
Phase space, Tangent-Linear and Adjoint Models, Singular Vectors, 
Lyapunov Vectors and Normal Modes 

Assume a phase space of dimension N where  � = ���⋮��
�		 is a state vector. 

Autonomous governing equations with initial state: 
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Unique solution for an arbitrary time t > t0:  ��� = ����; i.e. the trajectory. 

Conditions for stability with respect to small perturbations of the initial state are investigated by 
adding small increments to X0 , integrate forward in time and neglect non-linear terms: 

��� �� + ��� = �� + ���	; 	����� = ��� 

⇔ ���� + ��� �� ≈ ��� + � ∙ ��	; ����� = ���;	 
where the jacobian is evaluated along the non-linear solution trajectory: 
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The Tangent-Linear Model (TL), is then: 

��� �� = � ∙ ��; 				����� = ��� 

and the solution is:     ���� = )��, �� ∙ ��� , where the propagator or resolvent is: 
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If  X(t) is a fixed point (a constant), then J is a constant, and we can formally write: 

)��, �� = ,��-�.� 



If the eigenvalues of J are µi, then the eigenvalues of L are /0 = ,12	�-�.�, i=1, …, N. 

and for non-constant X(t) and J, this can be generalized to: 	
)��, �� = ,3 �44. 	
�

 

For numerical integrations, time is stepped forward in K steps, ∆� , and we can define: 

)��, �� = )6-� ∙ … ∙ )8 ∙ …	∙ )� = 9)8
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where    Lk = L( tk,,tk + ∆t ). 

Assume that eigenvalue no. i of Lk and Jk  are /08	and	B08	respectively, and define: 

 /0�� = ∏ /086-�8:� ; D = 1,… , F 

The Lyapunov exponent no. i  is then: 

G0 = lim�→L
1� − �� NO|/0��| = lim�→L

1� − �� = NOQ/08Q6-�
8:�  

= the growth-rate of small perturbations averaged over the attractor. This is a global property; 
i.e. it represents an average property for the entire attractor set of the dynamic system. If one or 
more G0 >0, there are at list some directions in phase-space along which arbitrary initial 
perturbations will grow. 

R∆4	NOQ/08Q is the local Lyapunov exponent no. i at time-step k. 

 

Definition of the leading Local Lyapunov Vector – LLV: 

The vector in phase space (i.e. the physical state) at time t that any arbitrary perturbation, y(t-s) 
at a very long time-interval s before t, converges to, assuming a tangent-linear development:   

S��� = limT→L )� − U, �� V� − U� 
Note that the leading local Lyapunov exponent (i.e. no. 1) is N� = R∆4	NO ‖SR�X∆��‖

‖SR��‖ . 

 

Inner products and distances in phase space, the adjoint 

Let  〈�, Z〉 ≡ U  be an inner product between state vectors X and Y, where s is a real number. In 
general, the phase-space can be based on complex numbers (which is useful for wave and 

stability theory). Then U = 〈�, Z〉 = 〈Z, �〉, where the bar signifies complex conjugation. (If real 



only numbers, complex conjugation makes no difference, and the inner product is commutative.) 

If the inner product is the Euclidian, then:	〈�, Z〉] = �^Z, where the superscript T means the 

matrix transpose. It is also customary to write it in terms of the dot product: 〈�, Z〉] = � ∙ Z =∑ ;`	a0�0:�  . Frequently one defines general inner products in terms of the euclidian dot product 
by employing some weights. Inner products can thus be measured in terms of total energy 
(kinetic + available potential energy) over a portion of the atmosphere (or the global). 

A distance between states in phase space can be the length of the inner product of a vector with 
itself. The vector, X, is then defined as the difference between the two state vectors, and: 

‖�‖ = b〈�, �〉 . 
The adjoint to an operator L with respect to the inner product 〈�, Z〉 is denoted L*, and is 
defined such that for any arbitrary vectors X and Y,  〈)�, Z〉 ≡ 〈�, )∗Z〉. Note that in the text-
book of Kalnay, the notation LT (i.e. the transpose to L) is used for the adjoint, thus presuming 
real numbers and a standard Euclidian inner product. Here we continue to use the more general 
notation, L*, of adjoints with respect to unspecified inner products.   

