ∆t. If the process in the ocean we
wish to study has an intrincic time scale T associated with it, then it’s crucial that
the model time step is much smaller than this time scale i.e. that ∆t ≪ T , in order
to model the process correctly. A failure to do so may cause a complete wrong
representation of the process, as illustrated in Figure 55.

It is possible to achieve better accuracy for a given time step by creating
higher-order difference schemes for the approximation to the derivatives. If one,
for example, writes the Taylor series expansion for both un+1 and un−1 (back-
wards in time)

un+1 = un +
du

dt
∆t+

1

2!

d2u

dt2
∆t2 +

1

3!

d3u

dt3
∆t3 + . . .

un−1 = un −
du

dt
∆t+

1

2!

d2u

dt2
∆t2 − 1

3!

d3u

dt3
∆t3 + . . .

and then subtract these two equations, one gets (after dividing by ∆t),

un+1 − un−1

2∆t
=

du

dt
+O

(
∆t2
)
.

So the error is now proportional to the square of the time step. Thus, for small
time steps the error of this ’second-order’ scheme is smaller than for the previous
(’first-order’) scheme.

Here we have discussed finite differencing with respect to time. But, of course,
the same applies to spatial derivatives. So, if we have a spatial grid in the x, y and z
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directions, then a second-order accurate spatial difference in the x direction would
be

ui+1 − ui−1

2∆x
=

du

dx
+O

(
∆x2

)
,

where subscript i indexes the x position.

A little extra:

5.2.2 Data assimilation: combining observations and model

The ability of numerical models to provide correct forecasts is limited by
many factors, such as insufficient resolution of the numerical grid, artefacts
introduced by the discretization of the governing equations, inaccurate de-
scription of the physics, and so on. One of the major limitations to pre-
dictability is, however, inaccurate initial conditions: we need to accurately
know what the state of the ocean is now if we want to accurately predict the
state of the ocean in the future.

Data assimilation is the process of combining observations and a model
to provide a best estimate of the initial conditions for subsequent model runs.
There are many different data assimilation techniques, with widely varying
levels of complexity, and we will not go into any details here. The concept
will be illustrated using a simple example of a model for the temperature T at
a single point.

We denote the observation value To and the model value Tm. What we
want to find is the best possible estimate of the true temperature Tt. This
estimate is called the analysis, Ta. Unfortunately, there are no perfect ob-
servations and no perfect model. The implication here is that we will never
know exactly what the true temperature is. What we can do is to estimate the
errors in the observations, in the model values, and the analysis, and use these
estimates to find an expression for Ta.

If we let < > denote an average, then we can define error variances as

e2o = < (To − Tt)
2 >,

e2m = < (Tm − Tt)
2 >,

e2a = < (Ta − Tt)
2 > .

We now assume that the observations, the model values and the analyses are
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unbiased, that is, < To − Tt >=< Tm − Tt >=< Ta − Tt >= 0. This as-
sumption implies that the model and the observations are on average correct,
which may be far from the truth in realistic applications! We also assume that
the errors in the observations and the model values are uncorrelated, that is,
< (To−Tt)(Tm−Tt) >= 0. The latter assumption makes sense, there should
not be any reason for an error in the observation to be connected to the model,
or vice versa. It can then be shown that in order to minimize the analysis error
variance e2a, we must obtain the analysis from the following equation:

Ta = Tm +K(To − Tm), where K =
e2m

e2m + e2o
.

We can consider the two extreme cases where (i) the model error is expected
to be large compared to the observation error, and (ii) the other way around.
In the first case we have e2m ≫ e2o, and hence K ≈ 1. This is consistent with
giving more weight to the observation, and according to the analysis equation
we have Ta ≈ To. In the second case, with e2m ≪ e2o, we have much less
confidence in the observation compared to the model and we find that K ≈ 0
and the analysis is Ta ≈ Tm as expected.

One of the main challenges in data assimilation is to provide reasonable
estimates of the error variances—a nontrivial task since the true state in any
geophysical system is unknown.
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6 Simplified equations valid for large-scale flows

There should be little doubt that the equations derived in Chapter 4 are compli-
cated. They are coupled and they are nonlinear. Finding solutions to them will
rely on numerical methods (using computers), and even then the equations are
challenging to handle. To make progress, especially if we wish to seek analytic so-
lutions that give us intuition about the ocean circulation, we need to simplify them
drastically. We basically need to get rid terms, like we did for the mass equation
when making the Boussinesq approximation. The trick is to assess which terms
are much smaller than other terms and can therefore be thrown out. What terms
are expected to be small depends on the situation or process we wish to study,
i.e. on what temporal and spatial scale characterize our problem of interest. In
this and the following two chapters we will be interested in large-scale flows, and
this regime allows certain simplifications that makes both numerical modelling
and theoretical ’playing around’ somewhat easier.

6.1 Defining large-scale geophysical flows

Below we will show that additional simplifications can be made if we are inter-
ested in large-scale geophysical flows. By this we mean flows for which:

1. The horizontal scales of the flow are much larger than the vertical scale.

2. The rotation of the planet (the Coriolis accelleration) is important, meaning
that it is at least as important as the other acceleration terms in balancing
the horizontal pressure gradient.

Let’s look into the first condition. Figure 56 shows a cross section of ocean
bathymetry across the South Atlantic using two different exaggerations of vertical
scales. Already at a vertical exaggeration of 30:1 it is pretty clear that horizontal
scales are much larger than vertical scales. Ocean circulation features, e.g. ocean
gyres, can have horizontal scales of up to thousands of kilometers but vertical
scales of only hundreds or, at a maximum, thousands of meters. So the aspect ra-
tio, i.e. the ratio of vertical scale D to the horizontal scale L, is indeed very small
for such large-scale flows:

δ ≡ D

L
≪ 1.

To begin to see what this implies, we scale the terms of the continuity equation
(the Boussinesq version of the mass conservation equation). We use U and W as
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Figure 56: Cross section of ocean bathymetry in the South Atlantic along 25◦S.
The vertical exaggeration is 180:1 (top) and 30:1 (bottom). (Source: Stewart,
2008, Fig. 3.4)

scales for horizontal and vertical velocities, L and D for horizontal and vertical
scales. This gives

∇H · u = −∂w

∂z
∂u

∂x
+

∂v

∂y
= −∂w

∂z
U

L
,

U

L
∼ −W

D
,

so that
W

U
∼ D

L
≡ δ ≪ 1.

So for geophysical flows vertical velocities are typically much smaller than hori-
zontal velocities. There are of course exceptions to this, but we’ll come back to
such exceptions later.

Then on to the second condition, that the Coriolis accelleration is a major
player in balancing the horizontal pressure gradients. Our intuition says that pres-
sure gradients should be important to drive any kind of flow—down the gradient.
But as we have become accustomed to, the winds on the weather map are typically
flowing around the high and low pressures, rather than across them. This is also
the case for large-scale flows in the ocean, as illustrated in Figure 57. So when we
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Figure 57: Sea surface height (color) and surface currents (arrows) in the Gulf of
Mexico from a numerical ocean model simulation. (Source: Cushman-Roisin and
Beckers, 2011, Fig. 4.5)

study large-scale motions, the Coriolis accelleration definitely needs to be taken
seriously.

Now onto implications of these two requirements on the momentum equations.
Here we use scales L, D, U and W as before but also introduce T for a time scale
and P for a typical pressure scale. The sizes of the various terms in the horizontal
momentum equations become

∂u

∂t
+ u · ∇Hu+ w

∂u

∂z
+ f∗w − fv = − 1

ρ0

∂p

∂x
−∇H · (−AH∇Hu)−

∂

∂z

(

−AV
∂u

∂z

)

U

T
,

U2

L
,

U2

L
, f∗W, fU ∼ P

ρ0L
, AH

U

L2
, AV

U

D2

and

∂v

∂t
+ u · ∇Hv + w

∂v

∂z
+ fu = − 1

ρ0

∂p

∂y
−∇H · (−AH∇Hv)−

∂

∂z

(

−AV
∂v

∂z

)

U

T
,

U2

L
,

U2

L
, fU ∼ P

ρ0L
, AH

U

L2
, AV

U

D2
,

where we have already used the scaling of the continuity equation to write W/D ∼
U/L. If we now assume that f∗ ∼ f (this is true everywhere except for very

97



near the equator), we imediately see that f∗w is small compared to fv in the x-
momentum equation and can therefore be ignored. To make further simplifications
we need to bring in the second requirement for large-scale flows, namely that
Earth’s rotation is important. We formalize this by expecting that the Coriolis
accelleration is as large as the pressure gradient term, i.e.

fU ∼ P

ρ0L

and that all other terms in the equation are either of the same size as Coriolis or
smaller. In other words,

U

T
. fU,

U2

L
∼ UW

D
. fU, AH

U

L2
. fU, AV

U

D2
. fU.

But anticipating that they might be as large as Coriolis in some circumstances, we
keep them all.

Scaling the vertical momentum equation gives

∂w

∂t
+ u · ∇w + w

∂w

∂z
− f∗u = − 1

ρ0

∂p

∂z
−
(

1 +
ρ′

ρ0

)

g −∇ · (−AH∇w)− ∂

∂z

(

−AV
∂w

∂z

)

W

T
,

UW

L
,

UW

L
, f∗U ∼ − P

ρ0D
,

(

1 +
ρ′

ρ0

)

g, AH
W

L2
, AV

W

D2
.

The first thing to note is that since W ≪ U, then all the three first accelleration
terms as well as the two diffusion terms are all much smaller than the Coriolis
term. But the Coriolis term itself turns out to be small compared to the vertical
pressure gradient. This is because we have already assumed that the Coriolis
accelleration approximately balances the horizontal pressure gradient. So the ratio
of the Coriolis term to the vertical pressure gradient is

f∗U

p/(ρ0D)
∼ D

L
≪ 1.

After all these cancellations the only term left to balance the vertical pressure
gradient is the gravity term. So the entire vertical momentum equation has been
reduced to

0 = − 1

ρ0

∂p

∂z
−
(

1 +
ρ′

ρ0

)

g

or,
∂p

∂z
= −ρg,
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where we still mean ρ = ρ0 + ρ′.
What we have found is called the hydrostatic approximation—and we already

saw it coming when studying the vertical momentum equation under the Boussi-
nesq approximation in Chapter 4. Note that if the fluid is absolutely still at all
times, then all the other terms in the vertical momentum equation are identially

zero. We then have an exact hydrostatic balance between the vertical pressure gra-
dient (pointing upward since the pressure is higher at depth) and the gravitational
force (pointing downward). What we have just shown here is that at large scales
this balance also approximately holds even if the fluid is moving. The pressure at
any depth is basically the total weight of the fluid above.

6.2 The primitive equations

In summary, the equations relevant for large-scale flows are the three momentum
equations (with the hydrostatic approximation applied to the z component),

∂u

∂t
+ u · ∇Hu+ w

∂u

∂z
− fv = − 1

ρ0

∂p

∂x
−∇H · (−AH∇Hu)−

∂

∂z

(

−AV
∂u

∂z

)

∂v

∂t
+ u · ∇Hv + w

∂v

∂z
+ fu = − 1

ρ0

∂p

∂y
−∇H · (−AH∇Hv)−

∂

∂z

(

−AV
∂v

∂z

)

∂p

∂z
= −ρg,

and the continuity equation,

∇H · u+
∂w

∂z
= 0.

In a stratified ocean we also need the equations for conservation of salinity and
temperature,

DS

Dt
= −∇H · (−KH∇HS)−

∂

∂z

(

−KV
∂S

∂z

)

Dθ

Dt
= −∇H · (−KH∇Hθ)−

∂

∂z

(

−KV
∂θ

∂z

)

−∇ · JR,

and, finally, an equation of state which gives water density as a function of salinity
and (potential) temperature,

ρ = ρ(S, θ, p0).
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These equations, relevant when 1) horizontal scales are much larger than vertical
scales and 2) the Coriolis accelleration is a key player, are called the primitive

equations. They are the equations used by most numerical ocean models today
and are also the starting point for most analytical treatments of ocean circulation
problems.

If, however, we wish to model flows in which we believe the vertical scales
of motions are comparable to the horizontal scales and flows for which we don’t
think Earth’s rotation is a dominant player, we need to go one step back to use
the full ’non-hydrostatic’ version of the z-momentum equations. A good example
of a non-hydrostatic flow is vertical convection. The vertical overturning in con-
vection is so fast that vertical accelleration terms simply cannot be ignored. Note,
however, that if the non-hydrostatic equationis are to be used, we also need, for
consistency, to keep the f∗w term in the x-momentum equation.

6.3 Estimating the hydrostatic pressure

Note that none of our equations so far have been an explicit equation for how
pressure changes in time or space. But pressure can be determined in various
ways, and with the primitive equations it is found by integrating the hydrostatic
approximation in the vertical. We set our reference level z = 0 at the level of an
imaginary flat sea surface. Then we let actual sea surface height variations around
this reference be denoted by η(x, y, t). Now integrating the hydrostatic pressure
equation from any depth z below the reference level (remember that z is then a
negative number) up to the sea surface at z = η gives

p(z) = p(η) +

∫ η

z

ρg dz

where p(η) is the atmospheric pressure at the surface. So the pressure at any
depth z is simply the weight of the water above plus the pressure at the sea surface
(which in turn is often well approximated by the weight of the atmosphere above).
If we ignore the atmospheric pressure for now and also expand the density ρ =
ρ0 + ρ′ into its two components (and noting that ρ0 is depth-independent), we get

p(z) = ρ0g (η − z) +

∫ η

z

ρ′g dz.
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Note now that the horizontal pressure gradients at level z (to be used in the hori-
zontal momentum equations) then become

− 1

ρ0

∂p

∂x
= −g

∂η

∂x
− g

ρ0

∂

∂x

∫ η

z

ρ′ dz

− 1

ρ0

∂p

∂y
= −g

∂η

∂y
− g

ρ0

∂

∂y

∫ η

z

ρ′ dz.

Finally, since the distance from z = 0 to z = η is normally a very small part of
the total vertical integral in the term involving ρ′, this last bit is normally ignored,
giving

− 1

ρ0

∂p

∂x
= −g

∂η

∂x
− g

ρ0

∂

∂x

∫ 0

z

ρ′ dz (6)

− 1

ρ0

∂p

∂y
= −g

∂η

∂y
− g

ρ0

∂

∂y

∫ 0

z

ρ′ dz. (7)

So the horizontal pressure gradient at depth is due to 1) the sea surface tilt and
2) horizontal gradients in the weight due to the perturbation density. The sea
surface tilt term is depth-independent while the second term changes with depth
and reflects horizontal density gradients, i.e. tilted or inclined isopycnals (lines of
constant density). The two are often called the barotropic and baroclinic pres-
sure gradients, although these two terms are mathematically defined by whether
isopycnals are parallel to pressure surfaces (rather than z-surfaces) or not.

6.4 The shallow-water equations

For many applications of modelling or theorizing about the ocean circulation we
can start by ignore density variations. So we essentially study a (thin) homoge-
neous layer where the density is constant, so that ρ′ = 0. Then we don’t need to
carry along salinity and temperature equations (nor an equation of state), and we
are left with three momentum equations (one of them is the hydrostatic approxi-
mation of the vertical component) and the continuity equation. Ignoring turbulent
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now just for convenience, we have

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −g

∂η

∂x
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −g

∂η

∂y
∂p

∂z
= −ρ0g

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0.

