
EPS-meteograms
ENS-meteograms

EPS=Ensemble Prediction System
ENS=Ensemble (new name at ECMWF)



Oslo 17.01.2017 00utc ana + 0-10 d Oslo 17.01.2017 00utc ana + 0-15 d



Røst 17.01.2016 00utc ana + Røst 15.01.2016 00utc ana +



16.01.2016 00utc ana + 18.01.2016 00utc ana +



16.01.2016 00utc ana + 18.01.2016 00utc ana +



16.01.2016 00utc ana + 18.01.2016 00utc ana +



NWP Historics



Vilhelm F. K. Bjerknes (1904)

Founded the basis for WP as an exact science:

Classical fluid dynamics 

+ classical thermodynamics

= “Physical fluid dynamics”

Number of unknowns = number of equations. 

PDE: Only first order in time

Exact Science Paradigm in 1904: 

Observe at t=0 Calculate every variable at 
any time t.

Determinism IN PRINCIPLE!
Meteorologisk institutt met.no



ECMWF

Lewis Fry Richardson (1881-1953)

The first numerical weather forecast –
manual (!)



ECMWF



Meteorological «noise» and Richardson’s failure



The world’s first successful, purely calculated weather forecast
Institute of Advanced Study, Princeton Univ., USA,19461950

Arnt EliassenRagnar FjørtoftJule CharneyJohn von Neuman

ENIAC
The computer



Fjørtoft



Z_500 t=0, analysis t=+24h, verifying analysis

Z, ana t=+24h, prognosis



Edward N. Lorenz (1963 and 1969)
Founder of Dynamic System Science

bZXYZ
YrXXZY

YXX











 

“… one flap of a sea-gull’s wing 
may forever change the future 
course of the weather” 

(Lorenz, 1969)

“The Butterfly Effect”
Meteorologisk institutt met.no

Deterministic chaos = 
A deterministic system whose time development 

is critically sensitive to initial conditions

«The Lorenz-model»:



The Lorenz (1963) 
attractor, the 
prototype chaotic 
model…..



Development of the

S1-scores for Z500hPa and MSLP
For different forecast lengths

S1=70% =>useless forecast
S1=20%=>perfect forecast



Development if RMS error of predicted geop. Height of 500 hPa



ECMWF





24h summary of observations received at ECMWF, 
5 July 2004



RMSE and Anomaly correlation

= 0

Assuming:



Assume

Or:

Ej
2 = 2Aa

2 (1 – ACj ) 



E=RMS Error AC=Anomaly Correlation

Ej
2 = 2Aa

2 (1 – ACj ) 
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Evolution of ECMWF scores over NH and SH for Z500

The combination of improved data-assimilation and forecasting models, 
the availability of more/better observations (especially from satellites), 
and higher computer power have led to increasingly accurate weather 
forecasts. Today, over NH (SH) a day-7 single forecast of the 
upper-air atmospheric flow has the same accuracy as a day-5 in 
1985 (day-3 in 1981).



Evolution of ECMWF scores over NH and SH for Z500  II

~210km ~16km



Quality of numerical model forecasts for the 
geopotential height of 500 hPa

Courtesy: P.Kållberg, A. Simmons; ECMWF

Anomaly-correlation for forecasted 
Z(500hPa) from ECMWF’s
operational, global model
snce 1980

Same results if the same («frozen»)
model- and analysis-system
is used for all years
(here: ECMWF’s re-analysis, «ERA»):

Changes are only due to
-Random fluctuations (internal variability)
-observational changes
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Re-analyses & Re-forecasts in NWP verification
Z500 : Forecast time when 

ACC=80% N hemisphere

Operational (variations due to: weather, model, DA, and obs)

ERA Interim Re-forecasts (variations: weather and obs)
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Z500 N hemisphere Difference: 
Operational - ERA-Interim

Improved predictions over since 2000
due to system improvements (and observation changes)



Forecast improvements for T850 caused by systems and obs
for different regions 

NH Extratropics N.-Atlantic

Europe North Europe



Upward Trend in EPS (now: ENS)



Upward Trend in High Res Deterministic over Last Decade



Simple mathematical systems 
possessing chaos

Logistic map

Lorenz «Butterfly»



Xn(r) when n



2.80         3.04          3.28           3.52          3.76          4.0

r

The Lyapunov exponent for the logistic map (estimated numerically)



Chaos Theory concepts

Kalnay Ch 6.2-6.3



Phase space representation of the atmosphere as a dynamical system



Tangent-Linear Model (TL) and its Propagator from time 0 to t



Tangent-Linear Model (TL) and its Propagator from time 0 to t



Lyapunov exponents



LOCAL LYAPUNOV VECTORS

the leading local Lyapunov exponent (i.e. no. 1):

.



