Phase space, Tangent-Linear and Adjoint Models, Singular Vectors,
L yapunov Vectors and Normal Modes
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Assume a phase space of dimension N where X = Is a state vector

Autonomous governing equations with initial state

Fy

L =F (X); X(ty) = X F =
dt
Fy

Unique solution for an arbitrary time> t: X(t) = M(X,), i.e.the trajectory

Conditions for stability with respect to small peliations of the initial state are investigated by
adding small increments Xy, , integrate forward in time and neglect non-lineams:

d
—[X + 8x] = F(X + 8x) ; 6x(ty) = 6x,

dt
(:)dX+d5 F(X)+]-6x;6x(ty) = 6xp;
T T 0% " (X) +] - 6x;6x(ty) = 6xy;

where the jacobian is evaluated along the nonAliseltion trajectory

or_|P%
% Dy

TheTangent-Linear Model (TL) is then:

d
—ox =] -6x; Ox(ty) = 6x,

dt
and the solution is: dx(t) = L(t,,t) - 6x, , where thepropagatoror resolvents:
oMy oMy
L(to,t)=[a—M] - a)z(l a)z(N
0Xlxw) |am, OMy
LaX,  0Xyly,

If X(t) is a fixed point (a constant), théns a constant, and we can formally write

L(ty,t) = e/t=t0)



If the eigenvalues af are;, then the eigenvalues bfared; = e#i (t=to) j=1, ..., N.
and for non-constan(t) andJ, this can be generalized: to
t
d
L(ty, t) = elto? 4

For numerical integrations, time is stepped forwarld stepsAt , and we can define:

K-1 K-1
L(t(),t) == LK—l ' Lk R .LO == l_ILk = exp |:Z]k At
k=0 k=0

where Ly = L( ty,t + 47).
Assume that eigenvalue nioof Ly andJx areA¥ and u¥ respectively, and define
A;(0) =TIz A% i=1,..,N

The Lyapunov exponeno. i is then

1 K=1
inl,(6)] = lim - zk_oln|/1i |

Ai = lim
tooot — tO

= the growth-rate of small perturbations averageer ¢he attractor. This is global property;

i.e. it represents an average property for theeatitractor set of the dynamic system. If one or
more A; >0, there are at list some directions in phase-spacegaivhich arbitrary initial
perturbations will grow.

ﬁ ln|Ai-‘| is thelocal Lyapunov exponent no. i at time-step k.

Definition of the leading.ocal Lyapunov Vector — LLV:

The vector in phase space (i.e. the physical sttéjne t that any arbitrary perturbatio(t-s)
at a very long time-interval s before t, convergesassuming a tangent-linear development:

L(®) = lim L(t - 5,) y(t =)

L, (t+AD)]]

Note that the leading local Lyapunov exponent (ie.1) isl; = ﬁln TR
1

Inner products and distancesin phase space, the adjoint

Let (X,Y) =s be an inner product between state veckoendY, where s is a real number. In
general, the phase-space can be based on compthelerss (which is useful for wave and

stability theory).Thens = (X, Y) = (¥, X), where the bar signifies complex conjugation. (lre



only numbers, complex conjugation makes no diffeegand the inner product is commutative.)

If the inner product is th&uclidian, then (X,Y); = YTY, where the superscript T means the
matrix transpose. It is also customary to writsiterms ofthe dot product (X,¥); = XY =
>N . x;v; . Frequently one defines general inner products rimgeof the euclidian dot product
by employing some weights. Inner products can thesmeasured in terms of total energy
(kinetic + available potential energy) over a pamtof the atmosphere (or the global).

A distance between states in phase space can lbentjte of the inner product of a vector with
itself. The vectorX, is then defined as the difference between the tate sectors, and

X1l = V{X, X) .

The adjoint to an operatoi. with respect to the inner productX,Y) is denotedL”, and is
defined such thaor any arbitrary vectors X and Y{LX,Y) = (X, L"'Y). Note that in the text-
book of Kalnay, the notatioh" (i.e. the transpose 1o) is used for the adjoint, thus presuming
real numbers and a standard Euclidian inner prodimte we continue to use the more general
notation,L", of adjoints with respect to unspecified innercurcts.

The solution to the Tangent-Linear model is, agn@efabove: dx(t) = L(ty,t) - 6x,. The
size of the perturbation is the distance betwee(t) + dx(t) andx(t), hence:

18x(D)I* = (8x(¢), x(t)) = (L(to, t)8x0, L(to, t)8x0) = (L(to,t)"L(to, t)8x0, 8%0) ;

which clearly demonstratélse importance of the combined operatb(t,, t)*L(t,, t).

Notes

(1) Assume that the resolvelft,, t) can be split intd&k stepwise sub-intervals over time:
L(to, t) = L(tg—1,t)L(tg—2, tg—1) - L(to,t1) = Lg_1Lg_5 ... Lo

then

(L(to, )8, 8x(t)) = (Lx—1Lx—y . Lo8xq, 8x(t)) = (8%, L} ... Ly_,Lly_18%(t))
= (6x, L(to, t)*8x(t))

The adjoint operatak(t,, t)* thus works backwards in time franto to.

