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1 General dynamics

The motion in the atmosphere and ocean is governed by a sefuaf e
tions, known as th&lavier-Stokegquations. These equations are used to
produce our forecasts, for the weather and also for oceaerdsr While
there are details about these equations which are uncéftaiaxample,
how we parametrize processes smaller than the grid sizeeahtidels),
they are for the most part accepted as fact. Let’s considerthese equa-

tions come about.

1.1 Derivatives

A fundamental aspect is how various fields (temperaturedwiensity)
change in time and space. Thus we must first specify how todekeat-
ives.

Consider a scalarp, which varies in both time and space, i.¢. =
Y(x,y, z,t). This could be the wind speed in the east-west direction, or
the ocean density. By the chain rule, the total change intise

0 0 0 0
_ — - - _ 1
dyp 8twdt+ 6wwdx+ aylpaly—l- 62:de (1)
o
dy 0 B ) o 0.
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where(u, v, w) the components of the velocity in the, y, z) directions.
On the left side, the derivative is a total derivative. Tmapiies that) on
the left side is only a function of time. This the case whers observed

following the flow For instance, if you measure temperature in a balloon,
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moving with the winds, you only see changes in time. We cadl the
Lagrangianformulation. The derivatives on the right side though are pa
tial derivatives. These are relevant for an observerfated location This
person records temperature as a function of time, but hernrdtion also
depends on her position. An observer at a different locatitirgenerally
have a different records (depending on how far away she i) c&ll the
right side theEulerianformulation.

1.2 Continuity equation
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Figure 1: A infinitesimal element of fluid, with volun@’.

Consider a box fixed in space, with fluid (either wind or waféing
through it. The flux of density through the left side is:

(pu) 0y o= (3)

Using a Taylor expansion, we can write the flux through thbetrgyde as:

[pu + %(pum] 6y 0z (4)

If these density fluxes differ, then the box’s mass will chanbhe net rate

of change in mass is:



0 0 0
&M = a(p dx dydz) = (pu) dydz — [pu + %(pu)&c] 0y oz
= —g( u)ox oy oz (5)

The volume of the box is constant, so:

0 0
57 = "5, U (6)

Taking into account all the other sides of the box we have:

%) %) 0 9
9= s 5 ) = Gl ==V i) (D)

We can rewrite the RHS as follows:

V-(pu) =pV-u+1u-Vp (8)

Thus the continuity equation can also be written:

atJrV-(pu)—atJru Vop+p(V- i) =
@+(VAVW (9)
at YT

The first version of the equation is its Eulerian form. It stathat the
density at a location changes if there is a divergence in theifito/out
of the region. The last version is the Lagrangian form. Thigsghat the
density of a parcel of fluid advected by the flow will changehi flow is
divergent, i.e. if:

Vi 40 (10)



We can also obtain the continuity equation using a Lagran(ji@ov-
ing) box. We assume the box contains a fixed amount of fluidhabit
conserves it mas3/. Then therelativechange of mass is also conserved:

——M=0 (11)
The mass is the density times the volume of the box, so:
1 d ldp 1dV
——(pV)=—F+=—7=0 12
v = ow T va (12)
Expanding the volume term by using the chain rule:

LAV _ 106 106y, 105
Vdt Sxdt Sy dt Sz dt
1 O0xr 1 0y 1 0z Ou Ov Ow

—— 4+ —0—=+ —0—— > — + — + — 1
5$5dt +5y5dt +525dt - 6’x+8y+ 0z (13)
asé — 0. So:
ldp
— U= 14
pdt+v u=20 (14)

which is the same as (9). Again, the density changes in ptiopaio the
velocity divergence; the divergence determines whethermttx shrinks
or grows. If the box expands/shrinks, the density decrdasesases, to

preserve the box’s mass.

1.3 Equations of motion

The continuity equation pertains to mass. Now we consiceflthd velo-
cities. We can derive expressions for these from Newtorterse law:

i=F/m (15)
The forces acting on a fluid parcel (a vanishingly small bar) a
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e pressure gradientslp;:vp
e gravity: g
e friction: F
For a parcel with density, we can write:

d 1 S
—U=—Vp+g+F (16)
dt p

This is themomentum equatigmvritten in its Lagrangian form. Under the
influence of the forcing terms, on the RHS, the air parcel agtielerate.
Actually, this is the momentum equation for a non-rotatiagle. There
are additional acceleration terms which come about dug#&tion. As op-
posed to theeal forces shown in (16), rotation introducagparentforces.
A stationary parcel on the earth will rotate with the plarfé@om the per-
spective of an observer in space, that parcel is traveliegates, complet-
Ing a circuit once a day. Since circular motion representaceleration

(the velocity is changing direction), there is a correspogdorce.

30 oA

Figure 2: The effect of rotation on a vectat, which is otherwise stationary. The vector
rotates through an anglé9, in a timedt.



Consider such a stationary parcel, on a rotating sphere jtgiposition
represented by a vectot, (Fig. 2). During the timegt, the vector rotates

through an angle:

50 = Q6t (17)

where(? is the sphere’s rotation rate. We will assufae= const., which
Is reasonable for the earth on weather time scales. The ehanis / A,

the arc-length:

—,

§A = | Alsin(v)60 = Q|Al|sin(~)dt = (Q x A) bt (18)

So we can write;

| A dA < -
llmgﬂ() E = E =0 x A (19)
If the vector is not stationary but moving in the rotatingifie, one can
show that:
dA dA. L o
— )= (— Qx A

The F here refers to the fixed frame atitito the rotating one. 1A = 7,
the position vector, then:
dr’ . .

(%)FEuF:uR+ﬁxf (21)

So the velocity in the fixed frame is just that in the rotatirgnie plus the
velocity associated with the rotation.

Now consider that! is velocity in the fixed framei . Then:

dup

(W)F = (—,)r+Q x Ur (22)



Substituting in the previous expression for, we get:

dit d = = L
QEQF:%ﬂm+Qxﬂm+Qxh%+Qxﬂ (23)

Collecting terms, we get:

dﬁF duR
(—)r = (—-
dt dt
We now have two additional terms: tk@oriolis andcentrifugalaccelera-

R+ 20 x g+ QO xQx 7 (24)

tions. Plugging these into the momentum equation, we obtain

() = (T 4 200 iy 4 6 3 = —%Vp+§+ Fo(@s)

Consider the centrifugal acceleration. This is the negativthe cent-
ripetal acceleration and acts perpendicular to the axistation (Fig. 3).
The force projects onto both the radial and the N-S direstiorhis sug-
gests that a parcel in the Northern Hemisphere would aatelepward
and southward. But these accelerations are balanced bytygnatwich
acts to pull the parcel toward the cengerd northward. The latter occurs
because rotation changes the shape of the earth itselfnmaldllipsoidal
rather than spherical. The change in shape results in amh exacellation
of the N-S component of the centrifugal force.