The Lorenz three-parameter model. «Butterfly»



The Lorenz three-parameter model. «Butterfly»



The growth of perturbations: 
linear – weakly non-linear – strongly non-linear



Why probabilistic weather prediction?

Why not categorical («deterministic») forecasts



Example case: State-dependent forecast quality



Example case: diagnose state dependence, 
ensemble spread and forecast uncertainty

«plumes»

For London UK
26.06.1995 00utc

26.06.1994 00utc



Example case: diagnose state dependence, 
ensemble spread and forecast uncertainty

«spaghetti maps»

15.11.1995 12utc + 5days

22.10.1995 12utc + 2.5days



Example: sensitive dependence of initial conditions



Example: sensitive dependence of initial conditions



But: Deterministic forecasts for 1-2 days are nearly perfect ! 
- for z500 

Courtesy: A. Simmons; ECMWF

NWP quality for 500hPa geopotential heights



Deterministic forecasts 
for 1-2 days are nearly 

perfect ! 
- for z500 

N Hem

Europe N-Europe

Forecast length when ACC=x%

X=90,85,80,75,70,65,60

5

5 5

8

8 8

90%

90%
90%

60%

60%
60%



Brier Skill Score for 96h ECMWF EPS for selected events

24hPrecip against analysis

24hPrecip against obs ff10m against obs

ff10m against analysis

ECMWF operational verification



The predictability depends on the spatial 
scales

Meteorologisk institutt met.no

Except: Strong local forcing which are well described 
increases the predictability also for smaller scales 

(adjustments og large-scale patterns to local forcing: 
topography, coastlines, land-use contrasts etc.)

Day 3.5

Day 5

Day 7

Beyond day 10



Predictability as a function of the spatial  
extension of weather systems

Courtesy: A. Simmons; ECMWF



Forecast  lead time when Rank Probability Skill Score (RPSS) for EC EPS of Z500 < 0.3

All scales Planetary scales

Synoptic scales

Sub-synoptic scales

EPS

ctrl
deterministic

Predictability as a function of the spatial  
extension of weather systems II



Courtesy: A. Simmons; ECMWF

Predictability as a function of the spatial  
extension of weather systems III



The consensus forecast:
Unpredictable components are filtered

Winter
1997-98



”Regression towards the mean”: 
when error-growth is non-linear, a majority of forecasts will 

tend towards maximum climatological occurrence

In any case: to forecast extreme weather events 
categorically (either 100% or 0% certain) is overly 

optimistic.



Prob T2m<0 C

Val: 21.02.2004 12UT (+48) Val: 24.02.2004 12 UT (+120)

ff10m>10m/s

Probabilities



Prob 
P>5 mm/24h

Val: 20.02.1995 12utc - 21.02.1995 12utc (+24-48) Val: Tuesday 24.02.2004 0-24utc (+108-132)

Prob 
P>10 mm/24h



Distances in phase-space, inner products, and the adjoint



Properties of the the adjoint



Singular Vectors, SVs



Singular Vectors, SVs



u1

Singular Vectors, SVs



Singular Vectors, SVs



The Lorenz model
Singular Values



Singular Vectors, SVs,

Examples



Singular Vectors, SVs,

Examples



Singular Vectors, SVs, Examples



Non-normality and final-time growth



Initial perturbations

Operational ensemble prediction



Predictability varies with the weather situation

Meteorologisk institutt met.no

High predictability: 
the ensemble mean is skillful

Low predictability: 
low skill of ensemble mean



The «deterministic» and «stochastic» phases of atmospheric predictions.



Good and bad ensemble systems



Initial-state perturbations; «monte carlo» and time-lagging.



Time-lagging

Lorenz (1982)



Heterogeneous distribution of initial-state uncertainty.



