EPS-meteograms
ENS-meteograms

EPS=Ensemble Prediction System
ENS=Ensemble (new name at ECMWF)
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ENS Meteogram
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ENS Meteogram
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NWP Historics
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Vllhelm F. K. Bjerknes (1904) @

“Das Problem von der Wettervorhersage, betrachtet vom
Standpunkt der Mechanik und der Physik”

Founded the basis for WP as an exact science:
Classical fluid dynamics

+ classical thermodynamics

= “Physical fluid dynamics”

| Number of unknowns = number of equations.

PDE: Only first order in time

Exact Science Paradigm in 1904:

Observe at t=0 =»Calculate every variable at
any time t.

Determinism IN PRINCIPLE!

Meteorologisk institutt met.no



Lewis Fry Richardson (1881-1953)

Richardson(1922)

Weather Prediction by Numerical Process Cambridge Univ. Press

The first numerical weather forecast —
manual (!)

Lewis Fry Richardson (1881-1958)

AR Coe-
ECMWF S
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Meteorological «noise» and Richardson’s failure

6 1 Historical overview of numerical weather prediction

*-— About one day >

Figure 1.2.1: Schematic of a forecast with slowly varying weather-related variations
and superimposed high-frequency gravity waves. Note that even though the forecast
of the slow waves is essentially unaffected by the presence of gravity waves, the
initial ume derivative is much larger in magnitude, as obtained in the Richardson
(1922) experiment.



The world'’s first successful, purely calculated weather forecast
Institute of Advanced Study, Princeton Univ., USA,1946->1950

John von”Neuman Jule Charney

Ragnar Fjartoft Arnt Eliassen

i‘:'

ENIAC
The computer



ENIAC (Electronic Numerical Integrator and Computer, 1949)

OO R S Y vs

Charney
von Neumann




8 1 Historical overview of numerical weather predictior
Z_500 r t=0, analysis : t=+24h, verifying analysis
=~ ‘W '-sg_ -._'é‘lt " i

\*‘..‘ 4 . -

\
NANN
\‘é‘q\

AN
N

(©)

AZ, aNA gipyre 1.22: Forecast of 30 January 1949, 0 t=+24h, prognosis :
and Z + fats =0; (b) observed z and £ + f at7 = 24 B; (&) VLG Yo v IS
lines) and computed (broken lines) 24-h height change; (d) computed z and ¢ + f at
¢ = 24 h. The height unit is 100 ft and the unit of vorticity is 1/3 x 107*s74.
(Reproduced from the Compendium of Merteorology, with permission of the
American Meteorological Society.)



Edward N. Lorenz (1963 i 1969) €2\

Founder of Dynamic System Science

Deterministic chaos =

A deterministic system whose time development

is critically sensitive to initial conditions

Il
i

Figur 1. Lorenz’ grafiske framstilling av to tidsutviklinger for en variabel i sin overforenklede
regnemaskinmodell for atmosfaeren. Ved utgangstilstanden til venstre pa figuren er verdiene
ikke til & skille fra hverandre. Ettersom tiden gar eker forskjellen og utviklingene gar i helt

forskjellig retning.

‘... one flap of a sea-gull’'s wing
may forever change the future
course of the weather”

(Lorenz, 1969)
“The Butterfly Effect”

«The Lorenz-model»:

X=—0cX+aY
Y=-XZ+rX-Y
7Z=XY-bZ

3000.000 states

Meteorologisk institutt met.no






NCEP operational S1 scores at 36 and 72 hr
over North America (500 hPa)
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NCEP operational models S1 scores:
Mean Sea Level Pressure over North America
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Figure-1.1.1: (a) Historic evolution of the operational forecast skill of the NCEP
(formerly NMC) models over North America (500 hPa). The S1 score measures the
relative error in the horizontal pressure gradient, averaged over the region of interest.
The values ST = 70% and S1 = 20% were empirically determined to cotrespond
respectively 1o 4 “useless™ and a “perfect” forecast when the score was designed,
Note that the 72-h forecasts are currently as skillful as the 36-h were 10-20 vears ago
(data courtesy C. Vicek, NCEP), (b) Same as (a) but showing S1 scores for sea level
pressure forecasts over North America (data coustesy C.Vieak, NCEP). It shows
tesults from global (AVN) and regional (LFM, NGM and Eta) forecasts. The LFM
model development was “frozen” in 1986 and the NGM was frozen in 1991,

Development of the

S1-scores for Z500hPa and MSLP
For different forecast lengths

S1=70% =>useless forecast
S1=20%=>perfect forecast



Development if RMS error of predicted geop. Height of 500 hPa

IMPROVEMENTS IN NWP SKILL 651
(a) R.m.s. error (m) vs sondes N Hem 500hPa Z R.ms. error(m) vs sondes S Hem 500hPa Z
- O AT OFFICE (b) —_— OV T OFFICE
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Figure 3. R.m.s. errors of 3-, 4- and 5-day ECMWF 500 hPa height (m) forecasts for the extratropical:
(a) northern, and (b) southern hemispheres, plotted in the form of annual running means of monthly data for
verification against radiosondes from July 1994 to August 2001. Recent Met Office forecast errors are also shown.

Values plotted for a particular month are averages over that month and the 11 preceding months.



ECMWEF has been producing operational medium-range
weather forecasts since 1 August 1979.




« Corresponding developments of humerical models
e 1950: Charney, Fjortoft and von Neumann
e 1950s: 3-D numerical weather prediction (NWP) models
e 1960s: atmospheric general circulation models (GCM)

e 1970s: atmosphere-ocean coupled GCM
start of operational NWP

e 1980s: operational NWP with global models
data assimilation with numerical models

e 1990s: global warming simulations with coupled GCM
operational ensemble NWPs

e 2000s: Earth system modeling

interactions of multiple components in multiple scales



24h summary of observations received at ECMWF,
5 July 2004

Geo-stationary satellites Polar-orbiting satelltes
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RMSE and Anomaly correlation

The rms error E, of the day j forecast is defined by

_ _ 2
W=

(E)" = ((f-c)-(a-0))’

= (f-0) + (a-¢) -2(F-0)a-¢)
= (A)" + (4)" -2 (f-o)a-c)

Anomaly correlation coefficient

CEDICED RN CEDICER

ACC =
j

J [(f-e)-TF -0 1 (a-0)’-@-0)* ]

(f,-¢)(a-c) Assuming:
(a-c) and (f -¢) =0

ACj =
\j [(f-0)"11[(a-e)"]




The normalized error N is given by

J

2
2

(A (A

Assume

Aj is close to Aa

N =1 - AC
J J

Or:

E? =242 (1 - AC,)
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SIMMONS, A.J: THE SKILL OF 500hPa HEIGHT FORECASTS
RMS errors and asymptotes 500hPa ineight  Winter 1995
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RMS (m)

E=RMS

J

Error

SIMMONS, A.J: THE SKILL OF 500hPa HEIGHT FORECASTS

RMS errors and asymptotes 500hPa height  Winter 1995
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{,. Evolution of ECMWEF scores over NH and SH for Z500

The combination of improved data-assimilation and forecasting models,
the availability of more/better observations (especially from satellites),
and higher computer power have led to increasingly accurate weather
forecasts. Today, over NH (SH) a day-7 single forecast of the
upper-air atmospheric flow has the same accuracy as a day-5 in
1985 (day-3 in 1981). Anomaly correlation % of 500 hPa height forecasts

Northern hemisphere

Southern hemisphere
100

Day 3

80

=3 Day 7

4 Day 10

A,
M f’w\m’\\f\ M, ﬂwﬂ \/f‘*

30 41—
81 82 83 84 85 86 87 88 89 90 91 92 93 94‘95 96 97 98 99 00 01 02 03 04 05 06 07 08 09
Year

EC/TC/PR/RB-L1 2010 - Roberto Buizza: Sources of uncertainty
D1~



Evolution of ECMWF scores over NH and SH for Z500 II

Day 7 NHem Day 3 NHem
500hPa geopotential height Day 7 SHem Day 3 SHem
Anomaly correlation Day 10 NHem Day 5 NHem
12-month running mean Day 10 SHem Day 5 SHem

(centered on the middie of the window)
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Quality of numerical model forecasts for the
geopotential height of 500 hPa

Anomaly correlation of 500hPa height forecasts
Southern hemisphere

Northern hemisphere

D+3
D+5

Operations
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&

I ..o s gt G . ™"

D+5 ERA-Interim

i

D+7
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0

Anomaly-correlation for forecasted
Z(500hPa) from ECMWF'’s
operational, global model

snce 1980

Same results if the same («frozeny)
model- and analysis-system

is used for all years

(here: ECMWEF’s re-analysis, «kERA»):

Changes are only due to

-Random fluctuations (internal variability)
-observational changes

Courtesy: P.Kallberg, A. Simmons; ECMWF



Re-analyses & Re-forecasts in NWP verification
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Improved predictions over since 2000
due to system improvements (and observation changes)
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Forecast improvements for T4, caused by systems and obs
for different regions
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RPSS

Upward Trend in EPS (now: ENS)
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Upward Trend in High Res Deterministic over Last Decade

RPSS, z500hPa, n.hem, High Res. 2sodhba
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Simple mathematical systems
possessing chaos

Logistic map

Lorenz «Butterfly»



Logistic map

Xp+1 = IXp(1=Xp)
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The Lyapunov exponent for the logistic map (estimated numerically)

LYAPUNOV EXPONENTS

1.0

.0

—{10’_‘

i o E 1 | |
2.80 3.04 3.28 3.52 3.76 4.0

r

Figure 3.8 The Lyapunov characteristic exponent for the logistic map. The
broken curves show the Lyapunov exponents for the unstable period one and

period two orbits.



Chaos Theory concepts

Kalnay Ch 6.2-6.3



Phase space representation of the atmosphere as a dynamical system

Assume a phase space of dimension N where X = is a state vector.

Autonomous governing equations with imtial state:

Fy
ax
— = F(X); X(to) = Xo; F =
FN
Unique solution for an arbitrary time £ > fj: X (t) =M (X 0) > Le. the trajectory.

Conditions for stability with respect to small perturbations of the initial state are investigated by
adding small increments to Xp , integrate forward in time and neglect non-linear terms:

d
o7 [X +8x] = F(X + 8x) ; §x(to) = 8x0

X dé’ F(X Ox: 6 =6
St~ (X)+J-0x;8x(ty) = dx;



Tangent-Linear Model (TL) and its Propagator from time 0 to t

where the jacobian i1s evaluated along the non-linear solution trajectory:

aF,
OF 2

/= [ﬁ X |aF,
X,

The Tangent-Linear Model (TL), is then:

F,
Xy
OF,
DXy

d
—déx =] -0x; O6x(ty) = bx

X(t)

and the solutionis: O&X(t) = L(tg,t) - 8xy, where the propagator or resolvent is:

dt
M,
L(to 1) laM] a}_(l
0 = |— = .
Xlxw) |amy
| 9X,

M, -

Xy

M,y

Xy -

X(t)



Tangent-Linear Model (TL) and its Propagator from time 0 to t

If X{t) is a fixed point (a constant), then J is a constant, and we can formally write:
L(tO’ t) = e](t_tO)

If the eigenvalues of J are z;, then the eigenvalues of L are A; = gFi(t~%) =] N

and for non-constant Xft) and J, this can be generalized to:
t
dt
L(ty,t) = elio’

For numerical integrations, time 1s stepped forward in K steps, At , and we can define:
K—1 K—1

L(to ) = Ly oLy o Lo = | [Li=exp| ) Juat

k=0 k=0

where Ly = Lfty b+ af).

Assume that eigenvalue no. i of Ly and Ji are A¥ and uF respectively, and define:

A;®) = [l§o Af;i=1,..,N



Lyapunov exponents

Assume that eigenvalue no. i of Ly and Ji are A¥ and u* respectively, and define:
_ TIK—1 2k, ; _
AL(t) — Hk=0 Ai L= 1; ""N
The Lyapunov exponent no. i is then:
K—1

. . 1 X
A; = lim n|A;(t)| = lim —— in|Af|

t-oot —ty twoot — 1 k=0

= the growth-rate of small perturbations averaged over the attractor. This 1s a global property;
1.¢. it represents an average property for the entire attractor set of the dynamic system. If one or
more A; >(C, there are at list some directions in phase-space along which arbitrary imtial
perturbations will grow.

ﬁl_t in IAf | is the local Lyapunov exponent no. i at time-step k.