(2) It is also straightforward to show th&f(t,, t)** = L(t,, t) and thatL(t,, t)*L(t,, t) is self-
adjoint (or symmetric, Hermitian):

(L(to, t)"L(to, t))" = L(to,t)"L(to, )™ = L(to, t)"L(to, )

The eigenvalues of this particular self-adjointraper are real and positive, and the eigenvectors
are orthogonal with respect to this particular mm@duct.

Singular vectorsand values

The orthogonal eigenvectors toL(t,,t)*L(t,,t) with respect to the inner product, are
e;(t,) with eigenvalues o/, fori = 1, ..., N, each fulfilling the equations:



L(to, t)*L(to, t) €;(ty) = ofe;(ty) fori =1,..,N.

If we define L(t,,t)e;(t,) = e;(t), i.e. the eigenvector evolved fragto t, the norm evolves
according to:

le: (D117 = (e;(t), e (1)) = (L(to, t)ei(to), L(to, t)ei(to)) = (L(to, t)"L(to, t)ei(to), €i(to))
= of lle;(to)1I?

Notice thate;(t,) ande;(t) can have different directions in the phase space.

Define:

* e;(ty) are thanitial singular vectorsto the propagatdr(to,t) (v in Kalnay)
* e;(t) are theevolved singular vectort the propagatdr(to,t) (u in Kalnay)
* g; are thesingular valuesvectors to the propagatb(to,t).

The singular values give the ratio between the nairthe evolved and initial singular vectors. If
ordered according to the size of the singular \&luken singular vector no. 1 defines the
direction in phase space at initial timyg which produces the fastest growth of the norm of
perturbations over the finite time intervd [ t]. Notice that there are as many distinct singular
vectors as the dimension N of the phase space.

Note

The adjoint to the evolved singular vector produtesinitial singular vectors in a similar way
as the propagator to the initial singular vectadorces the evolved:

L(to, t)*e;(t) = L(to, t)*L(ty, t) e;(ty) = afe;(ty)
From this, we also see that:
L(to, t)L(ty, t) e;(t) = a7L(ty, t) e;(ty) = ofe;(t)

Hence, the evolved singular vectors are eigenvettoL (t,, t)L(t,, t)* with eigenvalues?.

Now, assume that the initial singular vectors amenalized, i.elle;(ty)|| = 1 for alli=1,..,N.
We can use these singular vectors as an orthondwaséa for any vector in the phase space:

6xo = YN, a; e;(ty); wherea; = (5x,, e;(ty)). Itis straightforward to show that:

N
18X = (8x(6), 8x(6)) = (L(to, )8%0, L(to, )8%0) = ) a? o7
i=1
The singular values thus yield the factor by whactomponent of an initial perturbation is

stretched as it rotates in phase space from tleetain of the initial singular vector to the
evolved. See 6.3.1 and 6.3.2 in Kalnay’s book.



Relation to LLV
In the definition of LLV, lety(t) = ) a;e; (t); wheree;(t) =L(t —s,t) e;(t — s)
Then for component no.1, choogé — s) =L*(t — s,t) e;(t), and
L(t —s,t)y(t —s) = LL*e(t) = afe(t)
The LLV equals the leading evolved singular veéborinfinite past time intervals up to present.
More general inner products

In Kalnay’s text-book there is an example on homgslar vectors calculated w.r.t. am euclidian
inner product can be generalized to other innedyets, including local, geographic projections
and inner products which differ between initial afigdal time. The presentation is slightly
untraditional, hence the following.

Singular vectors can be defined as the resultnaofirfig an initial state vector perturbatiém(0)
with unit initial norm:(6x(0), 6x(0)), = 1 such that the norm at final time t is:

(6x(t), 8x(t))y = MAXIMUM,

where 8x(t) =L(0,t) x(t) is the solution of the tangent-linear equationt Ceand Cr be
positiv definit (having only positive eigenvalued)agonal operators/matrices aRdoe a local
projection operatorPx = x in all points inside a predefined target domaiphysical space, and
zero outside. [It is also possible to Reselect some of the state variables as well.] Hdadg a
diagonal matrix with either O or 1 along the diaglomNow let:

(86x(t), 8x(t))y = [PLEx(0)]” CpPL8x(0) = MAXIMUM,
with side condition (6x(0),8x(0)), = [6x(0)]"Cx6x(0) =1

In other wordsSingular Vectors defined in this way selects dicgrst in phase space at time t
with maximum _perturbatiorCe-norm measured inside the target domaassuming initial
perturbations at time 0 of unis-norm. Searching for the maximum while fulfilling the sid
condition, yields the eigenvalue problem:

[PL]TCrPL6x(0) = 62Cy6x(0)
wherecs? is the eigenvalue (the lagrangian multiplyer freaniational analysis).
Scalar multiplication from left witi€; /%, and defininggo = C4/*6x(0), yields:
ITLey=[C,/’LTPCPLC,"*] &y = 0% &y, wherel = Cy/*PLC,"*

which is a standard singular value problem witlpees to the euclidian inner product. The initial
and evolved singular vectors sought after are tlaspectively:

e(0) = C,"/%2y, and e(t) = L(0,t)e(0).