Breeding



Self-breeding
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Selective sampling: breeding vectors (NCEP)

At NCEP a different strategy based on perturbations growing fastest in the 
analysis cycles (bred vectors, BVs) was followed (now NCEP uses a 
different method called Ensemble Transformed with Rescaling, ETR, 
method). The breeding cycle was designed to mimic the analysis cycle.
Each BV was computed by (a) adding a random perturbation to the 
starting analysis, (b) evolving it for 24-hours (soon to 6), (c) rescaling it, 
and then repeat steps (b-c). BVs are grown non-linearly at full model 
resolution.



Relation between
Bred-vector amplitudes
and forecast error.



Bred vector alignment and growing instability



Selecting modes of instability by choosing the size of initial state perturbations



SVs from more general inner products
Singular vectors can be defined as the result of 







Singular Vectors







Upscale development
Of singular vectors

Amplification for
singular vectors
& bred vectors





From Persson
Chapter 3











Extreme forecast index (EFI)

The EFI is an integral measure of the difference between the 
ensemble forecast (ENS) distribution and the model climate 
(M-climate) distribution. 

This allows the abnormality of the forecast weather situation to be assessed 
without defining specific (space- and time-dependant) thresholds. The EFI takes 
values from -1 to +1. If all the ensemble members forecast values above the M-
climate maximum, EFI = +1; if they all forecast values below the M-climate 
minimum, EFI = -1. 

Experience suggests that EFI magnitudes of 0.5 - 0.8 (irrespective of sign) can be 
generally regarded as signifying that "unusual" weather is likely whilst magnitudes 
above 0.8 usually signify that "very unusual" weather is likely. 

Although larger EFI values indicate that an extreme event is more likely, the values 
do not represent probabilities as such.



Model Climate (M-Climate)
For the calculation of EFI, M-climate is based on 9 consecutive semi-weekly re-
forecast data sets (Mondays and Thursdays) consisting of 10+1 ensemble members, 
where the middle Monday or Thursday is the preceding Monday or Thursday closest to 
the actual ENS run date, t. 
The resolution decreases with forecast range exactly as in the ENS. This procedure 
allows seasonal variations and model changes to be taken into account, as well as 
model drift. 
Altogether 1980 re-forecast values are available for the M-climate computation (20 
years x 11 ENS members x 9 semi-weeks). The M-climate is updated semi-weekly on 
Mon- and Thursdays.  

M-Climate= 9 semi-weekly, 11-member ENS, re-forcasts for previous 20 years
The figure shows an example when a Thursday is the closest, previous Mon- or Thursday

t t+30d

Thurs0Thurs-1Thurs-2 Thurs+1 Thurs+2

11ens, 20yrs

Mon-2 Mon-1 Mon0 Mon+1



From Persson
Chapter 5









EFI and median T2 daily mean
Valid Saturday 20 - Sunday 21 Feb 00utc, 2016



EFI and 99-percentile Precipitation
Valid Saturday 20 - Sunday 21 Feb. 00utc, 2016



Error Growth

Kalnay, 6.6



Time-lagging
Lorenz (1982)
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Representation of average model error 

Meteorologisk institutt met.no

RMS-error:

With increasing forecast length t:

 So that for increasing t: 

And for a bias-free model:

Error growth-model (Lorenz, 1982):

0.1

0.01





Lagged forecasts, 1981 and 2001



Martin Leutbecher, ECMWF, private communication

Forecast day

ECMWF

Ens-Means

High-res.
deterministic

A
C

C



Data Assimilation

Kalnay, Ch 5
+ a few notes









Synop+ship+metar Radiosondes

Drifting buoys aircraft





AMSU-B

IASI

AMSU-A

Microwaves



Scatterometer

GPS  radiooccultation



VIS

IR

WVap

NH, Polar
IR

SH, Polar
IR

AMV=
Atmospheric
Motion
Vectors

+ radiances











1 parameter

Multi-parameter

N= model phase-space dim

P= obs phase-space dim



3DVar and 4DVar
simple presentation

Based on notes by A. Persson and F. Grizzini, ECMWF 2007



The analysis, A, defined by least-squares assumption
(Equations from Persson & Grazzini vs.   Kalnay)  

Find the value of S which minimizes J(S):
J/S = 0 for S = A

For any atmospheric state S, define:

	
	

Equivalent to combining (5.3.15) and 
(5.3.16) in Kalnay (A=Ta ; F=Tb ; O=To ):

From (5.3.12) in Kalnay, where T (=S) is any
state:

Variational form:

	 	



First: write an alternative formula for J(S) for one variable:

Then: Let Y = generalized observation (e.g. an indirect variable); 
H(S) = conversion of model state S to generalised obs-variable

Finally: three spatial dimansions and many variables simultaneously
 Transform to formula for state vectors in phase space.

where: Y, F, S and H(S) are vectors; B and R are error covariance matrices

Minimize J  3DVar solution

Generalize to three spatial dimensions and multiple variables.