But, in fact, the hydrostatic equation is no longer useful for us. We have
already exploited it to give us horizontal pressure gradients—depth-independent
(barotropic) pressure gradients. Let’s look instead at the horizontal momentum
equations and, specifically, how the horizontal velocities vary with depth. Taking
the vertical derivative of the x-momentum equation gives

∂

∂t

(
∂u

∂z

)

+
∂

∂z

(

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv

)

= 0,

where we have flipped the order of differentiation in the first term. Note how the
vertical derivative of the (barotropic) pressure gradient has vanished. The other
thing to note now is that if the flow started off without any vertical shear, i.e. if
∂u/∂z = 0 and ∂v/∂z = 0 at t = 0, then all of the advection terms and the
Coriolis term would also be zero at t = 0. So we must conclude that if ∂u/∂z and
∂v/∂z are zero at t = 0, then ∂u/∂z will remain zero at all subsequent times. The
same argument can be used for the y momentum equations. So 1) the horizontal
velocities are independent of depth and 2) the w (∂u/∂z) and w (∂v/∂z) terms
drop out of the equations.

Next, let’s integrate the continuity equation through the layer. Assuming that
the entire fluid depth is

H = D − h(x, y) + η(x, y, t),

where D is some typical depth, h(x, y) is the height of the bottom topography
above z = −D and, finally, η(x, y, t) is our sea surface height above z = 0. For
depth-independent horizontal velocities we get

H

(
∂u

∂x
+

∂v

∂y

)

+ w(η)− w(−D + h) = 0.
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Now, kinematic boundary conditions dictate that one cannot have flow through
the bottom, nor through the sea surface. At the bottom this condition implies a
vertical velocity

wbottom = w(−D + h) = u
∂h

∂x
+ v

∂h

∂y
.

And at the top, allowing for a sea surface which may move up and down, we get

wtop = w(η) =
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
.

Plugging these expressions in gives

∂η

∂t
+H

(
∂u

∂x
+

∂v

∂y

)

+ u
∂H

∂x
+ v

∂H

∂y
= 0,

where we have used the fact that ∂D/∂x = ∂D/∂y = 0. Moving the second and
third terms to the right hand side and then combining them gives

∂η

∂t
= −

[
∂ (uH)

∂x
+

∂ (vH)

∂y

]

,

which gives the intuitive result that the time rate of change of the sea surface
height is given by the convergence of the depth-integrated horizontal transport.

In summary, what we call the shallow-water equations are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g

∂η

∂x
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g

∂η

∂y

∂η

∂t
= −

[
∂ (uH)

∂x
+

∂ (vH)

∂y

]

,

where all variables are now 2-dimensional. These are three equations in three
unknowns (u, v and η). The name, shallow-water, refers to the underlying as-
sumption that horizontal scales are much larger than the maximum vertical scale,
namely the thickness of the layer. So the layer itself is ’shallow’ compared to the
horizontal extent of the flow. This is, of course, essentially related to our earlier
assumption of a small aspect ratio δ = D/L and arrival at the hydrostatic approx-
imation. Note also that by integrating in the vertical our previous fluid parcel has
now become a fluid column of infinitesimal horizontal extent but a finite vertical
extent. And, as shown above, the velocities throughout the column are depth-
independent. The ambient rotation (and the lack of stratification) has essentially
caused a vertical rigidity to the flow, as illustrated in Figure 58
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Figure 58: The motion in an unstratified rotating fluid layer tends to take on the be-
havior of vertically-rigid columns. (Source: Cushman-Roisin and Beckers, 2011,
Fig. 1.3)

A little extra:

6.4.1 Stacked shallow-water layers

By putting two shallow-water layers on top of each other, each with a dif-
ferent density, we get the simplest possible model for a stratified ocean. The
three equations above are applied to each layer, but we need to see what the
pressures and pressure gradients become.

Let’s look into the two-layer case. The hydrostatic pressure at any depth
z in layer 1 (the top layer) becomes

p1(z) = p(η) + g

∫ η

z

ρ1dz.

If we ignore the sea level air pressure and let ρ1 be a constant, we get

p1(z) = gρ1 (η − z) ,

and from this we can write the horizontal pressure gradient terms in layer 1
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as

− 1

ρ0

∂p1
∂x

= −ρ1
ρ0

g
∂η

∂x

− 1

ρ0

∂p1
∂y

= −ρ1
ρ0

g
∂η

∂y
,

or, since under the Boussinesq approximation ρ1/ρ0 ∼ 1,

− 1

ρ0

∂p1
∂x

= −g
∂η

∂x

− 1

ρ0

∂p1
∂y

= −g
∂η

∂y
.

To find the pressure at any level z in layer 2 we need to integrate first from
the sea surface down to interface level Z1, using density ρ1, and then down to
z using density ρ2. This gives

p2(z) = gρ1 (η − Z1) + gρ2 (Z1 − z) ,

and horizontal pressure gradients

− 1

ρ0

∂p2
∂x

= −ρ1
ρ0

g
∂η

∂x
+

ρ1
ρ0

g
∂Z1

∂x
− ρ2

ρ0
g
∂Z1

∂x
,

− 1

ρ0

∂p2
∂y

= −ρ1
ρ0

g
∂η

∂y
+

ρ1
ρ0

g
∂Z1

∂y
− ρ2

ρ0
g
∂Z1

∂y
,

or, again using ρ1/ρ0 ∼ 1,

− 1

ρ0

∂p2
∂x

= −g
∂η

∂x
− g

(ρ2 − ρ1)

ρ0

∂Z1

∂x

− 1

ρ0

∂p2
∂y

= −g
∂η

∂y
− g

(ρ2 − ρ1)

ρ0

∂Z1

∂y
.

At this stage it is useful to introduce the concept of reduced gravity

g′ ≡ g
(ρ2 − ρ1)

ρ0
= g

∆ρ

ρ0
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so that the expressions become

− 1

ρ0

∂p2
∂x

= −g
∂η

∂x
− g′

∂Z1

∂x

− 1

ρ0

∂p2
∂y

= −g
∂η

∂y
− g′

∂Z1

∂y
.

The pressure gradient term in layer two are thus due to the sea surface tilt (this
term is felt throughout the water column) and also augmented by the tilt of the
interface. Not that since g′ ≪ g, the tilt of the interface has to be much much
larger than the sea surface tilt to make a comparable impact on the pressure
gradient in layer 2.

6.5 Geostrophic currents and the thermal wind

In addition to the condition of a small aspect ratio δ ≡ D/L, the primitive equa-
tions (PE) and the shallow-water equations (SWE) that we use to describe large-
scale flows required that the Coriolis accelleration is as big as the other acceller-
ation terms. As it turns out, at length scales larger than a few kilometers and
time scales longer than a few days, the Coriolis term is much bigger than all
other accelleration and friction terms. Then there is a relatively tight balance—the

geostrophic balance—between the Coriolis accelleration and the horizontal pres-
sure gradient. This is the balance we can see in the model simulation of currents in
the Gulf of Mexico: surface currents are not primarily down the pressure gradient
(the sea surface tilt) but rather around it. Large-scale flows both in the oceans and
atmosphere are basically geostrophic and hydrostatic.

Let’s scale the terms in the x momentum equations again (the argumentation
will be the same for the y momentum equation):

∂u

∂t
+ u · ∇Hu+ w

∂u

∂z
− fv = − 1

ρ0

∂p

∂x
−∇H · (−AH∇Hu)−

∂

∂z

(

−AV
∂u

∂z

)

U

T
,

U2

L
,

UW

D
, fU ∼ P

ρ0L
,

AHU

L2
,

AVU

D2
.

Now, to assess how big the various terms are compared to the Coriolis term, we
divide all scaling terms by fU.This gives

1

fT
,

U

fL
,

U

fL
, 1 ∼ P

fUρ0L
,

AH

fL2
,

AV

fD2
,
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where we have used the previous result W/D ∼ U/L to scale the vertical ad-
vection term (the third term). These are non-dimensional numbers that even have
names (except for the scaled pressure term). They are the temporal and advective
Rossby numbers,

ǫT ≡ 1

fT

ǫ ≡ U

fL
,

and the horizontal and vertical Ekman numbers,

EH ≡ AH

fL2

EV ≡ AV

fD2
.

Let’s estimate the size of these terms for flows that can safely be considered
large-scale. We assume horizontal and vertical length scales L ∼ 105m and D ∼
103m, a horizontal velocity scale U ∼ 10−1ms−1 and a time scale T ∼ 106s
(about ten days). Assuming that we are in mid-latitudes, with f ∼ 10−4s, then
results in Rossby numbers ǫT ∼ 10−2 and ǫ ∼ 10−2. So the accelleration terms are
about one hundred times smaller than Coriolis. Estimating the Ekman numbers
depends on good guesses for the diffusion coefficient. Fairly reasonable values are
AH ∼ 103m2s−1 and AV ∼ 10−2m2s−1, giving Ekman numbers EH ∼ 10−3 and
EV ∼ 10−2. So the accelleration and diffusion terms are indeed small compared
to Coriolis.

The consequence of small Rossby and Ekman numbers is that the horizontal
velocities are nearly geostrophic, meaning they are governed by a very tight bal-
ance between the Coriolis accelleration and the horizontal pressure gradient. So
we write

fvg =
1

ρ0

∂p

∂x
(8)

fug = − 1

ρ0

∂p

∂y
(9)

or, in vector form,

fk × ug = − 1

ρ0
∇Hp. (10)
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Hence, geostrophic currents flow along pressure contours, with high pressures to
their right in the northern hemisphere and to their left in the southern hemisphere
(where f < 0).

Since the pressure at z = 0 is given by the sea surface tilt (as discussed above),
we have that

vg(0) =
g

f

∂η

∂x
(11)

ug(0) = − g

f

∂η

∂y
. (12)

This supports what we see in Figure 57, namely a surface flow with high sea
level to its right in the northern hemisphere. The numerical simulation shown in
the figure is based on the full primitive equations, so it contains all accelleration
terms and also parametrized turbulent momentum fluxes. And still the model
results show that for flows with horizontal scales of tens of kilometers and larger
the geostrophic balance is overwhelming.

Note that for geostrophic flows that don’t have too large meridional extents,
f = const. and the horizontal divergence of the flow is

∂ug

∂x
+

∂vg
∂y

= 0.

So geostrophic flows that are not too extensive horizontally also have a zero hori-
zontal divergence. This, in turn, implies that the vertical stretching of the associ-
ated vertical veloctiy is zero, i.e. ∂wg/∂z = 0. So the vertical velocity is constant
with depth.

What about geostrophic currents further down in the water column? To look
into this we take the vertical derivative of the geostriphic relations. For a shallow-
water layer the horizontal pressure gradient doesn’t change within the layer, so
∂ug/∂z = ∂ug/∂z = 0. In other words, the geostrophic flow in such a layer
definitely act as rigid vertical columns—even without the previous requirement
of having a zero vertical shear initially. If we now also consider f = const., the
columns of geostrophic flow cannot stretch vertically. Then, since the vertical
velocities at the sea surface are very small (because the sea surface is nearly flat)
they also need to be very small at the bottom. This means, in practice, that the
bottom flow needs to flow around obstacles rather than flow over them (flow over
a bumpy bottom would produce large vertical velocities at the bottom). And since
the vertical shear of the horizontal flow is zero, the entire column need to do the
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Figure 59: Taylor columns: geostrophic flows in unstratified fluids that tend to
flow around bottom obstacles...throughout the entire water column.

same thing (Figure 59). So geostrophic currents in an unstratified ocean tend
to act like vertical columns—so-called Taylor columns—that follow the bottom
topography. This effect is real and can be observed many places in the oceans,
especially at high latitudes where the vertical density stratification is low due to
buoyancy loss (cooling) at the sea suface and extensive convective mixing. The
large-scale flows there tend to follow the continental slopes that separate the shelf
regions from deep off-shore basins (Figure 60).

But when the fluid is stratified the geostrophic flow can indeed be vertically
sheared. Taking the vertical derivative of the geostrophic version of the primitive
equations gives

∂vg
∂z

=
1

fρ0

∂

∂z

(
∂p

∂x

)

=
1

fρ0

∂

∂x

(
∂p

∂z

)

∂ug

∂z
= − 1

fρ0

∂

∂z

(
∂p

∂y

)

= − 1

fρ0

∂

∂y

(
∂p

∂z

)

.

But we already have an expression for the vertical pressure gradient, from the
hydrostatic approximation. Plugging this in gives

∂vg
∂z

= − g

fρ0

∂ρ

∂x
(13)

∂ug

∂z
=

g

fρ0

∂ρ

∂y
. (14)

So whereas geostrophic currents are given by horizontal pressure gradients, their
changes with depth are given by horizontal density gradients. We call these verti-
cal derivatives the thermal wind shear. The wording stems from the atmosphere
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Figure 60: Time-mean surface currents off the Norwegian coast estimated by a)
surface drifters, b) satellite altimeter and c) a numerical ocean model. (Source:
Isachsen et al., 2012, Fig. 2)
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where the vertical shear of the geostrophic winds is associated with horizontal
temperature gradients (if humidity effects of air density are neglected).

The importance of the thermal wind equations for our historical understanding
of oceanography cannot be overemphasized. The key thing to note is that, histor-
ically and even up to today, obtaining observations of temperature and salinity
(from which we can estimate density) has been much easier than obtaining direct
velocity observations. If one has, say, a hydrographic section with vertical pro-
files of temperature and salinity (and hence density), one can integrate the thermal
wind equations from some depth level zref to any other level z to obtain

vg(z) = vg(zref )−
g

fρ0

∫ z

zref

∂ρ

∂x
dz (15)

ug(z) = ug(zref ) +
g

fρ0

∫ z

zref

∂ρ

∂y
dz. (16)

So if one knows the geostrophic flow at any level zref one can find it at any other
level given information about horizontal density gradients. In these expressions
vg(zref ) and ug(zref ) are called reference-level velocities, and an enormous his-
torical effort has gone into making inference about these. A classical approach
has been to assume a level of no motion at some great depth, say at 2000 m, where
one expects the flow to be very small. So one assumes vg(zref ) = ug(zref ) = 0
and integrates the horizontal density gradients vertically to give an estimate of the
geostrophic flow at any depth. An alternative today is to set the reference level
to the sea surface, make estimates of the surface geostrophic flow from altimeter-
derived sea surface height gradients, and then integrate downwards from these.

A little extra:
A thermal wind shear can also be calculated in a stacked shallow water

model. In the last section we found the expressions for horizontal pressure
gradients in the top and second layer:

− 1

ρ0

∂p1
∂x

= −g
∂η

∂x

− 1

ρ0

∂p1
∂y

= −g
∂η

∂y

and
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Figure 61: Thermal wind shear in a two-layer shallow-water model. (Source:
Cushman-Roisin and Beckers, 2011, Fig. 15.2)

− 1

ρ0

∂p2
∂x

= −g
∂η

∂x
− g′

∂Z1

∂x

− 1

ρ0

∂p2
∂y

= −g
∂η

∂y
− g′

∂Z1

∂y
.