LOCAL LYAPUNOV VECTORS
L(t) = lim L(t =5,8) (¢ = 5)

the leading local Lyapunov exponent (i.e. no. 1): [; = % IIIiLIgtE-tZ)\ﬁ)ll
1

6 Atmospheric predictability and ensemblc forecasting

Leading LLV

Random initial
perturbations

Figure 6.3.5: Schematic of how all perturbations will converge towards the leading
LLV. :



The Lorenz three-parameter model. «Butterfly»
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The Lorenz three-parameter model. «Butterfly»

(r =28, =10, b=8/3):
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The growth of perturbations: _
linear — weakly non-linear — strongly non-linear

O

(d) Asymptotic evolution to a

(c) Nonlinear phase: folding needs strange attractor of zero volume
to take place in order for the and fractal structure. All
solution to stay within the bounds predictability is lost
- -~ # - ¥ '/‘E
S - o R

i
i'
i
|
s

i
| y 3
i
]
[
|

>,

Figure 6.2.1: Schematic of the evolution of a small spherical volume in phase space
in a bounded dissipative system. Initially (during the linear phase) the volume is
stretched into an ellipsoid while the volume decreases. The solution space is bounded,
and a bound is schematically indicated in the figure by the hypercube. The ellipsoid
continues to be stretched in the unstable directions, until (because the solution phase
space is bounded) it has to fold through nonlinear effects. This stretching and folding
continues again and again, evolving into an infinitely foliated (fractal) structure. This
structure, of zero volume and fractal dimension, is called a “strange attractor.”” The
attractor is the set of states whose vicinity the system will-visit again and :zain (the
“climate” of the system). Note that in phases (a), (b), and (c), there is predictive
knowledge: we know where the original perturbations generally are. In (d), when the
original sphere has evolved into the attractor, all predictability is lost: we only know
that each original perturbation is within the climatology of possible solutions, but we
don’t know where, or even in which region of the attractor it may be.



Why probabilistic weather prediction”?

Why not categorical («deterministic») forecasts



Example case: State-dependent forecast quality

®)

Y
a O%
N 0
A
”%Wﬂ Q@/
=

Figure 2: Phase-space evolution of an ensemble of initial points on the Lorenz (1963) attractor, for three different
sets of initial conditions. Predictability is a function of initial state.



Example case: diagnose state dependence,
ensemble spread and forecast uncertainty

ECMWF ensemble forecast - Alr temperature
Date 20061008 Lordon Lat: 51 SLang @

Cantrol Arady s Entembie

«plumes» »

For London UK
26.06.1995 0Qutc

Degws C

Forecant cay

ECMWF ensemble forecast - Alr temperature
Date 267001004 Lordon Lat: 51 S Lang 0

Cantrel Arady s Eniembie

26.06.1994 00utc

Forecant cay

Figure 4. ECMWTF forecasts for air temperature in London started from (a) 26 June 1995 and (b) 26 June 1994,



tate dependence,
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ensemble spread and forecast uncertainty
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Example: sensitive dependence of initial conditions

Analysis I

fg’//} Ensemble Initial Conditions 24 December 1999
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Example: sensitive dependence of initial conditions
Lothar ('T+42 hours)

Deterministic prediction

Ensemble forecast of the French / German storms (surface pressure)
Start date 24 December 1999 : Forecast time T+42 hours

Forecast 5 Forecast 6 Forecast 7 Forecast 8 Forecast 9

"o, *

Forecast 22
SN S
Q\%—Oﬁ

Forecast 32




But: Deterministic forecasts for 1-2 days are nearly perfect !
- for z500

Forecast day on which a particular anomaly correlation is reached
500hPa height Northern hemisphere Two-year running mean

50%

60%

70%

82 83 84 85 86 87 88 89 90 O1 92 93 94 95 96 97 98 99 00 O1 02 03 04
Year

NWP quality for 500hPa geopotential heights

Courtesy: A. Simmons; ECMWF



12mMA reaches 90%

ECMWF deterministic forecast skill 12mMA reaches 85%
500hPa geopotential 12mMA reaches 80%
Anomaly correlation 12mMA reaches 75%

12mMA reaches 70%
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Brier skill score (long term clim)

ECMWEF operational verification

Brier Skill Score for 96h ECMWEF EPS for selected events
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The predictability depends on the spatial %}’)
scales
(a) Spectra of squared forecast errors DJF 1994/95
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Predictability as a function of the spatial
extension of weather systems

Spectra of mean-square 850hPa temperature errors

December 2002 — February 2003
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Predictability as a function of the spatial
extension of weather systems li

Forecast lead time when Rank Probability Skill Score (RPSS) for EC EPS of Z;,, < 0.3

(@) 7500 unfiltered (b) Z500 planetary scale
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Predictability as a function of the spatial

extension of weather systems llI

Spectra of mean-square 850hPa vorticity errors

December 2002 — February 2003
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The consensus forecast:
Unpredictable components are filtered

forecasts, T126 and T62

Winter
1997-98
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Figure 1.7.1: Anomaly correlation of the ensembles during the winter of 1997-8
(controls, Tz and Tg, and ten perturbed ensemble forecasts). (Data courtesy Jae

Schemm, of NCEP.)



In any case: to forecast extreme weather events
categorically (either 100% or 0% certain) is overly

------------------------------------------------------------------------------------------------------------------------------

optimistic.

"Regression towards the mean™:
when error-growth is non-linear, a majority of forecasts will
tend towards maximum climatological occurrence

Linear
Limit
[
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Severity
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Distances in phase-space, inner products, and the adjoint

A distance between states in phase space can be the length of the inner product of a vector with
itself. The vector, X, 1s then defined as the difference between the two state vectors, and:

1X]| = y{X,X} .

The adjoint to an operator L with respect to the inner product {(X,Y) is denoted L', and is
defined such that for any arbitrasy vectors X and ¥, {(LX,Y)} = (X,L"Y}. Note that in the text-
book of Kalnay, the notation L (i.c. the transpose to L) is used for the adjoint, thus presuming
real numbers and a standard Euclidian inner product. Here we continue to use the more general
notation, L, of adjoints with respect to unspecified inner products.

The solution to the Tangent-Linear model is, as defined above: &x(t) = L(to, t) - 6x¢. The
size of the perturbation is the distance between x(f) + 6x(f) and x(¥), hence:

”61(1')“2 = (GX(t), ax(t)) = (L(t(}' t)(SXQ, L(tO! t)ax(}) = (L (tOr t)sL(tD' t)ax(}r 6x0) ;

which clearly demonstrates the importance of the combined operator L(ty, t)"L(L, ).



Properties of the the adjoint

(1) Assume that the resolvent L(Z,, ) can be split into X stepwise sub-intervals over time:

L(to, t) = L(tK—l’ t)L(tK—Z’ tK—l.)"' L(to, tl) = LK—].LK—z . LO
then

(L(fg,t)(sxt}, 6X(t)) = (LK—I.LK—Z LoaxO, 6x(t)) = {6X0, La "'L;{—Z L}_lt‘}x(t))
= {6x0, L (%, 1)"6x(1))

The adjoint operator L(t,, £)* thus works backwards in time from ¢ to ¢,.

(2) It 1s also straightforward to show that: L(t,, £)** = L(t,, t) and that L(t,, £)*L(%,, t) 1s self-
adjoint (or symmetric, Hermitian):

(L (tOf t)‘L(tOr t))‘ = L(tOr t)$L(tO: t)“ = L(tc}: t)gL(tO’ t)

The eigenvalues of this particular self-adjoint operator are real and positive, and the eigenvectors
are orthogonal with respect to this particular inner product.



Singular Vectors, SVs
The orthogonal eigenvectors to  L(&, £)"L(f, t) with respect to the inner product, are
e,(t,) with eigenvalues ¢, fori = 1,..., N, each fulfilling the equations:
L(to, t)*L(tg, t) e, (to) = Ua?eg (to) fori =1,...,N.

If we define L(t,, t)e;(t,) = e;(t), i.e. the eigenvector evolved from tyto ¢, the norm evolves

according to:

le; (0% = {e;(£), e, (1)) = {L(to, t)e; (L), L(to. t)e;(t)) = {L(to, t) L (to. t)e;(Ls). e, (to))
= oflle; (te)lI?
Notice that e;(t,) and e,(t) can have different directions in the phase space.

Define:

o e,(t,) are the initial singular vectors to the propagator L(ty,t) (v in Kalnay)
o ¢;(t) are the evolved singulur vectors to the propagator L(to,t) (u in Kalnay)
o 0, are the singzlur vukues vectors to the propagator L(ty,t).



Singular Vectors, SVs

The adjoint to the evolved singular vector produces the initial singular vectors in a similar way
as the propagator to the initial singular vector produces the evolved:

Lty t)e,(t) = Lty £)"L(te, 1) e, () = o/e;(ty)
From this, we also see that:

L(to, L(to, 1) e, (1) = oLt ) e;(to) = ofe;(t)

Hence, the evolved singular vectors are eigenvectors to L(t,, £)L{t,, £)* with eigenvalues 2.

Now, assume that the initial singular vectors are normalized, i.¢. ||e; (t)|| = 1 forall i=1,... V.

We can use these singular vectors as an orthonormal basis for any vector in the phase space:

§xy = v, a; e, (ty); where &, = {6x,,e,(ty)). It is strai ghtforward to show that:

N

1820112 = (8x(©), 8x(0)) = {L(to, 8%0, L(to, )8Xe) = ) a2 07

i=1



Singular Vectors, SVs

Figure 6.3.1: Schematic of
the application of the
tangent linear model to a
sphere of perturbations of
size 1 for a given interval
(%o, 11).

Figure 6.3.2: Schematic of
the application of the
adjoint of the tangent linear
model to a sphere of .
perturbations of size 1 at the
final time.
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Figure 6.3.3: Schematic of
the application of the
tangent linear model
forward in time followed by
the adjoint of the tangent
linear model to a sphere of
perturbations of size 1 at the
initial time.

oyu,

Figure 6.3.4: Schematic of
LT @ < the application of the
— 1

adjoint of the tangent linear
oV, / : model backward in time

followed by the tangent

linear model forward to a

sphere of perturbations of
size 1 at the final time. -
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The Lorenz model
Singular Values

O—h®—t

(m) ) ic {d)

Figure 1: Schematic evolution of an isopleth of the probability density function (pdf) of initial and forecast error
in N -dimensional phase space. (a) At initial time, (b) during the linearised stage of evolution. A (singular) vector
pointing along the major axis of the pdf ellipsoid is shown in (b), and its pre-image at initial time is shown in (a).
(c) The evolution of the isopleth during the nonlinear phase is shown in (c): there is still predictability, though the
pdf is no longer Gaussian. (d) Total loss of predictability, occurring when the forecast pdf is indistinguishable
from the attractor's invariant pdf.



634 Simple examples of singular vectors and eigenvectors

In order to get a more intuitive feeling of the relationship between singular vectors
and Lyapunov vectors, we consider a simple linear model in two dimensions:

x1(t+T) 2x,(0) +3x200)+7 |-
=M = 3t
I:xz(t ¥ T)] rix)] [ 0.5x,(1) — 4 ] N
We compute the two-dimensional tangent linear model, constant in time:
oy M,
- 9x; e e B e
Sanaen 6340
3}:1 BXQ

The propagation or evolution of any perturbation (difference between two solutions)
over a time interval (¢, z + T) is given by. :

5x(r + T) = Léx(1) (6.3.41)

Note that the translation terms in (6.3.39) do not affect the perturbations. The eigen-
vectors of L (which for this simple constant tangent linear model are also the
Lyapunov vectors) are proportional to

e

corresponding to the eigenvalues A =2, Ay = 0.5, respectively, which in this case
are.the two Lyapunov numbers (their logarithms are the Lyapunov exponents). If we
normalize them, so that they have unit length, the Lyapunov vectors are

1 OB o S 6.3.42
"=(o) : '2”(0.45) ¢ )

The Lyapunov vectors are not orthogonal, they are separated by an angle of 153.4°
(Fig. 6.3.6(2)). We will see that because they are not orthogonal it is possible to
find linear combinations of the Lyapunov vectors that grow faster than the leading
Lyapunov vector. We will also see that the leading Lyapunov vector is the attractor
of the system, since repeated applications of L to any perturbation makes it evolve

towards ll-

Singular Vectors, SVs,

Examples



Applying first L and then its transpose LT we obtain the symmetric matrix

o i 4 6 } . ieseseit o mmeite.
L'L= [6 9.25 ' (6.3.43)

whose eigenvectors are the inirial singular vectors, and whose eigenvalues are the
squares of the singular values. The initial singular vectors (eigenvectors of LTL) are

/055 0.84
g (0.84) i (—o.ss) Gt

with eigenvalues o7 = 13.17, o2 = 0.076. As indicated before, the singular values
of L are the square roots of the eigenvalues of LTL, ie., oy = 3.63, 02 = 0.275.
Note that this implies that during the optimization period (0, T) the leading singular
vector grows almost twice as fast as the leading Lyapunov vector (3.63 vs. 2). The
angle that the leading initial singular vector has with respect to the leading Lyapunov
vector is 56.82°, whereas the second initial singular vector is perpendicular to the
first one (Fig.6.3.6(a)).

