EPS-meteograms
ENS-meteograms

EPS=Ensemble Prediction System
ENS=Ensemble (new name at ECMWF)
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ENS Meteogram 1601 201 6 OOUtC ana +

Oslo, Norway 60°N 10.67°E (EPS land point) 11 m
High Resolution Forecast and ENS Distribution Saturday 16 January 2016 00 UTC
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NWP Historics
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Vilhelm F. K. Bjerknes (1904 4

"Das Problem von der Wettervorhersage, betrachtet vom
Standpunkt der Mechanik und der Physik”

Founded the basis for WP as an exact science:

Classical fluid dynamics
+ classical thermodynamics
= “Physical fluid dynamics”
| Number of unknowns = number of equations.
PDE: Only first order in time

Exact Science Paradigm in 1904

Observe at t=0 =»Calculate every variable at
any time t.

Determinism IN PRINCIPLE!

Meteorologisk institutt met.no



Lewis Fry Richardson (1881-1953)

Richardson(1922)

Weather Prediction by Numerical Process Cambridge Univ. Press

The first numerical weather forecast —
manual (!)

Lewis Fry Richardson (1881-1953)

AR Coe-
ECMWF S
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Meteorological «noise» and Richardson’s failure

6 1 Historical overview of numerical weather prediction

e About one day >

Figure 1.2.1: Schematic of a forecast with slowly varying weather-related variations
and superimposed high-frequency gravity waves. Note that even though the forecast
of the slow waves is essentially unaffected by the presence of gravity waves, the
initial time derivative is much larger in magnitude, as obtained in the Richardson
(1922) experiment.



The world'’s first successful, purely calculated weather forecast
Institute of Advanced Study, Princeton Univ., USA,1946->1950

Arnt Eliassen

ENIAC
The computer



ENIAC (Electronic:Numerical Integrator and Computer, 19435)

Charney
von Neumann




8 | Historical overview of nomerical weather predictior

Z_500 t=0, analysis

(c)

AZ, aNA gipyre 1.2.2: Forecast of 30 Janvary 1949, 0 t=+24h, prognosis :
and ¢ + f att = 0; (b) observed 2 and £ + f a7 = 24 ; () VUG Yo v as
lines) and computed (broken lines) 24-h height change; (d) computed z and £ + f at
¢ = 24 h. The height unit is 100 ft and the unit of vorticity is 1/3 x 107*s74.
(Reproduced from the Compendium of Meieorology, with permission of the
American Meteorological Society.)



Edward N. Lorenz (1963 i 1969)

Founder of Dynamic System Science

X

Deterministic chaos =

A deterministic system whose time development

is critically sensitive to initial conditions
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Figur 1. Loren
regnem

askinmodell for atmosfaren. Ved utgangstilstandean til venstre pa figuren er

z' grafiske framstilling av to tidsutviklinger for en variabel i sin overforenklaeds

verdiene

ikke til & skille fra hverandre. Ettersom tiden gareker forskjellen og utviklingene gar i helt

forskjellig retning.

‘... one flap of a sea-gull’'s wing
may forever change the future
course of the weather”

(Lorenz, 1969)
“The Butterfly Effect”

«The Lorenz-model»:

X=—0X+0oY
Y=-XZ+rX-Y

7=XY-bZ

3000.000 states

Meteorologisk institutt met.no



The Lorenz (1963)
attractor, the
prototype chaotic




Transparencies from Lorenz in a 2006
workshop in Tallahasse, when he was 89.
(courtesy of M. Zupanski)

CHAODS
CHADS RANDOMNESS
. WHEN THE FPRESENT
REHAVIOR THAT WHEN THE PRESENT DE TERMIVES THE FUTURE
BUT

e poT DETERMIVE

1s NoT RANDOW Dot THE APPROMMATE PRESENT
HigueLY

BUT Looks RArboM Ll DoeS MoT APPROXIMATELY

HENCE | pE€ TERMINE THE FUTORE




Major characteristics of Chaos

*Time developments depend sensitively on the initial state

*Non-periodic developments
*|.e.: Periodic components, such as diurnal and annual, are secondary

*Predictabillity is limited
*Initial state uncertainties eventually destroy forecasts
Inaccurate knowledge about the system eventually destroys forecasts
*The limit of predictability is reached when errors saturate

Three basic types of phenomena according to predictability

1. Periodic (fully predictable)
2. Sudden events (No predictability)

3. Intermediate (Gradually deteriorating predictability



81 score

(®)

NCEP operational S1 scores at 36 and 72 hr
over North America (500 hPa)

NCEP operational models S1 scCores:
Mean Sea Level Pressure over North America
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Figure 1.1.1: (a) Historic evolution of the operational forecast skill of the NCEP
(formerly NMC) models over North America (500 hPa). The S1 score measures the
relative error in the horizontal pressure gradient, averaged over the region of interest.
The values ST = 70% and 51 = 20% wers empirically determined to cotrespond
respectively o 4 “useless” and a “perfect” forecast when the score was designed,
Note that the 72-h forecasts are currently as skillful as the 36-h were 10-20 vears ago
(data courtesy C, Vicek, NCEP). (b) Same as (a) but showing S1 scores for sea level
pressure forecasts over North America (data coustesy C.Vieak, NCEP). It shows
tesults from global (AVN) and regional (LFM, NGM and Eta) forecasts. The LFM
model development was “frozen” in 1986 and the NGM was frozen in 1991,

Development of the

S1-scores for Z500hPa and MSLP
For different forecast lengths

S1=70% =>useless forecast
S1=20%=>perfect forecast



Development if RMS error of predicted geop. Height of 500 hPa

IMPROVEMENTS IN NWP SKILL 651
(a) R.m.s. error {m) vs sondes M Hem 500hPa £ R.m.s. error {m) vs sondes 5 Hem 500hPa £
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Figure 3. R.m.s. errors of 3- 4- and 5-day ECMWF 500 hPa height (m) forecasts for the extratropical:

(a) northern, and (b} southern hemispheres, plotted in the form of annual running means of monthly data for

verification against radiosondes from July 1994 to August 2001, Recent Met Office forecast errors are also shown.
Values plotted for a particular month are averages over that month and the 11 preceding months.



ECMWF has been producing operational medium-range
weather forecasts since 1 August 1979.




« Corresponding developments of nhumerical models
e 1950: Charney, Fjortoft and von Neumann
e 1950s: 3-D numerical weather prediction (NWP) models
e 1960s: atmospheric general circulation models (GCM)

e 1970s: atmosphere-ocean coupled GCM
start of operational NWP

e 1980s: operational NWP with global models
data assimilation with numerical models

e 1990s: global warming simulations with coupled GCM
operational ensemble NWPs

e 2000s: Earth system modeling

interactions of multiple components in multiple scales



24h summary of observations received at ECMWF,
5 July 2004

Polar-orbiting satellites
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RMSE and Anomaly correlation
(e.g. Notes by A. Persson, Appendix B)

The rms error Ej of the day j forecast is defined by

_ _ 2
E]_ —J -(Jj' @)

(E)" = ((f-0)-(a-0))

= (-0 + (@a-0)" - 2(f-o)(@-¢)
= (4)" + (4)" -2 (f-o)a-0)

Anomaly correlation coefficient

(J;—C)(amc) - (Jj.-w)(a—c)

ACC =
j

\J [(f-e)-TF-0 1 (a-0)’-@-0)"]

(f; -¢)(a-c) ACJ:ACCJ-, if bias-free a and f:

AC, = (a-c¢) and (f -¢) =0

J

J [(f-c)1[(a-e)’]



The normalized error N, 1s given by
(E)°
N.: ! ijz._l—' 2 2ACJ
J (Aa)2+(,4j)2 | (A_,-) +(4)

2A A
J a

2
(4,-4)

Assume - ACf L-

A iscloseto A
J a

(4)" + (4))

SIMMONS, A.J: THE SKILL OF 500hPa HEIGHT FORECASTS
RMS errors and asymptotes 500hPa neight  Winter 1985
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RMS (m)

Definition of weather prediction:
The ability to reliably forecast weather-related variables with
more information content than contained in climate statistics.

Anomalies are deviations from climate expectation values.

E? =242 (1 -AC)

E=RMS Error AC=Anomaly Correlation
SIMMONS, A.J: THE SKILL OF 500hPa HEIGHT FORECASTS
RMS errors and asymptotes  500hPa height ~ Winter 1995 Anomaly correlation 500hPa height Winter 1995
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{s Evolution of ECMWEF scores over NH and SH for Z500

The combination of improved data-assimilation and forecasting models,
the availability of more/better observations (especially from satellites),
and higher computer power have led to increasingly accurate weather
forecasts. In 2010, over NH (SH) a day-7 single forecast of the
upper-air atmospheric flow has the same accuracy as a day-5 in
1985 (day-3 in 1981). Anomalycorrelation % of 500 hPa height forecasts

Northern hemisphere

Southern hemisphere
100

Day 3
80
o =——=33 Day 7
~4 Day 10
Ll NN T
30 T — r*#ﬂ“r“&ﬁ"*'ma\*T‘@L“ e
81 82 83 84 85 86 87 88 89 90 91 92 93

Year

Ea Zi : i:i i EC/TC/PR/RB-L1 2010 - Roberto Buizza: Sources of uncertainty
2R



Evolution of ECMWF scores over NH and SH for Z500

500hPa geopotential height
Anomaly correlation

12-month running mean
[centered on the middle of the window)

———— Day 7 NHem = Day 3 NHem
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= Day 10 MHem =———— Day 5 NHem
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Quality of numerical model forecasts for the
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geopotential height of 500 hPa

Anomaly correlation of 500hPa height forecasts
Northern hemisphere

Anomaly-correlation for forecasted
Z(500hPa) from ECMWF'’s
operational, global model

snce 1980

Same results if the same («frozeny)
model- and analysis-system

is used for all years

(here: ECMWEF’s re-analysis, «kERA»):

Changes are only due to

-Random fluctuations (internal variability)
-observational changes

Courtesy: P.Kallberg, A. Simmons; ECMWF



Re-analyses & Re-forecasts in NWP verification

HRES and ERA Interim 00,12UTC forecast skill £900 : Forecast time when
500hPa geopotential ACC=80% N hemisphere

Lead time of Anomaly correlation reaching 80%
NHem Extratropics (iat 20.0to 90.0, lon -180.0 to 180.0)
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Improved predictions over since 2000
due to system improvements (and observation changes)

HRES - ERA
500hP ial I I .
o o Z500 N hemisphere Difference:
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Forecast improvements for T4, caused by systems and obs
for different regions
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Upward Trend in EPS (now: ENS)
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Upward Trend in High Res Deterministic over Last Decade

RPSS, z500hPa, n.nem, High Res.
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Why has NWP improved over the last 7 decades?

1. Computer power - Physical processes more in accordance to physical
understanding; higher spatial resolution

2. Improved physical understanding of processes > Processes that are not
explicitly described, are better represented (parameterizations)

3. Improved methods for data-assimilation >more accurate initial states
(and representation of initial state uncertainty).

4. Better observational coverage by remote sensing—>more accurat inital
states



Simple mathematical systems
possessing chaos

Logistic map

Lorenz «Butterfly»



Logistic map
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The Lyapunov exponent for the logistic map (estimated numerically)

LYAPUNOV EXPONENTS

1.0
- 0.0 ot
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Figure 3.8 The Lyapunov characteristic exponent for the logistic map. The
broken curves show the Lyapunov exponents for the unstable period one and
period two orbits.



Chaos Theory concepts

Kalnay Ch 6.2-6.3



Phase space representation of the atmosphere as a dynamical system

Assume a phase space of dimension N where X = is a state vector.

Autonomous governing equations with imtial state:

Fq
dX
— =FX); X(to) = Xo; F = | ¢
Ff'u’
Unique solution for an arbitrary time £ = f;: X (t) =M (X D) y Le. the trajectory.

Conditions for stability with respect to small perturbations of the initial state are investigated by
adding small increments to Xg , integrate forward in time and negle ¢t non-linear terms:

)
— [X + 8x] = F(X + 8x) ; 8x(ty) = 8x

X d
ar T ar

o

dx =~ F(X)+J-8x;8x(ty) = 6xy;



Tangent-Linear Model (TL) and its Propagator from time 0 to t

where the jacobian 15 evaluated along the non-linear solution trajectory:

-OF, OF; -
OF az_‘fl | a}_‘fw
= lﬁlﬁof(t} oy amy
Ero~

The Tangent-Linear Model (TL), is then:

d
—déx =] -8x; 6x(ty) = 8x,

dt
and the solutionis: dX(t) = L{ty,t) - 8x,, where the propagator or resolvent is:
oM, M, -
aM aXl - BXN
L(ty,t) = [—] = :
oXixw oMy  aMy
“ax, 6 Jx o




Tangent-Linear Model (TL) and its Propagator from time 0 to t

If X{t)1s a fixed point (a constant), then J1s a constant, and we can formally write:
Lty t) = ef(t7t)

If the eigenvalues of J are i;, then the cigenvalues of £ are A, = gfilf~fal =7 M

and for non-constant Xjt) and J, this can be generalized to:
t
dat
L(ty t) = elo’

For numerical integrations, time 1s stepped forward in K steps, At , and we can define:

K—1 K—1
L(toO) = Ly oL o Lo = | [ L = exp| ) Jit
k=0 k=0

where L = L{t; .ty af).