The radial component on the other hand is overcome by grdvityis
weren't true, the atmosphere would fly off the earth. So thardagal
force modifies gravityreducing it over what it would be if the earth were

stationary. Thus we can absorb the centrifugal force indwigy:

g =g—OxQOxF (26)



Figure 3: The centrifugal force and the deformed earth. Hieis the gravitational
vector for a spherical earth, and is that for the actual earth. The latter is ablate
spheroid

How big a modification is this? One can show that the centaffigrce at
the equator is abouit 034m /sec>—or roughly 1/300th as large as The
correction is so small in fact that we will ignore it (and drihyg prime on
9).

So the momentum equation can be written:

du = 1 -
(%) 420 x i = —EVp+§+ F 27)

There is only one rotational term to worry about, the Cosifdirce.

There are three spatial directions and each has a corrasgomumb-
mentum equation. In what follows, we will assume that we ara iocal-
ized region of the atmosphere, centered at a latithd€hen we can define
local coordinatesaf, i, z) such that:

dxr = acos(0)d¢, oy = adl, 6z =R

whereg is the longitudeq is the earth’s radius anf is the radius. Thus
Is the east-west coordinatgthe north-south coordinate andhe vertical
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coordinate. We define the corresponding velocities:

_dzx dy  dz

e T YT w

The momentum equations will determine the acceleratiofs,yz).

Figure 4: A region of the atmosphere at latitudleThe earth’s rotation vector projects
onto the local latitudinal and radial coordinates.

The Coriolis term (which is a vector itself) projects ontdlbthey and

z directions:
2@ X U = (0, QQy, 292) X (U, v, U)) -

2Q(w cost — v sinb, u sinb, —u cost) (28)

Adding terms, we havé:

1
% + u% + Ug—z + w% + 2Qw cosh — 2Qv sinf = —;% + F, (29)

LIf we had used spherical coordinates instead, we would hexeral additionaturvatureterms. How-
ever, these terms are negligible at the scales of interést@are left out here.
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ov ov ov ov 10p

L o L s 2Qusind = —— 2L 4 R

5t gt ey TV u sind AR (30)
ow ow ow ow 10p
— — +v— — — 20 = ——— — F 1
Y —l—uax—l—vay—l—waz u cost PR g+ F, (31)

whereF; is the frictional force acting in thedirection.

The momentum equations are complex andlinear, involving products
of velocities. As such, they are essentially unsolvabldiig form. How-
ever, not all the terms are equally important. To see whidsaominate,
we scalethe equations. This means we estimate the sizes of the gariou
terms in the equation by using reasonable values for thablas at the
scales we're interested in.

1.4 Scaling the horizontal acceleration

For example, take the-momentum equation, neglecting (for now) the fric-

tion term:
0 0 0 0 10
&u + u%u + va—yu + wau + 2Qw cosf — 20 sinf = _E%
U U? U? UW Ap
— — — — 202 20) —
T L L D W v pL
1 U U %4 K 1 Ap
2QT 20 L 20 L 20D U 2QpU L

In the third line, we have divided through by the scaling toe vertical
component of the Coriolis acceleratia@fU. By doing this, all the terms
on the third line aralimensionlesparameters, i.e. they have no units.

11



What we will do is to evaluate each and see how it compares ¢dthe
size of the vertical Coriolis term). We have made an (eduljajaess that
this term is one of the largest. If any of the other terms isimless than
one, we can neglect it. If however another term is much grélasa one,
our assumption that the Coriolis term was the largest wasigvemd we
will have to divide again, using the larger term.

To see how large the terms are, we plug in typical values. leuge
values for the atmosphere, typical of weather disturbatbesesult using
typical oceanic values is the same):

4

~1 20 =
U 10 m/scc, 86400 sec

= 1.45 x 10 %sec ™t ~ 107486671,

L~10°m, D=10"m, T =L/U~10°sec a = 6400 km

ApP/p~10° m?/sec?, W ~ 1 cm/sec, (32)

The horizontal scale, 1000 km, is known as #ymoptic scalen the at-
mosphere. This is a typical horizontal scale for pressustesys. The
time scale, proportional to the length scale divided by thecity scale,

Is theadvectivetime scale. This is what you'd expect, for example, if a
front were advected by the winds past an observer. With aedisre time
scale, we have:

1 U
20T  20L

So the first term is the same size as the second and third t@mssratio

Is a well-known quantity in meteorology and oceanographg,ia known
as theRossby numbett has a value at synoptic scales of
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U
—— =0.1
2Q0L 0
Thus the first three terms are roughly 10 times smaller thanvéntical
Coriolis term.

However, the other terms are even smaller. The fourth term:

w
—— =0.01
20D 0.0

Is about 10 times smaller than the Rossby number, and thu@0igirhes
smaller than the Coriolis term. And the fifth term, the otheriGlis term,

w
— =.001
U

Is even smaller.
So is there anything to balance the vertical Coriolis terrh@ pressure

gradient term scales as:

So the pressure gradient term is comparable in size to thiealeCoriolis

term.

1.5 Geostrophic balance

The scaling suggests that the first order balance in the miimeaqua-
tions is between the vertical component of the Coriolis kzeéion and
the pressure gradient:

—fuor ———- (33)
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+fum~ ——— (34)
p Oy
where

f =2Qsinb

This is the vertical component of the Coriolis parametee ¢mly one
which is important at these scales. Relations (33, 34) sgmtethegeo-
strophic balance. This is one of two fundamental balances at synoptic
scales. The balance implies that if we know the pressure andity, we

can deduce the velocities. So the winds or currents can beieied from
maps of the pressure and density.

Figure 5: The geostrophic balance.

Consider the flow in Fig. (5). The pressure is high to the sauthlow
to the north. Left alone, the pressure difference wouldddtow to the
north. But the Coriolis force causes the flow togaseallel to the pressure
contours. Becaus%p < 0, we have from (34) that > 0, so the flow
Is eastward. The Coriolis acceleration is to the right of nination, and
this exactly balances the pressure gradient force, whiti tise left. Be-
cause the two forces balance, the motion is constant in tithere is no
acceleration.

14



Figure 6: Geostrophic flow with non-constant pressure gradi

If the pressure gradient changes in space, so will the ggust ve-
locity. In Fig. (6), the flow accelerates into a region with nealosely-
packed pressure contours, then decelerates exiting tlenreg

Figure 7: Geostrophic flow around pressure anomalies.