So from these we get expressions for the difference in geostrophic velocity
between the two layers

vg1 − vg2 = −g′

f

∂Z1

∂x

ug1 − ug2 =
g′

f

∂Z1

∂y
.

6.6 Geostrophic degeneracy and vorticity dynamics

The fact that the large-scale flow in both the atmosphere and ocean are approx-
imately governed by the geostrophic balance is both helpful and problematic at
the same time. It gives us the advantage of estimating winds and currents without
having to actually make direct measurements of these hard-to-obtain and often
noisy quantities. But the expression describing the geostrophic balance contains
no time derivatives, so it says absolutely nothing about how the flow evolves in
time. Given observations of the pressure field one can say what the large-scale
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currents are there and then, but the expression tells us nothing about the future
flow. This is what we call geostrophic degeneracy.

Even when we do keep all the terms in the primitive or shallow-water equa-
tions and try to integrate these forward in time, the huge size difference between
the Coriolis and pressure gradient terms and all the other terms causes practical
problems. All terms in the equations of motion contain errors, either observational
errors or numerical truncation errors. And the errors in the Coriolis and pressure
gradient terms may be as big as the true values of the accelleration terms. Say
that we think we know the error of all terms in the primitive equation momentum
equation to within 5%, individually. Now, if the Rossby numbers are 1/100, then
the error in the Coriolis term alone will be 500% of the size of the accelleration
terms. This does not allow for a very accurate estimate of the time-evolution of
the velocity. Modern computer codes that time-step the primitive equations need
to operate with very good numerics to reduce finite-difference truncataion errors
to very low values.

So the geostrophic balance is a great help in diagnosing the velocity field
from the pressure field. But to tell us anything really interesting, i.e. about how
the flow evolves in time, it would be useful have a set of equations where the
all-dominating geostrophic balance were somehow ’hidden’. We can actually ob-
tain such equations by a bit of manipulation. Let’s start with the shallow-water
momentum equations (also now ignoring Reynolds momentum fluxes):

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g

∂η

∂x
(17)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g

∂η

∂y
. (18)

We now take the x-derivative of (18) and subtract the y-derivative of (17). This is
equivalent to taking the curl of the vector form of the momentum equation. After
some algebra we obtain

∂ζ

∂t
+ u

∂ζ

∂x
+ v

∂ζ

∂y
+ v

∂f

∂y
+ (f + ζ)

(
∂u

∂x
+

∂v

∂y

)

= 0, (19)

where we have introduced the ’relative vorticity’ as

ζ ≡ ∂v

∂x
− ∂u

∂y
≡ ∇H × u,
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Figure 62: The effect of a horizontal convergence on a water column—via the
analogy of the figure skater.

i.e. the curl of the horizontal velocity field. This curl is basically the rotation of
the flow. Counter-clockwise or cyclonic flows have ζ > 0 while clockwise or anti-

cyclonic flows have ζ < 0. Notice how the pressure gradient term has completely
vanished. So this equation shows no sign of the geostrphic balance, no matter how
dominant it is.

This is the shallow-water vorticity equation. But what is it saying? The first
thing to note is that the total or absolute vorticity of the flow is the sum of the
planetary vorticity f and the relative vorticity ζ . The second thing to note is that
the planetary vorticity on our tangent-plane coordinate system is only a function
of the y-coordinate (remember that f = 2Ω sin θ and that our y-coordinate is
alligned in the meridional direction). So we have f = f(y) and can therefore
rewrite the vorticity equation as

D

Dt
(f + ζ) = − (f + ζ)

(
∂u

∂x
+

∂v

∂y

)

. (20)

We can now see what’s going on: the time rate of change of total vorticity of
a fluid column, as it moves with the flow, is set by the horizontal convergence
of the flow times the absolute vorticity itself. An analogy may be the figure ice
skater who is able to increase her rotation rate by pulling the arms in towards the
body—a convergence (see Figure 62).

A water column starting off at rest on the northern hemisphere has some posi-
tive absolute vorticity, namely that given by the planetary rotation. A convergence
of the flow can increase the absolute vorticity, either by moving northward to in-
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Figure 63: Two water columns whose absolute vorticity (f + ζ) will change if
they experience a convergent or divergent horizontal flow. They can do so either
by moving north or south (to change planetary vorticity f ) or by changing their
spin relative to Earth itself (to change relative vorticity ζ).

crease the planetary vorticity or by starting to spin cyclonically (Figure 63. A
horizontal divergence does the opposite. But notice what happens if the absolute
vorticity starts to approach zero (by lots of divergence). Since the divergence is
multiplied by the absolute vorticity itself, it impacts the rate of change of itself
less and less. In fact, the equation shows that a water column—if it is not forced
by friction—can never obtain negative absolute vorticity. The relative vorticity
must obey ζ > −f. Sounds strange? But think back to the figure skater. She too
cannot change her direction of rotation, no matter how hard she tries to extend or
pull in her arms.

We can go one step further than this by bringing in the shallow-water version
of the continuity equation. We had

∂η

∂t
= −

[
∂

∂x
(Hu) +

∂

∂y
(Hv)

]

,
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but this this can also be written

∂H

∂t
= −

[
∂

∂x
(Hu) +

∂

∂y
(Hv)

]

since the total vertical thickness is H = D−h+η where the sea surface elevation
η is the only time-variable contribution. Splitting up the spatial derivatives and
rearranging gives the expression

DH

Dt
= −H

(
∂u

∂x
+

∂v

∂y

)

, (21)

which says that the time rate of change of the thickness of the fluid column, as
it moves with the flow, is given by the convergence of the flow (times the thick-
ness itself). This makes sense: compressing the column horizontally elongates it
vertically, and vice versa.

Now we’ll get to the key point. Note that we now have two expressions that
contain the horizontal divergence (or convergence) of the flow. Substituting (20)
into (21) and rearranging gives the final result:

D

Dt

(
f + ζ

H

)

= 0. (22)

Notice what has happened here. Taking the curl of the shallow-water momentum
equations has given us a vorticity equation. Combining this with the shallow-
water continuity equation has resulted in an equation which says that in the ab-
sence of friction (and, as it turns out, the absence of volume sources or sinks) the
quantity

q =
f + ζ

H

is conserved following the flow. We call this conserved quantity the potential

vorticity of the fluid column. The equation for consevation of potential vorticity
tells us that if a fluid column is, say, squished vertically then it has to reduce its
total vorticity (rotation). It can do so by either moving southward (to reduce f) or
by spinning more clockwise (to reduce ζ), or both. If the fluid column is elongated
vertically, the absolute vorticity has to increase instead. Again, it may be useful
to think of what happens if our figure skater stretches or squeezes. The vertical
stretching/squeezing is related to a horizontal convergence/divergence.

Notice also that our three original equations (two horizontal momentum equa-
tions and one depth-integrated continuity equation) have been reduced to one.
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This seems like progress...until we realize that we are now left with one equation
in three unknowns (u, v and η). That doesn’t seem very promising in terms of
solving anything. But remember that if the velocities components u and v are
nearly geostrophic then we can, to a good approximation, write these in terms
of sea surface height η. And if we do exacxtly that, plug the expressions for the
geostrophic balance into the potential vorticity equation, we are essentially deal-
ing with one equation for one unknown. So this equation, i.e. the statement of
conservation of potential vorticity, turns out to be extremely useful in oceanogra-
phy (and in meteorology) provided that we study flows that are nearly geostrophic.
In fact, most theories of the large-scale ocean and atmosphere circulation—also
some that we will be discussing shortly—are based on the principle of potential
vorticity convervation. So if we start loosing track of what goes on, when we sim-
ply can’t see the forest for all the trees (or math), it may help to think of the figure
skater.
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7 The large-scale wind-driven circulation

With quite a bit of mathematical machinery in place we are now ready to revisit
both the wind-driven and buoyancy-driven ocean circulation. In this and in the
next chapter we will look at very simplified theories of large-scale ocean flows.
The theories, even in their extreme simplification, explain key aspects of large-
scale flows on a rotating planet. The most prominent feature, perhaps, is the
explanation for why mid-latitude ocean flows show clear east-west asymmetries
and contain western boundary currents (see e.g. Figs. 15 and 16).

The winds can ’pull’ the ocean along with it because of friction, what we call
the wind stress. This stress is a vertical flux of horizontal momentum through the
ocean surface. But the momentum flux only reaches down to a few tens of meters
and can thus only acellerate the very surface of the ocean. And yet, wind-driven
ocean currents have been observed to reach all the way to the ocean bottom, to
thousands of meters of depth. How is this possible? It turns out that the wind-
driven flow at depth is not driven by the surface momentum fluxes directly but
rather by horizontal pressure gradients created by the winds removing surface
waters from some regions and piling them up in other regions. Where the wind-
driven surface flow is convergent there will be a pile-up of mass, actually making
the sea surface higher than elsewhere. And waters residing a thousand meters
below such a pile-up region will experience a higher pressure (from the weight of
the extra water above) than waters some distance away. The waters will start to
accellerate down the pressure gradient, away from the pile-up region. But soon the
Coriolis accelleration kicks in and steers it to the right in the northern hemisphere
(or to the left in the southern). As we will see in this chapter, horizontal motion
in the ocean is primarily driven by such pressure gradients. So most of what we
call the wind-driven ocean circulation is only indirectly driven by the wind stress.
And, as alluded to above, then Earth’s rotation complicates things. In fact, as we’ll
soon see, the surface flows that feel the winds directly genereally don’t allign up
with the winds. But the deep flows, driven by the pressure gradients due to the
uneven piling up of wind-driven flows, do.

7.1 Ekman transport

Consdier the steady version of the horizontal momentum equation in which the
nonlinear advection terms and all but the vertical derivative of horizontal Reynolds
stresses have been neglected. We keep this stress term since this gives the hori-
zontal momentum input by the winds. The resulting equations are
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−fv = − 1

ρ0

∂p

∂x
+

1

ρ0

∂τxz
∂z

(23)

fu = − 1

ρ0

∂p

∂y
+

1

ρ0

∂τyz
∂z

. (24)

Since the equations are linear we can split the velocity into two parts, one geostrophic

and one ageostrophic. So we write

u = ug + ua

v = vg + va,

where

−fvg = − 1

ρ0

∂p

∂x

fug = − 1

ρ0

∂p

∂y

and

−fva =
1

ρ0

∂τxz
∂z

(25)

fua =
1

ρ0

∂τyz
∂z

. (26)

In the ocean interior the geostrophic balance is completely dominating. But near
the top and bottom boundaries momentum fluxes are important and the ageostrophic
flow non-negligible. Integrating the ageostrophic relationships vertically, from the
surface to some depth z0 below the direct influence of the winds (to a depth where
we assume stresses are zero), we get

VE ≡
∫ 0

z0

vadz = − τwx
fρ0

UE ≡
∫ 0

z0

uadz =
τwy
fρ0

,

where τwx and τwy are the zonal and meridional windstress components. We call
these depth-integrated ageostrophic volume transports the Ekman transports14.

14After V. W. Ekman who first examined this problem in 1902 using observations collected by
Nansen’s Fram expedition.
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Figure 64: (Source: Cushman-Roisin and Beckers, 2011, Fig. 8.7)

Written in vector form, the Ekman transport is

UE = − 1

fρ0
k × τw (27)

where τw is the wind stress vector. So, as hinted at in the introductory paragraph
above, the depth-integrated Ekman transport is not in the same direction as the
winds but at right angles to it, to the right in the northern hemisphere and to the
left in the southern hemisphere (where f < 0).

By assuming, as we have done earlier, that the Reynolds stress below the sea
surface goes as τxz = ρ0Az∂u/∂z (and similarly for the y component), one can
study the actual vertical distribution of the Ekman transport, i.e. the horizontal
velocities profile as a function of depth. We will not go through the calculations
here, but the result reveals an ’Ekman spiral’ in which the surface currents, at
z = 0, are at 45% to the right of the winds in the northern hemisphere (to the
left in the southern hemisphere) and then continue to spiral clockwise with depth
(counter-clockwise south of the equator). Figure 64 illustrates what this looks
like.

The full calculations show that the momentum stresses and hence the Ekman
velocities decay exponentially with depth, with an e-folding scale of

dE =

√

2AV

f
.
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Figure 65: The process of coastal upwelling. (Source: Stewart, 2008, Fig. 9.8)

After a few tens of meters (assuming a turbulent vertical viscocity Av ≃ 10−2 m2s−1

and f ≃ 10−4 s−1) the Ekman currents are vanishingly small. And yet, as we’ll
see below, the Ekman transport in this thin surface layer has profound imacts on
the ocean circulation as a whole.

7.2 Ekman-induced upwelling and downwelling

The key process, which impacts everything else, is the horizontal convergence or

divergence of the surface Ekman transport. Imagine a wind blowing along the
eastern margin of an ocean in the northern hemisphere, i.e. along the west coast
of some continent. If the wind blows from the north (“northerlies”), the Ekman
transport will be away from the coast, to the west. But because of the presence of
the coast, there is a divergence in the horizontal flow. There are two consequences:
1) the sea surface near land drops a bit and 2) after some time vertical flow, from
depth, has to replenish the divergence in the surface layer. This is what lies behind
the phenomenon of coastal upwelling (Figure 65).

The upward vertical flow which compensates the Ekman divergence in the
surface layer advects whatever properties are at depth up to towards the surface.
So in temperature-stratified mid-latitude oceans, coastal upwelling will bring cold
and nutrient-rich waters up to the surface—bringing dismay to swimmers and
surfers but happniess to fishermen. In addition, the drop in the sea surface near the
coast and the resulting cross-shore sea surface tilt will eventually be balanced by a
southward-flowing geostrophic current (in the northern hemisphere). Strange as it
may sound to a non-oceanographer (but not to you anymore!), the depth-integrated
surface flow directly impacted by the winds are in the cross-wind direction. But
the flow deeper down, driven by the horizontal pressure gradient linked to the sea
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Figure 66: Surface chlorophyl concentrations in the tropical Pacific
Ocean. The enhanced chlorophyl along the equator and along the Peru-
vian coast is due to Ekman-induced upwelling of nutrient-rich waters (Source:
https://en.wikipedia.org/wiki/Upwelling)

surface tilt, is in the same direction as the winds.
A similar thing happens at the equator. There the ’easterly trade winds’ (blow-

ing westward) cause a diverging surface Ekman transport due to the latitudional
variations of the Coriolis parameter. Exactly at the equator f = 0 and the wind-
driven transport is actually in the direction of the winds, i.e. westward. But a
few degrees to the north and the south there are Ekman transports away from the
equator, causing a divergence and accompanying upwelling of colder, nutrient-
rich, waters. The result is an increased phytoplankton production which can be
observed from space (Figure 66).