Thanks to Adrian Simmons ECMWF

In 3DVar: 
Observations taken over the assimilation window
are implemented at the analysis time in the midde of the window



(S0)

Generalization to include time explicitely 4DVar
Observations are used at the times they are taken
Find a state S ( = A) which developes
from timestep no. 0 to timestep N, and
minimizes:

Mn = the modelled value at any timelevel n within the assimilation
window from n=0 to N. 

(S0)



Thanks to Adrian Simmons ECMWF



Extended and Long Range



MJO: Madden-Julian Oscilation
The largest element of intraseasonal (30–90 day) variability in the tropical atmosphere

A Hovmöller diagram of the 5-day running mean of 
outgoing longwave radiation showing the MJO. Time 
increases from top to bottom in the figure, so contours 
that are oriented from upper-left to lower-right represent 
movement from west to east.

time
eastwards

is characterized by an eastward progression 
of large regions of both enhanced and 
suppressed tropical rainfall, observed mainly 
over the Indian and Pacific Ocean.

Speculation being researched:

Potential connections between
MJO and NAO.
And potential source of intraseasonal
predictability in N-Atlantic and Europe 



ENSO: 
El Niño, Southern Oscilation





PNA Teleconnection patternENSO correlations

Anomalies in geopotential height (m); 500hPa
for positive pattern index





NAO Teleconnection pattern

Anomalies in geopotential height (m); 500hPa 
for positive pattern index

Correlation (%)





Monthly Forecasts, ECMWF
Twice a week (Monday and Thursday at 00Z), 
the coupled model is integrated forward to make a 
32 day forecast with 51 different initial conditions, 
in order to create a 51-member ensemble. 
Full coupling is applied between the ocean and atmosphere from the start of the 
forecast (day 0). Initial atmospheric perturbations: as for the medium-range 
(EDA+SVs). Initial ocean perturbations: wind stress perturbations are differences 
between different wind stress analyses. 5 ocean assimilations (1 control and 4 
perturbed) are produced by picking 2 from the set of wind stress perturbations for 
each month of data assimilation and  add and subtract to the analyzed wind stress.

Because of model errors, a drift occurs in the coupled system. This model drift is 
evaluated by integrating the coupled model up to day 46 with 11 different initial 
conditions at the same day and month as the real time forecast, but over the past 20 
years. This is further extended by using a one-week window about the actual date. 
Thus, the climate ensemble is of size 11(ens.memb.) x 20(years) x 3(dates) = 660.

t t+46d

Thurs0Thurs-1Thurs-2 Thurs+1 Thurs+2

11ens.memb.
previous 20yrs with (the same date + 2dates) = 660

Mon-2 Mon-1 Mon0 Mon+1



Temp & Prec anom, week 1 & 2
starting from Monday 28. March 2016



Temp & Prec anom, week 3 & 4
starting from Monday 28. March 2016



Z_500 anom, week 1, 2, 3 & 4 
Weekly-mean 500hPa geopotential anomaly for the ensemble mean. 

Contour intervals of 2dam (zero line not shown).
starting from 28. March 2016



The plumes show the daily evolution of the ensemble forecast distribution, 
binned in 12.5% intervals (shading) together with the median (solid line).

starting from 28. March 2016



Seasonal Forecasts, ECMWF
The seasonal forecasts consist of a 51 member ensemble using a coarser-
resolution version of the atmospheric model. The ensemble is constructed by 
combining the 5-member ensemble ocean analysis with SST perturbations 
and the activation of stochastic physics. 
The forecasts have an initial date of the 1st of each month, and run for 7 
months. Forecast data and products are released at 12Z UTC on a specific day of 
the month. For System 4, this is the 7th. 

Model-climate for bias-correction & anomaly-evaluation
A set of re-forecasts are made starting on the 1st of every month for the years 
1981-2010. They are identical to the real-time forecasts in every way, except that 
the individual date ensemble size is only 15 rather than 51. 
The total re-forecast ensemble size is thus: 15x30 = 450.