As a result of the geostrophic relations, we can take pressaps and
use them to estimate the winds, as in Fig. (7). From the pusvargu-

ments, the flow is counter-clockwise oyclonic around a low pressure
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system. It is also clockwise @nti-cyclonicaround a high pressure. So
geostrophy is why the winds blow counter-clockwise arouhdmicane.
Sincef = 2Qsind, the Coriolis force varies with latitude. Itis strongest
at high latitudes, and weaker at low latitudes. Note too ithatnegative
In the southern hemisphere! Thus the flow in Fig. (5) wouldead be
westward, with the Coriolis force acting to the left. In attzh, the Coriolis
force is identicallyzeroat the equator. So the geostrophic balaceenot
holdthere.

1.6 The quasi-horizontal momentum equations

One problem with the geostrophic balances (33, 34) is that dannot
be used for prediction. Given the pressure field now, we calicethe
velocities now—but we can’t predict what they will be in thittfre. Thisis
because we have lost the time derivative terms in the momeetwations.
To do prediction, we must therefore include the next larggrsts in the
momentum equations, i.e. those which are of order Rossbyaum

dHu 1 8
KA (39)

The same reasoning yields:

W-I—fu: _;ﬁ_yp (36)

where the Lagrangian derivative:

dH—Q-l-ug—l-vg

dt ot ox dy

now does not include the vertical advection term. Thus thesettbn in
these approximate equationgggasi-horizontal This implies that synop-
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tic scale motion is approximatetyo-dimensionali.e. like motion con-

fined to a tabletop. The vertical motion is generally muchliena

1.7 Other momentum balances

Figure 8: Circular flow.

The geostrophic balance occurs at synoptic scales, but béiances
are possible at smaller scales. To see this, consider acfgréercular
flow (Fig. 8). The momentum equation in cylindrical coordesm(e.g.
Batchelor,Fluid Mechanic$for the velocity in the radial direction is given

by:

d u3 10
—Up — — — = ——— 7
dtur r fU9 p@r (3 )

The termu/r is called thecyclostrophicterm and is related to the cent-
ripetal acceleration. It is a curvature term like those fbunth spherical
coordinates. If the flow isteady(not changing in time), then we have:

2
1
Uy = 29 (38)
r por
2
U oy 2
R pR



U ] Ap
2Q0R 20QUR
We have scaled the equation as before. Note that the scales afyt-

lostrophic term is determined by the Rossby number. Letfsxdéhat as

€.
1.7.1 Geostrophic flow

If ¢ < 1, the cyclostrophic term is much smaller than the Corioliste
Then, we must have:
Ap
20QUR
and we have the geostrophic balance again:

~
~

10

Jug = ;EP (39)

Note that if the term on the RHS wasn’t order one, the presgradient
wouldn’t be large enough to balance the Coriolis force amdehvould be

no velocity.
1.7.2 Cyclostrophic flow

Now consider ife > 1. For example, a tornado at mid-latitudes has:
U~~30m/s, f=10"*sec’’, R~ 300m,

Soe = 1000. Then the cyclostrophic term dominates over the Coriolis
term. As we noted earlier, that means that we shouldn’t hawdedl the
scaling parameters B2U, but rather byU'?/ R. Then we would have:

2Q0R  Ap

1
U pU?
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Now the second term, which is jusfe, is very small (.001 for the tor-
nado) and we require:
A
_p ~ 1
pU?
In this case, we have theyclostrophic wind balance
up 10
r por
Notice that this is anon-rotatingbalance, becaude doesn’t enter. The

(40)

pressure gradient is balanced by the centrifugal accelarat
We can solve for the velocity after multiplying byand then taking the

ug =+ -2 p (41)
pOr

There are two interesting points about this. One is that mvlypressure

square root:

systems are permitted, because we req§;’pe> 0 in order to get a real
solution. Seconckither signof wind is allowed. So our tornado can have
either cyclonic or anti-cyclonic winds.

However, we know that tornadoes are low pressure systenhscyut-
lonic flow. The reason the flow is cyclonic has to do with howtiv@ado
spins up (i.e. how it forms). Indeed, the winds in the tornaden’'t 30
m/sec all the time, but are much weaker while they are spghapm The
spin-up, it turns out, favors cyclonic winds.

1.7.3 Inertial flow

There is a third possibility, that there is no radial pressgnadient at all.
This is callednertial flow. Then:
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ué-i-fue:() —  up = —fr (42)
This corresponds to circular motion in “solid body rotatigwith the ve-
locity increasing linearly from the center, as it would walsolid). The
velocity is negative, implying the rotation is clockwisenfacyclonic) in
the Northern Hemisphere. The time for a parcel to completdiaifcle
is:

2rr 2w 0.5 day

w  f sinf|
This is known as the “inertial period”. “Inertial oscillatns” are frequently

(43)

seen at the ocean surface, and are excited by the winds asdfotbing.
They are much rarer in the atmosphere.

1.7.4 Gradient wind

The last possibility is that = 1, in which case all three terms in (38) are
important. This is thgradient wind balance We can then solve fotiy
using the quadratic formula:

1, .09 4r0
2(f7n+,087“

after substituting in the definition of the geostrophic wé#p Note that if

1 1 1
ug = —5fr P = =Sy (Pt fug)' (44)

the pressure gradient vanishes, we recover the inertiat il

The gradient wind estimate clearly differs from the geqstio estim-
ate. The difference is typically about 10-20 % at mid-latés. To see this,
we rewrite (38) thus:

Yt fug = ——p = fu, (45)
r por



Then:

Ug Ug
— =1 + —
U f?“

The last term scales as the Rossby number. So=if 0.1, the gradient

(46)
wind estimate differs from the geostrophic value by 10 %.oMt latitudes,
wheree can be 1-10, the gradient wind estimate is more accurate.

1.8 Hydrostatic balance

Now we scale the vertical momentum equation. For this, wel reees-

timate of the vertical variation in pressure:
Ay P/p =~ 10°m?/sec?

Neglecting the friction termF’,, we have:

0 u? + v? 10
— — — —w— —20 0=———p—gqg (47
8tw+u@xw+vﬁyw+w§zw - ucos p@zp g (47)
2 2
WU uw  UW W U QU Ay P g
L L L D a pD

UW ow  UW w2 Ur 20U Ay P
gL gL gL gD ga g gpD

107 107 107 107" 2x10% 107 1 1

Notice that we used the advective time scalél/, for the time scal&” and
we have divided through by, which we assume will be large. The vertical
pressure gradient and gravity terms are much larger thaonfahg others.
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However this is somewhat misleading because we obtain the balance
if there isno motion at all In particular, ifu = v = w = 0, the vertical

momentum equation is:

0
oy = — 4
P pg (48)

This is called the “hydrostatic balance” or literally theotmmoving fluid
balance”. In addition, the two horizontal momentum equeticeduce to:
10 10

Y, 1Y 49
pox-  pdy ! 49)

So our non-moving atmosphere has- p(z), and no winds.