Assume that eigenvalue no. 7 of Ly and J; are A¥ and y* respectively, and define:

A;@®) = [lgog Af;i=1,..,N



Lyapunov exponents

Assume that eigenvalue no. i of Ly and Ji are AF and i respectively, and define:
_ TIK—1 4k,
A = K2 A% i =1, N
The Lyapunov exponent no. i is then:
1 1 K—1
A, = lim —— In|A4,(t)| = lim —Z in|A¥|
t—oot — 1, t=ool — 1o Lt =0

= the growth-rate of small perturbations averaged over the attractor. This 15 a global property;
1.. it represents an average property for the entire attractor set of the dynamic system. If one or
more A, =0, there are at list some directions in phase-space along which arbitrary imtial
perturbations will grow,

ﬂ—lt in |r’1i: | 15 the locad Lyapinov exponent no. £ ot time-step F.



LOCAL LYAPUNOV VECTORS
[,(t) = limL(t —s,t) y(t —5)

L, (e+A0)|]
I, = Lk
L = %" Lol

the leading local Lyapunov exponent (i.e. no. 1):

6 Atmospheric predictability and ensemblc forecasting
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The Lorenz three-parameter model. «Butterfly»

A , .
X = —o(X-7Y) P
Y = r X-Y-—-XZ
- Y
7 = b(XY—2Z) >
Setting r = y = 2 = 0 gives fixed points at: ’
e the origin, (0,0,0); stable for 0 <r < 1 1
?
o« C*, (VB —1),\/Br—1D),r —1); —
1 r
o O, (—=+/blr—1),—/b(r—1),r—1). \ 5
The C'* and C~ fixed points only exist for r > 1 e |
C'* and C'— are stable for * __,____.- -----
l<r<ry=2010%3) e g s an e
a—b—1 " 1 13.926 | f4_0:s MUTb=r,

I transient chaons i strange atiractor
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The Lorenz three-parameter model. «Butterfly»

(r=28,0 =10, b=28/3):

————
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The growth of perturbations: |
linear — weakly non-linear — strongly non-linear

O

(d) Asymptotic evolution to a

(c) Nonlinear phase: folding needs strange attractor of zero volume
to take place in order for the and fractal structure. All
solution to stay within the bounds predictability is lost

Figure 6.2.1: Schematic of the evolution of a small spherical volume in phase space
in a bounded dissipative system. Initially (during the linear phase) the volume is
stretched into an ellipsoid while the volume decreases. The solution space is bounded,
and a bound is schematically indicated in the figure by the hypercube. The ellipsoid
continues to be stretched in the unstable directions, until (because the solution phase
space is bounded) it has to fold through nonlinear effects. This stretching and folding
continues again and again, evolving into an infinitely foliated (fractal) structure. This
structure, of zero volume and fractal dimension, is called a “strange attractor.” The
attractor is the set of states whose vicinity the system will visit again and ::2ain (the
“climate” of the system). Note that in phases (a), (b), and (c), there is predictive
knowledge: we know where the original perturbations generally are. In (d), when the
original sphere has evolved into the attractor, all predictability is lost: we only know
that each original perturbation is within the climatology of possible solutions, but we
don’t know where, or even in which region of the attractor it may be.



Why probabilistic weather prediction”?

Why not categorical («deterministic») forecasts



Example case: State-dependent forecast quality

“oazy ;
S ot

Figure 2: Phase-space evolution of an ensemble of initial points on the Lorenz (1963) attractor, for three different

sets of initial conditions. Predictability is a function of initial state.




Example case: diagnose state dependence,
ensemble spread and forecast uncertainty

ECMWF ensemble Torecast - Alr fempsarariune
Dais 20000 825 London Lal: 1.5 Long: d

Conimal

Enpmmbls

Armbpmin

«plumes»

For London UK
26.06.1995 0OQutc

Feracanl day

ECMWF ensoemble Torecast - Alr tempsaraiune
Dais 200060 B2d London Lal: 8.5 Long: 4

Conirol  se— o i

EnpEmibds

26.06.1994 00utc

Foracmnl day

Figure 4. ECMWT forecasts for air temperature in London started from cad 26 June 1995 and (b 26 Tune 1964,



Example case: diagnose state dependence,

«spaghetti maps»
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Example: sensitive dependence of initial conditions

Ensemble Initial Conditions 24 December 1999

Analyaia 10
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Anakysis 12




Example: sensitive dependence of initial conditions
Lothar ('T+42 hours)

Detarministic prediction

Ensemble forecast of the French [/ German storms (surface pressure)
Start date 24 December 1999 : Forecast time T+42 hours

Foresast & Forecast 7

Foracast 4 Forecast 5

Foracast 19 | Forecast 20

Foracast 16

Foracast 29

Foracast 26

Forecast 24

Forecast 34
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But: Deterministic forecasts for 1-2 days are nearly perfect !
- for z500

Forecast day on which a particular anomaly correlation is reached
500hPa height Northern hemisphere Two-year running mean

50%

60%

/MM %

82 '83 84 '85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04
Year

NWP quality for 500hPa geopotential heights

Courtesy: A. Simmons; ECMWF



ECMWF deterministic forecast skill
500hPa geopotential
Anomaly correlation
NHem Extratropics (st 20.0to00.0.lon -180.0tc 180.0)

12mMA reaches 50%
12mMA reaches 85%
12mMA reaches 80%
12mMA reaches 75%
12mMA reaches 70%
12mMA reaches 65%
12mMA reaches 60%
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Europe (st 35.0t075.0.lon -125to 42.5)

12mMA reaches 85%
12mMA reaches B0%
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12mMA reaches 70%
12mMA reaches 65%
12mMA reaches 60%

Deterministic forecasts
for 1-2 days are nearly
perfect !
- for z500

Forecast length when ACC=x%

X=90,

,75,70,65,60

ECMWF deterministic forecast skill
500hPa geopotential
Anomaly correlation
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ECMWEF operational verification

Brier Skill Score for 96h ECMWEF EPS for selected events

Probability forecastverification against an ( 3-M. moving sample)
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The predictability depends on the spatial ~%
scales
(a) Spectra of squared forecast errors DJF 1994/95

Beygnd day 10
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'O 4 & 12 16 20 24 28 32 36 40

Except: Strong local forcing which are well described
iIncreases the predictability also for smaller scales

(adjustments og large-scale patterns to local forcing:

topography, coastlines, land-use contrasts etc.)

Meteorologisk institutt met.no




Predictability as a function of the spatial
extension of weather systems

Spectra of mean-square 850hPa temperature errors

December 2002 — February 2003
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Courtesy: A. Simmons; ECMWF



Predictability as a function of the spatial
extension of weather systems li

Forecast lead time when Rank Probability Skill Score (RPSS) for EC EPS of Z;,, < 0.3

(&) Z500 unfiltered (b) Z500 planetary scale
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Predictability as a function of the spatial
extension of weather systems llI

Spectra of mean-square 850hPa vorticity errors

December 2002 — February 2003
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The consensus forecast:
Unpredictable components are filtered

vvvvvvv

foracasts, T126 Qnd TE2

Winter
1997-98

0_2............. —
i
....... - PN I TS
00 3 5 10 15
Forecast day

Figure 1.7.1: Anomaly correlation of the ensembles during the winter of 1997-8
(controls, Tz and Te, and ten perturbed ensemble forecasts). (Data courtesy Jae

Schemm, of NCEP.)



In any case: to forecast extreme weather events
categorically (either 100% or 0% certain) is overly
optimistic.

"Regression towards the mean™:
when error-growth is non-linear, a majority of forecasts will
tend towards maximum climatological occurrence

Linear Sever
Limit "ty Climatology
|

Warning Threshold

..............................................................................................................................

time
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Distances in phase-space, inner products, and the adjoint

A distance between states in phase space can be the length of the inner product of a vector with
itself. The vector, X, 1s then defined as the difference between the two state vectors, and.

X = X, X} .

The adjoint to an operator L with respect to the inner product {X,Y) is denoted L', and is
defined such that for arty arbitrary vectors X and ¥, {LX,Y)} = (X, LY}. Note that in the text-
book of Kalnay, the notation L’ (i.c. the transpose to L) is used for the adjoint, thus presuming
real numbers and a standard Euclidian inner product. Here we continue to use the more general
notation, L, of adjoints with respect to unspecified inner products.

The solution to the Tangent-Linear model is, as defined above: &x(f) = L, £) - 6xy. The
size of the perturbation 1s the distance between x(£) + dx(f) and x(&), hence:

16x @OIIF = {8x(2), 8x(£)} = {L(t0o, D)8x0, L(fo, D)X} = {L (Lo, £)"L(Lo, £)8X0,8x0} ;

which clearly demonstrates the fmportance of the combined operator L(t,, 1) L(Ly, ).



Properties of the the adjoint

(1) Assume that the resolvent L(Z,, £) can be split into X stepwise sub-intervals over time:

L(rn,_, f) - L(fﬁ_l, E)L(ITK_E, fﬁ_l) I L(rn,_, fl) - LR'_]_LR'_E I LU‘
then

{L(ID,I)ﬁxn, ﬁx(fj} = {LK—ILK—E LDISID, ﬁx(f)} = {ISID,LE "'LEE—EL;f—lﬁx(r)}
= {8xq, L&, £)"6x()}

The adjoint operator L(f,, £)* thus works backwards in time from ¢ to t;.

(2) It 1s also straightforward to show that: L{Z,, £)** = L(f,.f) and that L(f,, £)*L{f, ) 1s self-
adjoint (or symmetric, Hermitian):
(L(to, £ L(tg, £))° = L(Eq, ) L(Eo, £)"" = L{fy, £) Lty )

The eigenvalues of this particular self-adjoint operator are real and positive, and the eigenvectors

are orthogonal with respect to this particular inner pro duct.



Singular Vectors, SVs

The orthogonal eigenvectors to  L(f, £)'L{f; ) with respect to the inner product, are
e,(t,) with eigenvalues g/, fori = 1,..., N, each fulfilling the equations:

L(rg., f)ﬂL(fD, t) Ei(f,:,) = ﬂfﬂi(fﬂ) fori = 1,.... .

If we define L(f, De,(t,) = e,(f), i.c. the eigenvector evolved from ¢y to ¢, the norm evolves

according to:

le; (OII* = {e; (1), e;(0)} = {L (L, D)e; (o). L (Lo, 1) e; (L)} = (L (Lo, 1) Lt D) e (Ly), e, (Ls))
=g/ |le; (t)l°

Notice that e, (t,) and e,(t) can have different directions in the phase space.

Define:

o ¢e.(f,) are the irndtial singsilur vectors to the propagator L(zp,2) (v in Kalnay)
o ¢,(I) are the evolved singulur vectors to the propagator Lito.t) (u in Kalnay)
o 0, ar¢ the singsldur valies vectors to the propagator L(ty.1).



Singular Vectors, SVs

The adjoint to the evolved singular vector produces the initial singular vectors in a similar way
as the propagator to the initial singular vector produces the evolved:

L(tg.0)'e,(t) = Lt £)'L(fe. D) e, () = o7e;(,)
From this, we also see that:

L{to. L £ e, (1) = 7Lt D) e,(t) = of e;(t)

Hence, the evolved singular vectors are eigenvectors to L{f,, £)L(f,, £)* with eigenvalues 7.

Now, assume that the initial singular vectors are normalized, i.e. ||e; ()| = 1 forall 1=1,.. .}V

We can use these singular vectors as an orthonormal basis for any vector in the phase space:

6x, = 2o ;e (t,); where a; = {6x,,e,(t,)}. It is strai ghtforward to show that:

18x (D)1 = {8x(2), 8x(1)} = (L (Lo, 1) 60, L(to, £)6x0) =

V1=
.
b
o
g}



Singular Vectors, SVs
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tangent linear model to a
sphere of perturbations of
size 1 for a given interval
(fo, 11).

Figure 6.3.2: Schematic of
the application of the

adjoint of the tangen

model to a sphere of .
perturbations of size 1 at the
final time.



213Singular Vectors, SVs
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6 Atmospheric predictability and ensemble forecasting

Figure 6.3.3: Schematic of
the application of the
tangent linear model
forward in time followed by
the adjoint of the tangent
linear model to a sphere of
perturbations of size 1 at the
initial time.

Figure 6.3.4: Schematic of
the application of the
adjoint of the tangent linear
model] backward in time
followed by the tangent
linear model forward to a
sphere of perturbations of
size 1 at the final time. -



The Lorenz model
Singular Values
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Figure 1: Schematic evolution of an isopleth of the probability density function (pdf) of initial and forecast error
in N -dimensional phase space. (a) At initial time, (b) during the linearised stage of evolution. A (singular) vector
pointing along the major axis of the pdf ellipsoid is shown in (b), and its pre-image at initial time is shown in (a).
{c) The evolution of the isopleth during the nonlinear phase 1s shown in (c); there is still predictability, though the
pdf is no longer Gaussian. (d) Total loss of predictability, occurring when the forecast pdf is indistinguishable
from the attractor's invariant pdf.