An annual-range (13 months) forecast is made four times per year, with start 
dates the 1st February, 1st May, 1st August and 1st November, run as an 
extension of the seasonal forecasts, and are made using the same model but with a 
smaller ensemble size. Both re-forecasts and real-time forecasts and have an 
ensemble size of 15.
The annual range forecasts are designed primarily to give an outlook for El Nino. 
They have an experimental rather than operational status.



Nino_3-4 Plumes

March 2015
Sept 2015

March 2016

Feb 2016_ANNUAL



Northern Europe precip anomaly

NAO

Northern Europe Temp anomaly

The limits of the purple/grey whiskers and yellow 
band correspond to the 5th and 95th percentiles, 
those of the purple/grey box and orange band to 
the lower and upper tercile, while the median is 
represented by the line within the purple/grey box 
and orange band. 



Prob relative to upper and lower terciles, JJA 2016
T2m and Precip

T2
<lower

Prec
<lower

T2
>upper

Prec
>upper



From Predictions to Projections

(Decadal Climate Predictions)









Pacific decadal potential predictability
Linked to solar forcing periodicity



Pacific decadal potential predictability
Linked to internal variability (PDO / IPO)



PDO



AMO: Atlantic Multidecadal Oscilation 
Potential decadal predictability?

Atlantic 
Multidecadal
Oscillation index 
computed as the 
linearly detrended
North Atlantic sea 
surface 
temperature 
anomalies 1856-
2013.

Schlesinger, M. E. (1994). "An oscillation in the global climate 
system of period 65-70 years". Nature 367 (6465): 723–726. 

doi:10.1038/367723a0



The number of tropical storms that can mature into severe hurricanes is much greater during 
warm phases of the AMO than during cool phases, at least twice as many.  (Re.: NOAA)
The hurricane activity index is highly correlated with the Atlantic multi-decadal oscillation. The 
AMO alternately obscures and exaggerates the global increase in temperatures due to human-
induced global warming.[Chylek, P. & Lesins, G. (2008). "Multidecadal variability of Atlantic hurricane activity: 1851–
2007". Journal of Geophysical Research 113: D22106. doi:10.1029/2008JD010036

The recent AMO increased the average number of Atlantic hurricanes and named 
storms from 6 to 12, when it began in 1995. This phase may have ended in 2012.

AMO and 
Atlantic Hurricanes



North Atlantic Ocean sensitivity to initial perturbations



Examples of decadal predictions. 
Recent efforts at decadal prediction, with the similar 
strategy: Initialize a global climate model from 
observations and reanalyses and run it forward 10 yr, 
while accounting for changes in external forcing (natural 
and anthropogenic). 

Smith et al. (2007) showed that global-mean temperature 
could be predicted out to a decade in advance (Fig. 8a), 
with more skill than obtained when only external radiative 
forcing changes are accounted for.

Keenlyside et al. (2008) demonstrated that SST 
variations associated with the Atlantic MOC could be 
predicted a decade in advance, but because of an overly 
strong MOC signal, their strength was overestimated (Fig. 
8b). Ten-year averaged global surface temperature
variations were also predictable (Fig. 8a), but with 
marginally less skill than that obtained from radiative
forcing only.

In both studies forecasts were made for the next 10 yr 
(Fig. 8b), and in both cases natural internal variability 
was found to temporarily offset
anthropogenic global warming.
The offset was largest in Keenlyside et al. (2008), whose 
results suggest a temporary lull in global warming for the 
next decade; however, the simplicity of the scheme 
employed needs to be kept in mind. The results of both 
studies highlight the impact ofinternal variability.











The forecast being described here is from the experimental decadal prediction system
using the latest Met Office climate model, HadGEM3, developed as part of the Hadley
Centre Climate Programme. This system is at the cutting edge of research in understanding,
simulating and predicting decadal variability.

It is only feasible to run the forecast out for the next 5 years.
Furthermore, the number of ensemble members (10) is substantially less than that used in
the Met Office seasonal forecasting system (42). For these reasons the following results
should not be over-interpreted.

The decadal forecast produced in January 2014, for the 5-year period 2014-2018, is
shown in Figure 1 as the set of dark blue lines, each representing an individual forecast from
the 10-member ensemble. For comparison last year’s forecast (from January 2012) is shown
in light blue lines.