The final or evolved SVs at the end of the optimization period (0, T) are the eigen-
vectors of

e o - S E :
& - 3.4
. [1.5 0.25] i

and after normalization, they are

0.99 0.12
- = . 4
" (0.12) - (-—»0.99) s

Note again that the operators L"L and LL7 are quite different, and the final
singular vectors are different from the initial singular vectors, but they have the same
singular values o7 = 13.17, of = 0.076.

Alternatively, the evolved singular vectors at the end of the optimization period can
also be obtained by applying L to the initial singular vectors, which s computationally
inexpensive. In this case, :

wm =1n = o | ) =100 = % |
which is the same as (6.3.46) but without normalization. g

The final leading singular vector has strongly rotated towards the leading Lyapunov
vector: at the end of the optimization period the angle between the leading singular
vector and the leading Lyapunov vector is only 6:6° (Fig. 6.3.6(b)), and because the
singular vectors have been optimized for this period, the final singular vectors are
still orthogonal.

Singular Vectors, SVs,

Examples



Singular Vectors, SVs, Examples

@ X
t=0 I
. vy
u1=LV|
(b) =T
__—d
21
1
u,=Lv,
(©) t=2T ok
L:z 4'1

Figure 6.3.6: Schematic of the evolution of the two nonorthogonal Lyapuno.v vectors
(thin arrows 1; and k), and the corresponding two initial singular vectors .(th1ck
arrows v; (0)and v,(0)), optimized for the interval (0, T'), for the tangent linear model

33
s [0 0.5]

with eigenvalues 2 and 0.5. (a) Time ¢ = 0, showing the initial singular vectors' v1(0)
and v,(0), as well as the Lyapunov vectors l; and L. (b) Time ¢t = T, eyolved_smgular
vectors, u;(7) = Lv;(0), ux(7) = Lv,(0) at the end of the optimization period; the
Lyapunov vectors have grown by factors of 2 and 0.5 respcctivcly, whereas the
leading singular vector has grown by 3.63. The second evolved smgulal: vector has
grown by 0.275, and is still orthogonal to the first singular vector. (¢) Time 7 = 27".
Beyond the optimization period T, the evolved singular vectors u, (2 + 27°) -
Lu;(z +T), up(2T) = Lu,(7T') are not orthogonal and they approach the leading
Lyapunov vector with similar growth rates.
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To obtain the evolution of the singular vectors beyond the optimization period (0,
T') we apply L again to the evolved singular vector valid at t = T and obtain

0.21

(@ +2T)=Lu(@+7T)= [8'47] —0.14

W +2T)=Luy(t +T) = [ _0'76}
During the interval (T, 27) the leading singular vector grows by a factor of just 2.33,
which is not very different from the growth rate of the leading Lyapunov vector. At
the end of this second period (Fig. 6.3.6(c)) the angle with the leading Lyapunov
vector is only 1.41°. The angle of the second evolved singular vector at time 7', after
applying the linear tangent model L and the leading Lyapunov vector is also quite
small (10.24°), and because it was further away from the attractor, the second singular
vector (whose original, transient, singular value was 0.5), grows by a factor of 2.79.
This example shows how quickly all perturbations, including all singular vectors,
evolve towards the leading Lyapunov vector, which is the attractor of the system. It is
particularly noteworthy that during the optimization period (0, T), the first singular
vector grows very fast as it rotates towards the attractor, but once it gets close to the
leading Lyapunov vector, its growth returns to the normal leading Lyapunov vector’s
growth,
Let us now choose as the tangent linear model another matrix

2 %
i= [0 0.5]
with the same eigenvalues 2 and 0.5, i.e., with eigenvectors (Lyapunov vectors) that
still grow at a rate of 2/ T and 0.5/ T respectively. However, now the angle between
the first and the second Lyapunov vector is 177°, i.e. the Lyapunov vectors are almost
antiparallel. In this case, the first singular vector grows by a factor of over 30 during
the optimization period, but beyond the optimization period it essentially continues
evolving like the leading Lyapunov vector.

These results do not depend on the fact that one Lyapunov vector grows and the
other decays. As a third example, we choose

3 3
Le [0 1.5]

with two Lyapunov vectors growing with rates 2/ T and 1.5/ T. The Lyapunov vectors
are almost parallel, with an angle of 170°, and the leading singular vector grows during
the optimization period by a factor of 3.83. Applying the tangent linear model again
to the evolved singular vectors we obtain that at time 27T the leading singular vector
has grown by a factor of 2.9 and its angle with respect to the leading Lyapunov
vector is 1°. Because it is not decaying, the second Lyapunov vector is also part of
the attractor, but only those perturbations that are exactly parallel to it will remain
parallel, all others will move towards the first Lyapunov vector.



Non-normality and final-time growth

J 1= —puid;; Normal modes = LLV

Assume stability: p, > 0 and y, > 0
p=aly+bland|p|l = 1:
aismax whenp- -l =0

d d d
P = aali +bElz = —ap 1y — buyl,



Initial perturbations

Operational ensemble prediction
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The «deterministic» and «stochastic» phases of atmospheric predictions.
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Deterministic Stochastic

| G—————

Time

Figure 6.4.1: Schematic of ensemble prediction, with individual trajectories drawn
for forecasts starting from a representative set of perturbed initial conditions within a
circle representing the uncertainty of the initial conditions (ideally the analysis error
‘covariance) and ending within the range of possible solutions. For the shorter range,
the forecasts are close to each other, and they may be considered deterministic, but
beyond a certain time, the equally probable forecasts are so different that they must
be considered stochastic. The transition time is of the order of 2-3 days for the
prediction of large-scale flow, but can be as short as a few hours for mesoscale
phenomena like the prediction of individual storms. The transition time is shorter for
strongly nonlinear parameters: even for large-scale flow, precipitation forecasts show
significant divergence faster than the 500-hPa fields. The forecasts may be clustered
. into subsets A and B. (Adapted from Tracton and Kalnay, 1993.)



Good and bad ensemble systems

Figure 6.5.1:(a) Schematic of the components of a typical ensemble: (1) the control
forecast (labeled C) which starts from the analysis (denoted by a cross), which is the
best estimate of the true initial state of the atmosphere; (2) two perturbed ensemble
forecasts (labeled P* and P~) with initial perturbations added and subtracted from
the control; (3) the ensemble average denoted A; and (4) the “true” evolution of the
atmosphere labeled T. This is a “good” ensemble since the “truth” appears as a
plausible member of the ensemble. Note that because of nonlinear saturation, the
error of the ensemble member initially further away from the truth (in this case P*)
tends to grow more slowly than the error of the member initially closer to the truth.
This results in a nonlinear filtering of the errors: the average of the ensemble
members tends to be closer to the truth than the control forecast (Toth and Kalnay,
1997, also compare with Fig. 1.7.1). (b) Schematic of a “bad” ensemble in which the
forecast errors are dominated by system errors (such as model deficiencies). In this
case, the ensemble is not useful for forecasting, but it helps to identify the fact that
forecast errors are probably due to the presence of systematic errors, rather than to
the chaotic growth of errors in the initial conditions.




Initial-state perturbations; «monte carlo» and time-lagging.
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Figure 6.4.2: Schematic time evolutions of Monte Carlo forecasts (a) and lagged
average forecasts (b). The abscissa is forecast time 7, and the ordinate is the value of
a forecast variable X. The crosses represent analyses obtained at time intervals t, and
the dots, randomly perturbed initial conditions: f; is a particular forecast time. The
initial “perturbation” for the lagged average forecast is the previous forecasts’ error
at the initial time. (Adapted from Hoffman and Kalnay, 1983.)
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Fig. 1. Global root-mean-square 500-mb height dif-
ferences E,, in meters, between j-day and k-day forecasts
made by the ECMWF operational model for the same
day, for j < k, plotted against k. Values of (j,k) are
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Heterogeneous distribution of initial-state uncertainty.
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Figure 6.5.2: Estimation of the 500-hPa geopotential height analysis uncertainty
obtained from running two independent analysis cycles, computing their rms
difference, and using a filter to retain the planetary scales. The units are arbitrary.
Note the minima over and downstream of rawinsonde-rich land regions and the
maxima over the oceans (Courtesy I. Szunyogh, University of Maryland.)
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Figure 6.5.3:(a) Schematic of a breeding cycle run on an unperturbed (control)
model integration. The initial growth after introducing a random initial perturbation
is usually very small, but with time, the perturbation is more dominated by growing
errors. The initial transient with slow growth lasts about 3-5 days. The difference of
the complete perturbed (dashed line) and control (full line) forecasts is scaled back
periodically (e.g., every 6 or every 24 hours) to the initial amplitude. The rescaling is
done by dividing all the forecast differences by the same observed growth (typically
about 1.5/day for mid-latitudes). In operational NWP, the unperturbed model
integration is substituted by short-range control forecasts started from consecutive
analysis fields. The breeding cycle is a nonlinear, finite-time, finite-amplitude
generalization of the method used to obtain the leading Lyapunov vector. (Adapted
from Kalnay and Toth, 1996.) (b) Schematic of the 6-h analysis cycle. Indicated on
the vertical axis are differences between the true state of the atmosphere (or its
observational measurements, burdened with observational errors). The difference
between the forecast and the true atmosphere (or the observations) increases with
time in the 6-h forecast because of the presence of growing errors in the analysis.
(Adapted from Kalnay and Toth, 1996.)



Self-breeding
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Figure 6.5.4: Schematic of a self-breeding pair of ensemble forecasts used at NCEP,
Every day, the 1-day forecast from the negative perturbation is subtracted from the
1-day forecast from the positive perturbation. This difference is divided by 2, and
then scaled down (by dividing all variables by the 1-day growth), so that difference is
of the same size as the initial perturbation. The scaled difference is then added and
subtracted from the new analysis, generating the initial conditions for the new pair of
forecasts. This self-breeding is part of the extended ensemble forecast system, and
does not require computer resources to generate initial perturbations beyond running
the ensemble forecasts. (Adapted from Toth and Kalnay, 1997.)



{Q Selective sampling: breeding vectors (NCEP)

At NCEP a different strategy based on perturbations growing fastest in the
analysis cycles (bred vectors, BVs) was followed (now NCEP uses a
different method called Ensemble Transformed with Rescaling, ETR,
method). The breeding cycle was designed to mimic the analysis cycle.

Each BV was computed by (a) adding a random perturbation to the
starting analysis, (b) evolving it for 24-hours (soon to 6), (c) rescaling it,
and then repeat steps (b-c). BVs are grown non-linearly at full model
resolution.
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Backg Error (cont) and bred vector n.5 [a16sfl10, t=74]

0

Relation between
Bred-vector amplitudes
and forecast error.

160E

-0.4 -0.35 -0.3 -0.2 -0.15 -0.1

Plate 1 Comparison between the 12-h forecast error used as background (contours) and
a randomly chosen bred vector for a data assimilation simulation system. The first
image at the center level of the model. The second is a vertical cross-section (from
Corazza et al, 2002).



Bred vector alignment and growing instability
(b)

(a)

Figure 6.5.5: Examples of bred vectors (500-hPa geopotential height field
differences, without plotting the zero contour) from the NCEP operational ensemble
system valid at 5 March 2000: (a) bred vector 1; (b) bred vector 5. Note that over large
parts of the eastern Pacific Ocean and western North America, the two perturbations
have shapes that are very similar but of opposite signs and/or different amplitudes. In
other areas the shape of the perturbations is quite different. (c) The bred-vector-local
dimension of the five perturbations subspace (Patil ef al., 2001). Only dimensions
less than or equal to 3 are contoured with a contour interval 0.25. In these areas the
five independent bred vectors have aligned themselves into a locally low-dimensional
subspace with an effective dimension less than or equal to 3. (Courtesy of D. J. Patil.)