Finally, wind-induced up and downwelling can happen in the open ocean,
away from land boundaries and from the equator, if there is a curl, i.e. a rota-
tional component, in the wind stress. This is relatively easy to visualize. An
atmospheric low pressure system in the northern hemisphere is associated with
cyclonic (counter-clockwise) winds. If the low pressure system resides over an
open ocean region, the upper-ocean Ekman transport will be to the right, meaning
away from the low pressure center. So the surface Ekman transport is divergent
and causes a depression in the sea surface height and upward vertical velocities
underneath. The vertical velocity at the base of the Ekman layer, i.e. on top of the
geostrophic interior, is found by depth-integrating the continuity equation over the

122



Figure 67: Vertical velocities at the base of the surface Ekman layer for winds
with a) ∂v/∂x < 0 (negative curl) and b) ∂v/∂x > 0 (positive curl). (Source:
Cushman-Roisin and Beckers, 2011, Fig. 8.8)

Ekman layer. This gives

w(z0) =
∂UE

∂x
+

∂VE

∂y
,

where z0, as before, is the z level at the bottom of the Ekman layer. Substituting
in from (27) gives

w(z0) =
1

ρ0

[
∂

∂x

(
τwy
f

)

− ∂

∂y

(
τwx
f

)]

=
1

ρ0
∇H ×

(
τw

f

)

meaning that the vertical velocity is given by the curl of the wind stress divided
by f .

As Figure 67 illustrates, a positive wind stress curl (cyclonic winds in the
northern hemisphere) causes positive vertical velocities at the base of the surface
Ekman layer, what we call ’Ekman suction’, whereas a negative curl (anticyclonic
winds) causes negative vertical velocities (’Ekman pumping’). As we will see
next, such open ocean wind stress curl is key to understand the large mid-latitude
gyres in all the major oceans.

7.3 Wind-driven mid-latitude ocean gyres

Figure 68 show the Mean Dynamic Topography (MDT), i.e. the time-mean sea
surface height over the geoid as measured by satellite altimetry. We know that

123



Figure 68: The time-mean sea surface height, as measured by satellites (Source:
http://www.aviso.altimetry.fr)

the steady large-scale and geostrophic ocean currents flow along isolines of MDT,
with high sea level their right in the northern hemisphere and to their left in the
southern hemisphere. What the plot indicates is that the mid-latitudes are dom-
inated by large-scale gyres, at least in the Pacific and Atlantic oceans. One of
the most elegant and successful achievements of theoretical oceanography was
the explanation for the existence of such mid-latitude gyres that were driven by
winds.

A first heuristic attempt at explaining what is observed can be made from
the steady and linearized momentum equations discussed above and the concept
of the wind-driven surface Ekman transport. The mid-latitude gyres are in fact
driven by the joint effect of westerly winds (blowing eastward) centered around
40◦ north and south and the easterly trade winds centered around 10◦. These wind
systems cause an Ekman convergence in the latitudes in between and a build-
up of the sea surface height there (in addition to downward Ekman pumping, as
seen above). The resulting sea level gradients drive geostrophic currents that are
consistent with the observed gyres. In the North Pacific and North Atlantic, for
example, the currents are eastward in the latitude band 30–40◦N and westward in
the band 10–20◦N. One could then argue that the presence of continental barriers
force these flows to turn and form closed gyres.

But what about the east-west asymmetry of the gyres, as revealed by the satel-
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lite observations? The sea level gradients are much stronger along the western
boundaries than anywhere else in these gyres. So the geostrophic velocities are
also a lot higher along these western boundaries. These are the famous ’Kuroshio’
and ’Gulf Stream’ currents in the Northern Pacific and Atlantic oceans and the
’East Australian’ and ’Brazil’ currents in the southern Pacific and Atlantic oceans.
As revealed by the rather famous oceanographers Harald Sverdrup and Henry
Stommel (and others) in the 1940s and 1950s, the east-west asymmetry and the
presence of these western boundary currents can only be properly explained by
pulling the vorticity equation out of the hat rather than the momentum equation.

7.3.1 Interior Sverdrup balance

Harald Sverdrup studied the vorticity balance in the interior ocean, away from
both vertical and horizontal boundaries where turbulent momentum fluxes may be
important. Crucially, he suspected that the latitudional variation of the Coriolis
parameter might be important to larges-scale dynamics. The easiest model which
takes this into account is the beta-plane model in which the Coriolis parameter in
our tangent coordinate system, centered at latitude θ, is a linear function of y:

f = f0 + βy,

where, as before,
f0 = 2Ω sin θ

and

β ≡ ∂f

∂y
=

2Ω

R
cos θ.

Sverdrup looked at steady geostrophic flows on this beta plane, i.e. at the equations

−fvg = − 1

ρ0

∂p

∂x

fug = − 1

ρ0

∂p

∂y

where f is allowed to vary in the y-direction. He then took the curl (∂/∂x of the
second equation minus ∂/∂y of the first) to give

βvg + f

(
∂ug

∂x
+

∂vg
∂y

)

= 0.
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Note that this is the steady and linear (i.e. geostrophic) version of the previous
vorticity equation

D

Dt
(f + ζ) = − (f + ζ)

(
∂u

∂x
+

∂v

∂y

)

.

So for purely geostrophic flows (remember, they are slowly-evolving and large-
scale), a horizontal convergence or divergence has to be balanced by a north-south
translation, to change the planetary vorticity f.

Rewriting the horizontal convergence, using the continuity equation, gives

βvg = f
∂w

∂z
,

If we now assume that vertical velocities are negligible at the ocean bottom or at
some other great depth and integrate this equation up vertically from there, up to
the level z0 of the bottom of the surface Ekman layer, we get

βVg = fw(z0),

where Vg is the depth-integrated meridional geostrophic flow. Plugging in the
expression for the surface Ekman pumping velocity gives

Vg =
f

βρ0

[
∂

∂x

(
τwy
f

)

− ∂

∂y

(
τwx
f

)]

.

If we now add the contribution to the vertical transport from the Ekman flow,

VE = − τwx
fρ0

,

we get that the total depth-integrated meridional flow is

V = Vg + VE

=
1

βρ0

[
∂τwy
∂x

− ∂τwx
∂y

]

,

or, in vector form,

V =
1

βρ0
∇H × τw.
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As it turns out, we could have reached this relationship more directly by not

separating the ocean into a surface Ekman layer and a geostrophic interior below.
Taking the curl of the original momentum equations (23) and (24) gives

βv = f
∂w

∂z
+

1

ρ0

∂

∂z

(
∂τyz
∂x

− ∂τxz
∂y

)

,

where we have switched the order of the derivatives in the last term. If we now
vertically integrate this from some great depth (where both the vertical velocity
and friction are negligible) and up, and not only to the bottom of the Ekman layer
but all the way to the sea surface η, we get

βV = fw(η) +
1

ρ0

(
∂τwy
∂x

− ∂τwx
∂y

)

.

Assuming now that the steady vertical velocity at the sea surface is very small
(if not, the sea surface would rise or drop indefinitely), we end up with the same
result as above, namely

βV =
1

ρ0

(
∂τwy
∂x

− ∂τwx
∂y

)

,

or,

V =
1

βρ0
∇H × τw.

So, either way, the total vertically-integrated meridional transport is dictated
by the curl of the wind stress. Where the wind stress curl is positive (giving Ekman
suction), this Sverdrup relation dictates that the total depth-integrated transport is
northward. And this holds regardless of which hemisphere we are on. Where there
is a negative wind stress curl (Ekman pumping), the tranport is southward. Fig-
ure 69 shows the wind stress curl over the world oceans, estimated by observations
and models. We see that the curl is negative in the bands between approximately
20 and 40 degrees north, in both the Pacific and Atlantic oceans. This is in gen-
eral agreement with the meridional component of surface velocities in the gyres
at these latitutdes shown in Figure 68.

Note that the Sverdrup relation only gives the meridional component of the
depth-integrated transport. But if we assume that the total depth-integrated trans-
port is divergence-free,

∂U

∂x
+

∂V

∂y
= 0,
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Figure 69: The time-mean wind stress curl over the oceans. (Source: Talley et al.,
2011, Fig. 5.16[Talley et al.(2011)Talley, Pickard, Emery, and Swift])

and this is a pretty safe bet at long time scales (otherwise, as mentioned above,
the sea surface would rise or drop forever), then we can get the zonal transport by
simple integration of the depth-integrated continuity equation:

U(x) = U(x0)−
∫ x

x0

∂V

∂y
dx′.

A natural choice is to integrate from a continental boundary where the kinematic
boundary condition is zero flow into or out of that boundary. For an eastern
or western boundary which is alligned north-south at x0 we would simply have
U(x0) = 0. And for a boundary of arbitrary angle, U(x0) can also be found from
the same kinematic boundary condition applied to the flow-component normal to
the boundary. But there is a catch. Most oceans have two continental boundaries,
one in the east and another in the west. But the equation cannot satisfy two such
kinematic boundary conditions (it is a first-order differential equation, and such
equations require exactly one boundary condition). One must either integrate from
the eastern or from the western boundary.

The two different ’Sverdrup flow’ solutions are shown in Figure 70. We see
that if the no-normal-flow boundary condition is applied at the wall where the in-
tegration starts from, then the flow will ’run into’ the boundary at the other side
of the ocean. We can’t have that! Simply put, the Sverdrup model cannot apply
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Figure 70: The Sverdrup flow resulting from an anti-cyclonic wind stress, either
integrated from the eastern boundary (left panel) or from the western boundary
(right panel). (Source: Vallis, 2006, Fig. 14.3)

near the opposite boundary. We need additional dynamics there to close the cir-
culation. But which boundary do we start the integration from, the western or the
eastern one? The answer to this question is directly tied to the east-west asymetry
in the shape of these wind-driven gyres and the fact that they have western rather
than eastern boundary currents, as seen in Figure 68. It was Henry Stommel who
first extended Sverdrup’s model to offer an explanation for such western boundary
currents.

7.3.2 Western boundary currents

What Stommel did was introduce additional friction to the model. This does two
things: 1) it allows the energy which is input by the winds to be dissipated some-
where and 2) it raises the order of the differential equation so that it will need
two boundary conditions (one at each coast). The effect of introducing friction to
the Sverdrup model can be illustrated in various ways, but Stommel considered
bottom friction specifically (because it gives a particularly simple solution) in an
ocean without density stratification.

As before, the geostrophic momentum equations with vertical friction added
are

−fv = − 1

ρ0

∂p

∂x
+

1

ρ0

∂τxz
∂z

fu = − 1

ρ0

∂p

∂y
+

1

ρ0

∂τyz
∂z

.

Taking the curl (to obtain a vorticity equation) and integrating vertically through
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the entire water column, and now also allowing for bottom friction, gives

βV =
1

ρ0

(
∂τwy
∂x

− ∂τwx
∂y

)

− 1

ρ0

(

∂τ by
∂x

− ∂τ bx
∂y

)

=
1

ρ0
(∇× τw)− 1

ρ0

(
∇× τ b

)
,

where τ b is the bottom friction. Stommel assumed that this is proportional to the
velocity at the bottom, i.e. τ b/ρ0 = Rub, where ub is the bottom velocity and R is
a bottom friction coefficient. But note that in an ocean without a vertical density
stratification, the horizontal velocities are depth-independent. Stommel assumed
this. So we just write ub = u (the same at all depths) and get

βV =
1

ρ0

(
∂τwy
∂x

− ∂τwx
∂y

)

−R

(
∂v

∂x
− ∂u

∂y

)

=
1

ρ0
(∇× τw)−R∇× u,

showing that the bottom friction is given by the curl of the bottom velocity, i.e. the
relative vorticity of the bottom flow.

In fact, bottom friction creates a bottom Ekman layer, just as friction (the
wind stress) creates one near the sea surface. It can be shown that the geostrophic
vertical velocity out of the bottom Ekman layer is

w(z0,b) = −
(
∂UE,b

∂x
+

∂VE,b

∂y

)

= R

[
∂

∂x

(
v

f

)

− ∂

∂y

(
u

f

)]

= R∇×
(
u

f

)

.

So vertical flow out of the bottom Ekman layer, in other words bottom Ekman
pumping, can also influence the interior geostrophic flow, just as surface Ekman
pumping can. The difference is that whereas the vertical flow out of the surface
layer is dicated by the curl of the winds, so forced by the winds, the bottom Ekman
pumping is a result of the ocean flow itself—which is what we are trying to solve
for.

130



We are now in a position to argue why boundary currents have be on the west-
ern rather than the eastern sides of these wind-driven gyres. The key assumption
of Stommel was that the flow in the interior of the gyres is so sluggish that bottom
friction is negligible there (remember that in his model the friction is proportional
to the strength of the flow). So, in the ’Sverdrup interior’ we get a meridional flow
dictated by the sign of the wind stress curl. Thus, where the wind stress curl is
negative there will be a southward flow. But all this water eventually has to return
to the north again, and it does so in a narrow and swift boundary current—either
along the eastern or the western boundary. And there, because of the swift speeds
in such a boundary current, the bottom friction cannot be ignored. So energy
is input by the winds everywhere but only dissipatied via bottom friction in the
boundary current.

But why must the boundary current be in the west and not in the east? Well,
assuming the wind stress curl is the same everywhere, i.e. negative in our example
here, then this can not balance βV in the boundary current since this term is
positive there for a northward return flow. So only internal friction can balance
βV in the boundary current, and for βV > 0 (a boundary current returning water
to the north) we must have (∂v/∂x− ∂u/∂y) < 0. Now, it is clear that relative
vorticity in such a meridional boundary layer is dominated by ∂v/∂x and that the
other component, −∂u/∂y, can safely be neglected. Figure 71 then shows the
relative vorticities in boundary layers that are either on the eastern or the western
sides of an ocean confined between two continents. We see that ∂v/∂x > 0 in an
eastern boundary current and ∂v/∂x < 0 in a western one. A western boundary
current is the only possibility which produces a closed circulation!

Figure 72 shows an estimate of the depth-integrated wind-driven transport that
results from integrating the Sverdrup transport from the eastern boundaries of all
continents. The product is made using a wind-stress curl pattern similar to that
shown in Figure 69. There is clearly a qualitative resemblence with the direct
estimate of the geostrophic flow shown in Figure 68, a sign that the fantastically
simplified (!) theory of Sverdrup and Stommel contains some key dynamical ele-
ments of large-scale wind-driven flows on a rotating planet.
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Figure 71: (Source: Cushman-Roisin and Beckers, 2011, Fig. 20.7)

Figure 72: The global wind-driven circulation estimated by integrating the Sver-
drup relation from real winds then and assuming western boundary currents.
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8 The large-scale buoyancy-driven circulation

8.1 The need for both surface fluxes and turbulent vertical mix-
ing

Imagine a tank of isothermal (constant temperature) water. Then imagine that we
start cooling the sea surface in one end of the tank, say in the ’northern’ end. The
water there becomes colder and denser and starts to sink and slide underneath
the warmer water and ’southward’. And warmer water flows northward along the
surface to replace the cold water which has sunk. A buoyancy-driven overturning
circulation is formed and the circulation extends to the bottom of the tank since
nothing prevents the cooled water from sinking all the way down (it is the densest
water after all). Now repeat almost the same thought experiment, but imagine
instead warming the sea surface in the southern end of the tank. What happens?
The warmed-up water gets more buoyant and flows northward to spread itself on
top of the rest of the water in the tank. But how deep does the circulation reach
now? If the warming in the south only acts on the water molecules at the very
surface, then the northward flow will be super-thin. In fact, if one warms the
surface in the south and cools the surface in the north of the tank (as we observe
on a real planet) the northward surface flow would still be super thin. But when
oceanographers go out and observes the poleward flow of buoyant water in the
real oceans they find that it extends over hundreds of meters of depth.