Generation of ensemblesfor medium-range predictionsat ECMWF (2015)

Practical procedures for generating SVs

When computing singular vectors and values, thericest and operators are not explicitly
calculated. Instead, an algorithm nantkd Lanczos algorithns used. This algorithm devices
an iterative procedure by which only the impactshaf operators have to be calculated starting
from random initial guesses, in order to estimdte eigenvectors and eigenvalues of the
combined operators. The Lanczos algrorithm carobad described in mathematical textbooks.
Here we will only mention that for finding SVs, favhich the associated singular values are
distinct and positive, the SV with largest singuwlafue is found after few iterations, while SVs
with decreasing singular values are gradually founmih increasing iteration number.
Approximately 2n iterations are required to find $M. n with necessary accuracy. It is
absolutely imperative, however, that the adjoird tangent-linear operator is computed with full
bit-exact accuracy on the computer used in ordeactdeve this convergence of the Lanczos
iteration.

Assume we have the numerical model equations f@atadlas partial differential equations in
physical space. The tangent-linear version to thexpgations in physical space is estimated
assuming that a full solution to the non-linear agns from a given initial condition is
calculated and available. That is, the model'sneste of the time-evolution from the initial
three-dimensional state is available for every rhadee-step. This ishe non-linear trajectory

By linearizing each term in the non-linear modaihwespect to perturbations relative to the non-
linear trajectory, yieldghe tangent-linear mode[TLM) in physical space co-ordinates. The
result of computing the numerical tangent-lineardeidforward in time starting from a given
initial perturbation at time 0 and using informatirom the non-linear trajectory underway,
yields the impact of the propagatowalid at a given final time t.

The adjoint modellADM) to the TLM in physical space co-ordinatestlwirespect to the
Euclidian inner product, is also constructed asumerical model, but steps backwards in time
from a final condition at time t. Some terms in tlen-linear model is cumbersome to linearize
and calculate the adjoint to. These are typicalyspcal terms which involve complex logical
procedures (i.e. if-then tests). Some such termsharefore simplified.

If the ADM is integrated, starting with the resalitained with the TLM at time t, back to time 0,
then the result is the effect of applying the cameki TLM and ADM to the initial perturbation
assumed for time 0 (i.&."L). Then the next iteration applies exactly the spmoeedure on the
result of the previous iteration and so on, uhi@ Lanczos algorithm obtain stable results for the
number of SVs which are sought after. These are/elier, SVs with respect to the Euclidian
inner product. In order to generalize to more ganerner products, the procedure runs as
follows, schematically:

1) Assume a set of N initial perturbations at randeraarording to some assumption;
2) Transform this state by multiplying with coefficismas inCO_l/2 and normalize w.r.t. the
Co inner product;

3) Integrate the TLM up to time t;



4) Transform the obtained state by multiplying witbrOL of local projection P;

5) Transform this state by multiplying with coefficisras inCg;

6) Transform the obtained state by multiplying witbrOL of local projection P;

7) Integrate the ADM back to time O

8) Transform this state by multiplying with coefficisras inCO_l/2 and normalize w.r.t. the
Co inner product;

9) Apply Lanczos and restart at 3) until satisfiedwhe accuracy of n SVs.

10)Transform the resulting n SVs with coefficients'rac'gl/ 2,

Generating 50 alternative initial states for the semble

At ECMWEF initial SVs optimized over 48 hours withe total energy normCp = Cg), are
combined with a 10-member ensemble of parallel dasmilation cycles (EDA) to produce
alternative initial perturbations to the presumedtbcontrol initial-state analysis. 130 singular
vectors (50 targetted (with a projection operatorthe Northern Hemisphere extratropics, 50
targetted to the Southern Hemisphere extratropied,30 targetted to six different tropicial sub-
domains dominated by tropical cyclones) are lineacbmbined to form 25 SV-based
perturbation fields.

Let SV, i=1,...25 denote the SV-based preturbation fields, &= EDAx — Ao, k=1,...,10
denote the deviation from the control analysish®yEDA-based alternative analyses. The initial
states for the (n=1,...,50)alternative ensemble forecasts are:

A1=Agt[ SVi+E1]; As=Ag- [SVi+E4];

A1=Agt[ SViot E1ql; A20=Ao- [SViotEaq;

A21=Ag+[ SVi1+E1]; Ax=Ao- [SVir+E4];

Azg=Ag+[ SVaot E1ql; Asoc=Ao- [SVaotEaq;

Ay=Agt[ SVor+E1]; Aso=Ao- [SVartE4];

Aug=Agt[ SVastEs]; Aso=Ao- [SVastEs];
Thus, 50 perturbations which are symmetric arotnedcbntrol analysis are obtained.

In addition to pay attention to the initial statecartainty, alsdhe model physics tendenciese
perturbed at ECMWEF. Hence, the model version uee@dch pair of initial state perturbations
are slightly different. In particular the parametation of deep convection is considered a source
of uncerttainty which may penetrate upscale.