Selecting modes of instability by choosing the size of initial state perturbations
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Figure 6.5.6: Schematic of the time evolution of the rms amplitude of high-energy
baroclinic modes and low-energy convective modes. Note that although initially
growing much faster than the baroclinic modes, convective modes saturate at a
substantially lower level. These modes are therefore insignificant in the
analysis/ensemble perturbation problem, since the errors in the analysis (dashed
line) are much larger than the convective saturation level. (Adapted from Toth and
Kalnay, 1993.)



SVs from more general inner products

Singular vectors can be defined as the result of

(8x(t),8x(t))r = [PL6x(0)]" CrPLSX(0) = MAXIMUM,

with side condition (8x(0),8x(0)), = [6x(0)]"Cy6x(0) = 1

Cyand Cf
positiv definit (having only positive eigenvalues), diagonal operators/matrices

Px = x 1 all points mnside a predefined target domain 1 physical space.

yields the eigenvalue problem:

|[PL|"CrPLSx(0) = 0%Cy6x(0)
Scalar multiplication from left with €, "/, and defining &y = C,/“6x(0), yields:

1/2 -1/2

I"Ley=[Cy"*L"PCpPLC,"*) €y = 02 €. where L = C}/*PLC,

e(0) = €, *e,, and e(t) = L(0,t)e(0).



Practical procedures for generating SVs

When computing singular vectors and values, the matrices and operators are not explicitly
calculated. Instead, an algorithm named the Lanczos algorithm 1s used. This algorithm devices

1) Assume a set of N initial perturbations at random or according to some assumption;

2) Transform this state by multiplying with coefficients as in C,, /2 and normalize wr.t. the
C, mner product:
3) Integrate the TLM up to time t;

4) Transform the obtained state by multiplying with 0 or 1 of local projection P:
5) Transform this state by multiplying with coefficients as in Cg:

6) Transform the obtained state by multiplying with 0 or 1 of local projection P:
7) Integrate the ADM back to time 0

8) Transform this state by multiplying with coefficients as in €, /2 and normalize w.r.t. the
C, mner product;
9) Apply Lanczos and restart at 3) until satisfied with the accuracy of n SVs.

s T = > . _1 2
10) Transform the resulting n SVs with coefficients as mn C, /2



Generating 50 alternative initial states for the ensemble

Let SV; i=1,...25 denote the SV-based preturbation fields, and E; = EDA; — Ay, k=1,....10
denote the deviation from the control analysis by the EDA-based alternative analyses. The mnitial
states for the n (n=1,...,50) alternative ensemble forecasts are:

A1:A0+[SV}+E1],' AzzAa- [S""1+EL],'

A19=Aot[SVieTE1]; A20=Ao- [SV1e+E 1]

Ax=A¢t[SVitEy; A22=Ao- [SVITEY;

A30=Apt[SVa2t+E1y]; Asw=Ao- [SV20+E];

Ayg=Agt[SVaytE;]; Ap=A¢- [SVTE];

Ago=Agt[SVastEs]; Aso=Ag- [SV2sTEs/;



951105 PSI-SV =1 951107 PSI-SV =1

Figure 6.5.7: Singular vectors numbers 1 (top panels), 3 (middle panels), and 6
(bottom panels) at initial (left panels) and optimization time (right panels). Each panel
shows the singular vector streamfunction at model level 11 (approximately 500 hPa),
superimposed to the trajectory 500-hPa geopotential height field. Streamfunction
contour interval is 0.5 x 107 m? s~ for left panels and 20 times larger for the right
panels; geopotential height contour interval is 80 m (from Buizza, 1997).

Singular Vectors
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Figure 5: Streamfunction of the dominant singular atmospheric singular vector calculated using a primitive
equation numerical weather prediction model for a 3-day trajectory portion made from initial conditions of 9
January 1993 at: (a) and (d) 200 hPa: (b) and (e) 700 hPa: (¢) and (f) 850 hPa. The quantities in (a) - (c) are at

initial time, in (d) - (f) at final time. The contour interval at optimisation time is 20 times larger than at initial time.
From Buizza and Palmer (1995).
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Figure 6.5.8: Total energy
(m? s72) vertical profile of
the (a) first, (b) third, and
(c) sixth singular vector of
5 November 1995, at the
initial (dashed line, values
multiplied by 100) and
optimization (solid line)
times. Note that singular
vectors are normalized to
have unit initial total energy
norm. (From Buizza, 1997.)
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Ensemble assimilation and prediction
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From Persson
Chapter 3
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Figure 25: Although the perturbed analyses differ on average from the Control analysis as much as
Control from the truth, for a specific gridpoint only 35% of the perturbed analyses are closer to the
truth than the Control analysis.
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Figure 24: A schematic illustration of why the perturbations will, on average, be larger than the true
Control analysis error. The analysis is known, as well as its average error, but not the true state of the
atmosphere (which can be anywhere on the circle). Any perturbed analysis can be very close to the
truth, but is in a majority of the cases much further away: on average the distance is the analysis error

times 2
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Figure 26: Schematic representation of the percentage of perturbed forecasts with lower RMSE than
the Control forecast for regions of different sizes: northemm hemiphere, Europe, a typical “small”
Member State and a specific location. With increasing forecast range, fewer and fewer perturbed
members are worse than the Control (from Palmer et al 2006).
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Figure 27: Schematic image of the RMS error of the ensemble members, ensemble mean and Control
Jorecast as a function of lead-time. The asymptotic predictability limit is defined as the average
difference between two randomly chosen atmospheric states. In a perfect ensemble system the RMS

error of an average ensemble member is \[2 times the error of the ensemble mean.



Extreme forecast index (EFI)

The EFl is an integral measure of the difference between the
ensemble forecast (ENS) distribution and the model climate
(M-climate) distribution.

This allows the abnormality of the forecast weather situation to be assessed
without defining specific (space- and time-dependant) thresholds. The EFI takes
values from -1 to +1. If all the ensemble members forecast values above the M-
climate maximum, EFI = +1; if they all forecast values below the M-climate
minimum, EFIl = -1.

Experience suggests that EFlI magnitudes of 0.5 - 0.8 (irrespective of sign) can be
generally regarded as signifying that "unusual” weather is likely whilst magnitudes
above 0.8 usually signify that "very unusual" weather is likely.

Although larger EFI values indicate that an extreme event is more likely, the values
do not represent probabilities as such.



Model Climate (M-Climate)

For the calculation of EFI, M-climate is based on 9 consecutive semi-weekly re-
forecast data sets (Mondays and Thursdays) consisting of 10+1 ensemble members,
where the middle Monday or Thursday is the preceding Monday or Thursday closest to
the actual ENS run date, t.

The resolution decreases with forecast range exactly as in the ENS. This procedure
allows seasonal variations and model changes to be taken into account, as well as
model drift.

Altogether 1980 re-forecast values are available for the M-climate computation (20
years X 11 ENS members x 9 semi-weeks). The M-climate is updated semi-weekly on

Mon- and Thursdays.

M-Climate= 9 semi-weekly, 11-member ENS, re-forcasts for previous 20 years
The figure shows an example when a Thursday is the closest, previous Mon- or Thursday

t t+30d>
, Mon, , Mon, |, |Mono , Mon., | 5>
Thurs, Thurs, Thurs, Thurs,;,  Thurs,,
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Cumulative distribution
Medians and percentiles are easily spotted
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Figure 50: A schematic explanation of the principle behind the Extreme Forecast Index, measured by
the area between the cumulative distribution functions (CDFs) of the M-Climate and the 50 EPS
members. The steeper the slope of the CDF in an interval, the higher the probability in that
interval.The EFI is, in this case, positive (red line to the right of the blue), indicating higher than
normal probabilities of warm anomalies.



Probability density functions
Means and asymmetric distributions are easily spotted
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Figure 51: The temperature climatology (blue curve) and the EPS forecast distribution (red curve)
presented as probability density functions corresponding to the CDF curves in Figure 50. The pdf is
essentially the derivative of the CDF. The EPS pdf is to the right (red curve) of the M-climate pdf (blue
curve), indicating that the EPS has higher than normal probabilities of warmer anomalies, consistent
with the conclusions on positive EFI from Figure 50.



The Extreme Forecast Index 1s calculated according to the formula

1p- Ff(p)
0 /p(1- p)

where F{p) denotes the proportion of EPS members lying below the p quantile of the climate

EFI =

EPS
M-climate

Positive EFI

vy
EPS
M-climate
EPS
M-climate
Negative EFI !

Figure 52: The EFI can have both negative and positive values: positive for positive anomalies (upper
figures) and negative for negative anomalies (lower figures).




EFI and median T2 daily mean
Valid Saturday 20 - Sunday 21 Feb 0Outc, 2016

Wed 17 Feb 2016 12UTC CECMWF t+80-84h VT: Sat 20 Feb 2018 00UTC - Sun 21 Feb 2016 00UTC Mon 15 Feb 20186 00UTC @ECMWF VT: Sat 20 Feb 2016 00UTC - Sun21 Feb 2016 00UTC 48-72h
Extreme forecast index and Shift of Tails (black contours 0,1,2,5,8) for 2m mean temperature 2m mean temperature (in °C) Model climate QS0 (climate median)

-1 -0.9 08 07 06 05 0.5 0.6 0.7 0.8 0.9 1 50 -40 35 -30 -25 -20 -15 -10 -5 O 5 10 15 20 25 30 35 40 50




EFIl and 99-percentile Precipitation
Valid Saturday 20 - Sunday 21 Feb. 00utc, 2016
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Extreme forecast index and Shift of Tails (black contours 0,1,2,5,8) for total precipitation total precipitation (in mm) Model climate Q99 (one in 100 occasions realises more than value shown)
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Error Growth

Kalnay, 6.6
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Fig. 1. Global root-mean-square 500-mb height dif-

ferences E,, in meters, between j-day and k-day forecasts
made by the ECMWF operational model for the same

day, for j < k, plotted against k. Values of (j,k) are

shown beside some of the points. Heavy curve connects

. f
values of E,,. Thin curves connect values of E, for 3
constant k — J.
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Representation of average model error

RMS-error: E; = \l .(J;‘a)z = ((fj"C) ~(a-¢))”
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(a) R.m.s 500 hPa height forecast errors (solid) and differences between successive forecasts verifying

at the same time (dashed) as functions of the forecast range, computed over the extratropical northern hemisphere,
and shown for the winters of 1981 (grey) and 2001 (black). (b) As (a) but for the winters of 1994 (grey) and 2001
(black).
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Data Assimilation

Kalnay, Ch 5
+ a few notes



2 2
2(x, ¥) = ago + arox + a1y + axx” + ayxy + agay” (3:1.1)

The six coefficients were determined by minimizing the mean square difference
between the polynomial and observations close to the grid point (within a radius of
influence of the grid point):

K. K,
- : - 2 2
min £ = min D pe(zg — 2l )"+ D af{[ug — up v, w)]
< Yok=1 k=1
5 2
+ [vg — velxx. v} (5.1.2)
0] 0 O o} @) o O  Figure 5.1.1: Schematic

of grid points (circles),
irregularly distributed
observations (squares), and
a radius of influence around
a grid point i marked with
= a black circle. In 4DDA,

O the grid-point analysis is a
combination of the forecast
at the grid point (first

o  guess) and the observational

increments (observation
minus first guess) computed
at the observational points k.
In certain analysis schemes,
like SCM, only observations
within the radius
O  of influence, indicated by

a circle, affect the analysis
u at the black grid point.




DATA DISTRIBUTION 01 SEP9700Z-01SEP9700Z
AIRCRAFT

Figure 1.4.1: Typical distribution of observations in a +=3-h window.



The observing system Conventional observation types used in
data assimilation

« Conventional observations
- Surface Surface

i A e ; « Synop (manual and automated) and ship
Profile - radiosonde and aircraft (over land mainly pressure is assimilated)
- WMQO - coordinates observation routines and Buoys on ocean
data exchange globally, EUCOS in Europe

« Remote sensing observations Profile and upper air
- Satellite « Radiosondes (TEMPs and PILOTS)
- Agencies: EUMETSAT, ESA, NOAA/NASA  Aircraft (AIREP and AMDAR)
- Ground based radars, “wind profilers”

Not all observation types are easy or even
« ECMWF model now: 30 mill. obs. available for P_0§31_b_le to assimilate in NWP (like ClOUdS;
assimilation per day. (State vector dimension ~10%) visibility, ...)