We aren’t particularly interested in this component of tlwevflsince
we're interested in the moving part. The latter comes froendiinamic
(moving) portion of the pressure field. So we separate thespre and
density into static and dynamic components:

p(xayv th) = pO(Z> +p/(x,y,z,t)

p(z,y, 2,t) = po(z) + p'(2,y, 2, 1) (50)
Generally the dynamic components are much smaller thartakie som-
ponents, so that:

| < [pol (51)
Then we can write:
10 1 0 , 1 p . 0 ,
PrEA p0+p'@z(p0 p)—yg po( po)az(po P)—g
10 , o .0 1o, [,
N ——— )—pyg= ———p — — 52
po 0z Po)52p0 Poﬁzp Pog (52)



Note we neglect terms proportional to the product of the dyinal vari-
ables, likep/p'.

Now the question is: how do we scale the dynamical pressumste
Measurements suggest the vertical variatiop’a$ comparable to the ho-

rizontal variation, so:

10, AyP
po 0z poD

The perturbation density/, is roughly1 /100 as large as the static density,

~ 10" 'm/sec? .

SO.
/

ﬁg ~ 10" 'm/sec* .
0

p
To scale these, we again divide hy So both terms are of orden—2.

So while they are smaller than the static terms, they adetwtl orders of
magnitude largethan the next largest term in (47). So the approximate
vertical momentum equation is still the hydrostatic baignout for the
perturbation pressure and density:

8 !/ /
—p =—pg (53)

A model which uses this e?qzuation instead of the full vertmamentum
equation is called a "hydrostatic model"; a model which ukedull ver-
tical momentum is a "non-hydrostatic model". Notice thathe hydro-
static model, we have no information abtgyﬂu and so have lost the ability
to predict changes in the vertical velocity. Insteads usually diagnosed

from the other variables.

1.9 The equations of state

In addition to the momentum and continuity equations, weliegequa-
tions relating the density, temperature and, for the octrensalinity. In

23



the atmosphere, the density and temperature are linkedheiaeal Gas
Law.

p = pRT (54)

whereR = 287 Jkg 1K1 is the gas constant for dry air. The law is thus
applicable to a dry gas, i.e. one without moisture, but alamaquation
applies in the presence of moisture if one replaces the textye with the
so-called “virtual temperature”.

In the ocean, both salinity and temperature affect the tenBhe de-
pendence is expressed in an equation of state:

p = p(T, S) = pc(l — OéT(T — Tref) + Oés(S — Sref)) + h.o.t. (55)

wherep, is a constant/,.; andS,.; are reference values for temperature
and salinity and wheré.o.t. means “higher order terms”. Increasing the
temperature or decreasing the salinity reduces the defmsakes lighter
water). An important point is that the density is dominategdthe first
term, p., which is constant. We exploit this in the next section.

1.10 The Boussinesq Approximation

The fact that the oceanic density is dominatedpbyallows us to make
the Boussines@pproximation. In this, we take the density to be constant,
except in the “buoyancy term” on the RHS of the hydrostatiatien in
(53).

Making this approximation, the geostrophic relations lmeeD

10

—fu= —p—%P (56)
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fu=—= (57)

wherep.. is a constant.
In addition, with a constant density the continuity equatieduces to
simply:

dp.
dt

So oceanic flow is approximateigcompressible

FpV-d)=0 — V-i=0 (58)

These two alterations—having a constant density in thezbotal mo-
mentum equations and no density at all in the continuity 8goa—greatly
simplify calculations.

Making the Boussinesq approximation apparently removesitievari-
ations. But what we do is to retain the variable density inhiérostatic

relation, i.e.:
E) 7y7 Y g

This buoyancyterm allows density variations to come into play in the
flows.

1.11 Pressure Coordinates

We cannot responsibly apply the Boussinesq approximatidhe atmo-
sphere, except possibly in the planetary boundary layey i@loften done,
for example, when considering the surface Ekman layer)itBaipossible
to achieve the same simplifications if we change the verticatdinate to
pressure instead of height.
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We do this by exploiting the hydrostatic balance. Considpressure
surface in two dimensions$z, z). Applying the chain rule, we have:
dp

dp
%Aer&AZ—O (60)

on the surface. Substituting the hydrostatic relation, ate g

Ap =

@Ax—pgﬁz:o (61)
Ox
so that:
dp ANz 0P

| = pg—p = 62

where the subscripts indicate derivatives taken in vdr{igaand pressure
(p) coordinates and where is thegeopotential

o = /OZ gdz (63)
Making this alteration removes the density from momentumaéign
because:

1
p
So the geostrophic balance in pressure coordinates isysimpl

0 0

If we know the geopotential on a pressure surface, we camdssagthe
velocities—without knowing the density.

In addition, the coordinate change simplifies the continauation.
Consider a Lagrangian box with a volume:
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0V =dxdydz = —dx dy op (65)
PY

after substituting from the hydrostatic balance. The méa#seobox is:
1
poV = ——dx oy op
9
Conservation of mass implies:

1 ddM g d 0xdyop

SM dt :5x5y5p£( g ) =0 (66)
Rearranging:
1 _dx 1 _dy 1 _dp
I _ _ _ < _ ) — 7
5x5(dt>+5y5(dt)+5p5(dt) 0 (67)
If we leto — 0, we get:
ou Ov Ow
9 + By + o 0 (68)

wherew is the velocity perpendicular to the pressure surface (ikes
perpendicular to a-surface). Thus the change to pressure coordinates
results in incompressible flow, as under the Boussinesgappation.

Again it seems like the density has fallen out of the probl&uat we
retain it in the hydrostatic equation, which takes a sligiifferent form.
Now we have that:

dp = —pgdz = —pdP (69)
So:

o= (70)



after invoking the Ideal Gas Law (54). Thus density (or eglamtly tem-

perature) variations are still important.

1.12 Thermal wind

If we combine the geostrophic and hydrostatic relationsyetehe thermal
wind relations. These tell us about the velocity shear. Takeinstance,
the p-derivative of the geostrophic balance for

ov 1000  RIT

o0~ Forop ~ pfow (1)

after using (70). Note that thepasses through thederivative because it

IS constant on an isobaric surface. Likewise:
Ou _ ROT
dp  pf Oy

after using the hydrostatic relation (70). Thus the veltsteear is propor-

(72)

tional to the lateral gradients in the temperature.