634 Simple examples of singular vectors and eigenvectors

In order to get a more intuitive feeling of the relationship between smzular vectors
and Lyapunav vectars, we cansider a simple linear model in two dimensions:
x(t+7T) 2x1(2) +3x2)+7 |-
= Mz[x(@®)] = 6:3:39
[xz(t +7) =] 0.5x,(t) — 4 e

We compute the two-dimensional tangent linear model, constant in time:
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The propagation or evolution of any perturbation (difference between two solutions)
over a time interval (¢, ¢ + 7) is given by ;

8x(t + T) = L&x(1) (6.3.4i)

Note that the translahon terms in (6.3.39) do not aﬁect the perturbatlons The eigen-

alan the

vectors of L kwuu.u for ibis auuyw consiant iaf

Lyapunov vectors) are proportional to

corresponding to the eigenvalues A = 2, Ay = 0.5, respectively, which in this case
e ey TF weran
are.the two Lyapunov numbers {their logarithms are the Lyapunoy exponcm Hwe

normalize them, so that they have unit length,

o IR e ik 6.3.42
"‘(o) , lz'(0.45) ( )

The Lyapunov vectors are not orthogonal, they are separated by an angle of 153.4°
(Fig. 6.3.6(2)). We will see that because they are not orthogonal it is possible to
find linear combinations of the Lyapunov vectors that grow faster than the leading

Lvapunov vector. We will also see that the leading Lyapunov vector is the attractor

e system, since repeated applications of L to any permirbation makes it evolve

owards 1;.

of t

-
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Applying first L and then its transpose LT we obtain the symmetric matrix

e 0 6] b e
LL—[69% . (6.3.43)

whose eigenvectors are the initial singular vectors, and whose eigenvalues are the
squares of the singular values. The initial singular vectors (eigenvectors of LTL) are

B0 0 WR f (6.3.44)
Lo.84 \—0.55) AT

with eigenvalues o7 = 13.17, o? = 0.076. As indicated before, the singular values
of L are the square roots of the eigenvalues of LTL, ie., oy = 3.63, o» = 0.275.
Note that this implies that during the optimization period (0, T) the leading singular
vector grows almost twice as fast as the leading Lyapunov vector (3.63 vs. 2). The
angle that the leading initial singular vector has with respect to the leading Lyapunov
vector is 56.82°, whereas the second initial singular vector is perpendicular to the
first one (Fig.6.3.6(2)).

The final or evolved SVs at the end of the optimization peri
vectors of

od (0, T) are the eigen-

roen P |
PO R e . (6.3.45)
L1.o VLo ]
.
and after normalization, they are
/D 00\ 7 @12 \
PR B e el T 8 (42 ALY
L - — (V.0.59)
\0.12) \ -0.99/

o

Note again that the operators LTL and LLT are guite differ

singular vectors are different from the initial singular ve

singular values o = 13.17, o3 = 0.076.

Alternatively, the evolved singular vectors at the end of the optimization period can
also be obtained by applying L to the initial singular vectors, which is computationally
inexpensive. In this case,

& 0.03
mav:uum=[og] W”U=U%m=[;aﬂ]

which is the same as (6.3.46) but without normalization. ;
The final leading singular vector has strongly rotated towards the leading Lyapunov
vector: at the end of the optimization period the angle between the leading singular

vector and the leading Lyapunov vector is only 6.6° (Fig. 6.3.6(b)), and because e
1ar vectors have been optimized for this period, the final singular vectors are

x

Singular Vectors, SVs,

Examples



Singular Vectors, SVs, Examples
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Figure 6.3.6: Schematic of the evolution of the two nonorthogonal Lyapunoy VeCtors
(thin arrows 1; and L), and the corresponding two initial singular vectors -(thmk
arrows v;(0)and v»(0)), optimized for the interval (0, T), for the tangent linear model

3 %
e [o 0.5]

with eigenvalues 2 and 0.5. (a) Time ¢ = 0, showing the initial singular vectors. v1(0)
and v,(0), as well as the Lyapunov vectors 1, and L. (b) Time t = T, evolved_smgular
vectors, uy(T) = Lv;(0), ux(7) = Lv,(0) at the end of the optimization period; the
Lyapunov vectors have grown by factors of 2 and 0.5 respccnvcly, whereas the
leading singular vector has grown by 3.63. The second evolved smgula}' vector has
grown by 0.275, and is still orthogonal to the first singular vector. (¢) Time ¢ = 27",
Beyond the optimization period T, the evolved singular vectors w, (z + 27") -

Lu;(z + T), w(2T) = Luy(T) are not orthogonal and they approach the leading
Lyapunov vector with similar growth rates.

226 6 Atmospheric predictability and ensemble forecasting

To obtain the evolution of the singular vectors beyond the optimization period (0,
T) we apply L again to the evolved singular vector valid at t = T and obtain

0.21

Wi +2T)=Lu(t+T)= [8'47] —0.14

u(t +2T) =Luy(t + T) = [_0'76]

During the interval (T, 27') the leading singular vector grows by a factor of just 2.33,
which is not very different from the growth rate of the leading Lyapunov vector. At
the end of this second period (Fig. 6.3.6(c)) the angle with the leading Lyapunov
vector is only 1.41°. The angle of the second evolved singular vector at time T, after
applying the linear tangent model L and the leading Lyapunov vector is also quite
small (10.24°), and because it was further away from the attractor, the second singular
vector (whose original, transient, singular value was 0.5), grows by a factor of 2.79.
This example shows how quickly all perturbations, including all singular vectors,
evolve towards the leading Lyapunov vector, which is the attractor of the system. It is
particularly noteworthy that during the optimization period (0, T), the first singular
vector grows very fast as it rotates towards the attractor, but once it gets close to the

leading Lyapunov vector, its growth returns to the normal leadin g Lyapunov vector’s

growth.,
Let us now choose as the tangent linear model another matrix

2 %
Le [0 0.5]
with the same eigenvalues 2 and 0.5, i.e., with eigenvectors (Lyapunov vectors) that
still grow at a rate of 2/7 and 0.5/ T respectively. However, now the angle between
the first and the second Lyapunov vector is 177°, i.e. the Lyapunov vectors are almost
antiparallel. In this case, the first singular vector grows by a factor of over 30 during
the optimization period, but beyond the optimization period it essentially continues
evolving like the leading Lyapunov vector.

These results do not depend on the fact that one Lyapunov vector grows and the
other decays. As a third example, we choose

3 )
Le [o 1.5]

with two Lyapunov vectors growing with rates 2/ T and 1.5 /T. The Lyapunov vectors
are almost parallel, with an angle of 170°, and the leading singular vector grows during
the optimization period by a factor of 3.83. Applying the tangent linear model again
to the evolved singular vectors we obtain that at time 27T the leading singular vector
has grown by a factor of 2.9 and its angle with respect to the leading Lyapunov
vector is 1°. Because it is not decaying, the second Lyapunov vector is also part of
the attractor, but only those perturbations that are exactly parallel to it will remain
parallel, all others will move towards the first Lyapunov vector.



Non-normality and final-time growth

J L= —ul;; Normal modes = LLV

Assume stability: p, = 0 and y, > 0
p = aly + bl; and |Ip|| = 1:
aismaxwhenp-l, =0

d d d
Ep = aali +bﬁlz = —au ly — bu,l;



Initial perturbations

Operational ensemble prediction
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The «deterministic» and «stochastic» phases of atmospheric predictions.

228 ; 6 Atmospheric predictability and ensembie 1orecastung

Deterministic’ Stochastic

G

4
Time

Figure 6.4.1: Schematic of ensemble prediction, with individual trajectories drawn
for forecasts starting from a representative set of perturbed initial conditions within a
circle representing the uncertainty of the initial conditions (ideally the analysis error
covariance) and ending within the range of possible solutions. For the shorter range,
the forecasts are close to each other, and they may be considered deterministic, but
beyond a certain time, the equally probable forecasts are so different that they must
be considered stochastic. The transition time is of the order of 2-3 days for the
prediction of large-scale flow, but can be as short as a few hours for mesoscale
phenomena like the prediction of individual storms. The transition time is shorter for
strongly nonlinear parameters: even for large-scale flow, precipitation forecasts show
significant divergence faster than the 500-hPa fields. The forecasts may be clustered
. into subsets A and B. (Adapted from Tracton and Kalnay, 1993.)



Good and bad ensemble systems

Figure 6.5.1:(a) Schematic of the components of a typical ensemble: (1) the control
forecast (labeled C) which starts from the analysis (denoted by a cross), which is the
best estimate of the true initial state of the atmosphere; (2) two perturbed ensemble
forecasts (labeled P* and P™) with initial perturbations added and subtracted from
the control; (3) the ensemble average denoted A; and (4) the “true” evolution of the
atmosphere labeled T. This is a “good” ensemble since the “truth” appears as a
plausible member of the ensemble. Note that because of nonlinear saturation, the
error of the ensemble member initially further away from the truth (in this case P*)
tends to grow more slowly than the error of the member initially closer to the truth.
This results in a nonlinear filtering of the errors: the average of the ensemble
members tends to be closer to the truth than the control forecast (Toth and Kalnay,
1997, also compare with Fig. 1.7.1). (b) Schematic of a “bad” ensemble in which the
forecast errors are dominated by system errors (such as model deficiencies). In this
case, the ensemble is not useful for forecasting, but it helps to identify the fact that
forecast errors are probably due to the presence of systematic errors, rather than to
the chaotic growth of errors in the initial conditions.




Initial-state perturbations; «monte carlo» and time-lagging.
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Figure 6.4.2: Schematic time evolutions of Monte Carlo forecasts (a) and lagged
average forecasts (b). The abscissa is forecast time ¢, and the ordinate is the value of
a forecast variable X. The crosses represent analyses obtained at time intervals T, and
the dots, randomly perturbed initial conditions: fy is a particular forecast time. The
initial “perturbation” for the lagged average forecast is the previous forecasts’ error
at the initial time. (Adapted from Hoffman and Kalnay, 1983.)
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Fig. 1. Global root-mean-square 500-mb height dif-
ferences E,, in meters, between j-day and k-day forecasts
made by the ECMWF operational mode! for the same
day, for j < k, plotted against k. Values of (j,k) are
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Heterogeneous distribution of initial-state uncertainty.
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Figure 6.5.2: Estimation of the 500-hPa geopotential height analysis uncertainty
obtained from running two independent analysis cycles, computing their rms
difference, and using a filter to retain the planetary scales. The units are arbitrary.
Note the minima over and downstream of rawinsonde-rich land regions and the
maxima over the oceans (Courtesy I. Szunyogh, University of Maryland.)



Breeding

Forecast
values
Initial random Bred vectors ~
perturbation LLVs \ \
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Figure 6.5.3:(a) Schematic of a breeding cycle run on an unperturbed (control)
\ model integration. The initial growth after introducing a random initial perturbation
Unperturbed control forecast is usually very small, but with time, the perturbation is more dominated by growing
errors. The initial transient with slow growth lasts about 3—5 days. The difference of
T the complete perturbed (dashed line) and control (full line) forecasts is scaled back
ime

periodically (e.g., every 6 or every 24 hours) to the initial amplitude. The rescaling is
(a) done by dividing all the forecast differences by the same observed growth (typically
about 1.5/day for mid-latitudes). In operational NWP, the unperturbed model
integration is substituted by short-range control forecasts started from consecutive
analysis fields. The breeding cycle is a nonlinear, finite-time, finite-amplitude
Analysis and generalization of the method used to obtain the leading Lyapunov vector. (Adapted
forecasts from Kalnay and Toth, 1996.) (b) Schematic of the 6-h analysis cycle. Indicated on
the vertical axis are differences between the true state of the atmosphere (or its

Observations with errors observational measurements, burdened with observational errors). The difference

Analysis between the forecast and the true atmosphere (or the observations) increases with
time in the 6-h forecast because of the presence of growing errors in the analysis.
’ y (Adapted from Kalnay and Toth, 1996.)
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Self-breeding
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Figure 6.5.4: Schematic of a self-breeding pair of ensemble forecasts used at NCEP.
Every day, the 1-day forecast from the negative perturbation is subtracted from the
1-day forecast from the positive perturbation. This difference is divided by 2, and
then scaled down (by dividing all variables by the 1-day growth), so that difference is
of the same size as the initial perturbation. The scaled difference is then added and
subtracted from the new analysis, generating the initial conditions for the new pair of
forecasts. This self-breeding is part of the extended ensemble forecast system, and
does not require computer resources to generate initial perturbations beyond running
the ensemble forecasts. (Adapted from Toth and Kalnay, 1997.)



{A Selective sampling: breeding vectors (NCEP)

At NCEP a different strategy based on perturbations growing fastest in the
analysis cycles (bred vectors, BVs) was followed (now NCEP uses a
different method called Ensemble Transformed with Rescaling, ETR,
method). The breeding cycle was designed to mimic the analysis cycle.

Each BV was computed by (a) adding a random perturbation to the
starting analysis, (b) evolving it for 24-hours (soon to 6), (c) rescaling it,
and then repeat steps (b-c). BVs are grown non-linearly at full model

resolution.
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Backg Error (cont) and bred vector n.5 [a16sfl10, t=74]
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Bg. Error (cont) and bred vector n.5 [a16sfl10, t=74, y=12]
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Plate 1 Comparison between the 12-h forecast error used as background (contours) and
a randomly chosen bred vector for a data assimilation simulation system. The first
image at the center level of the model. The second is a vertical cross-section (from
Corazza et al, 2002).

Relation between
Bred-vector amplitudes
and forecast error.