@
Synop+ship+metar Radiosondes |
ECMWEF Data Coverage (All obs DA) - Synop-Ship-Metar
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Satellite observations -
divided into several groups

Passive (Top of Atmosphere radiances emitted from a
surface-atmosphere column):
« Microwave
- Profiling instruments: AMSU
- Imaging instruments: SSM/I

e Infrared
- Profiling instruments: HIRS, AIRS, IASI, CrlS
- Imaging instruments: AVHRR, MODIS,
» Atmosp heric Motion Vectors

Active (RADAR, LIDAR, radio-signals):
« Scatterometer (ocean surface winds from radar)

« GPS (ground based from geodetic stations, radio
occultation)
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ECMWF Data Coverage (All obs DA) - Ground Based GPS
10/Mar/2015; 00 UTC
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ECMWEF Data Coverage (All obs DA) - AMV VIS
10/Mar/2015; 00 UTC
Total number of obs = 105426
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(b)

Background or
first guess

Background
or first guess

Observations (+/-3 h) Observations (+/-30 min)

Global analysis (statistical Regional analysis (statistical
interpolation) and balancing interpolation) and balancing
Initial conditions Initial conditions

l

Global forecast model Regional forecast model
] ]
!

/ 6-h forecast ¢ 1-hforecast
, | f
Vi | 1

(Operational forecasts)

l

Boundary conditions
from global model

(Operational forecasts)

Figure 5.1.2: (a) Typical global 6-h analysis cycle performed at 00, 06, 12, and

18 UTC. The observations should be valid for the same time as the first guess. In the
global analysis this has usually meant the rawinsondes are launched mostly at the
main observing times (00 and 12 UTC), and satellite data are lumped into windows
centered at the main observing times. The observations can be direct observations of
variables used by the model, or indirect observations of geophysical parameters, such
as radiances, that depend on the variables used in the model. (b) Typical regional
analysis cycle. The main difference with the global cycle is that boundary conditions
coming from global forecasts are an additional requirement for the regional forecasts,



0.5 T T T I T T T I T T T I T T T I T T T [ T T T

0.4

0.3

0.2

Probability

0.1

-4 2 0 2 4 6 8

Figure 5.3.1: Illustration of the properties of the probability distribution of the
analysis 7, given observations 7] and T, using either the least squares approach or
the Bayesian approach (after Purser, 1984).



To =T + W(T, — 1) (5.3.15)

where (T, — T}) is defined as the observational “innovation” , i.e., the new infor-
mation brought by the observation. It is also known as the observational increment
(with respect to the background); W is the optimal weight, given by

W=o2(c?+02)"  =072(0;%+a;2) ! (5.3.16)
and the analysis error variance is, as before,

o2 = (072 +0;2) (5.3.17)

(4]

The analysis variance can in turn be written as o> = o0 /(o} + o), or

ol =(1— W)} (5.3.18)

1 parameter

For convenience, we repeat the basic equations of OI, and express in words their
interpretation, which is similar to that for a scalar least square problem from the last
section:

X, = Xp + W[y, — H(x)] = x, + Wd (5.4.1)
W = BH’ (R + HBH?)™! (5.4.19a)

We will see in Section 5.5 (where we derive the variational approach or 3D-Var) that
the weight matrix (5.4.19) can be written in an alternative equivalent form as

W=3B'!'+HR'H 'HR! (5.4.19b)
(see (5.5.11) in Section 5.5)
P, = (I, — WH)B (5.4.20)

where the subscript # is a reminder that the identity matrix is in the analysis or model
space.

P! =B +H'R'H (5.4.22)
Equation (5.4.22) says: “The analysis precision, defined as the inverse of the

analysis error covariance, is the sum of the background precision and the
observation precision projected onto the model space.”

Multi-parameter
N= model phase-space dim

P= obs phase-space dim



3DVar and 4DVar

simple presentation
Based on notes by A. Persson and F. Grizzini, ECMWF 2007

Corrected
forecast

Previous
forecast

Oz 12z 15z 18z 21z time
- >
Assimilation window




The analysis, A, defined by least-squares assumption

(Equations from Persson & Grazzini vs. Kalnay)

observation (O) Equi L
quivalent to combining (5.3.15) and
background field value (F) (5.3.16) in Kalnay (4=T. : F=T, : O=T, :
accuracies Op and op @bt
2 2 T, = 05(05 +0;)7' T,
d=0=—28_F_20 + 05 (0 +05)7 Ty

0’5 +0 0 G5 +0 0

Variational form:
From (5.3.12) in Kalnay, where T (=S) is any

For any atmospheric state S, define:
state:

2 2
1| (F-S O-S —5)2
J(S) = 5{( 02) 4 02) } J(S) = (TbiS) _I_(Toazs)
B O 0

“cost function” J(S)

Find the value of S which minimizes J(S):
0J/OS=0for S=A




Generalize to three spatial dimensions and multiple variables.

First: write an alternative formula for J(S) for one variable:

J(S) = %[(F—S)%(F—S)Jr(OS)%(OS)J

GB 00

Then: Let Y = generalized observation (e.g. an indirect variable);
H(S) = conversion of model state S to generalised obs-variable

Js) = 5[ (959« (- msH L - sy |

Finally: three spatial dimansions and many variables simultaneously
—> Transform to formula for state vectors in phase space.

J(S) = 51(F-$)B(F-8) + (Y~ ()R (Y~ H($))]

where: Y, F, S and H(S) are vectors; B and R are error covariance matrices

Minimize J =2 3DVar solution




In 3DVar:
T Observations taken over the assimilation window
are implemented at the analysis time in the midde of the window

Background
oforecast

1
¥ o
” o 00" =~ s
o o, 1 ©° opA° I
s T - -

T Analysis
Analysis

Anaiysis

Analysis

n----_-9

Y

| | | [ ]
12 UTC 18 UTC 00 UTC 06 UTC 12 UTC 4

Six-hourly 3D analysis

Thanks to Adrian Simmons ECMWF



Generalization to include time explicitely —>4DVar
Observations are used at the times they are taken

Find a state S ( = A) which developes
from timestep no. 0 to timestep N, and

minimizes.

—er}

9z 12z 15z 18z 21z time

J(S) = SI(Fy—8,) B, (F,—8,) +

N

> (Y, —HM, ) ) )R, (Y, —HM, 6 )
n=1

M,, = the modelled value at any timelevel n within the assimilation
window from n=0 to N.

The first term: the difference between the first guess and the mitial state
determines only partly the size of J.

The second term: the Z—term, sums up all the differences between the evolv-
ing forecast and the # number of observations of varying kind.



Four Dimensional variational data assimilation

(4D-Var)
T\
Background forecast

o " '

” /' 1
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- 1
T, - ': 0%, e i Forecast
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X 4 o o © o 5 Analysis 1
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Analysis "
1
1
I
1
1
|
|
|
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- .

12-hour assimilation window

Thanks to Adrian Simmons ECMWF



Extended and Long Range



MJO: Madden-Julian Oscilation

The largest element of intraseasonal (30-90 day) variability in the tropical atmosphere

is characterized by an eastward progression
of large regions of both enhanced and
suppressed tropical rainfall, observed mainly
over the Indian and Pacific Ocean.

18APR2006 4 -

TMAY2006 -
16MAY2006 -~

1JUN20086 1

1B6JUN2006 -7~

1JUL2006

16JUL2006

Speculation being researched:

1AUG2006 o

18AUG2006 { e — Potential connections between
1SEFZ006 ) S MJO and NAO.
18SEP2006{ o ) - And potential source of intraseasonal
5 (TR <= == . _ :
20 70E 100E 140 120w 45w 10w predictability in N-Atlantic and Europe
v 80E 120E 16OE
time Data updated through 01 Oct 2008

> eastwards

A Hovmodller diagram of the 5-day running mean of
outgoing longwave radiation showing the MJO. Time
increases from top to bottom in the figure, so contours
that are oriented from upper-left to lower-right represent
movement from west to east.




ENSO:

El Nino, Southern Oscilation

Walker circulation

» i
Convection American
4 SS/T=27 °C ) continent
- Cold 7 B EQUALOT
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Anomalous Walker circulation
'
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(b)

Figure 6.7.1: Schematic of
the coupling of the ocean
and atmosphere in the
tropical Pacific: (a) normal
conditions; (b) El Nifio
conditions.
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TAC Monthly Mean SST (°C) and Winds {m s™1)
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ENSO correlations PNA Teleconnection pattern

Pacific/ North American Pattern

February

Cool

|
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Anomalies in geopotential height (m); 500hPa
for positive pattern index



Pocific/ North Americaon Pgttern
Standardized 3— month running mean Index (through MAR 2017}
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NAO Teleconnection pattern

North Atlantic Oscillation
North Atlantic Oscillation Correlation with Precipitation Departures

January April
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Anomalies in geopotential height (m); 500hPa Correlation (%)
for positive pattern index



North Atlantic Oscillotion
; Standardized 3—month running mean Index (through MAR 2017)
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Monthly Forecasts, ECMWF

Twice a week (Monday and Thursday at 002),

the coupled model is integrated forward to make a

32 day forecast with 51 different initial conditions,

in order to create a 51-member ensemble.

Full coupling is applied between the ocean and atmosphere from the start of the
forecast (day 0). Initial atmospheric perturbations: as for the medium-range
(EDA+SVs). Initial ocean perturbations: wind stress perturbations are differences
between different wind stress analyses. 5 ocean assimilations (1 control and 4
perturbed) are produced by picking 2 from the set of wind stress perturbations for
each month of data assimilation and add and subtract to the analyzed wind stress.

Because of model errors, a drift occurs in the coupled system. This model drift is
evaluated by integrating the coupled model up to day 46 with 11 different initial
conditions at the same day and month as the real time forecast, but over the past 20
years. This is further extended by using a one-week window about the actual date.
Thus, the climate ensemble is of size 11(ens.memb.) x 20(yearts_,|_)4>%g(dates) = 660.
t
Mgn. , Men, ‘ Men, Mon,

Thurs, Thurs, Thurs, Thurs,, Thurs,,

>

: 11ens.memb.

previous 20yrs with (the same date?k 2dates) = 660



Temp & Prec anom, week 1 & 2

starting from Monday 28. March 2016

ECMWF EPS-Monthly Forecasting System Day 1-7 ECMWEF EPS-Monthly Forecasting System Day 1-7
2-meter Temperature anomaly 28-03-2016/T0/03-04-2016 Precipitation anomaly 28-03-2016/TO/03-04-2016
Forecast start reference i 28-03-2016 Shaded ameas significant at 10% level Forecast start reference i 28-03-2016 Shaded areas significant at 10% level
ensemble sze = 51 climate sze = 440 Contours at 1% level ensemble sze = 51 clmate sze = 440 Contours at 1% level
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. ECMWF EPS-Monthly Forecasting System Day 8-14
ECMWF EPS-Monthly Forecasting System Day 8-14 Precipitation anomaly 04-04-2016/TO/10-04-2016
2-meter Temperature anomaly 04-04-2016/TO/10-04-2016 Forecast star reference i 28-03-2016 Shaded areas significant at 10% level
Forecast start reference is 25-03-2016 Shaded areas significant at 10% level ensamble sze = 51 cimate sze = 440 Contours at 1% leve|

ensemble sze = 51 .climate size = 440 Contours at 1% lavel

Boefllo. sl oo (1o lo s Wos Wos W s ol oo [l <sormiff]-0.s0 [ff-s0.-30 ] -20.-10] |10 0 [ | 0..10 [l 10.. 30 [ 20. 5o JJ] so.. o0 > s0mm

E

[

eomn

2oen

30




Temp & Prec anom, week 3 & 4

starting from Monday 28. March 2016

ECMWF EPS-Monthly Forecasting System Day 15-21 ECMWF EPS-Monthly Forecasting System Day 15-21
2-meter Temperature anomaly 11-04-2016/TO/17-04-2016 Precipitation anomaly 11-04-2016/TO/17-04-2016
Forecast start reference is 28-03-2016 Shaded areas significant at 10% level Forecast start reference iz 28-03-2016 Shaded areas significant at 10% level
ensemble size = 51 clmate sze = 440 Contours at 1% level ensemble sze = 51 clmate sze = 440 Contours at 1% level
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ECMWF EPS-Monthly Forecasting System Day 22-28 ECMWF EPS-Monthly Forecasting System Day 22-28
2-meter Temperature anomaly 18-04-2016/T0/24-04-2016 Precipitation anomaly 18-04-2016/T0/24-04-2016
Forecast start reference is 28-03-2016 Shaded areas significant at10% level Forecast start reference i 28-03-2016 Shaded areas significant at 10% level
enzemble size = 51 climate sze = 440 Contours at 1% level encemble size = 51 .climate size = 440 Contours at 1% level

B-rooedllo s 5.3 s [ [0 oot [l oo oo 100 l<sor{li-so.-s0 [ -s0.-30 [l 50.-10| |-10. 0| | 0. 10 [ 10..30 [J] 30.. 50 [J] s0. 50 > s0mm

el . e 20w o s00E 1o

N




Z 500 anom, week 1, 2, 3 & 4

Weekly-mean 500hPa geopotential anomaly for the ensemble mean.