J. W. Sandström, a Sweedish oceanographer, actually observed such buoyancy-
driven flows in his laboratory in the first decade of last century. After studying a
set of experiments where buoyancy was controlled by heating and cooling, he con-
cluded that “a circulation [of any significant strength] can develop from thermal
causes only if the level of the heat source lies below the level of the cold source”.
Surely, if the heating in the south took place through the bottom of the tank while
the cooling in the north continued to take place at the surface, a vigurous circu-
lation could be maintained. But on the real Earth heating of the ocean at low
latitudes does take place through the surface (heating from geothermal vents is
tiny in comparison). So what is going on?

As we have discussed earlier, the thermohaline circulation is essentially a form
of slantwise convection. Buoyant water (the warm water in our thought experi-
ment and in SandstrÃ¶m’s laboratory experiment) needs to rise and dense water
needs to sink. If the buoyant water is all produced near the sea surface, it can only
move laterally and no available potential energy (APE) can be released. Some
mechanism needs to get the buoyant water down (deeper) in low latitudes, so that
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it can rise on its way towards high latitudes. We have seen how shortwave ra-
diation can penetrate a few meters, perhaps a few tens of meters, into the water
column. But buoyant waters in the real oceans are found much deeper than this,
down to several hundred meters. As it turns out, on Earth (and probably on other
planets) buoyant waters are created at the sea surface by air-sea fluxes (heating or
precipitation) but are then is transported to greater depths. This downward trans-
port of buoyant waters can be done by Ekman pumping or by vertical turbulent
mixing. But in both cases the processes increases the gravitational potential en-
ergy locally (forcing buoyant water downward in a stably-stratified fluid). So the
transport process requires an external input of mechanical (kinetic) energy. This
can come from the winds (which can drive both Ekman pumping and also gen-
erate turbulence) or it can come from other sources of turbulence, most notably
from energetic tidal currents.

So the thermohaline or buoyancy-driven circulation requires two things: 1)
uneven buoyancy fluxes between low and high latitudes (a buoyancy loss at high
latitudes) and 2) a mechanical energy source at low latitudes for ’pumping’ buoy-
ant waters there down. From this depth, the buoyant waters can move poleward
and upward, in other words, participate in global-scale slantwise convection. The
entire circulation relies on a mechanical energy source (the one pumping buoyant
waters down in low latitudes), but the end result is a huge transport of thermal
energy (many orders of magnitude larger, in terms of Watts, than the mechanical
energy cost) to high latitudes. The global thermohaline circulation is, in fact, act-
ing much like a refrigirator or heat pump. A small amount of mechanical energy
is required to drive the pump/engine that transports heat from a warm to a cold
reservoir.

8.2 Deep western boundary currents

The 2D plots we have seen of the thermohaline circulation so far give little clue
about the horizontal structure of the flow. What does this look like on a rotating
planet? Is the thermohaline circulation also associated with east-west asymmetries
and even western boundary currents? As a matter of fact, it is. And again it was
Henry Stommel with colleagues who proposed the first and simplest models for
this.

We will study the horizontal structure of the lower-limb of the thermohaline
overturning circulation. The basic assumption of Stommel was that the sinking of
dense water happens in very localized convection regions at high latitudes but that,
in contrast, the mixing-induced upwelling of this dense water takes place over the
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Figure 73: Schematics of buoyancy-driven flows, requiring uneven surface buoy-
ancy fluxes, a small region where the dense waters sink and a broad region where
the dense waters can upwell by mechanically-induced turbulent mixing. (Source:
Cushman-Roisin and Beckers, 2011, Fig. 20.10)

world ocean as a whole. So the sinking is localized while the upwelling is broad,
as illustrated in Figure 73. Stommel then proceeded to study the vorticity budget
of the lower layer of this overturning circulation.

The vorticity equation is vertically integrated from the bottom z = −H to the
top of the lower layer (this level is defined as z = 0 in the figure). We allow for
bottom friction but now leave out surface Ekman transport (which doesn’t reach
the lower layer). At the top of the layer we instead introduce a vertical velocity
w(0) which represents upwelling to the layers above. This gives

βV = fw(0)−R

(
∂v

∂x
− ∂u

∂y

)

. (28)

Here we haven’t restricted our analysis to the beta plane, but β is still the merid-
ional gradient of the Coriolis parameter at any given latitude. If we now assume
that internal friction is negligible in the the inerior flow, away from boundary cur-
rents, we get

V =
f

β
w(0).

Note that the meridional flow in the interior (away from the boundary currents) can
not cross the equator where f vanishes. But everywhere else the full circulation,
including the zonal component, can be found just as for the Sverdrup interior
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Figure 74: Stomme’s simplified estimate of lower-layer flows for the large-scale
buoyancy-driven circulation. The convective source regions are indicated by fat
black dots. (Source: Stewart, 2008, Fig. 13.4)

discussed above (including the integral which gives the zonal component of the
flow).

So for upwelling in the interior we have w(0) > 0 and hence V > 0. But
this seems strange since our intuition from the 2D plots is that the deep flow is
away from the poles. Here vorticity considerations suggest that the flow is pole-
ward. The aparent paradox is easily resolved, however, by introducing a boundary
current where friction enters the vorticity budget. Using similar arguments as for
wind-driven gyres, it can be shown that equatorward boundary currents can only
be on the western side of the oceans. And since f doesn’t enter the frictional term,
at least not as specified in (28), the boundary currents can cross the equator.

Figure 74 shows Stommels estimate of the deep flow given two high-latitude
sources, one in the North Atlantic and another in the Weddel Sea north of Antarc-
tica. We see that the interior flows in the lower layer is everywhere poleward
and that the ’freshly-made’ dense water only travels equatorward in deep western
boundary currents (DWBC). Whether these boundary currents cross the equator or
not depends on the relative strength of the high-latitude sinking to the upwelling in
the rest of the ocean. We see for example that the North Atlantic DWBC extends
into the southern hemisphere and that waters formed in the Weddel Sea crosses
the equator and flow into the North Pacific (which doesn’t have its own deep water
production site).

There is no doubt that Stommel’s model for the abyssal circulation is overly
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Figure 75: Observations of along-shore flow off the Canadian east coast, i.e. along
the western boundary of the North Atlantic ocean. The left panel shows schematic
currents and the section where currents were measured. The right panel shows
along-shore flow, where yellow and red colors indicate southward flow while blue
colors indicate northward flow. (Source: Schott et al., 2006, Fig. 1)

simplistic. But the presence of deep western boundary currents is an observa-
tional fact. Figure 75 shows velocity measurements through a transect which
crosses the western margins of the North Atlantic ocean at about 43◦N, off the
Canadian east coast. The observations clearly show a northward-flowing surface
current, thought to represent the wind-driven western boundary current, but also
a southward-flowing boundary current at depth. An additional surface-intensified
southward flow is associated with light waters that exit the Arctic Ocean due to
sea ice melt and excessive river run-off there.

Hydrographic sections off the western boundary of the South Atlantic at about
30◦S (Figure 76) also show evidence of southward-flowing North Atlantic Deep
Water (NADW) and, below this, northward-flowing Antarctic Bottom Water (AABW).
Both of these deep western boundary currents were predicted by Stommel’s model
although in the model AABW did not reach this latitude.
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Figure 76: Hydrographic observations from a section along 30◦S in the South
Atlantic: potential temperature (left) and salinity (right). (Source: Warren, 1981,
Fig. 1.10)

138



9 Ocean waves

We have all seen waves on the ocean surface. But what are waves and what is
their purpose? Wikipedia says:

“A wave is an oscillation accompanied by a transfer of energy that
travels through a medium.”

And one could add that it is a transfer of energy which is not primarily associated
with a transfer/translation of the medium itself. So a wave is an oscillation that
travels through a medium, like water, without moving the water much. The water
parcels move up and down (acutally in ellipses, as we’ll see), but they basically
end up at their original position again. And still, energy can be transfered by the
wave from one place to another, even to the other side of the planet.

In the following we will be looking at ocean waves that can exist in water
whose density is constant, so basically waves that are associated with oscillations
of the sea surface (in the last section we will have a quick look at so-called internal
waves that exist in a denisty-stratified fluid).

9.1 Wave kinematics

A wave doesn’t have to be a sinusoid, but this is the canonical form we will use.
Specifically, a monochromatic (one single wavelength) plane wave traveling in the
x-direction, along the sea surface (Figure 77), may be written as

η(x, t) = a cos (kx− ωt) ,

where the amplitude a is the height of the wave (half the height from through
to crest) and wavenumber k and angular frequency ω are the reciprocals of the
wavelength λ and wave period T, respectively:

k =
2π

λ

ω =
2π

T
.

To see what the wavelength is, imagine freezing time and then study the shape
of the wave in space. The wavelength is then the physical distance (in meters)
between two neighboring wave crests or between two neighboring wave troughs.
What about the wave period? Well, now instead imagine observing a wave as it
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Figure 77: A monochromatic plane wave travelling in the x-direction. (Source:
Wikipedia)

travels past a fixed point in space. The period is the time (in seconds) between the
passing of two wave crests or two troughs.

A wave that travels in an arbitrary direction in the x-y plane can be represented
as

η(x, y, t) = a cos (kx+ ly − ωt) .

The propagation direction is given by the wavevector

K = ki+ lj,

where k is the wavenumber in the x-direction and l the wavenumber in the y-
direction. But in most of what follows we will simplify by looking at waves that
travel in the x-direction. Or, alternatively, study waves after we have rotated our
coordinate system such that the (rotated) x-axis is directed along the wave vector.

Phase velocity The phase speed of a wave is the speed at which the crests (or
troughs) move through the medium. A crest has moved by one wavelength in one
period, so

λ = cT,

where c is the phase speed. Substituting in the expressions for k and ω above gives

c =
ω

k
.
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Figure 78: The relationship between wave vector, wavelength and phase velocity
for a plane wave in the x-y plane. (Source: Kundu and Cohen, 2004, Fig. 7.3)

And for a wave that travels in the direction of wavevector K = ki+ lj, the phase
speeds in the x and y directions are

cx =
ω

k

cy =
ω

l
.

So cx is the speed at which a crest of a wave advances in the x-direction and cy
the speed that the crest advances in the y-direction.

Waves whose phase speed is a function of the wavelengths (or wavenumbers)
are called dispersive waves. This is because waves with different wavelengths
will then separate or disperse due to the different travel speeds. Waves we observe
when we throw a rock into a lake are dispersive. We easily see that long waves
travel faster away from the impact than shorter waves.

Group velocity As it turns out, the wave energy does not travel with the phase
velocity but rather with what is called the group velocity. To see what is meant by a
wave group and its velocity, imagine the sum of two waves, each with slightly dif-
ferent frequency and wavenumber (but same amplitude, which we here set equal
to one). So instead of having only one wave with wavenumber and frequency k
and ω, we have one wave with wavenumber and frequency k1 = k − ∆k and
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ω1 = ω −∆ω and another with k1 = k +∆k and ω1 = ω +∆ω, where ∆k and
∆ω are small compared to k and ω. The sum of the two waves becomes

η = cos [(k −∆k) x− (ω −∆ω) t] + cos [(k −∆k) x− (ω −∆ω) t] .

Now there is a trigonometric identity which says that

cos (a± b) = cos a cos b∓ sin a sin b,

which, when applied, gives

η = cos (kx− ωt) cos (∆kx−∆ωt)− sin (kx− ωt) sin (∆kx−∆ωt)

+ cos (kx− ωt) cos (∆kx−∆ωt) + sin (kx− ωt) sin (∆kx−∆ωt)

= 2 cos (kx− ωt) cos (∆kx−∆ωt) .

So this looks like the product of two waves. Actually what we have is a wave with
wavenumber k and ω whose amplitude is modulated by a ’wave envelope’ having
wavenumber and frequency ∆k and ∆ω, as shown in Figure 79. As before, the
speed of the fast wiggles (this is really our wave) is c = ω/k, but the envelope of
the wave, the “wave group”, is moving with speed ∆ω/∆k. In the limit of very
small changes to the wavenumber and frequency, we get the group speed

cg =
∂ω

∂k
.

The energy of the wave is proportional to the square of the wave amplitude.
And, as discussed above and as show in in Figure 79, this amplitude is modulated
by the wave envelope, the group. So the movement of this envelope gives the
movement of the wave energy. Where the envelope is zero there is still our basic
wave, cos (kx− ωt) , but nobody would be able to feel it—the wave energy there
is zero. The group velocity doesn’t need to be the same as the phase velocity, but
for some waves it is, as we’ll see examples of below.

As for phase velocity, when the wave has an arbitraty wave vector K = ki +
lj, there is an x and a y component of the group velocity:

cg,x =
∂ω

∂k

cg,y =
∂ω

∂l
.
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Figure 79: Wave groups. (Source: Wikipedia)

The wave spectrum Ocean waves of course don’t only come with one fre-
quency and one wavenumber. If one measures the evolution of sea surface height
at one fixed location, waves of a range of frequencies will be observed, each one
with its own amplitude. So the total time series can be written as a sum of waves:

η(t) =
a0
2

+
∞∑

n=1

[an cos (ωnt) + bn sin (ωnt)] ,

where the very first term allows for a time-independent component to the sea
surface (the mean sea level). Note that this can also be written

η(t) =
∑

An cos (ωnt+ φn) ,

for amplitude
An =

√

a2n + b2n

and phase
φn = tan−1 (bn/an) .

What we call the wave spectrum is a plot of these coefficients, An or φn, as a
function of frequency. Most often studied, the magnitude spectrum (An vs. ωn)
basically shows how wave energy is distributed over the various frequencies, in
other words, which waves (frequencies) are energetic and which are not. Con-
versely, by freezing time and studying the spatial scales of waves, one can also
form the wavenumber spectrum:

η(x) =
a0
2

+
∞∑

n=1

[an cos (knx) + bn sin (knx)] ,

where the coefficients are now different from those forming the frequency spec-
trum.

143



Figure 80: The Fourier series representation of a square wave (thick black line),
using the sum of either a single sinusoid (blue line), having the same wavelength
as the square wave, or the sum of two to five sinusoids, each of different wave-
length. (Source: http://mathworld.wolfram.com)

Finally, it is useful to keep in mind that any period signal, not just those that
look like sinusoids, can in fact be written as sums of sines and cosines. This was
proven by Joseph Fourier (1768–1830), and such representations are therefore
called Fourier series.

9.2 High-frequency ocean waves

In the following we will distinguish waves into high-frequency waves whose fre-
quency ω is much higher than the Coriolis parameter f and low-frequency waves

whose frequency is comparable to or lower than f . In both cases we will only
look at linear waves, that is waves whose sea surface height amplitude is small
compared to the ocean depth and whose water velocity (the velocity with with
actual water parcels associated with the wave are moving) is small compared to
the phase velocity.

For high-frequency surface gravity waves, the starting point is the linear Boussi-
nesque but non-hydrostatic equations for a constant-density, non-viscous (we ig-
nore friction) fluid. For waves having ω ≫ f, we can drop the Coriolis acceller-
ation from the momentum equations. If we wish to study waves that travel in the
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x-direction, the governing equations become:

∂u

∂t
= − 1

ρ0

∂p

∂x
∂w

∂t
= − 1

ρ0

∂p

∂z
− g

∂u

∂x
+

∂w

∂z
= 0,

with kinematic boundary conditions at the bottom (z = −H) and at the sea sur-
face (z = η). The wave motions—oscillations—arrise when a displaced sea sur-
face is restored back due to the force of gravity...and overshoots.