Bred vector alignment and growing instability
(b)

(a)

Figure 6.5.5: Examples of bred vectors (500-hPa geopotential height field
differences, without plotting the zero contour) from the NCEP operational ensemble
system valid at 5 March 2000: (a) bred vector 1; (b) bred vector 5. Note that over large
parts of the eastern Pacific Ocean and western North America, the two perturbations
have shapes that are very similar but of opposite signs and/or different amplitudes. In
other areas the shape of the perturbations is quite different. (c) The bred-vector-local
dimension of the five perturbations subspace (Patil et al., 2001). Only dimensions
less than or equal to 3 are contoured with a contour interval 0.25. In these areas the
five independent bred vectors have aligned themselves into a locally low-dimensional
subspace with an effective dimension less than or equal to 3. (Courtesy of D. J. Patil.)



Selecting modes of instability by choosing the size of initial state perturbations

Amplitude

(% of climate
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10 —+ Analysis errors
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Figure 6.5.6: Schematic of the time evolution of the rms amplitude of high-energy
baroclinic modes and low-energy convective modes. Note that although initially
growing much faster than the baroclinic modes, convective modes saturate at a
substantially lower level. These modes are therefore insignificant in the
analysis/ensemble perturbation problem, since the errors in the analysis (dashed
line) are much larger than the convective saturation level. (Adapted from Toth and
Kalnay, 1993.)



SVs from more general inner products

Singular vectors can be defined as the result of
(8x(t),0x(t))r = [PL6x(0)]" CrPLSX(0) = MAXIMUM,

with side condition (6x(0),6x(0)), = [6x(0)]' Cubx(0) =1

Cyand Cg
positiv definit (having only positive eigenvalues), diagonal operators/matrices

Px = x 1n all points mside a predefined target domain in physical space.

yields the eigenvalue problem:

[PL]"CpPL6x(0) = 02Cy8x(0)
Scalar multiplication from left with €, Y% and defining 8y = C 3” “6x(0), yields:

1/2 1/2

| ey = o* €o. where L = CF PLCEUZ

I"TLey=[C,"*L"PCrPLC,

e(0) = €, "%y, and e(t) = L(0,t)e(0).



Practical procedures for generating SVs

When computing singular vectors and values. the matrices and operators are not explicitly

calculated. Instead, an algorithm named the Lanczos algorithm is used. This algorithm devices

1) Assume a set of N initial perturbations at random or according to some assumption;

. ) . . . . -1/2 .
2) Transform this state by multiplymg with coefficients as m C,, /% and normalize w.r.t. the

Cy inner product;

3) Integrate the TLM up to time t;

4)
8)
6)
7)
8)

9)

Transform the obtained state by multiplying with 0 or 1 of local projection P:
Transform this state by multiplying with coefficients as in Cg:

Transform the obtained state by multiplying with 0 or 1 of local projection P:
Integrate the ADM back to time 0

) : : . . . -1/2 )
Transform this state by multiplying with coefficients as i C, /% and normalize wr.t. the

Cy 1nner product;
Apply Lanczos and restart at 3) until satisfied with the accuracy of n SVs.

_ : , : : : -1/2
10) Transtform the resulting n SVs with coefficients as in C, /z.



Generating 50 alternative initial states for the ensemble

Let SV; i=1,...25 denote the SV-based preturbation fields, and E, = EDA;, — Ay, k=1,. ., 10

denote the deviation from the control analysis by the EDA-based alternative analyses. The nitial
states for the n (n=1,...,50) alternative ensemble forecasts are:

A=Ayt [SViTE ] Ay=Ay- [SVITE];

A19=Ag+[SVi9+tE1]; A20=Ao- [SVieTE14];

A2i=Agt[SViiTE{]; A22=Ap- [SV11TE];

Az0=Agt+[SV29+tE1]; Agg=Ap- [SV2+tE1g];

A=Ayt [SVyTE]; Ap=Ag- [SVTE];

A49=Ag‘|‘[SI’;"5+EE]; Asg=Ag- [*S'VE‘T_I'E:T];
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Figure 6.5.7: Singular vectors numbers 1 (top panels), 3 (middle panels), and 6
(bottom panels) at initial (left panels) and optimization time (right panels). Each panel
shows the singular vector streamfunction at model level 11 (approximately 500 hPa),
superimposed to the trajectory 500-hPa geopotential height field. Streamfunction
contour interval is 0.5 x 1078 m? s~! for left panels and 20 times larger for the right
panels; geopotential height contour interval is 80 m (from Buizza, 1997).

Singular Vectors
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Figure 3: Streamfunction of the dominant singular atmospheric singular vector calculated using a primitive
equation numerical weather prediction model for a 3-day trajectory portion made from initial conditions of 9
January 1993 at: (a) and (d) 200 hPa: (b) and (e) 700 hPa: (c) and (£) 850 hPa. The quantities in (a) - (c) are at

initial time, in {d) - (f) at final time. The contour interval at optimisation time 1s 20 times larger than at initial time.

From Buizza and Palmer (1995).
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Figure 6.5.8: Total energy
(m? s72) vertical profile of
the (a) first, (b) third, and
(c) sixth singular vector of
5 November 1995, at the
initial (dashed line, values
multiplied by 100) and
optimization (solid line)
times. Note that singular
vectors are normalized to
have unit initial total energy
norm. (From Buizza, 1997.)
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Ensemble assimilation and prediction
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From Persson
Chapter 3
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Figure 25: Although the perturbed analyses differ on average from the Control analysis as much as

Control from the truth, for a specific gridpoint only 35% of the perturbed analyses are closer to the
fruth than the Control analysis.



Truth?

analysis

Figure 24: A schematic illustration of why the perturbations will, on average, be larger than the true
Control analysis error. The analysis is known, as well as ifs average error, but not the true state of the
armosphere (which can be amywhere on the circle). Any perturbed analysis can be very close to the

fruth, but is in a majority of the cases much further away: on average the distance is the analysis error
fimes ﬁ
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Figure 26; Schematic representation of the percentage of perfurbed forecasts with lower RMSE than
the Conitral forecast for regions of different sizes. northemm hemiphere, Europe, a fypical “small”
Member Siate and a specific location. With increasing forecast range, fewer and fewer perfurbed
members are worse than the Control (from Palmer et al 2006).
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Figure 27 Schematic image of the RMS error of the ensemble members, ensemble mean and Control
forecast as a function of lead-time. The asympiotic predictability limit is defined as the average
difference betwaen two randomly chosen aimospheric states. In a perfect ensemble system the RMS

error of an average ensemble member is /2 times the error of the ensemble mean.



Extreme forecast index (EFI)

The EFl is an integral measure of the difference between the
ensemble forecast (ENS) distribution and the model climate
(M-climate) distribution.

This allows the abnormality of the forecast weather situation to be assessed
without defining specific (space- and time-dependant) thresholds. The EFI takes
values from -1 to +1. If all the ensemble members forecast values above the M-
climate maximum, EFI = +1; if they all forecast values below the M-climate
minimum, EFIl = -1.

Experience suggests that EFlI magnitudes of 0.5 - 0.8 (irrespective of sign) can be
generally regarded as signifying that "unusual” weather is likely whilst magnitudes
above 0.8 usually signify that "very unusual" weather is likely.

Although larger EFI values indicate that an extreme event is more likely, the values
do not represent probabilities as such.



Model Climate (M-Climate)

For the calculation of EFI, M-climate is based on 9 consecutive semi-weekly re-
forecast data sets (Mondays and Thursdays) consisting of 10+1 ensemble members,
where the middle Monday or Thursday is the preceding Monday or Thursday closest to
the actual ENS run date, t.

The resolution decreases with forecast range exactly as in the ENS. This procedure
allows seasonal variations and model changes to be taken into account, as well as
model drift.

Altogether 1980 re-forecast values are available for the M-climate computation (20
years X 11 ENS members x 9 semi-weeks). The M-climate is updated semi-weekly on

Mon- and Thursdays.

M-Climate= 9 semi-weekly, 11-member ENS, re-forcasts for previous 20 years
The figure shows an example when a Thursday is the closest, previous Mon- or Thursday

t t+30d>
, Mon, , Mon, |, |Mono , Mon., | 5>
Thurs, Thurs, Thurs, Thurs,;,  Thurs,,
h_e_g_ZQw;f """ . J_ """ A >
! b e 3} b >
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Chapter 5



Cumulative distribution
Medians and percentiles are easily spotted
100%

Climate distribution

EPS distribution

Probability not to
exceed threshold

0%

Climate EPS Temperature
median median

Figure 50: A schematic explanation of the principle behind the Extreme Forecast Index, measured by
the area between the cumulative distribution functions {CDFs) of the M-Climate and the 50 EPS
members. The steeper the slope of the CDF in an inferval, the higher the probability in that

interval.The EFI is, in this case, positive (red line to the right of the blue), indicating higher than
normal probabilities of warm anomalies.



Probability density functions

Means and asymmetric distributions are easily spotted

100%

I Climate
dis'ltrlbutlcm

Frequency of occurrence (%)

EPS :Il:ﬁtributian

o
=

Clim EPS Temperature
mean mean

Figure 51: The temperature climatology (blue curve) and the EPS forecast distribution (red curve)
presented as probability density functions corresponding to the CDF curves in Figure 50. The pdf is
essentially the derivative of the CDF. The EPS pdfis to the right (red curve) of the M-climate pdf (blue
curve), indicating that the EPS has higher than normal probabilities of warmer anomalies, consistent
with the conclusions on positive EFI from Figure 50.



The Extreme Forecast Index 1s calculated according to the formula

_ 2 (1p=Fr(D)
>0 p(1-p)

where Fdp) denotes the proportion of EPS members lying below the p quantile of the climate

EFI dp

EFRS
M-climate
,
EPS
M-climate
EPS
M-climate
Negative EFI
.9

Figure 52: The EFI can have both negative and positive values: positive for positive anomalies (upper
figures) and negative for negative anomalies {lower figuras).



EFI and median T2 daily mean
Valid Saturday 20 - Sunday 21 Feb 00utc, 2016
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Extreme forecast index and Shift of Tails (black contours 0,1,2,5,8) for 2m mean temperature 2m mean temperature (in * C) Model climate Q50 (climate median)
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EFI and 99-percentile Precipitation
Valid Saturday 20 - Sunday 21 Feb. 00utc, 2016

Wed 17 Feb 2016 12UTC ©ECMWF t+e0-84h VT: Sat 20 Feb 2018 00UTC - Sun21 Feb 2016 00UTC
Extreme forecast index and Shift of Tails (black contours 0,1,2,5,8) for total precipitation
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Error Growth

Kalnay, 6.6
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Fig. 1. Global root-mean-square 500-mb height dif-
ferences E,,, in meters, between j-day and k-day forecasts
made by the ECMWF operational model for the same
day, for j < k, plotted against k. Values of (j,k) are
shown beside some of the points. Heavy curve connects £l
values of E,,. Thin curves connect values of E, for 7
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Representation of average model error Q}l\

RMS-error: E; = \l .U;'a)z ((f,-¢)-(a -¢))’

= (f-0) + (a-0)" - 2(f-)a-c)

=(4)" +(4,)" -2 (F-o)(@-o)
With increasing forecast length t: (f,-¢)(a-¢) = 0

= So that for increasing t: Ej - \J (Aj)2 + (A )2

And for a bias-free model: E - .2 A
j a

Error growth-model (Lorenz, 1982): L E BAROCLINIC (VEATHER)
oF E ( 1 b ) 0.1E
— = - — : T A EERTEOR
ot E -

. 1 1 CONVECTIVE MODES
(In2)/o.-t, E = 24 00 E 1,

1hour 1 day 1 week



............................

................................

inital mer=il i

B2 _-. A _. .......... -P.-__..-.'. ................... -----
- —
- = T | |
% 5 1a 15
Time {daya)

Figure 6.6,1; Time svclution of the rms fosecast emor divided by the squan
fwice the chimatabogscal variance, It assumes that the forecast error growih
the logistic equation (6.6.1), and that the growih rete of small errars is abou

0, 35Mny, cormesponding 1o a doubling of small ermors is 2 days. Analyeis er
imitial comditions are esimated to be about 10% of beag, bt nod smaller tban

1
! | — = = 1
i P
E e :
A b= Bdn s e = L T T P — u
3 Tropica s — | ke
@ = !
E U_E_ S """'i"_-"-"" = -----||:..-- -
: B e
E - A !
g ok condncdieee,, Midtiockg
s : v 1
3 . :
1 SOV . . S
- E ' |
| | .= . .
5 10 15 20
Darys

flgure 6.6.2: Pararneterization of scaled forecast sevor variance in the

_ : presemoe of
nud:l_l:_l-b_m:l&n-:u.-.a 1.'|'I!|'I vilmes of the growth rate due to modsl deficiencies 1 and 1o
nstabilities & appropriate for mid-letitsdes { (b = 0.4 5 — (L05) and the wopics
b =101, 5 = 01). (From Reynolds er af,, 18943



Lagged forecasts, 1981 and 2001

IMPROVEMENTS IN NWP SKILL
ia)
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Figure 6.