The solution to the Tangent-Linear model is, as defined above:    ���� = )��, �� ∙ ���. The 
size of the perturbation is the distance between    �d� + ���� and �d�, hence: 

‖����‖e = 〈����, ����〉 = 〈)��, �����, )��, �����〉 = 〈)��, ��∗)��, �����, ���〉 ; 
which clearly demonstrates the importance of the combined operator )��, ��∗)��, ��. 

Notes 

(1) Assume that the resolvent )��, �� can be split into K stepwise sub-intervals over time: 

)��, �� = )�6-�, ��)�6-e, �6-��… 	)��, ��� = )6-�)6-e …	)� 

then 

〈)��, �����, ����〉 = 〈)6-�)6-e …	)����, ����〉 = 	 〈���, )�∗ …)6-e∗ )6-�∗ ����〉= 	 〈���, )��, ��∗����〉 
The adjoint operator )��, ��∗ thus works backwards in time from t to t0. 

(2) It is also straightforward to show that: )��, ��∗∗ = )��, �� and that )��, ��∗)��, �� is self-
adjoint (or symmetric, Hermitian): 

)��, ��∗)��, ���∗ =	)��, ��∗)��, ��∗∗ =	)��, ��∗)��, �� 
The eigenvalues of this particular self-adjoint operator are real and positive, and the eigenvectors 
are orthogonal with respect to this particular inner product. 

Singular vectors and values 

The orthogonal eigenvectors to  )��, ��∗)��, �� with respect to the inner product, are f0���	with	eigenvalues	o0e	, for	D = 1,… ,F, each fulfilling the equations: 



)��, ��∗)��, ��	f0��� = 	o0ef0��� for	D = 1,… ,F. 

If we define   )��, ��f0��� = f0��, i.e. the eigenvector evolved from t0 to t, the norm evolves 
according to:  

‖f0��‖e = 〈f0��, f0��〉 = 〈)��, ��f0���, )��, ��f0���〉 = 〈)��, ��∗)��, ��f0���, f0���〉  
= o0e‖f0���‖e 

Notice that f0��� and f0�� can have different directions in the phase space. 

Define: 

• f0��� are the initial singular vectors to the propagator L(t0,t) (v in Kalnay) 

• f0�� are the evolved singular vectors to the propagator L(t0,t) (u  in Kalnay) 

• o0 are the singular values vectors to the propagator L(t0,t). 

The singular values give the ratio between the norm of the evolved and initial singular vectors. If 
ordered according to the size of the singular values, then singular vector no. 1 defines the 
direction in phase space at initial time t0, which produces the fastest growth of the norm of 
perturbations over the finite time interval [t0 , t]. Notice that there are as many distinct singular 
vectors as the dimension N of the phase space. 

Note 

The adjoint to the evolved singular vector produces the initial singular vectors in a similar way 
as the propagator to the initial singular vector produces the evolved: 

		)��, ��∗f0�� = 	)��, ��∗)��, ��	f0��� = 	o0ef0��� 
From this, we also see that: 

		)��, ��)��, ��∗f0�� = 	o0e)��, ��	f0��� = 	o0ef0�� 
Hence, the evolved singular vectors are eigenvectors to 	)��, ��)��, ��∗ with eigenvalues o0e. 

---------- 

Now, assume that the initial singular vectors are normalized, i.e. ‖f0���‖ = 1 for all i=1,..,N. 