Contour intervals of 2dam (zero line not shown).
starting from 28. March 2016

Day 1-7: Mon 20160328- Sun 20160403 Day 8-14: Mon 20160404- Sun 20160410




The plumes show the daily evolution of the ensemble forecast distribution,
binned in 12.5% intervals (shading) together with the median (solid line).

ECMWF Ensemble forecasts for NORWAY - OSLO .
Location: 59.9°N 10.62°E e N
Base Time: Monday 28 March 2016 00 UTC D,E“:: Weesersc W Worseese starti ng from 28. March 2016
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Seasonal Forecasts, ECMWF

The seasonal forecasts consist of a 51 member ensemble using a coarser-
resolution version of the atmospheric model. The ensemble is constructed by
combining the 5-member ensemble ocean analysis with SST perturbations
and the activation of stochastic physics.

The forecasts have an initial date of the 1st of each month, and run for 7
months. Forecast data and products are released at 12Z UTC on a specific day of
the month. For System 4, this is the 7th.

Model-climate for bias-correction & anomaly-evaluation

A set of re-forecasts are made starting on the 1st of every month for the years
1981-2010. They are identical to the real-time forecasts in every way, except that
the individual date ensemble size is only 15 rather than 51.

The total re-forecast ensemble size is thus: 15x30 = 450.

An annual-range (13 months) forecast is made four times per year, with start
dates the 1st February, 1st May, 1st August and 1st November, run as an
extension of the seasonal forecasts, and are made using the same model but with a
smaller ensemble size. Both re-forecasts and real-time forecasts and have an
ensemble size of 15.

The annual range forecasts are designed primarily to give an outlook for El Nino.
They have an experimental rather than operational status.



Nino_3-4 Plumes

Anomaly (deg C)

Anomaly (deg C)

NINO3.4 SST anomaly plume
ECMWF forecast from 1 Mar 2015

Monthly mean anomalies relative to NCEP Olv2 1881-2010 climatology

March 2015

0 0
Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Cct Nov
2014

CECMWF

ECMWF forecast from 1 Mar 2016
Monthly mean anomalies relative to NCEP OIv2 1981-2010 climatology
- -Sysle-md ‘."‘1
2 2
Z
Z
F1
o
k-1

Sep 002101rgov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

30N

20N A

10N ]

EQ{ -

1084~

2051

308

120E

1

50E 150I\III‘IUQ.‘15:Q}WC) L - IUII‘IZJ"}v ’JIU[IIC gow
ECMWF forecast from 1 Sep 2015

Menthly mean anomalies relative to NCEP OIv2 1981-2010 climatology

4 4
-—System 4
. Sept 2015 .
&)
f=) p
g “
> 2 ‘"m 2
el
£
S 5
c o
< e
14 \ O\ F1
.-l'.". \.\. .
0
Mar Apr May Jun Ju2|01.gug Sep Oct Nov Dec Jan Feb Mar Apr May
CECMWF
Monthly mean anomalies relative to NCEP Olv2 1881-2010 climatology
+— System 4
2 r2
o 4 i
o 1 1
(]
=]
~
=
©
£
2 o Lo
<
1] F-1
Ny N A
S ONDJ FMAMUJJ A S ONTD FMA
2015 2016



The limits of the purple/grey whiskers and yellow NAO
band correspond to the 5th and 95th percentiles, Nerth Atiatic Oscillation

Forecast initial date: 2016 301

those of the purple/grey box and orange band to Ersamble size: Forucest=51 Modl climatetS0 Anayaia climate=10
the lower and upper tercile, while the median is or]

represented by the line within the purple/grey box
and orange band. 27| ‘ ‘ I + +
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Prob relative to upper and lower terciles, JJA 2016
T2m and Precip

ECMWF Seasonal Forecast System 4 ECMWF Seasonal Forecast System 4
Prob(2m temperature < lower tercile) JJA 2018 Prob(precipitation > upper tercile) JJA 2016
Forecast start reference is 01/03/16 Forecast slart reference is 01/03/16
Ensemble size - 51, cimate size - 450 Ensemble size - 51, climale size = 450
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From Predictions to Projections

(Decadal Climate Predictions)



Fractional uncertainty

Daily Weather Seasonal to ~1 Year Decadal Multi-Decadal to Century
Forecasts Qutlooks Predictions Climate Change Projections
' i .
- . time scale
Initial Value : :
Problem . s
] 3
: - Forced Boundary
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] t

FiG. 2. Schematicillustrating progression from initial value problemswith daily
weather forecasts at one end, and multidecadal to century projections as a
forced boundary condition problem at the other, with seasonal and decadal

predictionin between,

Global, decadal mean surface air temperature
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from uncertainties in the forced response, and also
from unpredictable aspects of internal variability, on
those time and space scales (Barnett et al. 2008). On
continental scales, the observed response to external

Fi1G. 3. The relative importance of different sources of
uncertainty in IPCC GCM projections of decadal-mean
global-mean surface air temperature in the twenty-
first century is shown by the fractional uncertainty
(i.e., the prediction uncertainy divided by the expected
mean change, relative to the 1971-2000 mean). Model
uncertainty is the dominant source of uncertainty for
lead times up to 50 yr, with internal variability being
important for the first decade or so. Scenario uncer-
tainty becomesimportant at multidecadal lead times
{(from Hawkins and Sutton 2009a).
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Fic. I. Global mean, annual mean,
surface air temperature predic-
tions from |5 different global cli-
mate models under three different
emission scenarios from 2000 to
2100 (thin lines): SRES A2 (red),
AIlIB (green), and Bl (blue), desig-
nated as high-, medium-, and low-
emissions paths, respectively. The
same models forced with historical
forcings are shown as the thin gray
lines, and the observed global mean
temperatures from 1950 to 2007
(Brohan et al. 2006) are shown as
the thick black line. The multimodel
mean for each emissions scenario
is shown with thick colored lines
demonstrating how uncertainty
in future emissions gives rise to
uncertainty in climate predictions.
The different scenarios give nearly

identical predictions until around 2025, demonstrating the delayed effect of future emissions. Each model has
a different response to climate forcings, as seen by the spread in results for one particular scenario (or color).
The internal (interannual) variability can be seen superimposed on the trend for any one individual prediction.
All temperatures are shown as anomalies from the 1971-2000 mean.
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Fic. |. Near-term surface air temperature anomalies
from CMIP3 multimodel projections, 2011-30 minus
1980-99 (°C), for the (top) low, (middle) medium,
and (bottom) high emission scenarios from IPCC AR4
(Figure: from Climate change 2007: The Physical Science
Basis. Working Group | Contribution to the Fourth
Assessment Report of the Intergovernmental Panel
on Climate Change, Fig. 10.8, Cambridge University
Press).
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Pacific decadal potential predictability
Linked to solar forcing periodicity

FiG. 5. (a) The average anomalies of sea surface tem-
peraturein || solar peak years{°C), computed relative
to all other years, Dec~Feb, from the NOAA Extended
Reconstructed Sea Surface Temperature dataset; (b)
the average tropical rainfall anomalies [Global Precipi-
tation Climatology Project (GPCP) gridded precipita-
tion dataset] in the solar peak years starting in the late
1970s (mm day'), Jan-Feb, in comparison to all other
years. Dashed line is the 6 mm day™' contour from the
long-term mean climatology; (c¢) same as (a), but for the
average anomalies of sealevel pressure (Hadley Centre
sea level pressure dataset)in || solar peaks(hPa), Dec-
Feb. Shading indicates significance at or above the 95%
level,indicating the relative magnitude of the anomalies
compared to the noise (Meehl et al. 2008).



Pacific decadal potential predictability
Linked to internal variability (PDO / IPO)
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FiG. 6. (a) The second EQF (the first EOF
is the trend) of |13-yr low-pass-filtered non-
detrended observed SSTs for the period of
1890-2006, (b) PC time series for second
EOQOF, (¢) the first EOF of I3-yr low-pass-
filtered SSTs from a 300-yr period of an
unforced model control run (Meehl et al.
2009a). Units for panels (a) and (c) are arbi-
trary, PC time seriesisin °C.

Colman 2006). The PDO and IPQ are usually
characterized by a low-pass-filtered SST EOF
nattern that has an “Fl Nifia-like” character.




Pacific Decadal Oscillation Temperature (°C sd™')
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AMO: Atlantic Multidecadal Oscilation
Potential decadal predictability?

Schlesinger, M. E. (1994). "An oscillation in the global climate
system of period 65-70 years". Nature 367 (6465): 723—726.
Atlantic Multidecadal Oscillation @10 1038/367723a0
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Monthly values for the AMO index, 1856 -2013
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The number of tropical storms that can mature into severe hurricanes is much greater during
warm phases of the AMO than during cool phases, at least twice as many. (Re.: NOAA)

The hurricane activity index is highly correlated with the Atlantic multi-decadal oscillation. The
AMO alternately obscures and exaggerates the global increase in temperatures due to human-

induced global warming. Chylek, P. & Lesins, G. (2008). "Multidecadal variability of Atlantic hurricane activity: 1851—
2007". Journal of Geophysical Research 113: D22106. doi:10.1029/2008JD010036

The recent AMO increased the average number of Atlantic hurricanes and named
storms from 6 to 12, when it began in 1995. This phase may have ended in 2012.



North Atlantic Ocean sensitivity to initial perturbations

Integrated Temperature Integrated Salinity

Fic. 7. An optimal perturbation for the Atlantic domain from the HadCM3
model, using a linear inverse modeling approach (from Hawkins and Sutton
2009b). The panels show integrated (left) temperature (in K) and (right) salinity
(in PSU) multiplied by five from the surface to a depth of 1,800 m. The colored
regions indicate where the ocean is sensitive to small anomalies, and are thus
the optimal regions for initial condition perturbations and for targeted observa-
tions to improve forecast skill. The color scale is the same in both panels and is
arbitrary. White regions represent small anomalies of either sign.



(A) Global average surface temperature
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FiG. 8. Decadal prediction examples. Observed and hindcast values of
{(a) 10-yr mean global mean surface temperature and (b) an Atlantic
SST dipole index. The latter is a proxy for MOC fluctations and is
defined as the average SST difference for 60°-10°W, 40°-60°N minus
50°-0°W, 40°-60°S. Hindcasts begin in 1982 (1955) in Smith et al.
{(2007) and Keenlyside et al. (2008), with a four (three) member
forecast every season (5 yr); shading (error) indicates the ensemble
range. The error bars centered on 2010 represent actual forecasts
for the period of 2005-15. Hindcasts for Smith et al. (2007) and
Keenlyside et al, (2008) are adjusted to have the observed means
over the 1979-2001 (1955-2005) period. Note the different axis used
in (b) for Keenlyside et al. (2008). Observations are from HadISST
I.l and HadCRU3,

Examples of decadal predictions.

Recent efforts at decadal prediction, with the similar
strategy: Initialize a global climate model from
observations and reanalyses and run it forward 10 yr,
while accounting for changes in external forcing (natural
and anthropogenic).

Smith et al. (2007) showed that global-mean temperature
could be predicted out to a decade in advance (Fig. 8a),
with more skill than obtained when only external radiative
forcing changes are accounted for.

Keenlyside et al. (2008) demonstrated that SST
variations associated with the Atlantic MOC could be
predicted a decade in advance, but because of an overly
strong MOC signal, their strength was overestimated (Fig.
8b). Ten-year averaged global surface temperature
variations were also predictable (Fig. 8a), but with
marginally less skill than that obtained from radiative
forcing only.

In both studies forecasts were made for the next 10 yr
(Fig. 8b), and in both cases natural internal variability
was found to temporarily offset

anthropogenic global warming.