We won’t solve these equations here but go straight to the results. If we assume
a wave form for the free surface and, for now, limit ourselves to a single wave that
travels in the x-direction, so

η(x, t) = a cos (kx− ωt) ,

then the equations give us what’s called the dispersion relation for the wave. This
is a functional relationship between frequency and wavenumber, and for such a
fast surface gravity wave it is

ω2 = gk tanh (kH) .

This expression is slightly complicated, but two limiting cases are very easy to
deal with. For waves whose wavelength is much smaller than the ocean depth—deep-

water waves—we have kH ≫ 1 and tanh (kH) ∼ 1. This gives dispersion rela-
tion

ω2 = gk.

The phase speed is therefore

c = ω/k

=
√

g/k,

and the waves are dispersive (since the speed is wavenumber-dependent). Long
waves travel faster than short waves, as illustrated in Figure 81. The group velocity
of these deep-water waves is

cg =
∂

∂k

(√

gk
)

=
c

2
.
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Figure 81: The sea surface at three consecutive times after throwing a rock into
a pond. Deep-water waves are dispersive, with long waves travelling faster than
short waves. (Source: Kundu and Cohen, 2004, Fig. 7.19)

146



So the group speed is half the phase speed! If one observes a group of waves, one
would see individual waves passing through the group, leaving the group behind.

In the other limit, that of waves whose wavelength is much larger than the
ocean depth, i.e. for kH ≪ 1, we get that tanh (kH) ∼ kH. This gives

ω2 = gk2H,

so that the phase speed is

c = ω/k

=
√

gH.

Hence, these waves are non-dispersive, and their phase speeds only depend on the
water depth. The waves essentially travel faster as the depth increases. For these
waves the group speed is

cg =
∂

∂k

(

k
√

gH
)

= c.

The group velocity is exactly the same as the phase velocity. How convenient!
So the waves travel with speeds c and cg, but what about actual water parcels?

Again, we will not go through the algebra, but for the same assumed cosine wave
at the sea surface the horizontal and vertical velocity field is

u(x, z, t) = aω
cosh k (z +H)

sinh kH
cos (kx− ωt)

w(x, z, t) = aω
sinh k (z +H)

sinh kH
sin (kx− ωt) .

So these are the velocity components that water parcels are exposed to. As we
can see, they have nothing to do with the phase or group speeds of the wave
phenomenum itself. To find the time-evolving position of a fluid parcel centered
around ’resting position’ (x0, z0) we integrate these expressions in time. This
gives

x′(t) = −a
cosh k (z +H)

sinh kH
sin (kx− ωt)

z′(t) = a
sinh k (z +H)

sinh kH
cos (kx− ωt) .
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Figure 82: Particle trajectories of surface gravity waves for a) deep water, b) in-
termediate water and c) shallow water waves. (Source: Kundu and Cohen, 2004,
Fig. 7.6)

So the fluid parcels move in ellipses, as shown in Figure 82. The detailed behavior
depends on the ratio of wavelength to ocean depth. For deep-water waves, i.e. for
kH ≫ 1, the ellipses are nearly circles that decay exponentially with depth. For
waves of intermediate wavelength compared to the depth, so for which kH ∼ 1,
there water parcels trace out clear ellipses. And, finally, for shallow-water waves,
kH ≪ 1, the ellipses are almost completely squished and don’t change their size
with depth.

9.2.1 Wind-driven surface gravity waves

The ocean waves most familiar to us are surface gravity waves generated by the
winds. If the winds start blowing on a very calm sea surface it is not actually
gravity waves that first get generated but capillary waves in which the restoring
force is surface tension rather than gravity. But these capillary waves grow fast,
also in size, and eventually turn into gravity waves.
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Growth As the winds blow the ocean surface gets rougher and rougher, in other
words the amplitude of the waves grow. We can understand this conceptually
by realizing that a wavy ocean surface is more ’rough’, such that the frictional
coupling between atmosphere and ocean increases. It’s like increasing the drag
coefficient, and the result is even stronger forcing of the ocean wave field. As
just about anybody has observed, the wave field grows faster with stronger winds.
It also grows over time, as long as the winds blow, until there is some form of
balance between the energy input by the winds and energy loss from dissipation,
e.g. by wave breaking and the generation of unorganized motion—turbulence.
When such a balance kicks in we have what’s called a fully-developed sea.

Since the winds in reality are not steady either but consist of velocity fluc-
tuations of different time and spatial scales, the ocean waves also consists of a
range of different frequencies and wavelengths (or wavenumbers). So we get a
broad spectrum of ocean waves. The spectrum is a directional spectrum since
waves can travel in all the compass directions (Figure 83). Non-linear terms in
the wave equations also cause a transfer of energy between waves of different fre-
quencies and wavenumbers, and the end result is that wave spectra, at least for
fully-developed seas, tend to have characteristic shapes. Generally the non-linear
terms tend to transfer energy toward lower frequencies, so the stronger the winds
the bigger (and more nonlinear) the waves become...and the larger is the shift
towards lower frequencies. Finally, the horizontal length, the fetch, over which
the winds blow also matters. Essentially, the longer the fetch the longer time the
waves get to develop (Figure 84).

Propagation The waves, being waves (!), travel at speeds set by their dispersion
relationship. In deep waters the short waves travel relatively slowly and are con-
stantly forced by the winds. This is the wind sea, and it is choppy because of the
turbulence in the winds. But longer waves travel faster and can actually outpace
the winds (especially towards the outer reaches of a storm). These long waves
that travel faster than the winds are the majestic swell (Figure 85). They, in fact,
are often the messengers telling the tale that a storm has taken place somewhere
far away. So an observer (a surfcer?) waiting on the beach, perhaps hundreds or
even thousands of kilometers away from a storm, will observe the long waves, the
swell, first. As it turns out, he or she may not even get a chance to observe any
shorter waves generated by the far-away storm. Not only because it takes them
much longer to cross the ocean but also because they dissipate faster (the viscous
stress terms are scale-selective).
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Figure 83: A directional wave spectrum from a location in the Norwegian Sea,
estimated by a numerical wave model. Black arrow shows the local winds at the
time of estimation. The spectrum shows two ’blobs’ of waves. One is local wind
sea, forced by the wind, while another is a longer-wavelength swell propagating
in from some other region. (Source: Norwegian Meteorological Institute)

Figure 84: Idealized wave spectra (integrated around all directions): (left) for
fully-developed seas for winds 20, 30 and 40 knots (about 10, 15 and 20 m/s), and
(right) for about 15 knots but for various lengths of fetch. (Source: Knauss, 2005,
Fig. 9.11)
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Figure 85: The swell eminating from a storm. (Source:
http://geologycafe.com/oceans/chapter10.html)

A spectacular example of the journey of the swell is from the Pacific ocean,
from the permanent stormy region surrounding Antarctica and all the way to the
western coast of north and central America. In the event shown in Figure 86 the
swell traveled around 12000–25000 km in 10 to 13 days with an average speed of
26 m/s.

As the waves hit the coast As the swell approaches land they go from being
deep-water waves to being shallow-water waves, with a new dispersion relation-
ship, i.e. not being dispersive at all. If such shallow-water waves approach the
coast at some oblique angle, the part of the wave crest closest to the coast will
experience a lower phase speed than the same crest further off the coast. This is
called wave refraction and causes the wave to turn, as shown in Figure 87. The
wave thus tends to hit the coast with the crests parallel to the beach. The wave
energy travels perpendicular to the wave crests, so this implies that wave energy
enters almost normal to the beach. Where the coast is uneven, as in the figure, the
wave energy flux is also even, and this tends to cause an uneven rate of errosian
along the coast—actually tending to flatten the coastline.

As the waves continue to progress into shallower waters the phase and group
speed continually decrease (remember, they are now shallow-water waves). So
it’s as if the waves are breaking towards the beach, and this causes the waves
to both get shorter wavelength and higher amplitudes. The wave height grows!
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Figure 86: Estimates of paths taken by swell generated by a storm that took place
in the Southern Ocean, south of New Zealand. The color on the lines show the
’age’ of the swell along the journey.
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Figure 87: Refraction of shallow-water waves as they approach the coast and the
uneven wave energy propagation in towards an uneven coastline.

When the wave height starts to become comparable to the wavelength the waves
are no longer linear and don’t looko like sinusoids anymore. Finally, when bottom
friction starts to kick in, the wave water parcels near the bottom are slowed down
even more. So water in the upper part of the wave travels faster than water in the
lower part and the wave ’tips over’ and breaks (Figure 88).

9.2.2 Tsunamis

Tsunamis are generated by off shore seismic activity. There can be multiple
causes, e.g. an underwater earthquake, but all are associated with an abrupt verti-
cal movement of the ocean bottom which displaces water vertically over a limited
region. This displaced water then travels away from the generation region (in all
directions). Tsunamis have wavelengths of tens to hundreds of kilometers, so they
are always shallow-water waves, moving at speed c =

√
gH. So once detected, the

travel times to the surrounding coasts is relatively easy to calculate. But for ocean
depths of, say 3000 meters, the wave speed will be around 175 m/s or 625 km/hr,
so large ocean basins can be crossed in only a few hours.

In the open ocean the sea surface amplitude of tsunamis may be less than a
meter, too small to be felt by crew or passengers on ships. But as they approach
land the wave height can increase dramatically. The key reason is that the wave
speed decreases in shallower water. And since the wave period (or frequency)
does not change, the wavelength then has to decrease. So water is piling up from
behind the wave and the only way to conserve volume is for the wave height to
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Figure 88: The behavior of the swell as it approaches the beach, starting as linear
deep-water waves far off-shore, then transitioning to shallow-water waves as they
enter, and finally steepening and breaking on the shores.

increase. Finally, when the wave height becomes comparable to or smaller than
the water depth the wave becomes unstable and breaks.

9.3 Ocean waves impaced by Earth’s rotation

When the wave frequency becomes comparable to the local Coriolis parameter we
can no longer ignore the impact of Earth’s rotation on the dynamics of the waves.
These ’low-frequency’ waves also typically have large wavelengths and are hence
deep-water waves.

At this point it is rather useful to realize that the shallow-water limit, kH ∼
H/λ ≪ 1 is essentially another way to say that the aspect ratio which we’ve
seen before, δ = H/L, is small. This was one of the key requirements behind
the hydrostatic approximation. So shallow-water waves are governed by hydro-
static dynamics. Hence, low-frequency shallow-water waves in a constant-density
ocean are governed by the shallow-water equations that we have seen before.

If we ignore all nonlinear terms in the shallow-water equations (remember, we
are after linear waves here), and we also consider only the flat-bottom case, we
get
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∂u

∂t
− fv = −g

∂η

∂x
∂v

∂t
+ fu = −g

∂η

∂y

∂η

∂t
= −D

(
∂u

∂x
+

∂v

∂y

)

,

where D is the mean water depth (ignoring the contribution from η. These equa-
tions have wave solutions that depend on boundary conditions and, as we will see
later, on what time scales (or frequencies) we consider.

In studying these waves we will principally be looking at their dispersion re-
lation, the functional relationship between frequency and wavenumber. And to
do this we try a wave solution for the unknown variables (knowing that it’ll work)
and see what happens. So we will assume sine and cosine solution and insert these
into the equations. Actually, in most cases we will use Euler’s identity

eiΘ = cosΘ + i sinΘ

and just say that the wave is the real part of the exponential. So if we assume that,
say, the sea surface height is a cosine, we write

η(x, y, t) = Re
{
ei(kx+ly−ωt)

}
.

9.3.1 PoincarÃ© and Kelvin waves

PoincarÃ© waves The most general wave solution to the linear shallow equa-
tions can be found by taking the shallow water equations at face value and insert-
ing wave forms for the three unknowns, u, v and η. But here we will instead re-
organize the equations into one single (third-order) equation for η. The procedure
involves taking both the divergence and the curl of the two momentum equations,
and it eventually allows us to eliminiate u and v. The final expression for η is

∂

∂t

{[
∂2

∂t2
+ f 2 − gD

(
∂2

∂x2
+

∂2

∂y2

)]

η

}

= 0,

which, upon inserting our exponential wave solution for η, gives

−iω
[
−ω2 + f 2 + gD

(
k2 + l2

)]
= 0.
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So we can have two solutions, either

ω = 0

or
ω2 = f 2 + gD

(
k2 + l2

)
.

The first solution is a steady solution (ω = 0 implies ∂/∂t = 0, so what we get is
geostrophy!) which we will not pursue here. But the second solution is a proper
dispersion relation, stating what the frequency is for a given set of wave numbers
(and Coriolis parameter and water depth).

Consider a plane wave with the wave vector aligned in the x-direction, so that
l = 0 and

η(x, t) = A cos (kx− ωt) .

The dispersion relation becomes

ω2 = f 2 + gDk2,

or
ω = ±

√

f 2 + gDk2.

Dividing by f gives
ω

f
= ±

√

1 + Ldk,

where

Ld =

√
gD

f

is what’s called the Rossby radius of deformation. The importance of this length
scale in the dynamics of the ocean (and atmosphere) cannot be overemphasized.
Its meaning is illustrated in Figure 89 which shows the dispersion relationship
(here only for posivite frequencies). For high wavenumbers, meaning wavelengths
much smaller than Ld, the PoincarÃ© waves behave just like the high-frequency
surface gravity waves studied above. The frequencies are so high and time scales
so short that Earth’s rotation doesn’t come into play. But at lower wavenumbers,
for wavelengths comparable to the deformation radius, Earth’s rotation becomes
important and the dispersion relation bends away from that of non-rotating waves.
The waves actually attain a minimum freqency of f as the wavelength goes to in-
finity. So the Rossby radius is the lateral scale at which Earth’s rotation becomes

important.
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Figure 89: The dispersion relation for a PoincarÃ© wave traveling in the x-
direction. Also shown (dashed lines) is the dispersion relation for shallow-water
gravity waves on a non-rotating planet. The frequency and wavenumber have been
nondimensionalized by the Coriolis parameter f and by the Rossby deformation
radius Ld, respectively.

157



Figure 90: Phase (blue) and group (green) speeds as function of wavenumber for
plane PoincarÃ© waves with positive frequency travelling in the x-direction. Both
speeds assume positive frequencies (the positive root) and are also normalized
by the non-rotating speed

√
gD, and the wavenumber has been normalized by

deformation radius Ld.

The phase and group speeds, both divided by the non-rotating gravity wave
speed

√
gD, are shown in Figure 90. We see, as expected, that both phase and

group speeds take on the non-rotating speed for large wavenumbers, i.e. for small
scales. But the two behave differently at large scales: the phase speed becomes
infinite while the group speeds goes to zero.

What is the particle motion in such a wave? If we again consider the plane
wave that travels in the x-direction, its crests and troughs are aligned in the y-
direction. So there are no variations in the y-direction, and the equations become

∂u

∂t
− fv = −g

∂η

∂x
∂v

∂t
+ fu = 0

∂η

∂t
= −D

∂u

∂x
.
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Figure 91: The fluid motion in plane (left) non-rotating and (right) rotating
(PoincarÃ©) waves propagating in the direction of wavevector K.