The thermal wind relations for the ocean derive from takirdgrivatives
of the Boussinesq geostrophic relations (56-57), and tvking the hy-
drostatic relation. The result is:

ov 1 Op
- ZF 7
0z pef Ox (73)
ou 1 0p
T it 74
0z pcf Oy (74)

Thus the shear in the ocean depends on lateral gradiedensity which
can result from changes in either temperature or salinity.

The thermal wind is thus parallel to the temperature comstowith the
warm wind on the right. In the ocean, the thermal wind is par#éb the
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Figure 9: The thermal wind shear associated with a densitgignt in they-direction.

density contours, with light water on the right. This is dttated in Fig.
(9). There is a density gradient 1 meaning the shear is purely in the
x-direction. The density increases to the north, so the gradas positive.
Sodu/0z is positive. Thus the zonal velocity is increasing going i,
with the warm air to the right.

The analogous situation for the atmosphere is if the warnmsain the
right. Then the temperature gradientijins negative so thatou/dp < 0.
Sowu decreases as the pressure increases. However, the priesseases
goingdownward So we would infer thabu /0~ is positive, just like in the
ocean case.

If the temperature is only a function of pressufe= T'(p), thenT is
constant on pressure surfaces in the atmosphere. It fotlmatghere is no
vertical shear— the geostrophic winds are constant witghtelikewise,
if density is constant op-surfaces, there is no vertical shear in the currents.
A flow with zero vertical shear is calledk@arotropicflow. We will study
barotropic flows in section (2).

There is also the possibility that the magnitude of the viglazhanges
with height but not the direction, as shown in Fig. (10). Tisignequi-
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Figure 10: Vertical shear in the equivalent barotropic caldete that the geostrophic
velocities and the temperature contours are parallel.

valent barotropicflow. In this case, the shear vectors are parallel to the
velocities themselves and are also parallel to the temyerabntours.

Using the thermal wind relation, we can estimate the stfeafithe jet
stream, under the equivalent barotropic assumption. Thalkeaveraged
temperature decreases with latitude on the earth (the potesolder than
the equator). This means thal’/0y < 0, so thatu should increase with
height (Fig. 11).

To get an estimate of the wind speed aloft, we integrate teertal
wind balance in pressure. First we rewrite the zonal balahghtly:

@_ ou _E@T
Pop ~ oin(p) ~ f oy

(75)

Thus we have:

/pi du = u(p) — u(ps) = f/pa—len (76)

T is a function of pressure, but let’s replace it with the meamperature
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Figure 11: The jet stream on a zonally-average earth.

integrated over the height; call that Then we get:

_ROT, ~ »
u(p) ~u(ps) = £ () (77)

At 30N, the zonally-averaged temperature gradient is rou@iis K deg .
Assuming the wind is zero at the earth’s surface, we can astithe mean
zonal wind at the level of the jet streab() h Pa):

287 250 0.75

250) = z -
49(250) = 50 Gn 30y G000’ T TaT X 107

This is comparable to the speed of the jet stream at this heigh

) =36.8m/sec (78)

The equivalent barotropic assumption is also used in sfragimodels
of the atmosphere and ocean. A notable example is an equiiadeo-
tropic model of the Antarctic Circumpolar Current, the krrent which
flows around Antarctica. However, in most cases the atmas@me ocean
are more complicated, with both the velocities’ spaed direction chan-
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ging with height. Thus we say that the atmosphere and oceslbaan-
clinic). So the temperature and geopotential contours are ndtglanad
the geostrophic wind can advect temperature.

In oceanography, relations (73) and (74) are routinely usexstimate
ocean currents from density measurement made from shipgs &bilect
hydrographianeasurements of temperature and salinity, and these are the
used to determing(x, y, z, t), from the equation of state (55). Then the
thermal wind relations are integrated upward from chosesl k® determ-

ine (u, v) above the level, for example:

= 1 Op(z,y, 2
g 2) = ulegio) = [ -2 PR g a9

If (u,v,2p) is set to zero at the lower level, it is known as a “level of no
motion”. Such thermal-wind derived estimates were useddp the global
currents in the World Ocean Circulation Experiment (WOCHimg the
1990s.

1.13 The vorticity equation

We can obtain a very useful equation from the momentum eopusif we
cross-multiplythem. Specifically, we tak% of the y-momentum equa-
tion (36) and subtrac% of the z-momentum equation (35). Doing this
eliminates the pressure terms on the RHS, leaving (afteesdgebra):

0 0 0 0 0 0
§C+u%g+va—yg+ (f+ (5 u+ a—yv) +v6—yf =0  (80)

where

0,0,

ox oy
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Is the curl of the horizontal velocities. This is therticity. Actually, it is

the vertical component of the full vorticity:

—

(=Vxu
which has components:

)

e Gyw 82 5’yw
(0, 0, 2

T T

0 0
=(=—v—— 1

Because the synoptic scale motion is quasi-two dimensitmalmost im-
portant component is the vertical one, which is perpendrciad the plane
of motion. Hereafter we refer to this as thedative vorticityand we drop

the z subscript.

(>0 (<0

Figure 12: The relative vorticities of a low pressure (lefty high pressure (right) system.

What is vorticity? Itis essentially a measure of shear ansponsider a
low pressure system (Fig. 12). This has northward flow on #s¢éeen side
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(from geostrophy) and southward flow on the western sidet ifijalies
thatv is increasingwith z. Likewise, it has westward flow to the north and
eastward flow to the south, sas decreasing withy. Thus

ov 0Oy
C—%—a—y>0

for the low pressure. Similarly, is negative for a high pressure.
Note the vorticity equation involves a term which is:

0
Ua—yf
Actually, f = 2Qsin(6), is a function of latitude. But latitude is related to

y, by the relation:
y = ab

wherea again is the earth’s radius. Sois also a function of;. Later on
we’ll make approximations and writg explicitly in terms ofy.
We can write the vorticity equation is a more compact form:
dy 0 0
— = — — — 82
o T ==+ QG+ 5.0 (82)
We can do this becaugeis only a function ofy, so that:

dg , 0 0 ., 0
E‘f B (515 + u@x * U@y)f B U@yf

Equation (82) suggests that the relative vorticity ghdre basically on
equal footing. So we often refer fbas theplanetaryvorticity. If we look
down on the North Pole, we see the earth rotating cycloryicigfe a low
pressure system. So the planet appears to have a positivetyorThis
makes sense becauge= +2(2 at the North Pole. Likewise, if we look
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instead at the South Pole, we would see the earth rotatingyionically.
So we would say the planetary vorticity was negative thereefe f =
—2Q).