We can use these singular vectors as an orthonormal basis for any vector in the phase space: 

 s�� =	∑ t0�0:� f0���; where t0 =	 〈s��, f0���〉. It is straightforward to show that: 

‖����‖e = 〈����, ����〉 = 〈)��, �����, )��, �����〉 = =t0e
�

0:�
o0e 

The singular values thus yield the factor by which a component of an initial perturbation is 
stretched as it rotates in phase space from the direction of the initial singular vector to the 
evolved. See 6.3.1 and 6.3.2 in Kalnay’s book. 



Relation to LLV 

In the definition of LLV, let  Vt� = 	∑u0f0 ��; where f0�� =)� − U, �� f0� − U� 
Then for component no.1, choose V� − U� =)∗� − U, �� f���, and  

)� − U, ��V� − U� = ))∗fv�� = o�efv�� 
The LLV equals the leading evolved singular vector for infinite past time intervals up to present. 

More general inner products 

In Kalnay’s text-book there is an example on how singular vectors calculated w.r.t. am euclidian 
inner product can be generalized to other inner products, including local, geographic projections 
and inner products which differ between initial and final time. The presentation is slightly 
untraditional, hence the following. 

Singular vectors can be defined as the result of finding an initial state vector perturbation ��0� 
with unit initial norm: 〈��0�, ��0�〉� = 1 such that the norm at final time t is: 

〈����, ����〉x = +y�z+{+, 

where  ���� =)0, �� ���� is the solution of the tangent-linear equation. Let C0 and CF be 
positiv definit (having only positive eigenvalues), diagonal operators/matrices and P be a local 
projection operator. |� = � in all points inside a predefined target domain in physical space, and 
zero outside. [It is also possible to let P select some of the state variables as well.] Hence, P is a 
diagonal matrix with either 0 or 1 along the diagonal. Now let: 

〈����, ����〉x = �|)��0��^}�|)��0� = +y�z+{+, 
		with	side	condition		〈��0�, ��0�〉� =	 ���0��^}���0� = 1 

In other words, Singular Vectors defined in this way selects directions in phase space at time t 
with maximum perturbation CF-norm measured inside the target domain, assuming initial 
perturbations at time 0 of unit C0-norm. Searching for the maximum while fulfilling the side 
condition, yields the  eigenvalue problem: 

�|)	�^}�|)��0� = oe}���0�	 
where oe is the eigenvalue (the lagrangian multiplyer from variational analysis). 

Scalar multiplication from left with }�-�/e, and defining f�� ≡ }��/e��0�, yields: 

)�^ 	)� 	f�� = �	}�-�/e)^|}�|)}�-�/e�	f�� = oe	f��, where )� ≡ }��/e|)}�-�/e
 

which is a standard singular value problem with respect to the euclidian inner product. The initial 
and evolved singular vectors sought after are thus, respectively: 

f0� = }�-�/ef��, and		f�� = 	)0, ��f0�. 



Generation of ensembles for medium-range predictions at ECMWF (2015)  

Practical procedures for generating SVs 

When computing singular vectors and values, the matrices and operators are not explicitly 
calculated. Instead, an algorithm named the Lanczos algorithm is used. This algorithm devices 
an iterative procedure by which only the impacts of the operators have to be calculated starting 
from random initial guesses, in order to estimate the eigenvectors and eigenvalues of the 
combined operators. The Lanczos algrorithm can be found described in mathematical textbooks. 
Here we will only mention that for finding SVs, for which the associated singular values are 
distinct and positive, the SV with largest singular value is found after few iterations, while SVs 
with decreasing singular values are gradually found with increasing iteration number. 
Approximately 2n iterations are required to find SV no. n with necessary accuracy. It is 
absolutely imperative, however, that the adjoint to a tangent-linear operator is computed with full 
bit-exact accuracy on the computer used in order to achieve this convergence of the Lanczos 
iteration.  

Assume we have the numerical model equations formulated as partial differential equations in 
physical space. The tangent-linear version to these equations in physical space is estimated 
assuming that a full solution to the non-linear equations from a given initial condition is 
calculated and available. That is, the model’s estimate of the time-evolution from the initial 
three-dimensional state is available for every model time-step. This is the non-linear trajectory. 