The baseline 30-year mean climatology against which the forecast anomalies have been
expressed, is1981-2010, in line with WMO recommendations and other forecast products.

NB: Produced in January 2014



Figure 1: Global annual temperature record since 1960 and the latest ensemble of forecasts from the Met 
Office decadal prediction system produced in January 2014. The dark blue lines show the evolution of the 10 
individual forecasts from this year’s forecast starting from November 2013 and the pale blue lines the 
equivalent for last year’s forecast. All data are rolling annual mean values.
The gap between the black curves and blue curves arises because the last observed value 
represents the period November 2012 to October 2013 whereas the first forecast period is November 2013 to 
October 2014. 
The thin black curves show the observed annual-mean time-series from 3 independent datasets. Previous 
predictions starting from November 1960, 1965,..., 2005 are shown in red, and 22 Coupled Model 
Intercomparison Project phase 5 (CMIP5) model simulations that have not been initialized with observations 
are shown in green. In both cases, the shading represents the probable range, such that the observations 
are expected to lie within the shading 90% of the time. 
All temperatures are represented as anomalies from the 1981-2010 mean. 



Decadal forecast; Forecast issued in January 2016.

•Averaged over the five-year period 2016-2020, 
•enhanced warming over land, and at high northern latitudes;
•some indication of continued cool conditions in the Southern Ocean, 
•relatively cool conditions in the North Atlantic sub-polar gyre. 
•global average temperature is expected to remain high; 
•Likely between 0.28°C and 0.77°C above the (1981-2010) average. 

•(an anomaly of +0.44 ± 0.1 °C observed in 2015) 
•consistent with high levels of greenhouse gases and big changes currently underway in the climate system

Observed (black, from Met Office Hadley Centre, GISS and NCDC) and 
predicted (blue) from November 2015 global average 
annual surface temperature difference relative to 1981-
2010. Previous predictions starting from November 
1960, 1965, ..., 2005 in red, and 22 simulations from 
CMIP5 in green.
Observations are expected to lie within the shading 
90% of the time. Moving 12-month mean values. 



Pacific Decadal Oscillation. Three-month averages of the monthly PDO index of Zhang et al. (1997) from 
1900 to 2015. The same series after smoothing to retain decadal and longer variations is overlaid. The pair 
of curves at each end illustrate large uncertainty due to lack of data before and after the series. 

The current developments in the worldwide pattern of sea surface temperatures are consistent with an 
emerging positive shift in the PDO, but it is too early to be confident that this will outlast the current El Niño. 

Atlantic Multidecadal Oscillation. Values are annual average, area average North Atlantic sea surface 
temperature with the long-term linear warming trend removed (˚C), derived from the HadSST3 dataset 
(Kennedy et al., 2011a,b). The spread of values is a measure of the uncertainty arising from sampling and 
measurement errors. The solid lines show the low frequency AMO component.

The current trends suggest that the chances of a shift in the next few years have increased. However, it is 
not certain that there will be a shift towards cooler Atlantic conditions over the next few years. Temporary cooling 
has occurred in the past without leading to a sustained AMO shift.

Big Changes Underway in the Climate System?



Climate projections



Procedures for Climate projections
CMIP: Coupled Model Intercomparison Project (WMO-activity)
CMIP5 production for IPCC AR5 (2013)
CMIP6production for IPCC AR6 (ongoing, scheduled for 2022)

Purpose:
Calculate all possible states that can be realized in the climate system
for a predefined set of externally defined governing conditions. 
I.e.: a prediction of the second kind, for which the actual intial state is irrelevant

DECK (entry card for CMIP)
(Diagnostic, Evaluation and Characterization of Klima)
i. AMIP simulation (~1979-2014) (pure Atmospheric Model)
ii. Pre-industrial control simulation (1850 conditions)
iii. 1%/yr CO2 increase until 4 times CO2 at 1850, then kept constant)
iv. Abrupt 4xCO2 run (4 times CO2 at 1850=

CMIP6-Hist: Historical Simulation: entry card for CMIP6
v. Historical simulation using re-constructed forcing for (1850-2014)

MIPs: Model Intercomparison Projecys designed for specific
purposes
A wide range of process-experimental runs, diagnostic attribution runs, 
and climate projection runs, including detection and attributuin and 
future projections based on scenarioes. Also paleoclimate runs and 
decadal prediction runs are included as MIPs.