] q
days
(a) R.m.s 500 hPa height forecast errors (solid) and differences between successive forecasts verifving
(black}).

at the same time (dashed) as functions of the forecast range, computed over the extratropical northern hemisphere,
and shown for the winters of 1981 (grey) and 2001 (black). (b) As (a) but for the winters of 1994 {grey) and 2001
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Data Assimilation

Kalnay, Ch 5
+ a few notes



2(x, ¥) = ago + arox + ap1y + axx® + a; xy + agyy> (5.1.1)

The six coefficients were determined by minimizing the mean square difference
between the polynomial and observations close to the grid point (within a radius of
influence of the grid point):

K. K,
. . - ) 2 2
min £ = min » ' pe(f — 2ve, )"+ ) ai{ [uf — g (e, yi)]
N Yok=1 k=1
) 2
+ [vf — vexx. y0)] 7} (5.12)
O @) (@) O O O O  Figure 5.1.1: Schematic

of grid points (circles),
irregularly distributed
observations (squares), and
a radius of influence around
a grid point i marked with
o a black circle. In 4DDA,

O the grid-point analysis is a
combination of the forecast
at the grid point (first

o  guess) and the observational

increments (observation
minus first guess) computed
at the observational points k.
In certain analysis schemes,
like SCM, only observations
within the radius
O  of influence, indicated by

a circle, affect the analysis
= at the black grid point.




DATA DISTRIBUTION 01 SEP9700Z-01SEP9700Z
AIRCRAFT

Figure 1.4.1: Typical distribution of observations in a £3-h window.



The observing system Conventional observation types used in
data assimilation

+ Conventional observations
- Surface Surface

- Profile - radiosonde and aircraft * Synop (manual and automated) and ship

_ _ _ (over land mainly pressure is assimilated)
- WMO - coordinates observation routines and Buoys on ocean
data exchange globally, EUCOS in Europe

« Remote sensing observations Profile and upper air
- Satellite « Radiosondes (TEMPs and PILOTSs)
- Agencies: EUMETSAT, ESA, NOAA/NASA « Aircraft (AIREP and AMDAR)
- Ground based radars, “wind profilers”
Not all observation types are easy or even

+ ECMWF model now: 30 mill. obs. available for possible to assimilate in NWP {like clouds,
assimilation per day. (State vector dimension ~10%) visibility, ...)



Synop+ship+metar

ECMWF Data Coverage (All obs DA) - Synop-Ship-Metar
10/Mar/2015; 00 UTC
Total number of obs = 64116

24008 SYNOP 3208 SHIP . 36308 METAR

ECMWEF Data Coverage (All obs DA) - Buoy

Dr|ft|ng buoys 10/Mar/2015; 00 UTC

Total humber of obs = 8601
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5

Radiosondes

ECMWEF Data Coverage (All obs DA) - Temp
10/Mar/2015; 00 UTC
Total number of obs = 606
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Satellite observations -
divided into several groups

Passive (Top of Atmosphere radiances emitted from a
surface-atmosphere column):
« Microwave
- Profiling instruments: AMSU
- Imaging instruments: SSM/I

« Infrared
- Profiling instruments: HIRS, AIRS, 1ASI, CHS
- Imaging instruments: AVHRR, MODI5,
+ Atmospheric Motion Vectors

Active (RADAR, LIDAR, radio-signals):
« Scatterometer {ocean surface winds from radar)

« GPS {ground based from geodetic stations, radio
occultation)



Microwaves

ECMWF Data Coverage (All obs DA) - AMSU-B,MHS ECMWF Data Coverage (All obs DA) - AMSU-A
AMSU-B 10/Mar/2015; 00 UTC 10/Mar/2015; 00 UTC AMSU_A
Total number of obs = 236395 Total number of obs = 614363

ECMWF Data Coverage (All obs DA) - IASI
10/Mar/2015; 00 UTC

IAS I Total number of obs = 149850
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ECMWF Data Coverage (All obs DA) - Ground Based GPS
10/Mar/2015; 00 UTC

Total humber of obs = 59552 G PS rad |OOCCU Itatlon

5252 G round Base

ECMWF Data Coverage (All obs DA) - SCAT

S Catte rom ete r 10/Mar/2015; 00 UTC

Total number of obs = 489574

247551 MelopAASCAT 241950 MeiopBASCAT




ECMWEF Data Coverage (All obs DA) - AMV VIS
10/Mar/2015; 00 UTC
Total number of obs = 105426
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Increase in assimilated satellitte data
(number of sensors) at ECMWF
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(b)

Background or
first guess

Background
or first guess

Observations (+/-3 h) Observations (+/-30 min)

Global analysis (statistical Regional analysis (statistical
interpolation) and balancing interpolation) and balancing
Initial conditions Initial conditions

l l

Global forecast model Regional forecast model
T
, l

7
, |
1

/ 6-h forecast / 1-h forecast

/ ]
! /
} | I}

(Operational forecasts)

Boundary conditions
from global model

(Operational forecasts)

Figure 5.1.2: (a) Typical global 6-h analysis cycle performed at 00, 06, 12, and

18 UTC. The observations should be valid for the same time as the first guess. In the
global analysis this has usually meant the rawinsondes are launched mostly at the
main observing times (00 and 12 UTC), and satellite data are lumped into windows
centered at the main observing times. The observations can be direct observations of
variables used by the model, or indirect observations of geophysical parameters, such
as radiances, that depend on the variables used in the model. (b) Typical regional
analysis cycle. The main difference with the global cycle is that boundary conditions
coming from global forecasts are an additional requirement for the regional forecasts.
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Figure 5.3.1: Illustration of the properties of the probability distribution of the
analysis T, given observations 7; and 75, using either the least squares approach or
the Bayesian approach (after Purser, 1984).



T, =Ty, + W(T, — Tp) (5.3.15)

where (T, — T}) is defined as the observational “innovation” , i.e., the new infor-
mation brought by the observation. It is also known as the observational increment
(with respect to the background); W is the optimal weight, given by

-1 _ _ —on—
W =o;(o; + ) =0,%(0;% + 0,27t (5.3.16)
and the analysis error variance is, as before,

o2 = (02 +03)" (5.3.17)

a

The analysis variance can in turn be written as o> = o702/(0; + ¢), or

o} =(1- W)} (5.3.18)

1 parameter

For convenience, we repeat the basic equations of OI, and express in words their
interpretation, which is similar to that for a scalar least square problem from the last
section:

X, =X + W[y, — H(X)] = x, + Wd (5.4.1)
W =BH’ (R + HBH”)™! (5.4.19a)

We will see in Section 5.5 (where we derive the variational approach or 3D-Var) that
the weight matrix (5.4.19) can be written in an alternative equivalent form as

W=3B"'+HR'H HR! (5.4.19b)
(see (5.5.11) in Section 5.5)
P, = (I, — WH)B (5.4.20)

where the subscript # is a reminder that the identity matrix is in the analysis or model
space.

P;! =B +H'R'H (5.4.22)
Equation (5.4.22) says: “The analysis precision, defined as the inverse of the

analysis error covariance, is the sum of the background precision and the
observation precision projected onto the model space.”

Multi-parameter
N= model phase-space dim

P= obs phase-space dim



3DVar and 4DVar

simple presentation
Based on notes by A. Persson and F. Grizzini, ECMWF 2007

Corrected
forecast

Previous
forecast

4.F 12z 157 18z 21z time
L

A

Assimilation window



The analysis, A, defined by least-squares assumption

(Equations from Persson & Grazzini vs. Kalnay)

observation (O) Equivalent to combining (5.3.15) and
background ficld value (F) (5.3.16) in Kalnay (4=T,, F=T,; O=T,):
accuracies G and Op oo
2 2 Ty =05(05 +05)7' T
A4=0-22_p_20 + 05 (05 + 05) 7Ty

cptGy Optoy

Variational form:
From (5.3.12) in Kalnay, where T (=S) is any

For any atmospheric state S, define:
state:

2 2
1| (F-S O-8 _"\2
J(S) — z{( 02) _|_( 02) :l ](S) — (Tbo-bS) (TOO_ZS)
B O 0

“cost function” J(S)

Find the value of S which minimizes J(S):
0J/S=0for S=A




Generalize to three spatial dimensions and multiple variables.

First: write an alternative formula for J(S) for one variable:

J(S) = [(F )L (F—8)+(0-$HL0- S)J
B (50
Then: Let Y = generalized observation (e.g. an indirect variable);
H(S) = conversion of model state S to generalised obs-variable

J(S) = —[(F $)=(178) + (V= H($)) (¥ - H(S))]

Or (50
Finally: three spatial dimansions and many variables simultaneously
—> Transform to formula for state vectors in phase space.

J() = 5[(F$)B'(F$)+ (Y~ H($))R"(Y - H(S))]

where: Y, F, S and H(S) are vectors; B and R are error covariance matrices

Minimize J =2 3DVar solution




In 3DVar:
Observations taken over the assimilation window
are implemented at the analysis time in the midde of the window

Background
: : ’' forecast
i 1 |
I o I iy I:.; 0D, ™ = ﬁ.
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[ T 1 @ I -
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1 | | |
| 1 | |
1 | | |
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= » - F'
12 UTC 18 UTC 00 UTC 06 UTC 12UTC " ¢

Six-hourly 3D analysis

Thanks to Adrian Simmons ECMWF



Generalization to include time explicitely —=>4DVar
Observations are used at the times they are taken

Find a state S ( = A) which developes
from timestep no. 0 to timestep N, and

minimizes.

———

J(S) = %[(Fo—snfml(m—sn) "

9z 12z 15z 18z 21z time

N
> (Y, —HM, &) )OR,(Y,— HM, ) )
=1
M,, = the modelled value at any timelevel n within the assimilation
window from n=0 to N.

The first term: the difference between the first guess and the mitial state
determines only partly the size of .

The second term: the Z—term, sums up all the differences between the evolv-
ing forecast and the #» number of observations of varying kind.



Four Dimensional variational data assimilation

(4D-Var)
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12-hour assimilation window
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Extended and Long Range



MJO: Madden-Julian Oscilation

The largest element of intraseasonal (30-90 day) variability in the tropical atmosphere

is characterized by an eastward progression
of large regions of both enhanced and
suppressed tropical rainfall, observed mainly
over the Indian and Pacific Ocean.

1BAPR2006 - ool
THAY200E H
16MAY2006 - e

1JUN2006 -

16JUN2006 -5

1JUL2006

16JULZ2006

Speculation being researched:

1AUGZ2C06

1BAUG20086

Potential connections between

1SEF2008 MJO and NAO.
i R — And potential source of intraseasonal
205 70E 100E 140E 120w 4w 10w predictability in N-Atlantic and Europe
v 80E 120E 1BOE
time Data updated through 01 Oct 2008

> eastwards

A Hovmoaller diagram of the 5-day running mean of
outgoing longwave radiation showing the MJO. Time
increases from top to bottom in the figure, so contours
that are oriented from upper-left to lower-right represent
movement from west to east.




ENSO:

El Nino, Southern Oscilation

Walker circulation
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Figure 6.7.1: Schematic of
the coupling of the ocean
and atmosphere in the
tropical Pacific: (a) normal
conditions; (b) El Nifio
conditions.
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TAD Maonthly Mean SST (°C) and Winds {m s1)
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NAO Teleconnection pattern

North Atlantic Oscillation
North Atlantic Oscillation Correlation with Precipitation Departures
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Monthly Forecasts, ECMWF

Twice a week (Monday and Thursday at 002),

the coupled model is integrated forward to make a

32 day forecast with 51 different initial conditions,

in order to create a 51-member ensemble.

Full coupling is applied between the ocean and atmosphere from the start of the
forecast (day 0). Initial atmospheric perturbations: as for the medium-range
(EDA+SVs). Initial ocean perturbations: wind stress perturbations are differences
between different wind stress analyses. 5 ocean assimilations (1 control and 4
perturbed) are produced by picking 2 from the set of wind stress perturbations for
each month of data assimilation and add and subtract to the analyzed wind stress.

Because of model errors, a drift occurs in the coupled system. This model drift is
evaluated by integrating the coupled model up to day 46 with 11 different initial
conditions at the same day and month as the real time forecast, but over the past 20
years. This is further extended by using a one-week window about the actual date.
Thus, the climate ensemble is of size 11(ens.memb.) x 20(yearts_,|_)4>%g(dates) = 660.
t
Mgn. , Men, ‘ Men, Mon,

Thurs, Thurs, Thurs, Thurs,, Thurs,,

>

: 11ens.memb.

previous 20yrs with (the same date?k 2dates) = 660



Temp & Prec anom, week 1 & 2

starting from Monday 28. March 2016

ECMWF EPS-Monthly Forecasting System Day 1-7 ECMWF EPS-Monthly Forecasting System Day 1-7
2-meter Temperature anomaly 28-03-2016/TO/03-04-2016 Precipitation anomaly 28-03-2016/TO/03-04-2018
Faorecast start reference is 28-03-2016 Shaded areas significant at 10% level Forecast start reference i 28-03-2016 Shaded areas significant at 109 leve|
ansemble size = 51 climate size = 440 Contours at 1% leval ensemble size = 51 climate size = 440 Contours at 1% keve |

.{fmda‘.—m fE.fE -3 .*3 -1 |_|*1 0 Ll 0.1 .1 3 . 3.6 . 5.10 .> 10dzg .<—snmn.—su —sn.—sn —30.—30 —mU—m uu 0 m.m 30.30 su. 50 su.; a0mm

zoE

‘ ECMWF EPS-Monthly Forecasting System Day 8-14
ECMWF EPS-Monthly Forecasting System Day 8-14 Precipitation anomaly 04-04-2016/TO/10-04-2016
2-meter Temperature anomaly 04-04-2016/TO/10-04-2016 Farecast star refe rence is 25032016 Shaded areas signiticant a1 109 leve|
Forecast start reference i 28-03-2016 Shaded areas significant at 107% level ensemble size = 51 climate sze = 440 Contours at 1% leve |

encemble size = 51 climate size = 440 Contours at 1% leval
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Temp & Prec anom, week 3 & 4

starting from Monday 28. March 2016

ECMWF EPS-Monthly Forecasting System Day 15-21 ECMWF EPS-Monthly Forecasting System Day 15-21
2-meter Temperature anomaly 11-04-2016/TO/M 7-04-2016 Precipitation anomaly 11-04-2016/TQ/17-04-2016
Farecast start relarencs i 26-03-2016 Shaded areas significant at 1074 leval Forecast start reference is 28-03-2018 Shaded amas significant at 10% level
ensemble sze = 51 climate size = $40 Gontours at 1% level ensemble size = 51 climate size = 440 Contours at 1% level
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ECMWF EPS-Monthly Forecasting System Day 22-28 ECMWF EPS-Monthly Forecasting System Day 22-28
2-meter Temperature anomaly 18-04-2016/T0/24-04-2016 Precipitation anomaly 18-04-2016/TO/24-04-2018
Forecas! start refe ence is 26-03-2016 Shaded amas significant at 10% leval Forecast start reference i 25-03-2016 Shaded areas significant at 10% level
enzsmhle size = 51 climats sizs = 440 Gantours at 1% level enzemble size = 51 climate size = 440 Gantours at 1% level
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Z 500 anom, week 1, 2,3 &4

Weekly-mean 500hPa geopotential anomaly for the ensemble mean.