By linearizing each term in the non-linear model with respect to perturbations relative to the non-
linear trajectory, yields the tangent-linear model (TLM) in physical space co-ordinates. The 
result of computing the numerical tangent-linear model forward in time starting from a given 
initial perturbation at time 0 and using information from the non-linear trajectory underway, 
yields the impact of the propagator L valid at a given final time t.  

The adjoint model (ADM) to the TLM in physical space co-ordinates with respect to the 
Euclidian inner product, is also constructed as a numerical model, but steps backwards in time 
from a final condition at time t. Some terms in the non-linear model is cumbersome to linearize 
and calculate the adjoint to. These are typically physical terms which involve complex logical 
procedures (i.e. if-then tests). Some such terms are therefore simplified.  

If the ADM is integrated, starting with the result obtained with the TLM at time t, back to time 0, 
then the result is the effect of applying the combined TLM and ADM to the initial perturbation 
assumed for time 0 (i.e. LTL). Then the next iteration applies exactly the same procedure on the 
result of the previous iteration and so on, until the Lanczos algorithm obtain stable results for the 
number of SVs which are sought after. These are, however, SVs with respect to the Euclidian 
inner product. In order to generalize to more general inner products, the procedure runs as 
follows, schematically: 

1) Assume a set of N initial perturbations at random or according to some assumption; 

2) Transform this state by multiplying with coefficients as in }�-v/� and normalize w.r.t. the 

C0 inner product; 
3) Integrate the TLM up to time t; 



4) Transform the obtained state by multiplying with 0 or 1 of local projection P; 
5) Transform this state by multiplying with coefficients as in CF; 
6) Transform the obtained state by multiplying with 0 or 1 of local projection P; 
7) Integrate the ADM back to time 0 

8) Transform this state by multiplying with coefficients as in }�-v/� and normalize w.r.t. the 

C0 inner product; 
9) Apply Lanczos and restart at 3) until satisfied with the accuracy of n SVs. 

10) Transform the resulting n SVs with coefficients as in }�-�/e. 

 Generating 50 alternative initial states for the ensemble  

 At ECMWF initial SVs optimized over 48 hours with the total energy norm (C0 = CF), are 
combined with a 10-member ensemble of parallel data assimilation cycles (EDA) to produce 
alternative initial perturbations to the presumed best, control initial-state analysis. 130 singular 
vectors (50 targetted (with a projection operator) to the Northern Hemisphere extratropics, 50 
targetted to the Southern Hemisphere extratropics, and 30 targetted to six different tropicial sub-
domains dominated by tropical cyclones) are linearly combined to form 25 SV-based 
perturbation fields. 

Let SVi, i=1,…25 denote the SV-based preturbation fields, and Ek = EDAk – A0, k=1,…,10 
denote the deviation from the control analysis by the EDA-based alternative analyses. The initial 
states for the n (n=1,…,50) alternative ensemble forecasts are: 

A1=A0+[ SV1+E1]; A2=A0 - [SV1+E1]; 

: 

A19=A0+[ SV10+E10]; A20=A0 - [SV10+E10]; 

A21=A0+[ SV11+E1]; A22=A0 - [SV11+E1]; 

: 

A39=A0+[ SV20+E10]; A40=A0 - [SV20+E10]; 

A41=A0+[ SV21+E1]; A42=A0 - [SV21+E1]; 

: 

A49=A0+[ SV25+E5]; A50=A0 - [SV25+E5]; 

Thus, 50 perturbations which are symmetric around the control analysis are obtained. 

In addition to pay attention to the initial state uncertainty, also the model physics tendencies are 
perturbed at ECMWF. Hence, the model version used for each pair of initial state perturbations 
are slightly different. In particular the parameterization of deep convection is considered a source 
of uncerttainty which may penetrate upscale. 

 