Qualifying a model for CMIP6 participation:
CMIP DECK and CMIP6 Historical Simulation

MIPs = more than
20 projects with specified
purpose experiments



A simplified description of basic procedures for climate projections
Stepwise procedure:

• Start from a state of the climate system as close as possible to 1850 conditions
o There are available data from previous model runs, e.g. for CMIP5

• Provide boundary data as close as possible to 1850 conditions
o land-surface, solar activity, atmospheric composition, earth’s orbit etc.

• Start a multi-century spin-up run: run the model to achieve an average
energy equilibrium at the top of the atmosphere
and a long-term, stable climate;

o normally several re-starts are needed with parameters adjusted (model tuning)
o up to a few thousand model years may be required to reach a stable equilibrium

• PI-Control: after spin-up, run >500 years for pre-industrial (PI) 1850. (CMIP-DECK)
• Historical: At the same time: a historical run from 1850 to present day

with driving external conditions given (CMIP6-Hist);  
• Ensemble: Several additional historical runs started from indep. states in the PI-Control. 

o Used for model validation
• Attribution runs: One selected ensemble member for the historical period is re-run 

with single contributions to forcing (aerosols only; GHG only, Natural only)
• Future Projections based on scenarioes. Future scenarios for societal development, 

energy demand, is used to estimate future development of land-use, GHG-emissions, 
and aerosol emissions. Different pathways is estimated to produce a radiative forcing
at the top of the atmosphere; Representative Concentration Pathways (RCP) by 2100
tompared to 1850. The historical runs are extended to 2100 (or 2300) using the RCPs.
RCPn, n=2.6, 4.5, 6.0 or 8.5 W/m2 . 



Observational basis for 
a changing climate



Sources of uncertainty in model-calculated climate
projectionsand interpretation of observations

1. Random, natural climate variability (”chaos”)
2. Uncertain external forcing (natural and anthropogenic)
3. Uncertain quality of climate models (”known unknowns”)
4. All other unknown contributions (”unknown unknowns”)

Variations vs. change

Major challenge
1. Climate change implies non-stationary statistics

• time-averages cannot represent the full climate statistics
2. Time-scale of changes (”trends”) overlap with time-scale

of natural climate variability



The ”hockey-stick”



Continental air warmes faster than 
marine air



Updated to include 2015 
(NASA/NOAA)
"Since 1880, Earth’s average surface 
temperature has warmed by about 0.8 Celsius.
The majority of that warming has occurred in 
the past three decades.“

Climate Research Unit (CRU), Univ of East-Anglia, UK
The time series shows the 
combined global land and 
marine surface temperature
record from 1850 to 2015. This 
year was the equal warmest on 
record. This record
uses the latest analysis, referred 
to as HadCRUT. 

Morice, C.P., Kennedy, J.J., Rayner, N.A. and 
Jones, P.D., (2012). Journal of Geophysical 
Research,117, 
D08101,doi:10.1029/2011JD017187

(The next warmest: 2014 +0.56 C)

“Earth's 2015 surface temperatures were the 
warmest since modern record keeping began in 
1880” 
according to independent analyses by NASA's Goddard Institute 
for Space Studies and NOAA's National Centers for 
Environmental Information.



2015 was the warmest year since modern record-keeping began in 1880, according to a 
new analysis by NASA’s Goddard Institute for Space Studies. The record-breaking 

year continues a long-term warming trend — 15 of the 16 warmest years on record have 
now occurred since 2001. (Credit: NSA/GSFC/Scientific Visualization Studio)

Globally-averaged temperatures in 2015 shattered the previous mark set 
in 2014 by 0.23 degrees Fahrenheit (0.13 Celsius). Only once before, in 
1998, has the new record been greater than the old record by this much. 