Contour intervals of 2dam (zero line not shown).
starting from 28. March 2016

Day 1-7: Mon 20160328- Sun 20160403 Day 8-14: Mon 20160404~ Sun 20160410




The plumes show the daily evolution of the ensemble forecast distribution,
binned in 12.5% intervals (shading) together with the median (solid line).

ECMWEF Ensemble forecasts for NORWAY - OSLO .
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Seasonal Forecasts, ECMWF

The seasonal forecasts consist of a 51 member ensemble using a coarser-
resolution version of the atmospheric model. The ensemble is constructed by
combining the 5-member ensemble ocean analysis with SST perturbations
and the activation of stochastic physics.

The forecasts have an initial date of the 1st of each month, and run for 7
months. Forecast data and products are released at 12Z UTC on a specific day of
the month. For System 4, this is the 7th.

Model-climate for bias-correction & anomaly-evaluation

A set of re-forecasts are made starting on the 1st of every month for the years
1981-2010. They are identical to the real-time forecasts in every way, except that
the individual date ensemble size is only 15 rather than 51.

The total re-forecast ensemble size is thus: 15x30 = 450.

An annual-range (13 months) forecast is made four times per year, with start
dates the 1st February, 1st May, 1st August and 1st November, run as an
extension of the seasonal forecasts, and are made using the same model but with a
smaller ensemble size. Both re-forecasts and real-time forecasts and have an
ensemble size of 15.

The annual range forecasts are designed primarily to give an outlook for El Nino.
They have an experimental rather than operational status.



Nino_ 3-4 Plumes
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The limits of the purple/grey whiskers and yellow NAO
band correspond to the 5th and 95th percentiles, North Atiatic Oscillation

Forecast initial date: 2016 301

those of the purple/grey box and orange band to Ensamble size: Forecaste51 Madel climatestS0 Analysia ciimates0

the lower and upper tercile, while the median is o
represented by the line within the purple/grey box
and orange band. 2 +F+,+++
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precip. anomalies {mm/day) latitude= 65.0 fo 50.0 longitude= -100to 30.0 2m temp. anomalies (K) latitude= 65.0to 50.0 longitude= -10.0to 30.0
Forecast initial date: 2016 301 Forecast initial date: 2016 301
Ensemble size: Forecast=51 Model elimate=450 Analysis climate=30 Ensemble size: Forecast=51 Model climate=450 Analysis climate=30
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Prob relative to upper and lower terciles, JJA 2016
T2m and Precip

ECMWF Seasonal Forecast System 4
Prob(2m temperature < lower tercile) JJA 2016
Forecast start reference is 01/03/15
Ensemble size =51, climate size - 450

Moo |10.20% 20..40% .50 []s.ecw [llec.ioe [llTo.00%

ECMWF Seasonal Forecast System 4
Prob(2m temperature > upper tercile) JJA 2016
Forecast start relerence is 01/03/16
Enssmble size - 51, climate size - 450
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ECMWF Seasonal Forecast System 4
Prob(precipitation > upper tercile) JJA 2016
Forecast start reference is 01/02/16
Ensemble size - 51, climale size - 450

| [RI:A 10,207 20..40% ao.sow  []so.ecw [lleo.7ox [ll70.100%

Prec
>upper

ECMWF Seasonal Forecast System 4
Prob(precipitation < lower tercile) JJA 2016
Forecast start reference is 01/02/16
Ensemble size - 51, climate size - 450
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From Predictions to Projections

(Decadal Climate Predictions)



Fractional uncertainty

Daily Weather

Seasonal to ~1 Year

Decadal Multi-Decadal to Century

Forecasts Qutlooks Predictions Climate Change Projections
] ] ’
2 . time scale
Initial Value : :
Problem 5 -
(] ]
' []
i F Farced Boundary
[ 1 Condition Problem
1 1

Fic. 2. Schematicillustrating progression from initial value problemswith daily
weather forecasts at one end, and multidecadal to century projections as a
forced boundary condition problem at the other, with seasonal and decadal
prediction in between.

Global, decadal mean surface air temperature
" i i i i i i " i " i i

=2
=]
L

=
o
L

=2
i

0.2 1

Total

Scenario

Model

Internal variability

40

60

80

Lead time [years from 2000]

10C

D — - —— == m - o mmmmmeem o memmmemmmmmn mmmem e —o o o - ———— -

from uncertainties in the forced response, and also
from unpredictable aspects of internal variability, on
those time and space scales (Barnett et al. 2008). On
continental scales, the observed response to external

FiG. 3. The relative importance of different sources of
uncertainty in IPCC GCM projections of decadal-mean
global-mean surface air temperature in the twenty-
first century is shown by the fractional uncertainty
(i.e., the prediction uncertainy divided by the expected
mean change, relative to the [971-2000 mean). Model
uncertainty is the dominant source of uncertainty for
lead times up to 50 yr, with internal variability being
important for the first decade or so. 5cenario uncer-
tainty becomesimportant at multidecadal lead times
{from Hawkins and Sutton 2009a).



T T T T T T Fic. I. Global mean, annual mean,

| —B1

surface air temperature predic-

3.5 —AI1B tions from |5 different global cli-
i :flizstﬂrical mate models under three different

3r e {0 e e emission scenarios from 2000 to
i LA 2100 (thin lines): SRES A2 (red),

25k ,L_'!'_Z-:..-.'-_-' 'Y AlB (green), and Bl (blue), desig-
! i A b nated as high-, medium-, and low-

at (i rﬁﬁ;ll'w*" !_':1.._-; :,._ emissions paths, respectively. The
i aves by - __F, iy same models forced with historical

i A forcings are shown as the thin gray

1.5
! lines, and the observed global mean

temperatures from 1950 to 2007
(Brohan et al. 2006) are shown as
the thick black line. The multimodel
mean for each emissions scenario
is shown with thick colored lines
demonstrating how uncertainty
A ! ) ) . ) . in future emissions gives rise to
1960 1980 2000 2020 2040 2060 2080 2100 uncertainty in climate predictions.

Year The different scenarios give nearly
identical predictions until around 20215, demonstrating the delayed effect of future emissions. Each model has
a different response to climate forcings, as seen by the spread in results for one particular scenario (or color).
The internal (interannual) variability can be seen superimposed on the trend for any one individual prediction.
All temperatures are shown as anomalies from the 1971-2000 mean.

Projected change in global mean temperature [K]




B1: 2011-2030

-4-3.5-3-2.5-2-1.5-1-050 051152253354 (C)
Fic. |. Near-term surface air temperature anomalies
from CMIP3 multimodel projections, 2011-30 minus
1980-99 (°C), for the (top) low, (middle) medium,
and (bottom) high emission scenarios from IPCC AR4
(Figure: from Climate change 2007: The Physical Science
Basis. Working Group | Contribution to the Fourth
Assessment Report of the Intergovernmental Panel
on Climate Change, Fig. 10.8, Cambridge University
Press).



a) NOAA sea surface temperature
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Pacific decadal potential predictability
Linked to solar forcing periodicity

FiG. 5. (a) The average anomalies of sea surface tem-
peraturein || solar peak years (°C), computed relative
to all other years, Dec—Feb, from the NOAA Extended
Reconstructed 5ea Surface Temperature dataset; (b)
the average tropical rainfall anomalies [Global Precipi-
tation Climatology Project (GPCP) gridded precipita-
tion dataset] in the solar peak years startingin the late
1970s (mm day™'), Jan—-Feb, in comparison to all other
years, Dashed line is the § mm day ™' contour from the
long-term mean climatology; (c) same as (a), but for the
average anomalies of sealevel pressure (Hadley Centre
sea level pressure dataset)in || solar peaks{hPa), Dec—
Feb. Shading indicates significance at or above the 95%
level,indicating the relative magnitude of the anomalies
compared to the noise (Meehl et al, 2008).



Pacific decadal potential predictability
Linked to internal variability (PDO / IPO)
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FiG. 6. (a) The second EQF (the first EQF
is the trend) of |13-yr low-pass-filtered non-
detrended observed 55Ts for the period of
1890-2006, (b) PC time series for second
EQF, (c) the first EOF of |3-yr low-pass-
filtered 55Ts from a 300-yr period of an
unforced model control run {Meehl et al.
2009a). Units for panels (a) and (c) are arbi-
trary, PC time seriesisin °C.

Colman 2006). The PDO and IPO are usually
characterized by a low-pass-filtered SS§T EOF

nattern that has an “El Nifin-like” character.
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AMO: Atlantic Multidecadal Oscilation
Potential decadal predictability?

Schlesinger, M. E. (1994). "An oscillation in the global climate
system of period 65-70 years". Nature 367 (6465): 723—726.
Atlantic Multidecadal Oscillation doi:10.1038/367723a0
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Monthly valuss for the AMO Index, 1856 -2013
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The number of tropical storms that can mature into severe hurricanes is much greater during
warm phases of the AMO than during cool phases, at least twice as many. (Re.: NOAA)

The hurricane activity index is highly correlated with the Atlantic multi-decadal oscillation. The
AMO alternately obscures and exaggerates the global increase in temperatures due to human-

induced global warming. Chylek, P. & Lesins, G. (2008). "Multidecadal variability of Atlantic hurricane activity: 1851—
2007". Journal of Geophysical Research 113: D22106. doi:10.1029/2008JD010036

The recent AMO increased the average number of Atlantic hurricanes and named
storms from 6 to 12, when it began in 1995. This phase may have ended in 2012.



North Atlantic Ocean sensitivity to initial perturbations

Integrated Temperature Integrated Salinity

Fic. 7. An optimal perturbation for the Atlantic domain from the HadCM3
maodel, using a linear inverse modeling approach (from Hawkins and Sutton
2009b). The panels show integrated (left) temperature (in K) and (right) salinity
(in PSU) multiplied by five from the surface to a depth of 1,800 m. The colored
regions indicate where the ocean is sensitive to small anomalies, and are thus
the optimal regions for initial condition perturbations and for targeted observa-
tions to improve forecast skill. The color scale is the same in both panels and is
arbitrary. White regions represent small anomalies of either sign.



(A) Global average surface temperature
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FiG. 8. Decadal prediction examples. Observed and hindcast values of
{a) 10-yr mean global mean surface temperature and (b)an Atlantic
S5T dipole index. The latter is a proxy for MOC fluctations and is
defined as the average SST difference for 60°-10°W, 40°~60° N minus
50°-0°"W, 40°-60°S, Hindcasts begin in 1982 (1955) in Smith et al,
{2007) and Keenlyside et al. {(2008), with a four (three) member
forecast every season (5 yr); shading (error) indicates the ensemble
range. The error bars centered on 2010 represent actual forecasts
for the period of 2005-15. Hindcasts for Smith et al. {2007) and
Keenlyside et al. {2008) are adjusted to have the observed means
over the |979-2001 (1955-2005) period. Note the different axis used
in {b) for Keenlyside et al. {2008). Observations are from HadIS5T
I.I and HadCRU3,

Examples of decadal predictions.

Recent efforts at decadal prediction, with the similar
strategy: Initialize a global climate model from
observations and reanalyses and run it forward 10 yr,
while accounting for changes in external forcing (natural
and anthropogenic).

Smith et al. (2007) showed that global-mean temperature
could be predicted out to a decade in advance (Fig. 8a),
with more skill than obtained when only external radiative
forcing changes are accounted for.

Keenlyside et al. (2008) demonstrated that SST
variations associated with the Atlantic MOC could be
predicted a decade in advance, but because of an overly
strong MOC signal, their strength was overestimated (Fig.
8b). Ten-year averaged global surface temperature
variations were also predictable (Fig. 8a), but with
marginally less skill than that obtained from radiative
forcing only.

In both studies forecasts were made for the next 10 yr
(Fig. 8b), and in both cases natural internal variability
was found to temporarily offset

anthropogenic global warming.

