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Iterated Maps

Tterated maps are probably the simplest display of non-lingar systems. Iterated maps are produced by
putting a number through a function then taking the result and putting it through the equation again, then
repeating. Try this with the cos button on your caleulator (you must have a calculator that has radians as
an angle measure, the scientific calculator under windows will work fine.) Just pick any starting value and
keep pressing the cos button. The seres of numbers will eventually approach a stable point and there wall
be no more changes. The stream of numbers is called an ‘orbit!, the final point is called a stable fixed
poant.

This exercise shows what an iterated map is, however itis a very dull example of an iterated map. Iterated
maps are what many fractals are made of. The Mandelbrot set is just an iterated map in the complex
number plane, Here we will deal with simple one dimensional maps, because they are easier 1o study. If
you wish o study more complex maps, the links page has several fractal links which may or may nol
attack the subject from a mathematical standpoint. Many fractal sited are dedicated to fractal an.

The Logistic Equation

A particularly interesting, and popular iterated map is the logistic map. This map shows many of the
features that we will see appearing later on in continupus systems. The logistic equation is actually a
simple model for species population with no predators, but limited food supply. It is given by the
following equation:

Xp1=IXp(1=Xxp)

where r is a parameter 10 be set anywhere from 010 4. The initial x must be from the region 0o 1. Ths
equation is much more difficult to analyze on a calculator, so we will be using a Java applet to help with
the analysis.

Tao start, we will be setting r to 2.9, To see what happens, we plot a time series plot of the orbit. As the
funciion is iterated it approaches a stable point. This is similar to the exercise performed earlier. There is
actually an unstable fixed point at 0, try plugging zero into the equation for x and see what you get. This
point is unstable because if the initial conditions do not start exactly on zero, then they wall go to the
stable point. The origin is called a repeller, while the stable point is an attractor. In the population
example, the origin corresponds to a zero population. Life does not spring from nothing. The parameter ¢
15 the amount of food supply. For this amount of food supply the population grows to a point, then settles
down to a steady state.



If we increase ¢ past 3.0 then something more interesting happens. The orbit does not setile down 1o a
fixed point. The lixed points that were there before have lost stability, now the system will eycle between
two points. This is called a stable eycle, in this case, a stable 2-cyele. In our population, the food has been
increased. Now a small generation has so much food that it makes a rapid growth spurt, however, in the
next generation, there are too many in our population and not enough food, so the population dies off a
bit. This is actually stable behavior, and is seen in some bacteria cultures!

If we keep increasing r, this two cycle becomes a four cycle, then an 8 cycle and so on. Before we
examine this, lets first take a look at a nice way of seeing this visually,

What we are doing here is taking a point x1, evaluating x2 = f{x1), then x3 = f{x2), and s0 on. If we plot
(x1,%2), this is a point on the logistie curve. Drawing a horizontal line 1o (x2,%2) gives a point on the
diagonal line, To get back onto the logistic curve we draw a line to (x2,x3), then back to the diagonal line
at (x3,x3). This probably seems like a strange way to see the logistic orbit, but if you expenment with it,
you can see stable fixed points, stable cycles and anything else this equation may hide very easily. Here is
a Java applet that allows you to do just that. These plots are called cobwebs, (for reasons you will see
shornly ). Experiment with /=29, and r=3 2. You will see the fixed point and the two cycle that were
covered earlier. The applet is used by setting the value of r in the 'r' text box. The other two text boxes,
start cycle number and end cycle number, allow yvou to calculate a number of initial cycles, o let any
messy parts of the cycle die out before the applet starts drawing,. If start is 300 and end 1s 600 you should
get a pretty neat picture of the cobweb. If you want to see the orbit nght from the beginning, set start to 0,
Initial % 15 the starting point of the cobweb.



Now that we have cobwebs under our belt, we can increase r further, If vou didn’t try increasing r past 3.2,
try it now, try r=3.5 then r=3.565. You will see that the cycle has changed to a 4-cycle then an 8-cycle.
These changes are called bifurcations. At a bifurcation the system undergoes a massive change in long
term behavior. As ris increased, the bifurcations come Faster and faster, untl finally at about 3.5699 the
cycle length becomes infinite. If r is further increased from 3.5699 up (but still below 4.0 then the system
no longer has a cycle, it bounces about forever, but never repeats itself. Here is a cobweb for r=3.9.

This behavior is chaos. There is another way to easier see these bifurcations. If the stable points, or stable

cycles are plotted as a function of r, then each of the eyeles can be seen bifurcating into a cvele twice as
long. After ris increased past 3.5699, chaos appears, but there are windows of periodic behavior
interspersed with the chaos.
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This route to chaos is called a period doubling cascade. It appears in many real life systems and very
closely resembles this map. This is known as universality, the same simple map appears over and over
again in just about every type of chaotic system.