The offset was largest in Keenlyside et al. (2008), whose
results suggest a temporary lull in global warming for the
next decade; however, the simplicity of the scheme
employed needs to be kept in mind. The results of both
studies highlight the impact ofinternal variability.
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FiG. 2. The relative importance of the three sources of
uncertainty changes significantly withregion, forecast
lead time, and the amount of any temporal meaning
applied. Main panel: Total variance for the global-
mean, decadal mean surface air temperature predic-
tions, splitinto the three sources ofuncer tainty. Insets:
As in the main panel, but only for lead times less than
20 yr for (left) the global mean and (right) a North
American mean. The orange regions represent the
internal variability component. For lead times shorter
than 5 yr we plot the results using annual mean data
to highlight how the internal variability componentis
vastly reduced when considering decadal mean data.
The uncertainty in the regional prediction is larger
than for a global mean.
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Fi1G. 3. The relative importance of each source of
uncertainty in decadal mean surface air temperature
predictions is shown by the fractional uncertainty
{the 90% confidence level divided by the mean predic-
tion), for the global mean, relative to the warming
since the year 2000 (i.e., a lead of zero years). The
dashed lines indicate reductions in internal variabil-
ity, and hence total uncertainty, that may be pos-
sible through proper initialization of the predictions
through assimilation of ocean observations (Smith
et al, 2007).



a Global, decadal mean surface air temperature b British Isles, decadal mean surface air temperature
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Fic. 4. The relative importance of each source of uncertainty in decadal mean surface temperature projec-
tions is shown by the fractional uncertainty (the 90% confidence level divided by the mean prediction) for (a)
the global mean, relative to the warming from the 1971-2000 mean, and (b) the British Isles mean, relative to
the warming from the 1971-2000 mean. The importance of model uncertainty is clearly visible for all policy-
relevant timescales. Internal variability grows in importance for the smaller region. Scenario uncertainty
only becomes important at multidecadal lead times. The dashed lines in (a) indicate reductions in internal
variability, and hence total uncertainty, that may be possible through proper initialization of the predictions
through assimilation of ocean observations (Smith et al. 2007). The fraction of total variance in decadal mean
surface air temperature predictions explained by the three components of total uncertainty is shown for (c) a
global mean and (d) a British Isles mean. Green regions represent scenario uncertainty, blue regions represent
model uncertainty, and orange regions represent the internal variability component. As the size of the region
is reduced, the relative importance of internal variability increases.
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Fic. 5. (a) Signal-to-noise ratio for decadal mean surface air temperature predictions for different regions
as labeled (90% confidence levels). The time of the highest S/N is when climate forecasts give most “added
value,” and this varies with the region as shown. Smaller regions generally have lower signal-to-noise ratios, but
Africa does better than a global mean due to its location in the tropics where model uncertainty and internal
variability are smaller than average. Greenland has a particularly low signal-to-noise ratio due to uncertainty
in high-latitude climate feedbacks. (b) Maps of S/N indicate which regions have more confident predictions.
This example shows this ratio for predictions of the fourth decade ahead (90% confidence levels). The tropical
regions stand out as having high S/N, whereas Atlantic longitudes have reduced S/N values, perhaps due to
uncertainty in the response of the Atlantic Ocean thermohaline circulation to radiative forcings.
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FiG. 6. Maps of the sources of uncertainty for decadal mean surface temperature for various lead times give
information on where any reduction in uncertainty will have the most benefit. The columns show the total
variance explained by (left) internal variability, (middle) model uncertainty, and (right) scenario uncertainty
for predictions of the (top) first, (middle) fourth, and (bottom) ninth decade. It should be noted that (i) even
on regional scales, the uncertainty due to internal variability is only a significant component for lead times up
to adecade or two, (ii) the largest differences between models occur at high latitudes where climate feedbacks
are particularly important, and (iii) even by the end of the century, the emissions scenario is less important
than model uncertainty for the high latitudes but dominates in the tropics.



Met Office

Latest Decadal
Forecast. 2014-2018

NB: Produced in January 2014

The forecast being described here is from the experimental decadal prediction system
using the latest Met Office climate model, HadGEM3, developed as part of the Hadley
Centre Climate Programme. This system is at the cutting edge of research in understanding,
simulating and predicting decadal variability.

It is only feasible to run the forecast out for the next 5 years.

Furthermore, the number of ensemble members (10) is substantially less than that used in
the Met Office seasonal forecasting system (42). For these reasons the following results
should not be over-interpreted.

The decadal forecast produced in January 2014, for the 5-year period 2014-2018, is
shown in Figure 1 as the set of dark blue lines, each representing an individual forecast from
the 10-member ensemble. For comparison last year’s forecast (from January 2012) is shown
in light blue lines.

The baseline 30-year mean climatology against which the forecast anomalies have been
expressed, is1981-2010, in line with WMO recommendations and other forecast products.
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Figure 1: Global annual temperature record since 1960 and the latest ensemble of forecasts from the Met
Office decadal prediction system produced in January 2014. The dark blue lines show the evolution of the 10
individual forecasts from this year’s forecast starting from November 2013 and the pale blue lines the
equivalent for last year’s forecast. All data are rolling annual mean values.

The gap between the black curves and blue curves arises because the last observed value

represents the period November 2012 to October 2013 whereas the first forecast period is November 2013 to
October 2014.

The thin black curves show the observed annual-mean time-series from 3 independent datasets. Previous
predictions starting from November 1960, 1965,..., 2005 are shown in red, and 22 Coupled Model
Intercomparison Project phase 5 (CMIP5) model simulations that have not been initialized with observations
are shown in green. In both cases, the shading represents the probable range, such that the observations
are expected to lie within the shading 90% of the time.

All temperatures are represented as anomalies from the 1981-2010 mean.



Decadal forecast; Forecast issued in January 2016.

*Averaged over the five-year period 2016-2020,
*enhanced warming over land, and at high northern latitudes; Met Office
esome indication of continued cool conditions in the Southern Ocean,
erelatively cool conditions in the North Atlantic sub-polar gyre.
*global average temperature is expected to remain high;
Likely between 0.28°C and 0.77°C above the (1981-2010) average.
*(an anomaly of +0.44 £ 0.1 °C observed in 2015)
sconsistent with high levels of greenhouse gases and big changes currently underway in the climate system

Global annual temperature

) 1.0[ ] Observed (black, from Met Office Hadley Centre, GISS and NCDC) and

o | 41 predicted (blue) from November 2015 global average
g8 Oof AL ;0 | annual surface temperature difference relative to 1981-
£3 - 2010. Previous predictions starting from November
22 "IN | 1960, 1965, ..., 2005 in red, and 22 simulations from
gc_% 0.5 1 CMIP5 in green.

E,E ol ' 1@%?—9(_%0 Observations are expected to lie within the shading

o i i -
r060 1970 om0 1000 2000 2010 2020 90% of the time. Moving 12-month mean values.

(A) Five yeor meon forecost (B) Lower estimate (C) Upper estimate
from November 2015 10% chonce to be less than 10% chance to be greater than




Big Changes Underway in the Climate System?

PDO Index, 1870-2015
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Pacific Decadal Oscillation. Three-month averages of the monthly PDO index of Zhang et al. (1997) from
1900 to 2015. The same series after smoothing to retain decadal and longer variations is overlaid. The pair
of curves at each end illustrate large uncertainty due to lack of data before and after the series.
The current developments in the worldwide pattern of sea surface temperatures are consistent with an
emerging positive shift in the PDO, but it is too early to be confident that this will outlast the current El Nifio.
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Atlantic Multidecadal Oscillation. Values are annual average, area average North Atlantic sea surface
temperature with the long-term linear warming trend removed (°C), derived from the HadSST3 dataset
(Kennedy et al., 2011a,b). The spread of values is a measure of the uncertainty arising from sampling and
measurement errors. The solid lines show the low frequency AMO component.
The current trends suggest that the chances of a shift in the next few years have increased. However, it is
not certain that there will be a shift towards cooler Atlantic conditions over the next few years. Temporary cooling
has occurred in the past without leading to a sustained AMO shift.



Climate projections



Procedu

res for Climate projections

CMIP: Coupled Model Intercomparison Project (WMO-activity)

CMIPS - production for IPCC AR5 (2013)
CMIP6 - production for IPCC ARG (ongoing, scheduled for 2022)

Purpose:

Calculate all possible states that can be realized in the climate system

for a predefined set of externally defined governing conditions.
|.e.: a prediction of the second kind, for which the actual intial state is irrelevant

MIPs = more than
20 projects with specified
purpose experiments

‘\(Iouds /
chimy/ Circulation  QOcean/Land/
Aerosols v N

g Short term

;haraderiﬂng y 7
2 hindcasts

forcing

pred
Scenarios

Regional dimate /
Extremes

Land use Geo-
engineering

Nofe: The themes in the outer circle ofthe figure m ight he
slightly revised atthe end ofthe WP emdorsen ent process

fecadal
iction

Qualifying a model for CMIP6 participation:
CMIP DECK and CMIP6 Historical Simulation

DECK (entry card for CMIP)

(Diagnostic, Evaluation and Characterization of Klima)

i. AMIP simulation (~1979-2014) (pure Atmospheric Model)

ii. Pre-industrial control simulation (1850 conditions)

iii. 1%/yr CO2 increase until 4 times CO2 at 1850, then kept constant)
iv. Abrupt 4xCO2 run (4 times CO2 at 1850=

CMIP6-Hist: Historical Simulation: entry card for CMIP6
v. Historical simulation using re-constructed forcing for (1850-2014)

MIPs: Model Intercomparison Projecys designed for specific
purposes

A wide range of process-experimental runs, diagnostic attribution runs,
and climate projection runs, including detection and attributuin and
future projections based on scenarioes. Also paleoclimate runs and
decadal prediction runs are included as MIPs.



A simplified description of basic procedures for climate projections

Stepwise procedure:
Start from a state of the climate system as close as possible to 1850 conditions
o There are available data from previous model runs, e.g. for CMIP5

Provide boundary data as close as possible to 1850 conditions
o land-surface, solar activity, atmospheric composition, earth’s orbit etc.

Start a multi-century spin-up run: run the model to achieve an average

energy equilibrium at the top of the atmosphere

and a long-term, stable climate;
o normally several re-starts are needed with parameters adjusted (model tuning)
o up to a few thousand model years may be required to reach a stable equilibrium

PI-Control: after spin-up, run >500 years for pre-industrial (Pl) 1850. (CMIP-DECK)

Historical: At the same time: a historical run from 1850 to present day
with driving external conditions given (CMIP6-Hist);

Ensemble: Several additional historical runs started from indep. states in the PIl-Control.
o Used for model validation

Attribution runs: One selected ensemble member for the historical period is re-run
with single contributions to forcing (aerosols only; GHG only, Natural only)

Future Projections based on scenarioes. Future scenarios for societal development,
energy demand, is used to estimate future development of land-use, GHG-emissions,
and aerosol emissions. Different pathways is estimated to produce a radiative forcing
at the top of the atmosphere; Representative Concentration Pathways (RCP) by 2100
tompared to 1850. The historical runs are extended to 2100 (or 2300) using the RCPs.
RCPn, n=2.6, 4.5, 6.0 or 8.5 W/m=2..



Variations of the Earth's surface temperature for:

(a) the past 140 years

0.8

Departures in temperature (°C)
fromthe 1961 to 1990 average
o
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Plate 4 Variation of the surface temperature over: (a) the last 140 years and (b) the last
millennium. In (a) the red bars represent the annual average for the globe based on
thermometer data, and the whiskers the 95% confidence range, including uncertainties
due to coverage, biases and urbanization. The black line is a 10-year moving average. In
(b) the blue line represents proxy data. Adapted from IPCC (2002).

Observational basis for
a changing climate



Sources of uncertainty in model-calculated climate
projectionsand interpretation of observations

Variations vs. change

Random, natural climate variability ("chaos”)

Uncertain external forcing (natural and anthropogenic)
Uncertain quality of climate models ("known unknowns”)
All other unknown contributions ("unknown unknowns™)

s wh =

Major challenge

1. Climate change implies non-stationary statistics
* time-averages cannot represent the full climate statistics

2. Time-scale of changes ("trends”) overlap with time-scale
of natural climate variability



The "hockey-stick”

NoRTHERN HEMISPHERE TEMPERATURE RECONSTRUCTIONS
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Figure TS.20. (Top) Records of Northern Hemisphere temperature variation during the last 1300 years with 12 reconstructions using!
‘multiple climate proxy records shown in colour and instrumental records shown in black. (Middle and Boftom) Locations of temperature-
sensitive proxy records with data back to AD 1000 and AD 1500 (tree rings: brown triangles; boreholes: black circles; ice corelice
boreholes: blue stars; other records including low-resolution records: purple squares). Data sources are given in Table 6.1, Figure 6.101
and are discussed in Chapter 6. {Fiaures 6.10 and 6.11}



Temperature Anomaly (°C)

Continental air warmes faster than
marine air

Land and Ocean Temperature Changes
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Global Land—Ocean Temperature Index

Updated to include 2015 1.0
(NASA/N OAA) 8 —=— Annual Mean

—— S5—year Running Mean

"Since 1880, Earth’s average surface
temperature has warmed by about 0.8 Celsius.
The majority of that warming has occurred in
the past three decades.”