Hence, for our cosine sea-surface height field

η(x, t) = A cos (kx− ωt) ,

we can get an expression for the u-velocity field from the third equation. This
becomes

u(x, t) =
ω

kD
A cos (kx− ωt) .

And the v-velocity field can be found from the second equation, giving

v(x, t) =
f

kD
A sin (kx− ωt) .

These solutions are shown in Figure 91, now for a wave propagating in an arbitraty
direction given by wave vector K = ki + lj. For positive frequencies the fluid
parcels move in clockwise ellipses in the horizontal plane that have their semi-
major axis in the direction of phase propagation. For comparison, the figure also
shows the water parcel motion in shallow-water gravity waves not influenced by
Earth’s rotation. For those, the water motion is strictly back and forth along the
direction of wave propagation.

Kelvin waves Now consider the situation near a continental boundary, say a
southern boundary at y = 0. We anticipate that a wave could be propagating along
the boundary, so along the x-direction. But how does the boundary condition
requiring no normal flow at y = 0 impact the solution? William Thompson (better
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known as Lord Kelvin, 1824–1907) investigated a solution which assumed v = 0
everywhere and not just at the boundary. The governing equations then become

∂u

∂t
= −g

∂η

∂x

fu = −g
∂η

∂y
∂η

∂t
= −D

∂u

∂x
.

Taking ∂/∂t of the third equation and subtracting D · ∂/∂x of the first equation
gives

∂2η

∂t2
= gD

∂2η

∂x2

which is a classical wave equation. Plane wave solutions look like

η(x, y, t) = η̃1(y)e
i(kx−ωt) + η̃2(y)e

i(kx+ωt)

or
η(x, y, t) = η̃1(y)e

ik(x−ct) + η̃2(y)e
ik(x+ct),

with c =
√
gD, as before, and with the north-south structure of the pressure field

contained in η̃1 and η̃2.
So it appears that we can have waves travelling both eastward and westward.

But this is only until we also apply the remaining equation which says that the
zonal velocity is in geostrophic balance with the meridional pressure gradient
(even if it is also associated with wave motion). Using this equation it can be
shown that the north-south structure of the wave is an exponential. But the ex-
ponential representing η̃2 grows out of bounds away from y = 0, so this solution
is physically impossible. The only possibility is an exponential representing η̃1
which decays towards the north, and the final solution is

η(x, y, t) = η̃1,0e
−y/Rdeik(x−ct),

or, taking only the real part in the end,

η(x, y, t) = η̃1,0e
−y/Rd cos [k (x− ct)] ,

where, as before, Rd =
√
gD/f = c/f is the Rossby radius of deformation.

So these waves, called Kelvin waves, propagate eastward along a southern ocean
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Figure 92: The eastward propagation of a kelvin wave along the southern bound-
ary of an ocean basin in the northern hemisphere. Countours show the sea surface
height.

boundary with phase and group speeds c = cg =
√
gD. Their amplitude decays

exponentially away from to the north with an e-folding scale set by the Rossby ra-
dius. The more general result, allowing for a coastal boundary of any orientation,
is that such Kelvin waves travel with the coast to their right in the northern hemi-
sphere (and to their left in the southern hemisphere). And even though rotation is
important (the Coriolis parameter enters into the spatial decay scale), they travel
with the non-rotating shallow-water gravity wave speed and are non-dispersive.

9.3.2 Tides

The tides are waves propagating through the oceans, waves forced by the gravi-
tational forces of the Sun and the Moon. Before looking at the wave behavior of
the tides, we’ll have a quick look at this gravitational forcing and the response we
would have seen if waves could travel infinitely fast.

Equilibrium tides The gravitational force by the moon on a water parcel is

F = G
mM

P 2
,

where M and m are the mass of the moon and the water parcel, respectively, P
is the distance between the water parcel and the center of mass of the moon and,
finally, G is the gravitational constant. The force is a rather strong function of the
distance, and it is quite clear that a water parcel on the side of Earth facing the
moon feels a stronger force than another parcel on the other side of the Earth. The
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Figure 93: The net tidal forces on water parcels residing on the surface of the
Earth. The moon (“satellite”) is located to the right of the picture. (Source:
Wikipedia)

tide generating force is this ’pull’ on water parcels by the moon relative to the pull

felt at the center of Earth itself. This ’residual’ force is shown in Figure 93.
The equilibrium response to these forces, the steady-state response if the water

experiences no inertial (i.e. it has no mass) and no friction, is two bulges of water,
one on the side of Earth facing the moon and one on the other side. There are also
two depressions in sea water, as shown in Figure 94. As Earth rotates around its
own axis, once every 24 hours, an observer anywhere of the planet would observe
the equilibrium tide passing. One would expect two bulges to pass per day, a
semi-diurnal tide. And this is indeed the case, most of the time. But since the
moon’s orbit around Earth is not in the equatorial plane but rather at an angle with
respect to it, a diurnal equilibrium tide (once per day) can also be found at high
latitudes when the moon happens to be far off Earth’s equatorial plane (as shown
in the second panel of the figure).

Both the moon and the sun exert tidal forces on the Earth’s ocean and at-
mosphere (yes, there are atmospheric tides!). But since the moon and sun have
moved by different amounts each time Earth has rotated around its own axis, the
periods of the lunar and solar equilibrium tides are slightly different. So we have
two principal semi-diurnal tidal constituents, M2 and S2 (having periods 12.42
hours and 12 hours, respectively). Then there are diurnal constituents associated
with both, the strongest one being the K1 lunar constituents (period 23.93 hours).
In addition, the interaction or interference between these frequency components
create new tidal frequencies that are either sums of the original frequencies or dif-
ferences between them (remember our discussion earlier on the adding up of two
waves of slightly different frequencies). The result is a huge range of equilibrium
tidal frequencies, including high frequencies (up to six oscillations per day) and
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Figure 94: The equilibrium response due to the gravitational attraction of the
moon, for two different positions of the moon with respect to Earth’s equatorial
plane. (Source: U.S. Dept. of Commerce, 1924)

very low frequencies (years!).
The most known ’interaction’ tide is perhaps the spring-neap cycle which oc-

curs due to Moon’s orbiting around Earth. When the sun and the moon are aligned
in a line, we have extra strong tidal bulges along that line and extra strong de-
pressions at right angles—spring tides (Fig. 95). And when the Earth–moon–sun
system is oriented at right angles, the tide generating forces of the sun and the
moon oppose eachother, giving rise to weak bulges and depressions—neap tides.
The spring-neap cycles has a period of 28 days.

Dynamic tides As it turns out, the equilibrium tide is only a first qualitative
approximation of the real tides. In the real ocean, the ’tidal bulges’ have to move
around as waves, constantly trying to keep up with the astronomical (gravitational)
forcing. The wavelengths are huge (some sizable fraction of the circumference of
the planet), so these are shallow-water waves that are influenced by the rotation of
Earth around its own axis and also by the presence of continents. So, from what
we have learned above, tides can propagate as both PoincarÃ© or Kelvin waves.

But remember that PoincarÃ© waves have to have frequencies higher than the
Coriolis frequency. And since the Coriolis freqency increases with latitude, there
exist latitudes above which certain tides cannot propagate as PoincarÃ© waves.
This is called the critical latitude. For the diurnal tide this latitude is about 30
degrees whereas for the semidiurnal tide it is around 75 degrees. Tides can prop-
agate beyond these latitudes, but that will have to take place in the form of Kelvin
waves, hugging some coast. In fact, because of the many coastal boundaries tides
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Figure 95: The spring-neap tides. (Source: Wikipedia)
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Figure 96: The propagation of the semidiurnal lunar tide (M2) through the North
Sea and British Channel. The contours show the time of high tide in hours, in
reference to Greenwich. (Source: Knauss, 2005, Fig. 10.5)

mostly behave like Kelvin waves everywhere, constantly trying to keep up with
the forcing by the moon and the sun. So the phase speed of the tide is typically
c =

√
gD. But now, in reality, this propagation speed varies from place to place—

by the square root of the ocean depth.
An example of the propagation of the semidiurnal lunar tide through the North

Sea and British Channel is shown in Figure 96. The plot shows the phase of the
tide, in hours, relative to some reference time (here the time in Greenwich, Eng-
land). We see that the tide propagates counter-clockwise in these seas, with the
coast to its right as expected from Kelvin waves. The tide here is actually a com-
bination of a wave entering from the north and one from the south. Shown in the
figure are two points where the phase lines meet. At these locations, amphidromic

points, the tidal amplitude is zero since this is the only way the wave can have all
possible phases at the same time.
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9.4 Very low frequency (Rossby) waves

We have seen that Poincar´e waves only have frequencies higher than the Coriolis
parameter. We call them super-inertial waves. Kelvin waves can have lower
frequencies, at wavelengths longer than the Rossby radius, but these can only
travel along a coast. So does very low frequency waves not exist in the ocean
interior, away from boundaries? Actually they do, but they require that we add
one more aspect of the dynamics on a rotating planet, namely the meridional

variation of the Coriolis parameter.
Let’s start with the linear shallow-water equations, again for a flat bottom but

now allowing for a weak change in the Coriolis parameter. We write

f = f0 + βy

where f0 is the Coriolis parameter at the mean latitude in the region we’re inter-
ested in and β = df/dy, i.e. the meridional gradient of f . Then the equations
are

∂u

∂t
− (f0 + βy) v = −g

∂η

∂x
∂v

∂t
+ (f0 + βy) u = −g

∂η

∂y

∂η

∂t
= −D

(
∂u

∂x
+

∂v

∂y

)

,

where we assume βy ≪ f0. We want to study the behavior of these equations at
very long time scales, i.e. for T ≫ 1/f, such that the temporal Rossby number
εT ≪ 1. When the Rossby number is small we expect the motion to be primarily
geostrophic.

But now we allow for a weak ageostrophic component to the flow, so we write

u = ug + ua

v = vg + va

where ua ≪ ug and va ≪ vg. If we now plug these velocities into the momentum
equations, the balance between the largest terms become,

−f0vg = −g
∂η

∂x

f0ug = −g
∂η

∂y
.
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So the flow is nearly geostrophic. When we now look into the balance for the
not-so-big terms, we substitute in the expressions for the geostrophic velocities.
This gives

∂

∂t

(

− g

f0

∂η

∂y

)

− f0va − βy

(
g

f0

∂η

∂x

)

= 0

∂

∂t

(
g

f0

∂η

∂x

)

+ f0ua + βy

(

− g

f0

∂η

∂y

)

= 0

∂η

∂t
= −D

(
∂ua

∂x
+

∂va
∂y

)

,

where we have ignored even smaller terms, like ∂ua∂t and βyva since these are
even smaller. Note that the divergence of the geostrophic flow (the one involving
f0) is zero and therefore drops out of the continuity equation. So the third equation
shows that the sea surface goes up and down due to divergence in the ageostrophic
flow field. And we can find that from the two momentum equations. Rearranging
these gives

ua = − g

f 2
0

∂2η

∂x∂t
+ βy

g

f 2
0

∂η

∂y

va = − g

f 2
0

∂2η

∂y∂t
− βy

g

f 2
0

∂η

∂x
,

so that the divergence becomes

∂ua

∂x
+

∂va
∂y

= − g

f 2
0

∂

∂t

(
∂2η

∂x2
+

∂2η

∂y2

)

− β
g

f 2
0

∂η

∂x
.

Plugging this into the continuity equation then gives

∂η

∂t
=

gD

f 2
0

[
∂

∂t

(
∂2η

∂x2
+

∂2η

∂y2

)

+ β
∂η

∂x

]

,

or
∂

∂t

[
f 2
0

gD
η −

(
∂2η

∂x2
+

∂2η

∂y2

)]

− β
∂η

∂x
= 0.

Is this an equation describing linear waves? To find out, let’s assume a wave
solution

η(x, y, t) = η̃ei(kx+ly−ωt)
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and plug in. This gives

−iω

[
f 2
0

gD
+
(
k2 + l2

)
]

− ikβ = 0

or

ω = − βk

(k2 + l2) + 1/L2
d

,

where, as before, Ld =
√
gD/f0 is the Rossby radius of deformation. This does

indeed look like a dispersion relation.
What about phase speeds? They are

cx =
ω

k
= − β

(k2 + l2) + 1/L2
d

cy =
ω

l
= − βk/l

(k2 + l2) + 1/L2
d

.

So the meridional phase speed can be both northward and southward, but the zonal
phase speed is always negative! These waves can only travel westward, as can be
observed e.g. in satellite observations of sea surface height (Figure 97).

Rossby waves are extremely important for the dynamics of the oceans and

the atmosphere. Did you know, for example, that the “synoptic” high and low
pressure systems that give us weather variations on daily to weekly time scales
are atmospheric Rossby waves? They all move intrincically westward, and if they
are actually observed to move eastward it is only because they are advected by
eastward winds that are stronger than the westward phase velocity of the waves
themselves.

The mechanism responsible for Rossby waves: Rossby waves are strange waves
indeed. And their restoring mechanism is not the gravitational force, as it is for
surface gravity waves. To understand the Rossby wave we instead need to look to
the potential vorticity equation and the principle of concervation of PV, stated as

D

Dt

(
f + ζ

H

)

= 0.

Let’s ignore variations in bottom depth, as we have done in all of the wave discus-
sion above, and consider what happens when a water parcel is displaced northward
from its resting latitude. The situation is illustrated in Figure 98. So water parcel
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Figure 97: The sea surface height, three and a half months apart, as observed
by satellites. Rossby wave patterns are seen to move westward. (See also
https://www.youtube.com/watch?v=F8zYKb2GoR4)
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Figure 98: The mechanism for a Rossby wave. Shown is the motion of three
water parcels, each of which conserve their potential vorticity. The three parcels
originally reside at ’latitude’ y0. But a perturbation, starting when water percel B
is displaced northward, ends up propagating westward. (Source: Pedlosky, 1987,
Fig. 3.16.1)

B (in the figure) is displaced northward where it attains a larger planetary vorticity
(larger Coriolis parameter). To conserve its total PV it has to reduce its relative
vorticity, i.e. it has to start spinning clockwise (anticyclonically). The velocity
field from this spin then moves neighbouring water columns, so a column A to
the west of B is moved northward while a column C to the east of B is moved
southward. When column A is displaced northward it too starts to spin clockwise,
and the process is repeated. The end result is that the perturbation which started
with column B moves progressively westward—with the phase speed we deduced
above.
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A Appendix: The flow in estuaries

Now that we are equipped with all the basic conservation equations and also with
practical constructs like turbulent diffusivities, we will look into some different
types of ocean flows, both relatively small-scale (where the effect of Earth’s rota-
tion is only slightly important) and really large-scale where the ambient rotation
affects everything. We start with the flows very close to land, in what we all
estuaries. A typical definition of an estuary is

“a semienclosed body of water having a free connection with the
open sea and within which the seawater is measurably diluted with
freshwater deriving from land drainage.”