Order of annual global mean Ts anomalies



Monthly (NOAA) global Ts-anomalies (rel.1951-80) during 
El Niño, La Niña, ENSO neutral (Nino3.4 index)



Variations above ground
IPCC



Can models explain observed changes since
1900? IPCC



Can models explain observed changes since 
1900? IPCC



Climate development in the 21st century?
Projection of surface air temperature IPCC



Climate development in the 21st century?
Projection of precipitation change IPCC



Climate change and prefered regimes
Lorenz’ 3-parameter model
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FORCING

Sensitivity vs. Response:
A (weak) forcing may not
change regime patterns,
but may change the relative
occurrence of them.



forcing - response

Example:
Amplification of Arctic warming 
by past air pollution reductions 
in Europe
JC. Acosta Navarro, V. Varma, I. Riipinen, Ø. 
Seland, A. Kirkevåg, H. Struthers,T. Iversen, H-C. 
Hansson, A. Ekman

Nature Geosciences, March 15th, 2016.



Regional change in temperature                   
when ∆Tglob = +2 °C

(°C, RCP8.5)

Helge Drange, UiB:

Notice the much larger temperature increase in the Arctic



Estimated probability for global Ts-decrease over 10 
years, from 17 global climate models

Helge Drange, UiB:

PI-control, 1850 Historical, 1850-2010

RCP 2.6 RCP 4.5

RCP 6.0 RCP 8.5



Verifying probabilistic forecasts





















Training Course 2007 – NWP-PR: Ensemble Verification
199/24

Benefits for different users - decision making

• A user (or “decision maker”) is sensitive to a specific weather event

• The user has a choice of two actions:
 do nothing and risk a potential loss L if weather event occurs
 take preventative action at a cost C to protect against loss L

• Decision-making depends on available information:
 no FC information: either always take action or never take action
 deterministic FC: act when adverse weather predicted
 probability FC: act when probability of specific event exceeds a 

certain threshold (this threshold depends on the user)

• Value V of a forecast:
 savings made by using the forecast, normalized so that

 V = 1 for perfect forecast
 V = 0 for forecast not better than climatology 

Ref: D. Richardson, 2000, QJRMS



Training Course 2007 – NWP-PR: Ensemble Verification
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Decision making: the cost-loss model

),min( LoCEC • Climate information – expense:

cLbCaCEF • Always use forecast – expense:

CoEP • Perfect forecast – expense:

PC
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EE
EEV





forecastperfect    from  saving

forecast  using  from  saving• Value:

Event occurs
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Action 

taken

Yes C C

No L 0
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forecast
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Training Course 2007 – NWP-PR: Ensemble Verification
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PC

FC

EE
EEV





forecastperfect    from  saving

forecast  using  from  saving

CC
C

o-L)o,min(
cL) bC  (aC - L)o,min( 






o-)o,min(
o)-(1o)o-F(1 - )o,min( 


H

with: α = C/L
H = a/(a+c) 
F  = b/(b+d)
ō = a+c

Decision making: the cost-loss model
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• For given weather event and 
FC system: ō, H and F are fixed

• value depends on C/L
• max if: C/L = ō
• Vmax = H-F

Northern Extra-Tropics (winter 01/02)
D+5 deterministic FC > 1mm precip
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Potential economic value
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Northern Extra-Tropics (winter 01/02) D+5 FC > 1mm precipitation
deterministic ENS
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eENS: when each user chooses 
the most appropriate probability threshold



Brier Skill Score, Europe
T2m Prec24

+96h

+144h

Anomaly: >8K >4K <-4K <-8K Anomaly: >20mm >10mm >5mm >1mm



Brier Skill Score, +96h, starting from 1995. 
Against Analyses and observations in Europe

T850
analyses

24h N
obs

Anomaly: >20mm >10mm >5mm >1mm

+144h+96h

Anomaly: >8K >4K <-4K <-8K



Brier Skill Score, against analyses and 
observations in Europe. Wind speed, 10m.

analyses

obs

+96h +144h

>10m/s

>15m/s



The forecast length (days) when CRPSS 
reaches smaller values than a given threshold for 

24h precip and T 850hPa for NH and Europe

NH Extratropics Europe

Precip
0.1
12m MA

T 850
0.25
3m MA
12m MA



Reliability-diagram and forecast sharpness, 
winter 2015 

ff10m
Precip

+96h

+144h +240h

+96h

+144h +240h

>15m/s

>10m/s

>20mm >10mm >5mm >1mm



T2m

Reliability-diagram and forecast sharpness, 
winter 2015 

>8K >4K <-4K <-8K

+96h

+144h
+240h



Expected Value of + 144h forecasts of 24h 
precipitation in Europe with user’s c/L. 

Winter 2015

1mm 5mm
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