By cross-multiplying, we have eliminate the pressure orrigjiet hand
side of the momentum equations in the oceanic case. Siyilad elim-
Inate the geopotential on RHS in the atmospheric case. Tquetien (82)
applies toboththe atmosphere and ocean. The dynamics of the two sys-
tems are indeed very similar at synoptic scales; we can &bsstudy
both simultaneously. Another advantage with using vdytid that it is a
scalar, unlike the velocity which is a vector. This helps when visiag
complex flows.

Equation (82) states that the sum of the relative and plangtaticit-
ies, which we call thabsolute vorticityis not conserved following a fluid
parcel. Rather it changes in response to horizontal divegeConsider a
hypothetical case where the divergence is constant:

0 0

ot + ayv const (83)

First we letD > 0, which corresponds to a divergent flow (for example,
below a downdraft at the surface; Fig. 13). Then the voytiejuation
(82) is:

d
%Ca = _CaD (84)

This implies:

Ca = Ca(0) e (85)

This implies that the absolute vorticity decays to zerohat:t
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Figure 13: Divergent flow at the surface below a downdrafbdpcing anticyclonic cir-
culation.

This is true regardless of the initial vorticity of the airrpal. Cyclonic
and anticyclonic anomalies both become anticyclones witbracity ap-
proaching—f.

Physically, the outward flow associated with the divergaaackverted
to the right by the Coriolis force (Fig. 13). This producegi@rclionic
(clockwise) circulation.

Now consider convergent flow, withh < 0 (Fig. 14). In this case we
have:

Co = Ca(0) ™! (87)
So the vorticity increases without bound. But it would apptmat we
could get either intense cyclones or anti-cyclones, depgnah whether
¢(0) < 0or¢(0) > 0.
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Figure 14: Convergent flow at the surface feeding an updratft.

To see which is more likely, we can scale the absolute voytici

¢+ f

=~ S

U
— 1

fL

The relative vorticity scales d$/ L, because it involves the velocity shear.
Thus if the Rossby number is small, then:

C+f~=f>0 (88)
in the Northern Hemisphere. So the air outside the convénggion
should have positive vorticity, due to the planetary ratati Convergent
flow thus favors intenseyclonesrather than anticyclones. The inward
flow in a convergence is steered to the right, generatingpaycklow (Fig.
14). This is why intense storms (like hurricanes) are uguaitlonic.
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2 Barotropic flows

As noted before, one can assume that the density in the ccegprioxim-

ately constant. This is not a reasonable assumption foitthesphere, ex-
cept perhaps in the planetary boundary layer (in the lowiesthleter over
the surface). Nevertheless, the dynamics found in baratflgovs—flows

without vertical shear—are largely the same as those wearstsince the
barotropic system is much simpler, it is useful to study.

2.1 Shallow Water Equations

It is convenient to focus on the equationshaoordinates. As seen before,
the momentum equations are well-approximated by theiriquaszontal

versions:
dHu 1 8
dHU 1 8
W‘l‘fu— _E@_yp (90)

These are just the Boussinesq equations. However, we willaigo take
the density constant in the hydrostatic relation:
dp
a— = —PcY (91)
<

In addition, we have the continuity equation for a constarsity fluid,
which is just the incompressible condition:

—Uu+ v+ gw = (92)
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Consider a layer of fluid, as shown in Fig. (15). The lower amy
isatz = —H(x,y), whereH is a function which represents bottom topo-
graphy (i.e. mountains). The upper layer iz at n(x, y,t). This is afree
surfacei.e. it can move, like the surface of the ocean or the tropspan
the atmosphere. If the upper surface were flat, then it woeldtb = 0.

If the bottom were flat, it would be at= —D. So D is theundisturbed
depth of the fluid.

z=—H(x,y)
Figure 15: The fluid layer.

As we noted before, there is no vertical shear in a barotribyt. You
can see this as follows. If we take thalerivative of the momentum equa-
tions and substitute in from the hydrostatic relation, we ge

dy Ou ov 19dp g0

wo: 1o powar pan Y (93)
and similarly:
dyg Ov ou
Tt 15, =0 (94)
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These equations imply that the vertical shear can’t chalgds initially
zero, it will stay zero. This is called the Taylor-Proudmbadrem. Con-
stant density flows have no vertical shear.

Now imagine we’re at a depth;z, in the fluid. We can integrate the
hydrostatic relation up to the upper surface, thus:

n Op

.5, B2 =p0) = p(=2) = —peg(n + 2) (95)

Herep(n) is the pressure above the fluid layer, for example the atnevgph
pressure above the ocean. We will ignore this. Taking thdigna of the
integrated relation, we then get:

Vp(=2) = pegVn (96)

Using this in the momentum equations, we get:

dHu o 8
W — fu= —9%77 (97)
dHU 8
I + fu= _gc‘?_yn (98)

So gradients in the upper surface height cause pressureigisdh the
fluid interior, and these force the flow. These are shallow water mo-
mentum equations They can also be derived from the full momentum
equations assuming a constant density and a saspkct rati the ratio
between the depth of our fluid), and the typical horizontal length scale,
L. The latter is usually 1000 times the former, so the aspéict far the
ocean and atmosphere is very small.

The shallow water momentum equations have three unknawnsnd
n—so the system is not closed. We need one additional equalmyget
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this, we turn to the incompressibility condition. Integngtthat over the
entire fluid depth, we get:

o 0
/UH(%qu gyt 42+ wn) = w(=H) =0 (99)

Because the horizontal velocities have no vertical sheacam move them

through the integral, leaving:

(n+ H)(%u - %v) +w(n) —w(—H)=0 (100)

Now we need the vertical velocities at the upper and lowenbdaties.
We get these by noting that a fluid parcel on the boundary siaythe
boundary. For a parcel on the upper surface:

z2=m" (101)

We take the derivative of this, using the full Lagrangianiasive:

dz 0 0 0 g, _dun
dt (8t +u@x +U@y +w@z>z = win) = dt

Notice the last derivative is a horizontal one becayse n(z,y,t). A

(102)

similar relation applies at the lower boundary:

w(—H) = —dg—tH (103)

The horizontal derivative occurs becaude= H(z,y). Of course the
lower boundary isn’t moving, but the term is non-zero beeanfsthe ad-
vective component, i.e.:

A Gy VH (104)
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Putting these into the continuity equation, we get:

0 0

This is the Lagrangian form of the equatlon. In Eulerian ®rthis is:

) ) ) ) )
— H = H H)(—u + —
priaam (n+ )+vﬁy(n+ )+ (n+ )(8 U+ayv)

gthrV (u(n+H)) =0 (106)

These provide us with our third equation, involvingyv andn. Now we
have a closed system.

