

Schedule, Spring 2018

Week #	Monday (exercises)	Wednesday (lectures)
3	(15/1) No class	(17/1) Introduction and descriptive overview of clouds (Ch. 1)
	(22/1) No class	(24/1) Thermodynamics (Ch. 2.1 - 2.3)
5	(29/1) Thermodynamics exercises	(31/1) No class
6	(5/2) No class	(7/2) Thermodynamics (Ch. 2.4 - 2.5)
7	(12/2) Thermodynamics exercises	(14/2) Stability & convection (Ch. 3.1.5, 3.2, 3.3 and 4.2)
8	(19/2) Stability/convection exercises	(21/2) Atmospheric aerosols (Ch. 5)
9	(26/2) Aerosols exercises	(28/2) No class
10	(5/3) No class	(7/3) Droplet formation (Ch. 6)
11	(12/3) Droplet formation exercises	(14/3) Warm cloud microphysics (Ch. 7)
12	(19/3) Warm cloud microphysics exercises	(21/3) No class
12	Friday 23/3 Mid-term exam (NOTE: extra Q&A class will be scheduled this week)	
13	(26/3) No class (Påske)	(28/3) No class (Påske)
14	(2/4) No class (Páske)	(4/4) Ice nucleation (Ch. 8.1 and 8.2)
15	(9/4) No class (EGU)	(11/4) No class (EGU)
16	(16/4) Ice nucleation exercises	(18/4) Cold cloud microphysics (Ch. 8.3 - 8.5)
17	(23/4) Cold cloud microphysics exercises	(25/4) Precipitation/radar (Ch. 9.1 - 9.4)
18	(30/4) No class	(2/5) Aerosol/cloud radiative effects (Ch. 11)
19	(7/5) Precip./radar + radiative eff. exercises	(9/5) Aerosol-cloud interactions (Ch. 12.1 and 12.2)
20	(14/5) Aerosol/cloud interaction exercises	(16/5) Cloud/climate feedbacks (Ch. 12.3)
21 22	(21/5) No class (Pirse) Exam week of May 28 - Jun 2	(23/5) Climate engineering (Ch. 12.4)

Overview of cloud types

Cumulus = heap-like or cauliflower-like, usually associated with strong vertical motion (instability), vertical extent often larger than horizontal extent. Cloud lifetimes relatively short.
 Stratus = layered/flat clouds, usually connected to weaker & large-scale vertical motion, large horizontal extent. Longer cloud lifetimes.
 Cirrus = fibrous/wispy-looking clouds, generally high, always consist of ice.

Cloud droplets vs. ice crystals

- Cloud droplets
 Ice crystals

 • Typical size (radius) 2 -25 μm
 • Typical size (length) 1 1500 μm
- Typical size (radius) 2 25 µm
 Typical size (radius) 2 25 µm
 Typical size (radius) 2 25 µm
 Typical size (rength) 1 1500 µm
 Typical number concentrations 10⁴ 10 cm-3
 Typical liquid water contents:
 Typical size (rength) 1 1500 µm
 Typical s

Clean vs. polluted clouds

Figure shows cloud droplet (N_c) and drizzle drop (N_d) size distributions for clean clouds (diamonds) and polluted clouds (asterisks).
 The size distributions tend to resemble gamma distributions.
 Polluted clouds have more/smaller cloud droplets, but fewer drizzle drops.