The offset was largest in Keenlyside et al. (2008), whose
results suggest a temporary lull in global warming for the
next decade; however, the simplicity of the scheme
employed needs to be kept in mind. The results of both
studies highlight the impact ofinternal variability.
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FiG. 2. The relative importance of the three sources of
uncertainty changes significantly with region, forecast
lead time, and the amount of any temporal meaning
applied. Main panel: Total variance for the global-
mean, decadal mean surface air temperature predic-
tions, splitinto the three sources of uncer tainty. Insets:
As in the main panel, but only for lead times less than
20 yr for (left) the global mean and (right) a North
American mean. The orange regions represent the
internal variability component. For lead times shor ter
than 5 yr we plot the results using annual mean data
to highlight how the internal variability component is
vastly reduced when considering decadal mean data.
The uncertainty in the regional prediction is larger
than for a global mean.

Global, decadal mean surface air temperature
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Fig. 3. The relative importance of each source of
uncertainty in decadal mean surface air temperature
predictions is shown by the fractional uncertainty
{the 90% confidence level divided by the mean predic-
tion), for the global mean, relative to the warming
since the year 2000 (i.e., a lead of zero years). The
dashed lines indicate reductions in internal variabil-
ity, and hence total uncertainty, that may be pos-
sible through proper initialization of the predictions
through assimilation of ocean observations (Smith
et al. 2007).



a Global, decadal mean surface air temperature b British Isles, decadal mean surface air temperature
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Fic. 4. The relative importance of each source of uncertainty in decadal mean surface temperature projec-
tions is shown by the fractional uncertainty (the 90% confidence level divided by the mean prediction) for (a)
the global mean, relative to the warming from the 1971-2000 mean, and (b) the British Isles mean, relative to
the warming from the 1971-2000 mean. The importance of model uncertainty is clearly visible for all policy-
relevant timescales. Internal variability grows in importance for the smaller region. Scenario uncertainty
only becomes important at multidecadal lead times. The dashed lines in (a) indicate reductions in internal
variability, and hence total uncertainty, that may be possible through proper initialization of the predictions
through assimilation of ocean observations (Smith et al. 2007). The fraction of total variance in decadal mean
surface air temperature predictions explained by the three components of total uncertainty is shown for (¢) a
global mean and (d) a British Isles mean. Green regions represent scenario uncertainty, blue regions represent
model uncertainty, and orange regions represent the internal variability component. As the size of the region
is reduced, the relative importance of internal variability increases.
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Fic. 5. (a) Signal-to-noise ratio for decadal mean surface air temperature predictions for different regions
as labeled (90% confidence levels). The time of the highest S/N is when climate forecasts give most “added
value,” and this varies with the region as shown. Smaller regions generally have lower signal-to-noise ratios, but
Africa does better than a global mean due to its location in the tropics where model uncertainty and internal
variability are smaller than average. Greenland has a particularly low signal-to-noise ratio due to uncertainty
in high-latitude climate feedbacks. (b) Maps of S/N indicate which regions have more confident predictions.
This example shows this ratio for predictions of the fourth decade ahead (90% confidence levels). The tropical
regions stand out as having high S/N, whereas Atlantic longitudes have reduced S/N values, perhaps due to
uncertainty in the response of the Atlantic Ocean thermohaline circulation to radiative forcings.
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FiG. 6. Maps of the sources of uncertainty for decadal mean surface temperature for various lead times give
information on where any reduction in uncertainty will have the most benefit. The columns show the total
variance explained by (left) internal variability, {(middle) model uncertainty, and (right) scenario uncertainty
for predictions of the {top) first, (middle) fourth, and {(bottom) ninth decade. It should be noted that (i) even
on regional scales, the uncertainty due to internal variability is only a significant component for lead times up
to a decade or two, (ii) the largest differences between models occur at high latitudes where climate feedbacks
are particularly important, and (iii) even by the end of the century, the emissions scenario is less important
than model uncertainty for the high latitudes but dominates in the tropics.



Met Office

Latest Decadal
Forecast: 2014-2018

NB: Produced in January 2014

The forecast being described here is from the experimental decadal prediction system
using the latest Met Office climate model, HadGEM3, developed as part of the Hadley
Centre Climate Programme. This system is at the cutting edge of research in understanding,
simulating and predicting decadal variability.

It is only feasible to run the forecast out for the next 5 years.

Furthermore, the number of ensemble members (10) is substantially less than that used in
the Met Office seasonal forecasting system (42). For these reasons the following results
should not be over-interpreted.

The decadal forecast produced in January 2014, for the 5-year period 2014-2018, is
shown in Figure 1 as the set of dark blue lines, each representing an individual forecast from
the 10-member ensemble. For comparison last year’s forecast (from January 2012) is shown
in light blue lines.

The baseline 30-year mean climatology against which the forecast anomalies have been
expressed, is1981-2010, in line with WMO recommendations and other forecast products.



Global annual temperature
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Figure 1: Global annual temperature record since 1960 and the latest ensemble of forecasts from the Met
Office decadal prediction system produced in January 2014. The dark blue lines show the evolution of the 10
individual forecasts from this year’s forecast starting from November 2013 and the pale blue lines the
equivalent for last year’s forecast. All data are rolling annual mean values.

The gap between the black curves and blue curves arises because the last observed value

represents the period November 2012 to October 2013 whereas the first forecast period is November 2013 to
October 2014.

The thin black curves show the observed annual-mean time-series from 3 independent datasets. Previous
predictions starting from November 1960, 1965,..., 2005 are shown in red, and 22 Coupled Model
Intercomparison Project phase 5 (CMIP5) model simulations that have not been initialized with observations
are shown in green. In both cases, the shading represents the probable range, such that the observations
are expected to lie within the shading 90% of the time.

All temperatures are represented as anomalies from the 1981-2010 mean.



Decadal forecast; Forecast issued in January 2016.

*Averaged over the five-year period 2016-2020,
*enhanced warming over land, and at high northern latitudes; Met Office
*some indication of continued cool conditions in the Southern Ocean,
srelatively cool conditions in the North Atlantic sub-polar gyre.
*global average temperature is expected to remain high;
Likely between 0.28°C and 0.77°C above the (1981-2010) average.
*(an anomaly of +0.44 £ 0.1 °C observed in 2015)
sconsistent with high levels of greenhouse gases and big changes currently underway in the climate system

Global annual temperature

] Observed (black, from Met Office Hadley Centre, GISS and NCDC) and

i 41 predicted (blue) from November 2015 global average
0'5_ . AL 40 1 annual surface temperature difference relative to 1981-
2010. Previous predictions starting from November

1 1960, 1965, ..., 2005 in red, and 22 simulations from
1 CMIPS in green.

1@%0 Observations are expected to lie within the shading
o 90% of the time. Moving 12-month mean values.
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Big Changes Underway in the Climate System?

PDO Index, 1870-2015

~
)

Met Ofﬁce | ‘\¥: LA\ /—‘/\\ \\.\\ ) - \ A

Index
o

A~
I/
=3

)

<

o~
o

=0

=3 3900 1920 1940 1960 1980 2000

Pacific Decadal Oscillation. Three-month averages of the monthly PDO index of Zhang et al. (1997) from
1900 to 2015. The same series after smoothing to retain decadal and longer variations is overlaid. The pair
of curves at each end illustrate large uncertainty due to lack of data before and after the series.

The current developments in the worldwide pattern of sea surface temperatures are consistent with an
emerging positive shift in the PDO, but it is too early to be confident that this will outlast the current EI Nifio.

AMO Index (20°-70°W, 10°-60°N), 1870-2015
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Atlantic Multidecadal Oscillation. Values are annual average, area average North Atlantic sea surface
temperature with the long-term linear warming trend removed (°C), derived from the HadSST3 dataset
(Kennedy et al., 2011a,b). The spread of values is a measure of the uncertainty arising from sampling and
measurement errors. The solid lines show the low frequency AMO component.
The current trends suggest that the chances of a shift in the next few years have increased. However, it is
not certain that there will be a shift towards cooler Atlantic conditions over the next few years. Temporary cooling

has occurred in the past without leading to a sustained AMO shift.



Climate projections



Procedures for Climate projections

CMIP: Coupled Model Intercomparison Project (WMO-activity)

CMIPS - production for IPCC AR5 (2013)
CMIP6 - production for IPCC ARG (ongoing, scheduled for 2022)

Purpose:

Calculate all possible states that can be realized in the climate system

for a predefined set of externally defined governing conditions.
|.e.: a prediction of the second kind, for which the actual intial state is irrelevant

MIPs = more than
20 projects with specified
purpose experiments

\‘ Clouds /
emistry/  Circulation  QOcean/Land/
Aerosols g %\

i ¢ Short term

hhala:ten’:ing y
2 hindeasts

forcing

Palea
climate

Carbon
cycle

Scenarios

-
Regional climate /
Extremes

Land use Goo-
engineering

Meafe: The thewes i the outer circle ofthe figwre & ight be
shightly revized 3t the end ofthe WP endorser ent pmooess

Pecadal
prediction

Qualifying a model for CMIP6 participation:
CMIP DECK and CMIP6 Historical Simulation

DECK (entry card for CMIP)
(Diagnostic, Evaluation and Characterization of Klima)

i. AMIP simulation (~1979-2014) (pure Atmospheric Model)
ii. Pre-industrial control simulation (1850 conditions)
iii. 1%/yr CO2 increase until 4 times CO2 at 1850, then kept constant)

iv. Abrupt 4xCO2 run (4 times CO2 at 1850=

CMIP6-Hist: Historical Simulation: entry card for CMIP6
v. Historical simulation using re-constructed forcing for (1850-2014)

MIPs: Model Intercomparison Projecys designed for specific
purposes

A wide range of process-experimental runs, diagnostic attribution runs,
and climate projection runs, including detection and attributuin and
future projections based on scenarioes. Also paleoclimate runs and
decadal prediction runs are included as MIPs.



A simplified description of basic procedures for climate projections

Stepwise procedure:
Start from a state of the climate system as close as possible to 1850 conditions
o There are available data from previous model runs, e.g. for CMIP5

Provide boundary data as close as possible to 1850 conditions
o land-surface, solar activity, atmospheric composition, earth’s orbit etc.

Start a multi-century spin-up run: run the model to achieve an average

energy equilibrium at the top of the atmosphere

and a long-term, stable climate;
o normally several re-starts are needed with parameters adjusted (model tuning)
o up to a few thousand model years may be required to reach a stable equilibrium

PI-Control: after spin-up, run >500 years for pre-industrial (Pl) 1850. (CMIP-DECK)

Historical: At the same time: a historical run from 1850 to present day
with driving external conditions given (CMIP6-Hist);

Ensemble: Several additional historical runs started from indep. states in the PIl-Control.
o Used for model validation

Attribution runs: One selected ensemble member for the historical period is re-run
with single contributions to forcing (aerosols only; GHG only, Natural only)

Future Projections based on scenarioes. Future scenarios for societal development,
energy demand, is used to estimate future development of land-use, GHG-emissions,
and aerosol emissions. Different pathways is estimated to produce a radiative forcing
at the top of the atmosphere; Representative Concentration Pathways (RCP) by 2100
tompared to 1850. The historical runs are extended to 2100 (or 2300) using the RCPs.
RCPn, n=2.6, 4.5, 6.0 or 8.5 W/m=2..



Variations of the Earth's surface temperature for:
(a) the past 140 years
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Plate 4 Variation of the surface temperature over: (a) the last 140 years and (b) the last
millennium. In (a) the red bars represent the annual average for the globe based on
thermometer data, and the whiskers the 95% confidence range, including uncertainties
due to coverage, biases and urbanization. The black line is a 10-year moving average. In
(b) the blue line represents proxy data. Adapted from IPCC (2002).

Observational basis for
a changing climate



Sources of uncertainty in model-calculated climate
projectionsand interpretation of observations

Variations vs. change

Random, natural climate variability ("chaos”)

Uncertain external forcing (natural and anthropogenic)
Uncertain quality of climate models ("known unknowns”)
All other unknown contributions ("unknown unknowns™)

s wh =

Major challenge

1. Climate change implies non-stationary statistics
* time-averages cannot represent the full climate statistics

2. Time-scale of changes ("trends”) overlap with time-scale
of natural climate variability
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Figure TS.20. (Top) Records of Northern Hemisphere temperature variation during the last 1300 years with 12 reconstructions using\
mutiple climate proxy records shown in colour and instrumental records shown in black. (Middle and Bottom) Locations of temperature- -
sensitive proxy records with data back to AD 1000 and AD 1500 (tree rings: brown triangles; boreholes: black circles; ice corelice|
boreholes: blue stars; other records including low-resolution records: purple squares). Data sources are given in Table 6.1, Figure 6.101
and are discussed in Chapter 6. {Fiqures 6.10 and 6.11}



Temperature Anomaly (°C)

Continental air warmes faster than
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Global Land—Ocean Temperature Index

Updated to include 2015 L0
(NASA/N OAA) & —=— Annual Mean

— 5—year Running Mean

"Since 1880, Earth’s average surface
temperature has warmed by about 0.8 Celsius.
The majority of that warming has occurred in
the past three decades.”