2.2 Conservation of potential vorticity

If we cross-differentiate the shallow water equations 987-we obtain a
vorticity equation, exactly like that in (82):

dp 0 0

— = — — — 107

3 TN ==+ u+50) (107)
We can eliminate the horizontal divergence from this by gighre Lag-
rangian form of the shallow water continuity equation (10%he result

IS:

¢+ f
1+

Q.|g‘

Uit =Tl mem (108)

or:

1 <+f d
H+1 %(C )= (H +n)2dt

or equivalently:

—(H+n)=0

d ¢+ f

dt(H+n) 0. (109)
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Thus the absolute vorticity is conserved if we divide the dwrthe
total depth of the fluid. This is called the “potential voity¢ (PV), a
fundamental quantity in shallow water dynamics. It is clpselated to a
more general quantity derived originally by Ertel (1942 drearing his
name (“the Ertel potential vorticity”). There are numeraxamples of
how PV conservation affects motion in rotating fluids.

2.3 Linear system

The three shallow water equations (97, 98, 106) are nonlle@ause each
has terms which involve products of the unknowns andn. As such,
they are difficult to solve analytically. However, solutsoare possible if
we linearizethe equations. The linear solutions include phenomena like
gravity and planetary waves, which are frequently obsemetie atmo-
sphere and ocean.

The central idea in linearizing the system is to assume thigomas
weak. So, for example, we assume the height deviations acé smaller
than the stationary (non-changing) water depth, i.e.

nl < H(z,y) .

We assume too that the temporal changes in the velocity aegegrthan
those due to advection, or

which implies that

L
U<<?.

Making these approximations, the shallow water equatiedsce to:
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0 0

—u — fv=—g=—n (110)
ox
0 0
= —qg— 111
atv+fu gayn (111)
0 0 0
at77+8—(Hu)+a—(Hv) =0 (112)

Note thatH remains in the parentheses in (112) because we allow for spa-
tial variations in the bottom depth, i.él = H(z,y).

2.4 Constantf, flat bottom

We can simplify the system further if we assume that the ianatte, f, is
constant. This is known as th¢-plane approximation”, and it applies if
the area under consideration is small. To see this, we expamd Taylor

series:

f = 2Qsin(0) = 2Q[ sin(0y) + (6 — by)cos(6y) + O|(6 — 6y)*[]. (113)

Hered, is the central latitude of our plane of fluid. We see thatfiane
approximation applies when we can neglect all but the finshtm the
expansion2Qsin(6y).

We will assume moreover that the bottom is flat. This isn’tessary,
but simplifies the algebra a bit. With these two assumptiaes;an reduce
(110-112) to a single equation, as follows. If we cross-iplyltthe mo-
mentum equations, we get the linear version of the vortetjyation(82),

with a constanff:
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0
556 = =1 (114)

wherey = %u + (.%v Is the horizontal divergence. We can get an equation
for the divergence by taking’. of (110) and addingy, of (111). That
yields:

0

5 X —JC=—9V"n (115)

We can then eliminate the vorticity by taking a time derwvatof the di-
vergence equation and substituting in from the vorticityaepn:

> + Py =— RV (116)
a2 X= 0 v
Then we eliminatey using (112). The resultis:

9 <@_2 + ) —cgVen} =0 (117)

ot o2 TV ar=a-
Herecy = /gH has the units of a velocity. We will see later this is related
to the speed of gravity waves. This equation is linear ancé&ean be
solved forn. Once we know the surface height,we can determine the

velocities,u andw.

2.5 Gravity waves, no rotation

First let's examine the solutions where there is no rotafidmen equation
(117) reduces to:

0,0
ot Lo
This equation has three time derivatives and so admits Haleéons. One

— Vil =0. (118)

Is a steadysolution in whichn does not vary with time. Notice that if
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n = n(x,y), equation (118) is trivially satisfied. This is referred ®the
“geostrophic mode”, and we’ll take this up later.

The other two solutions are time-varying and come from sgjvhe
portion of the equation in the braces. This is a second-avdee equation,
and we can obtain a general solution if we Fourier transfdrensurface
height:

n(k,l,w) = /// x,y,t) Zk”ily*mdx dy dt

Here,k andl arewavenumbersThey are related to the wavelengths in the
x andy directions:

2T 2T

2o =28
koY

The constanb is thefrequency This is related to theeriod of the wave,

Ay = (119)

which is like a wavelength in time:

72" (120)
w

Substituting the expansion into equation (118), we get:

—(W* = ErH N =0, (121)

wherex = (k? + 12)'/? is the modulus of the wavevector. So:

w==xck, (122)

This expression thus relates the wave frequency to its wawaber. It is
referred to as the wawdispersion relation We see that short wavelength
(large wavenumber) waves have higher frequencies. So slavds seen
from a beach will have shorter periods than long waves.
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How quickly do the waves move? Tiphase speedf the wave, or the
speed at which the crests move, is given by:

c:gzztc()::t gH . (123)
K

So short and long waves propagate atdhme speedVe say the waves are
“non-dispersive” because an initial disturbance, whiclgeserally com-
posed of different wavelengths, will not separate into land short waves.
Any initial condition will produce waves moving with speeg

As an example, consider the one-dimensional case, in whembtion

Is purely in thez-dimension:

[y
a2~ Vg2
All solutions to this equation have the form:

n=0. (124)

n = Fi(x+ cpt) + Fr(z — cot) .

Substituting this into (124) yields:
G(F + F) = (K + F) =0,

where the prime indicates differentiation with respecthie argument of
the function. The functiorF; represents a wave which propagates to the
left, towards negative, while F,. propagates to the right. One can see this
by noting that the arguments &f and F. remain constant with increasing
time if z is decreasing in time and increasing, respectively.

Because there are two unknown functions, we require twa$etandi-

tions to fully determine the solution. For instance, coasithe case when

wt=0)=Fa), nlt=0)=0.
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This means the height has a certain shape-a0, and that the initial wave
IS not moving. Then we must have:

1

So the disturbance splits in two, with half propagating ® l&ft and half
to the right, both with speed).

2.6 Gravity waves with rotation

Now consider what happens wh¢n# 0. If we ignore the steady solution,
the linearized shallow water equation (117) is:

82
e
Fourier transforming, as before, we obtain the following dispersion rela-

+ AN —cVin=0. (125)

tion:

w=+(f? + 2212 (126)

This is the dispersion relation for “Poincaré waves”, whaie gravity
waves with rotation. For large wavenumbers (small wavds}, is ap-

proximately:

w = tcok (127)

which is the same as the dispersion relation for non-rajagnavity waves.
However, in the other limit, as — 0, the relation is approximately:

w=+f (128)
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Gravity wave dispersion relations
‘ ‘ ‘ ‘ ‘

Figure 16: The gravity wave dispersion relations for the-natating and constant rotation
cases.