“Earth's 2015 surface temperatures were the

warmest since modern record keeping began in

1880"

according to independent analyses by NASA's Goddard Institute
for Space Studies and NOAA's National Centers for

Environmental Information. 1880 1900 1920 1940 1960 1980 2000

Temperature Anomaly (°C)

4

_ _ Climate Research Unit (CRU), Univ of East-Anglia, UK
The time series shows the 054

combined global land and 1 Global air temperature
marine surface temperature 069 2015 anomaly +0.75°C
record from 1850 to 2015. This
year was the equal warmest on
record. This record
uses the latest analysis, referred
to as HadCRUT.
Morice, C.P., Kennedy, J.J., Rayner, N.A. and
Jones, P.D., (2012). Journal of Geophysical ‘0'4‘_

Research,117,
D08101,d0i:10.1029/2011JD017187

04 (warmeston record)

1 (The next warmest: 2014 +0.56 C)

Temperature anomaly (°C)
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2015 was the warmest year since modern record-keeping began in 1880, according to a
new analysis by NASA’s Goddard Institute for Space Studies. The record-breaking
year continues a long-term warming trend — 15 of the 16 warmest years on record have
now occurred since 2001. (Credit: NSA/GSFC/Scientific Visualization Studio)

Globally-averaged temperatures in 2015 shattered the previous mark set
in 2014 by 0.23 degrees Fahrenheit (0.13 Celsius). Only once before, in
1998, has the new record been greater than the old record by this much.




Order of annual global mean Ts anomalies
2015 Versus the Warmest Years

annual temperature departures ranked coolest to warmest
using a common 1951-80 base period
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Monthly (NOAA) global Ts-anomalies (rel.1951-80) during
El Nino, La Nina, ENSO neutral (Nino3.4 index)
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Variations above ground

IPCC

OBseRVED AIR TEMPERATURES

Lower Stratosphere
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Can models explain observed changes since
19007 pcc
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0.0 Figure 9.5. Comparison between global mean surface temperature anomalies (°C)

from observations (Dlack) and AOGCM simulations forced with (a) both anthropogenic
and natural forcings and (b) natural forcings only. All data are shown as global
mean femperafure anomalies relative fo the penod 1901 fo 1950, as cbserved
(black, Hadley Centre/Climatic Research Unit gridded surface femperature dala
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| Supplementary Matenal, Appendix 9.C. After Stott etal (2006b)
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Can models explain observed changes since
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Climate development in the 21st century?
Projection of surface air femperature ircc
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Figure SPM.6. Projected surface temperature changes for the early and late 21st century relative to the period 1980-1999. The central
and right panels show the AOGCM multi-model average projections for the B1 (top), A1B (middle) and A2 (bottom) SRES scenarios
averaged over the decades 2020~ 2029 (centre) and 2090-2099 (right). The left panels show corresponding uncertainties as the relative
vrobabilities of estimated global average warming from several different AOGCM and Earth System Model of Intermediate Complexity
studies for the same periods. Some studies present results only for a subset of the SRES scenarios, or for various model versions.
Therefore the difference in the number of curves shown in the left-hand panels is due only to differences in the availability of results.
{Figures 10.8 and 10.28}



Climate development in the 21st century?
Projection of precipitation change ircc

ProJecTeED PATTERNS oF PRECIPITATION CHANGES
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Figure SPM.7. Relative changes in precipitation (in percent) for the period 2090-2099, relative to 1980-1999. Values are multi-model
averages based on the SRES A1B scenario for December to February (left) and June to August (right). White areas are where less than
66% of the models agree in the sign of the change and stippled areas are where more than 90% of the models agree in the sign of the
change. {Figure 10.9)



Climate change and prefered regimes
Lorenz’ 3-parameter model
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122 Sensitivity vs. Response:
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forcing - response

Example:
Amplification of Arctic warming
by past air pollution reductions

in Europe

JC. Acosta Navarro, V. Varma, |. Riipinen, Q.
Seland, A. Kirkevag, H. Struthers,T. Iversen, H-C.
Hansson, A. Ekman

Nature Geosciences, March 15th, 2016.




Regional change in temperature
when AT, = +2 > C

Notice the much larger temperature increase in the Arctic

(° C, RCP8.5)
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Helge Drange, UiB:



Estimated probability for global Ts-decrease over 10
years, from 17 global climate models

Ensemble mean piControl Ensemble mean Historical

60°N ] 60°N]]

30°N 30°N
0° o°
30°S

60° Historical, 1850-2010

180°W 0° 60°E 120°E 180°W

30°S

60° Pl-control, 1850

180°W 120°W 60°W o° 60°E 120°E 180°W
Ensemble mean RCP 2.6 Ensemble mean RCP 4.5

60°N

30°N
oﬂ

30°SH

60°S

60°W 180°W 120°E 180°W

180°W 120°W 60°E 120°E 180°W

Helge Drange, UiB:



Verifying probabilistic forecasts



Renate Hagedorn

‘(‘ Objective of diagnostic/verification tools

Assessing the goodness of a forecast system involves
determining skill and value of forecasts

A forecast has skill if it predicts the
observed conditions well according
to some objective or subjective
criteria.

A forecast has value if it helps the
user to make better decisions
than without knowledge of the
forecast.

e Forecasts with poor skill can be valuable (e.g. location mismatch)
e Forecasts with high skill can be of little value (e.g. blue sky desert)

Training Course 2007 — NWP-PR: Ensembk Verification 2/38



e Characteristics of a forecast system:

» Consistency*: Do the observations statistically belong to the
distributions of the forecast ensembles? {consistent degree of
ensemble dispersion)

» Reliability: Can I trust the probabilities to mean what they say?

» Sharpness: How much do the forecasts differ from the
climatological mean probabilities of the event?

» Resolution: How much do the forecasts differ from the
climatological mean probabilities of the event, and the systems
gets it right?

» SKill: Are the forecasts better than my reference system (chance,
climatology, persistence,...)?

* Note that terms like consistency, reliability etc. are not always well defined in verification
theory and can be used with different meanings in other contexts



e Characteristics of a forecast system:

» Consistency: Do the observations statistically belong to the
" Rtank distributions of the forecast ensembles? (consistent degree of
IStogrdMensemble dispersion)

> Reliability: Can I trust the probabilities to mean what they say?

» Sharpness: How much do the forecasts differ from the
o climatological mean probabilities of the event?

» Resolution: How much do the forecasts differ from the
climatological mean probabilities of the even, and the systems
\__ gets it right?

Reliability Diagram

» SKkill: Are the forecasts better than my reference system (chance,
Brier climatology, persistence,...)?
Skill Score



Fraction

‘(‘ Rank Histogram

e Rank Histograms asses whether the ensemble spread is
consistent with the assumption that the observations are
statistically just another member of the forecast

distribution

» Check whether observations are equally distributed amongst

predicted ensemble

» Sort ensemble members in increasing order and determine where
the observation lies with respect to the ensemble members

Rank 1 case

Rank 4 case
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{* Reliability

e A forecast system is reliable if:

» statistically the predicted probabilities agree with the
observed frequencies, i.e.

» taking all cases in which the event is predicted to occur with

a probability of x%, that event should occur exactly in x%
of these cases; not more and not less.

e A reliability diagram displays whether a forecast system is
reliable (unbiased) or produces over-confident / under-
confident probability forecasts

e A reliability diagram also gives information on the resolution
(and sharpness) of a forecast system

Forecast PDF
Climatological PDF




(‘ Reliability Diagram

Take a sample of probabilistic forecasts:
e.g. 30 days x 2200 GP = 66000 forecasts
How often was event (T > 25) forecasted with X probability?
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t‘ Brier Score

e The Brier score is a measure of the accuracy of probability forecasts

» Considering N forecast — observation pairs the BS is defined as:

1 < 2
B3 :F’;(pn_on)

with p: forecast probability (fraction of members predicting event)
o: observed outcome (1 if event occurs; O if event does not occur)

* BS varies from O {(perfect deterministic forecasts) to 1 (perfectly wrong!)

» BS corresponds to RMS error for deterministic forecasts

t‘ Brier Skill Score

¢ Skill scores are used to compare the performance of forecasts with that
of a reference forecast such as climatology or persistence

e Constructed so that perfect FC takes value 1 and reference FC = 0

score of current FC - score for ref FC

Skill score =
score for perfect FC - score for ref FC
BS
BSS =1———
BS

c

e positive (negative) BSS » better (worse) than reference



t‘ Components of the Brier Score

N = total number of cases

I = number of probability bins
n

/]

(4

f; = forecast probability in probability bin I
= frequency of event being observed when forecasted with £
= frequency of event being observed in whole sample

; = number of cases in probability bin i

» Reliability: forecast probabhility vs. observed relative frequencies
» Resolution: ability to issue reliable forecasts close to 0% or 100%

» Uncertainty: variance of observations frequency in sample

Brier Score = Reliability - Resolution + Uncertainty

{’ Reliability diagram

B Reliability score (the smaller, the better)
[ ] Resolution score (the bigger, the better)

Reliability Diagram Reliability Diagram
1.

0o 0z 04 06 08 10 0z 04 06 08 10
Forecast Probability Forecast Probatility

Poor resolution Good resolution



t‘ Ranked Probability Score

F(y)
1

f(y)

PDF
CDF

category

1 X
RPS = ﬂz (CDFyy, —CDF s, )
L k=

category

e Measures the quadratic distance between forecast and verification
probabilities for several probability categories k

e Emphasizes accuracy by penalizing large errors more than "near misses”
e Rewards sharp forecast if it is accurate

e It is the average Brier score across the range of the variable
RPS=—— Z BS,

+ Ranked Probability Skill Score {(RPSS) is a measure for skill relative to a
reference forecast
RPS

RPSS =1-




{“ Benefits for different users - decision making

e A user (or “decision maker”) is sensitive to a specific weather event

e The user has a choice of two actions:

» do nothing and risk a potential loss L if weather event occurs
> take preventative action at a cost C to protect against loss L

e Decision-making depends on available information:

» no FC information: either always take action or never take action

» deterministic FC: act when adverse weather predicted

» probability FC: act when probability of specific event exceeds a
certain threshold (this threshold depends on the user)

e Value V of a forecast:

» savings made by using the forecast, normalized so that
= V = 1 for perfect forecast
= VV = 0 for forecast not better than climatology

Ref: D. Richardson, 2000, QJRMS

Training Course 2007 - NWP-PR: Ensemble Verification
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{" Decision making: the cost-loss model

Potential costs

Event occurs

Yes No
Action | Ye€s C C
taken No L 0

 Climate information — expense:

* Perfect forecast — expense:
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{" Decision making: the cost-loss model

saving from usmg forecast E.-E,

V=" —
saving from perfect forecast E.-FE,
~ mm( C,oL)-(aC+bC+cL)
min( C,oL)-0C with: o = C/L
. _ _ _ H = a/(a+c)
:mln( a,O)-F(l-O)Ot-I—Ha(l-Ol)—O F = b/(b+d)
min( &,0)- 00 0 =atc
Northern Extra-Tropics (winter 01/02)
e For given weather event and __ D+5 deterministic FC > 1mm precip
FC system: 6, H and F are fixed s
e value depends on C/L AN
e max if: C/L = © ® 02 /N
V= HF N
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{" Potential economic value

Northern Extra-Tropics (winter 01/02) D+5 FC > 1mm precipitation
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Brier Skill Score, Europe
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Brier Skill Score, +96h, starting from 1995.
Against Analyses and observations in Europe
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Brier Skill Score, against analyses and

observations in Euro

Pr ity for against an ( 3-M. moving sample)
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Reliability-diagram and forecast sharpness,
winter 2015
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Reliability-diagram and forecast sharpness,
winter 2015
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Expected Value of + 144h forecasts of 24h

precipitation in Europe with user’s c/L.
Winter 2015
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