“Earth's 2015 surface temperatures were the
warmest since modern record keeping began in

1880"

according to independent analyses by NASA's Goddard Institute
for Space Studies and NOAA's National Centers for

Environmental Information. 1880 1900 1920 1940 1960 1980 2000

Temperature Anomaly (°C)

—4

_ _ Climate Research Unit (CRU), Univ of East-Anglia, UK
The time series shows the

0.8

combined global land and 1 Global air temperature
marine surface temperature __ 969 2015 anomaly +0.75°C
. Q 1
record from 1850 to 2015. This £ ;,] (warmeston record)
>
year was the equal warmeston g o, (The next warmest: 2014 +0.56 C)
. o 2
record. This record = |
uses the latest analysis, referred % ~0.0-
to as HadCRUT. ‘g_o_z_‘
Morice, C.P., Kennedy, J.J., Rayner, N.A. and e 1
Jones, P.D., (2012). Journal of Geophysical ~0-47
Research,117, 0 6_'
D08101,doi:10.1029/2011JD017187 Ik
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2015 was the warmest year since modern record-keeping began in 1880, according to a
new analysis by NASA’s Goddard Institute for Space Studies. The record-breaking
year continues a long-term warming trend — 15 of the 16 warmest years on record have
now occurred since 2001. (credit: NSA/GSFC/Scientific Visualization Studio)

Globally-averaged temperatures in 2015 shattered the previous mark set
in 2014 by 0.23 degrees Fahrenheit (0.13 Celsius). Only once before, in
1998, has the new record been greater than the old record by this much.




Order of annual global mean Ts anomalies
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2015 Versus the Warmest Years
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Monthly (NOAA) global Ts-anomalies (rel.1951-80) during
El Nino, La Nina, ENSO neutral (Nino3.4 index)
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Figure TS.7. Observed surface (D) and upper air temperatures for the lower
troposphere (C), mid- to upper troposphere (B) and lower stratosphere (A),
shown as monthly mean anomalies relative to the period 1979 to 1997
smoothed with a seven-month running mean fifter. Dashed lines indicate
the times of major volcanic eruptions. {Figure 3.17}



Can models explain observed changes since

[
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Figure 9.5. Comparison between global mean suiface temperature anomalies (°C)
from observations {black) and AOGCM simulations forced with (a) both anthrapogenic
and natural foreings and (b) natural forcings only. All data are shown as global

mean temperature anomalies relative fo the period 1901 to 1950, as observed
(black, Hadley Centre/Chimatic Research Unit gndded suiface lemperature data

sef (HadCRUT3); Brohan et al., 2006) and, in (a) as obtained from 58 simulations
produced by 14 models with both anthropogenic and natural forcings. The multi-
mode! ensemble mean is shown as a thick red curve and individual simulafions are
shown as thin yellow curves. Vertical grey ines indicate the timing of major volcanic
ewvents. Those simulations thatended before 2005 were extended to 2005 by using
the first few years of the IPCC Special Report on Emission Scenaros (SRES)A18
scenaro smulations that continued from the respective 20th-century simulations,
where avallable. The simulated global mean temperature anomakes in (b) are from
19 simulations produced by five models with natural forcings only. The multi-model
ensemble mean is shown as a thick blue curve and individual simulations are shown
as thin blve curves. Simulations are selected that do notexhibit excessive driff in
their control simulations (no more than 0.2°C per century). Each sSmulation was
sampled so that coverage comesponds fo that of the observations. Further details of
the models included and the methodelogy for producing this figure are given in the
Supplementary Matenal, Appendix 9.C. After Stottetal (2006b).



Can models explain observed changes since
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Climate development in the 21st century?
Projection of surface air femperature ircc
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Figure SPM.6. Projected surface temperature changes for the early and late 21st century relative to the period 1980-1999. The central
and right panels show the AOGCM multi-model average projections for the B1 (top), A1B (middle) and A2 (bottorn) SRES scenarios
averaged over the decades 2020- 2028 (centre) and 2090-2099 (right). The left panels show corresponding uncertainties as the relative
orobabilities of estimated global average warming from several different AOGCM and Earth Systern Model of Intermediate Complexity
studies for the same periods. Some studies present results only for a subset of the SRES scenarios, or for various model versions.
Therefore the difference in the number of curves shown in the left-hand panels is due only to differences in the availability of results.
{Figures 10.8 and 10.28}



Climate development in the 21st century?
Projection of precipitation change ircc
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Figure SPM.7. Relative changes in precipitation (in percent) for the period 2090-2099, relative to 1980-1999. Values are multi-model
averages based on the SRES A1B scenario for December to February (left) and June to August (right). White areas are where less than
66% of the models agree in the sign of the change and stippled areas are where more than 90% of the models agree in the sign of the
change. {Figure 10.9}



Climate change and prefered regimes
Lorenz’ 3-parameter model

Figure 1 Response of a nonlinear chaotic model to imposed forcing. lllustrated is

s0-Singular Values, T=60dt, Lorenz, f=4.5
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forcing - response

Example:
Amplification of Arctic warming
by past air pollution reductions

in Europe
JC. Acosta Navarro, V. Varma, |. Riipinen, Q.
E= 2 04 s s g e o | Seland, A. Kirkevag, H. Struthers,T. Iversen, H-C.
; . Hansson, A. Ekman

Nature Geosciences, March 15th, 2016.
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Regional change in temperature
when AT, =+2" C

Notice the much larger temperature increase in the Arctic

(° C, RCP8.5)
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Helge Drange, UiB:



Estimated probability for global Ts-decrease over 10
years, from 17 global climate models
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Verifying probabilistic forecasts



Renate Hagedorn

t‘ Objective of diagnostic/verification tools

Assessing the goodness of a forecast system involves
determining skill and value of forecasts

A forecast has skill if it predicts the
observed conditions well according
to some objective or subjective
criteria.

A forecast has value if it helps the
user to make better decisions
than without knowledge of the
forecast.

e Forecasts with poor skill can be valuable (e.g. location mismatch)
e Forecasts with high skill can be of little value {e.g. blue sky desert)

Training Course 2007 - MWP-PR: Ersembik Ferffcaton




e Characteristics of a forecast system:

» Consistency*: Do the observations statistically belong to the
distributions of the forecast ensembles? (consistent degree of
ensemble dispersion)

» Reliability: Can I trust the probabilities to mean what they say?

» Sharpness: How much do the forecasts differ from the
climatological mean probabilities of the event?

* Resolution: How much do the forecasts differ from the
climatological mean probabilities of the event, and the systems
gets it right?

» Skill: Are the forecasts better than my reference system (chance,
climatology, persistence,...)?

* Mote that terms like consistency, reliability etc, are not always well defined in verification
theory and can be used with different meanings in other contexts



e Characteristics of a forecast system:

» Consistency: Do the observations statistically belong to the
" REank distributions of the forecast ensembles? (consistent degree of
15tograMansemble dispersion)

> Reliability: Can I trust the probabilities to mean what they say?

» Sharpness; How much do the forecasts differ from the
climatological mean probabilities of the event?

,—’k

# Resolution: How much do the forecasts differ from the
climatological mean probabilities of the even, and the systems
__ gets it right?

# SKill: Are the forecasts better than my reference system (chance,
Brier climatology, persistence,...)?
Skill Score

Reliability Diagram



(‘ Rank Histogram

Froction

e Rank Histograms asses whether the ensemble spread is
consistent with the assumption that the observations are
statistically just another member of the forecast
distribution

» Check whether observations are equally distributed amongst
predicted ensemble

# Sort ensemble members in increasing order and determine where
the observation lies with respect to the ensemble members

Rank 1 case Rank 4 case
Temperature -> Temperature ->
QK High Bias Too Little Spread
G_Jﬁf ] 0.35 .35 ]
©.30 F 1 .30 F . 0.30 | .
-;;-.z:m;— 1 0.25 0.25
'—'-2'-'_: & 0.20F 15 o.zof 3
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Rank Rank Rank
DOBS is indistinguishable OB S is too often below OB S is too often outside

from any other the ensemble members the ensemble spread
ensemble member (biased forecast)



* Reliability

e A forecast system is reliable if:
» statistically the predicted probabilities agree with the
observed frequencies, i.e.

» taking all cases in which the event is predicted to occur with
a probability of x%, that event should occur exactly in x%
of these cases; not more and not less.

o A reliability diagram displays whether a forecast system is
reliable (unbiased) or produces over-confident / under-
confident probability forecasts

o A reliability diagram also gives information on the resolution
(and sharpness) of a forecast system

Forecast PDF
Climatological PDF




(‘ Reliability Diagram
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(‘ Brier Score

+ The Brier score is a measure of the accuracy of probability forecasts

e Considering N forecast — observation pairs the BS is defined as:

1 & 2
BS:EE(})H—OH)

with p: forecast probability (fraction of members predicting event)
o: observed outcome (1 if event occurs; O if event does not occur)

+ BS varies from 0 {perfect deterministic forecasts) to 1 (perfectly wrong!)

¢ BS corresponds to RMS error for deterministic forecasts

(‘ Brier Skill Score

¢ Skill scores are used to compare the performance of forecasts with that
of a reference forecast such as climatology or persistence

e Constructed so that perfect FC takes value 1 and reference FC = 0

score of current FC - score for ref FC
score for perfect FC - score for ref FC

Skill score =

BSS =1- =

I

» positive (negative) BSS » better {worse) than reference



t‘ Components of the Brier Score

N = total number of cases

I = number of probability bins

#, = number of cases in probability bin i

. = forecast probability in probability bin I

o, = frequency of event being observed when forecasted with £
¢ = frequency of event being observed in whole sample

fi

» Reliability: forecast probability vs. observed relative frequencies
» Resolution: ability to issue reliable forecasts close to 0% or 100%

variance of observations frequency in sample

Brier Score = Reliability - Resolution + Uncertainty

(‘ Reliability diagram

[ Reliability score {the smaller, the better)
[ ] Resolution score {the bigger, the better)

Reliability Diagram

Reliability Diagram
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L 02 04 06
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04 06
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(‘ Ranked Probability Score

F(y)
1
f(y)
[T [T
] [
o )
category
1
RPS = —lz (CDFy.,, —CDF . )
k=l

category

+ Measures the quadratic distance between forecast and verification
probabilities for several probability categories k

e Emphasizes accuracy by penalizing large errors more than “near misses”
¢ Rewards sharp forecast if it is accurate

» It is the average Brier score across the ra nge of the variable
RPS =—— ZBS

* Ranked Probability Skill Score (RPSS) is a measure for skill relative to a
reference forecast
RPS

REPS

[

RPSS =1-




{“ Benefits for different users - decision making

e A user (or “decision maker”) is sensitive to a specific weather event

e The user has a choice of two actions:

» do nothing and risk a potential loss L if weather event occurs
> take preventative action at a cost C to protect against loss L

e Decision-making depends on available information:

» no FC information: either always take action or never take action

» deterministic FC: act when adverse weather predicted

» probability FC: act when probability of specific event exceeds a
certain threshold (this threshold depends on the user)

e Value V of a forecast:

» savings made by using the forecast, normalized so that
= V = 1 for perfect forecast
= VV = 0 for forecast not better than climatology

Ref: D. Richardson, 2000, QJRMS

Training Course 2007 - NWP-PR: Ensemble Verification
2N/2A4A



{" Decision making: the cost-loss model

Potential costs

Event occurs

Yes No
Action | Ye€s C C
taken No L 0

 Climate information — expense:

* Perfect forecast — expense:

 Always use forecast — expense:

* Value:

Training
2NnaA/2A

V=

Fraction of Event occurs
occurences Yes NoO
Event Yes a b
forecast No C d
0 1-0
E.=min( C,oL)
E,=0C

E.=aC+bC+cL

saving from usmg forecast E.-E,

Course

2007

NWP-PR:

saving from perfect forecast E.-E,

Ensemble

Verification



{" Decision making: the cost-loss model

saving from usmg forecast E.-E,

V=" —
saving from perfect forecast E.-FE,
~ mm( C,oL)-(aC+bC+cL)
min( C,oL)-0C with: o = C/L
. _ _ _ H = a/(a+c)
:mln( a,O)-F(l-O)Ot-I—Ha(l-Ol)—O F = b/(b+d)
min( &,0)- 00 0 =atc
Northern Extra-Tropics (winter 01/02)
e For given weather event and __ D+5 deterministic FC > 1mm precip
FC system: 6, H and F are fixed s
e value depends on C/L AN
e max if: C/L = © ® 02 /N
V= HF N

Training Course 2007 - NWP-PR: Ensemble Verification
2NE/2A



{" Potential economic value

Northern Extra-Tropics (winter 01/02) D+5 FC > 1mm precipitation

" deterministic 06 ENS
p=02 p=05 p=0.8

05 0.5

e HEZAN
; / N\ RN
/ \ L N NN

0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
C/L C/L

value

0.6
0.5 1 /\
0.4 7N\

-/ / NN

0 0.2 0.4

Training Course 2007 CiL
2NA/DA

ENS: when each user chooses
the most appropriate probability threshold

value




Brier Skill Score, Europe
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Brier Skill Score, +96h, starting from 1995.
Against Analyses and observations in Europe
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Brier Skill Score, against analyses and

observations in Europe. Wind speed, 10m.
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The forecast length (days) when CRPSS
reaches smaller values than a given threshold for

24h precip and T 850hPa for NH and Europe
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Reliability-diagram and forecast sharpness,
winter 2015
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Reliability-diagram and forecast sharpness,
winter 2015

+96h ,

.......................

] ﬂ I +240h

+144h |




Expected Value of + 144h forecasts of 24h
precipitation in Europe with user’s c/L.
Winter 2015
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