So a Norwegian fjord (or Chilean, Canadian or New Zeeland fjord) is definitely
an estuary, but there are also other kinds, as will become apparent below. Under-
standing the flow and hydrography in estuaries is important since estuaries are the
homes of diverse ecosystems as well as a considerable fraction of Earth’s human
population. So an understanding of the processes impacting the transport and dis-
persion of pollutants in estuareis is of real practical utility. As we will see here,
for example, many silled fjords have problems with water quality at depth.

A.1 Estuarine circulation

Estuaries typically link one or more rivers to the open ocean. One could imag-
ine that the river water flows “down the hill” and out of the estuary on top of
a stagnant layer of saltier and denser ocean waters. But this is hardly ever ob-
served. Instead, estuaries are almost always associated with a net inward flow at
depth and a net outward flow near the surface—opposing flows whose individual
volume transports are much larger than the freshwater transport in the river itself.

Let’s set up steady-state (meaning here ∂/∂t = 0) budgets of volume and salt
for an estuary consisting of a river flowing into a layer of brackish water (less
salty) lying on top of another layer of saltier ocean water (Figure 99). The steady-
state volume budget for the entire estuary is

To = R + Ti,

where V is the total volume, R is the volume transport by the river, Ti is the
volume transport of salty water into the estuary at its outer boundary and To is
the volume transport of brackish water out of the estuary. If turbulent (diffusive)
lateral transports are ignored, the time-mean salt budget is
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Figure 99: Two-layer schematic of the estuarine circulaton. The net flow out of
the estuary at the surface, To, is the sum of the river flow, R, and a net flow in
at depth, Ti. The red box indicates a small control volume around the interface
where we study vertical salt fluxes. (Source: Knauss, 2005, Fig. 11.2)

ToSo = TiSi,

where Si and So are the salinities of the in and outflow, respectively (we assume
that the river water has a salinity of zero). Assuming that we know the river
volume transport and the two salinities from measurements, we can solve for the
in and outflows at the boundary to the open ocean:

Ti = R
So

Si − So

To = R
Si

Si − So

.

For Si > So (the inflowing layer being saltier than the outflowing layer) we have
that both Ti and To are larger than R and also that To = R+ Ti > Ti. So the salty
water which flows into the estuary at depth must upwell or be entrained into the
upper outflowing layer. The equations show that the weaker the vertical salinity
stratifiction (Si − So), the stronger is the flow in the lower and upper layers and,
hence, the entrainment.

This entrainment of lower-layer water into the outflowing top layer is driven
by turbulent salt exchanges between the layers. To see this let’s set up the steady-
state salt salt budget for a small control volume residing on the interface between
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the two layers (the red box in the figure). If we ignore lateral transports here, we
get a balance between vertical advection and vertical turbulent transport, i.e.

∂S

∂t
= −w

∂S

∂z
− ∂

∂z

(

−Kv
∂S

∂z

)

(where we have put the advection term also on the right-hand side). For w >
0, as our setup requires (upwelling of lower-layer water), the vertical advection
term would tend to increase the salinity in the box. In other words, there is a
convergence of salinity in the box by vertical advection. For this to be balanced
to maintain the steady state, we require the vertical turbulent salinity transport to
be divergent, i.e. to lower the salinity in the box. Alternatively, one could say that
the vertical advection brings salt water up while the vertical turbulent diffusion
brings freshwater down and that in steady state the two transports balance. It is
easy to see from this expression that larger turbulence levels, i.e. higher values
of Kv, can lead to larger w, hence larger vertical transports and larger horizontal
layer transports Ti and To.

A.2 Types of estuaries

Estuaries are typically classified by their vertical stratification, ranging from ’well-
mixed’ estuaries that have little or no vertical stratification and all the way to ’salt
wedge’ estuares that have strong vertical stratifications (Figure 100). This vertical
stratification, in turn, is tightly related to the relationship between the strength of
the river flow (tending to create a vertical stratification) and mechanical sources
of turbulent mixing energy (tending to eradicate this stratification).

Tidal currents (we’ll discuss tides in more detail in a later chapter) are usually
the main source of turbulent mixing energy, so one very common parameter used
for this classification is the ratio of the tidal flow (the volume of water brought into
the estuary during half a tidal cycle) to the river flow. So three types of estuaries
are approximately defined by this ratio as

Salt wedge ≤ 1
Partially-mixed 1–103

Well-mixed ≥ 103.

But this kind of classification is very crude, and other factors also come into
play, especially the estuary topography. Fjords, in particular, are complex types
of estuaries where the circulation depend strongly on topography. They exist only
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Figure 100: The horizontal structure of salinity and flow structure in four types
of estuaries: A: well-mixed, B: partially-mixed, C: fjord-type and D: salt wedge
estuaries. (Source: Knauss, 2005, Fig. 11.4)
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Figure 101: The circulation associated with a silled fjord.

in mid- to high latitude bands that sustain active land glaciers or have sustained
such glaciers in past climate periods. The glaciers carve troughs or valleys in the
terrain as they advance, and the underwater valleys are what we call fjords. The
carved soil and rock pushed ahead at the front of the glacier as it advanced is left
behind when the glacier eventually retreats—evidence of how far the glacier once
reached. This terminal moraine or sill forms a dynamic boundary between the
inner fjord and the coastal or open ocean circulation outside and can significantly
impact the circulation and hydrography of the fjord (Figure 101).

Typically, silled fjords have a layer of dense stagnant water below the depth of
the sill. This water easily gets anoxic, and hence toxic, since biological activity
easily uses up the available oxygen faster than the water can be replaced. The sill,
plainly speaking, is a barrier to renewal of the bottom waters. The basin bottom
water renewal is erratic and is often dependent on the interplay between 1) the
availability of denser coastal waters outside of the sill, 2) vigorous tidally-driven
turbulent mixing in the sill region and 3) a background turbulent vertical mixing
at depth in the fjord. Turbulent mixing at depth makes the bottom water gradually
lighter as time passes since the last deepwater renewal event. And at some point
the tides will bring outside waters to the sill that are denser than the fjord bottom
water. But too strong turbulent mixing in the sill region (it is strong since the
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Figure 102: Observations of currents in a real estuary (Narragansett Bay in Rhode
Island, USA). The unfiltered observations are dominated by diurnal and semi-
diurnal tides while low-pass filtered currents show wind-driven currents. Only
when a very long time mean is taken can one detect a clear background estuarine
flow. (Source: Knauss, 2005, Fig. 11.7)

currents there are high) can make the water that finally enters over the sill be too
fresh and light to replace the bottom water. It is typically during moderately strong

tides that dense waters from outside pass through the sill and into the fjord, still
relatively unmodified by mixing and therefore dense enough to replace the bottom
water.

A.3 Real flows in estuaries

The 2D steady-state estuarine flow illustrated in Figure 99 is of course a serious
simplification of what real estuarine flows look like. In real estuaries the steady-
state estuarine circulation (dense water flowing in at depth, light water flowing
out at the surface) is typically small compared to both tidal currents and to wind-
driven currents—at least in the so-called partially-mixed and well-mixed estuar-
ies. In fact, the estuarine background circulation may be hard to detect in real
observations of the flow, as indicated in Figure 102, and it is only after low-pass

filtering the observations over time scales longer than both the tides (half a day to
a day) and the wind-driven currents (from fractions of a day to several days) that
one is able to discern the background flow.

In broader estuaries that have widths larger than, say, a kilometer, Earth’s ro-
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Figure 103: The effect of the Coriolis accelleration on the flow in broad estuaries.
The tendency for an accelleration to the right of the flow (in the Northern hemi-
sphere) will cause the in and outflow to hug opposite sides of the estuary. (Source:
Knauss, 2005, Fig. 11.5)

tation—the Coriolis accelleration—also has an impact on the flow. In the northern
hemisphere the Coriolis accelleration will tend to turn flows to the right. So the
outflowing upper layer and the inflowing lower layer will tend to be squeezed
up against opposite sides of the estuary, as illustrated in Figure 103. In addition
to the sea surface tilt down the axis of the estuary there will also be a surface
tilt from the freshwater side to the salt water side. And the interface between the
two layers will be tilted the opposite direction. These tilts are a reflection of a near
balance between the along-estuary flow and cross-estuary pressure gradients—the
geostrophic balance which we will get much more aquainted with soon.
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B Wind-driven flows in equatorial and high-latitude
regions

Seemingly strange things happen at very low and very high latitudes. Near the
equator the Coriolis parameter f tends to zero (recall that it is proportional to
the sine of the latitude) and one has to expect that the flow is no longer primar-
ily geostrophic. Something other than the Coriolis accelleration has to balance
horizontal pressure gradients. In contrast, at very high latitudes the Coriolis pa-
rameter is ’alive and well’, but its meridional gradient β (proportional to the cosine
of latitude) becomes small. Among other things, this should make us suspect that
western boundary currents are less important at high latitudes.

B.0.1 Equatorial dynamics

Figure 104 gives a schematic of winds and surface currents near the equator. The
North and South Equatorial Currents flow westward, in the same direction as the
trade winds. The trade winds move north and south with the seasons, but in the
annual mean they are shifted slightly north with respect to the equator. And so are
the North and South Equatorial Currents. Between these two currents, centered
at around 5–7 degrees north, is the North Equatorial Counter Current, flowing
eastward. It is situated in the Intertropical Convergence Zone (ITCZ), the latitude
where the northeast and southeast trade winds meet.

Are these currents ageostrophic since they are so near the equator? Actually it
can be shown that geostrophy breaks down only very close to the equator (closer
than about 2.5◦), so most of the flow shown in Figure 104 is geostrophic. And, in
fact, a comparison with Figures 69 and 72 suggest that they are probably driven
by Sverdrup dynamics!

But there is a current which is situated perfectly on the equator, the Equato-

rial Undercurrent (Figure 105). This eastward-flowing subsurface current can be
easily understood if one accepts that at the equator itself the horizontal pressure
gradient needs to be balanced by something else than the Coriolis accelleration.
What happens here is that the westward-blowing trade winds pile up water on the
westward ocean boundary until the resulting pressure gradient due to the sea sur-
face tilt is balanced by something. Very near the surface, down to a few tens of
meters, the pressure gradient can be balanced by the wind stress itself. But below
this depth the flow will accellerate down the pressure gradient, i.e. to the east, un-
til some form of internal friction balances the pressure gradient. So the Equatorial
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Figure 104: Schematic of winds and surface currents in equatorial regions.
(Source: Knauss, 2005, Fig. 7.11)

Undercurrent is a truly ageostrophic phenomenon.

B.0.2 High-latitude dynamics

At high northern and southern latitudes the planetary vorticity gradient becomes
small, so we can expect it to have less of an influence on the potential vorticity
dynamics than it does at lower latitudes. Also, at high latitudes, constant cooling
through the sea surface with the ensuing vertical convective mixing makes the
water column very weakly stratified. So it’s appropriate to think of the ocean

Figure 105: Vertical cross section of equatorial currents in the Pacific Ocean.
(Source: Stewart, 2008, Fig. 14.4)
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there as consisting of a nearly unstratified layer—at least more so than just about
anywhere else in the oceans. And in an unstratified ocean, the bottom topography
becomes very important.

In fact, there is little if any evidence that flows are stronger on the western sides
of the ocean basins in the high north. Instead, the currents appear to tighly follow
topographic features, particularly at high northern latitudes, as indicated by the sea
surface field shown in Figure 106. So the Sverdrup and Stommel theories which
ignored topography altogether and relied on balances between meridional flows
(the βV term) and surface Ekman pumping (or friction in the western boundary
currents) are clearly not appropriate here.

Where 1) the flow is constrained to follow bottom topography because of the
weak stratification and 2) where this bottom topography forms closed basins, as it
does several places in the Nordic Seas and Arctic Ocean, a new possible dynamical
balance for the large-scale flow arises. To look at such balance, we need to look
not at the vorticity equation but at the potential vorticity (PV) equation. Adding a
wind-stress forcing term and also bottom friction to this equation gives

D

Dt

(
f + ζ

H

)

=
1

H

(

∇× τw

ρ0
−R∇× u

)

.

If we then look at steady-state solutions in which advection of relative vorticity is
ignored, this becomes

Hu · ∇ f

H
= ∇× τw

ρ0
−R∇× u,

which states that the flow up or down the gradient of the quantity f/H (the ’large-
scale’ potential vorticity) is given by the difference in rotational frictional forces
(“torques”) at the top and the bottom. Or, alternatively, by the difference between
the vertical pumping out of the top and bottom Ekman layers.

If now, as the observations suggest, the flow follows isolines of bottom topog-
raphy or, actually, isolines of f/H (the differences is small since f changes very
little at high latitudes), then we can write

Hu · ∇ f

H
= 0,

the mathematical way of saying that there is no (or, realistically, very little) flow
across contours of f/H . But how do we get the direction of the flow and the
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Figure 106: The bottom topography (black lines) and time-mean sea surface
height (color shading) from a numerical model of the northern North Atlantic,
Nordic Seas and Arctic Ocean.
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strength of the flow? Well, if the left-hand side of the PV equation then the right-
hand side must also be zero, so that we have

∇× τw

ρ0
= R∇× u.

Here’s how we can find the flow direction and strength: where the f/H contours
are closed, we can integrate this last expression over the area of such a contour,

∫∫

∇× τw

ρ0
dA =

∫∫

R∇× u dA

or, using Stoke’s theorem,
∮

1

ρ0
τw · t̂ dl =

∮

Ru · t̂ dl.

Here t̂ is a unit tangent vector along the contour so that τw · t̂ and u· t̂ are the com-
ponents wind stress and water velocity along the contour. From this expression
we at least have the average (the contour integral) of the flow along the contour,
both its sign (direction) and its strength.

Essentially, what we have here is a balance between the flow in the top and
bottom Ekman layers (compare with the expressions given earlier in this chapter).
The situation is illustrated in Figure 107. So, given a convergent surface Ekman
transport (and Ekman pumping out of the top layer), the flow along the rim of such
a closed f/H region needs to spin up until it has reached speeds exactly large
enough that the divergence in the bottom Ekman layer balances the convergence
at the top.

The surface flow field estimated from such assumptions, i.e. 1) flows that fol-
low contours of f/H and 2) a balance between top and bottom Ekman layers
where f/H contours are closed, is shown in Figure 108 (upper panel). The es-
timate actually only assumes that the bottom flow follows f/H contours strictly,
and that flows higher up in the water column can change via the thermal wind
shear due to lateral density gradients. So the model doesn’t assume a zero den-
sity stratification, but the essential dynamics is governed by the balance discussed
above. As seen, the resemblence with velocities deduced from surface drifters
(lower panel) is rather good. Presently such ’closed-f/H dynamics’ is thought to
be the best lowest-order description of the wind-driven large-scale flow in both
the Nordic Seas and the Arctic Ocean—within regions where the f/H contours
close on themselves. Obtaining the flow over the ’open contours’, those that don’t
close on themselves but instead continue down into the North Atlantic (you can
see these ’shallow’ contours in Fig. 106) require another solution approach.
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Figure 107: Sketch of closed-f/H dynamics in which there is a balance between
top and bottom Ekman layers everywhere.
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Figure 108: The time-mean surface circulation in the Nordic Seas (bottom) es-
timated by closed-f/H dynamics and (top) observed by surface drifters (drifter
observations of currents in the west are lacking due to the presence of sea ice).
(Source: Nøst and Isachsen, 2003, Figs. 11b and 10)
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