So the frequency asymptotes to the inertial frequency (s&c3) for large
waves. We plot the non-rotating and rotating dispersioatiahs in Fig.
(16).

The rotating and non-rotating frequencies are similar when

o JgH
)\:—W<<%ELD. (129)
K

The scale,Lp, is the Rossbyleformation radiugor sometimes the “ex-
ternal deformation radius”). At wavelengths small compat@ the de-
formation radius, rotation is unimportant; the waves esaliy do not

“feel” the earth’s rotation.

At scales larger than the deformation radius, the frequasgynptotes
to f. In this case, gravity is unimportant because we would abtiae
same result if we had ignored the pressure gradient terrhge imomentum
equations. Such waves are the inertial oscillations dsslisy sec. (1.7.3);
they have the same period equal to the Coriolis paramgter,
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We defined the phase speed as the ratio of the frequency toave w
number. Non-rotating gravity waves have the same phasealspgard-
less of their wavenumber and are thus non-dispersive. iBotehuses the
gravity waves to disperse because the phase speed is now:

:j:(f2+0(2)52>1/2 = ¢ (1_|_(i>2)1/2.

K CoK

w
c=—
K

In the short wave limit, the waves are approximately nompelisive and
traveling at speedy. But the larger waves propagate faster. So an arbitrary
Initial disturbance will break into sinusoidal componemsth the larger
wavelengths moving away fastest.

As noted, rotation becomes important at scales larger tiadéform-
ation radius. But how big is the deformation radius? Usimmdsl values
and a latitude of 45 degrees, the deformation radius is:

VgH __ v/10x4000
f 104

which is a rather large scale, corresponding to about 2Geasgf latitude.

= 2000 km

At such scales, our assumption of a constant Coriolis pasarisecertainly
not correct. So a more proper treatment of the large waveilinsuch deep
water would have to take the variation pinto account. Of course if the
depth is less, the deformation radius will be smaller; thishie case for
example in bays and shallow seas.

2.7 Geostrophic adjustment

We noted earlier that the linear shallow water equation Y Atimits three
solutions; two are propagating waves and one is indepemddme. This
third solution is trivial in the absence of rotation. But lwrtotation, the

50



Figure 17: The evolution of a sea surface discontinuity emdhsence of rotation.

solution, known as the “geostrophic mode”, plays a centld in the at-
mosphere and ocean. To illustrate this mode, we considerial value
problem for gravity waves, first without and then with rodati

We consider again the one-dimensional problem, for sintplicWe
assume the initial sea surface has a front (a discontinaity)= 0:

(et =0) = T sgn(x)

where thesgn function is1 if the argument is greater than zero and
if not. This could represent, for example, the initial sedeae deviation
generated by an earthquake. Without rotation, the soldtbows from

section (2.5):

n(x,t) = %(sgn(m — cot) + sgn(x + cot)) .

We see the discontinuity splits into two fronts, one propiageto the left
and one to the right (Fig.17). The height in the wake of the fr@ats is
zero (since 1 + (-1) =0). There is no motion here.

The case with rotation is different because of the geostcapbde. In
this case, the relaxing front must conserve potential eytiand this will
not allow a flat final state. If the PV is conserved, then fro08)lwe have:

¢+ f

= const. .
H+n

We assume there is no motion in the initial state. Then we:have

51



v+ f /
H+n  H+(n/2)sgn(z)

wherev, = a%v. Notice the vorticity is just, because the front is one-

(130)

dimensional. Cross-multiplying and re-arranging, we get:

[H + Dsgn(a)] v, — fn = —f S'sgn(x) (131)

We will assume the initial interface displacement is muclaksn than the
total depth, i.e.|ny| < H. Also, the final state is not time dependent. So
the x-momentum equation is just the geostrophic balance:

fo=gns, (132)

With these two changes, we get:

1 Mo
Now — L—%n = —ﬂsgn(x) . (133)

where againLp = \/gH/ f is the deformation radius.
Equation (133) is an ordinary differential equation. Weveat separ-
ately forx > 0 andx < 0. Forz > 0, we have:

1 "o

vr — =1 = ——— . 134

Mer = T = Tor8 (134)
The solution for this which decays as— oo is:
"o

n= Aexp(—x/Lp) + o - (135)

The corresponding solution far < 0 which decays as — —oo Is:

7o

n= Bexp(x/Lp) — — . (136)

2
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Figure 18: The sea surface height after geostrophic adgrgtrbeginning with a discon-
tinuity, with rotation. The red curve shows the final integashape and the blue curve the
meridional velocityy.

We thus have two unknownsl and B. We find them by matching and
n. atx = 0. That way the height and the velocity, will be continuous at

x = 0. The result is:

0 o=
= (1—exp LD)) x>0
= —% (1-— exp(Li)) r <0 (137)
D

The final state is plotted in Fig. (18). Recall that withoutatan, the
final state was flat, with no motion. With rotation, the inlifieont slumps,
but does not vanish. Associated with this tilted height isy@esidional jet,
intensified atr = 0:
|z]

gmo
= ——) . 1
v=gp o= ) (138)

The flow is directed into the page. Thus the final state withtron is one

In motion, in which the tilted interface is supported by theriGlis force
acting on a meridional jet.

2.8 Kelvin waves

So far we have examined wave properties without worryingiabound-
aries. Boundaries can cause waves to reflect, changingdineation of
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propagation. But in the presence of rotation, boundariesatso support
gravity waves which argrappedthere; these are called Kelvin waves.

The simplest example of a Kelvin wave pertains to a infinitelyg
wall. Let’'s assume this is oriented parallel to thaxis, and lies ay = 0.
Because of the no-normal flow condition at the wall, we have 0 at
y = 0. In fact, we can obtain solutions which have= 0 everywhere.
Because our linear wave equation (117) is expressed in tefmsit is
preferable to go back to the linearized shallow water equat{110-112)
and sety = 0 there. This yields:

0 0
EU = —9%777 (139)
0
fu= ~95," (140)
0 0

Notice that an equation foj can be derived with only the-momentum

and continuity equations:

LY
a2~ Vg2
This is just the linearized shallow water equation (117)me dimension

n=0. (142)

withoutrotation. Indeed, rotation drops out of thanomentum equation
because = 0. As a result, Kelvin waves will be non-dispersive, like non-
rotating gravity waves. From section (2.5), we know the gansolution

to equation (142) involves two waves, one propagating tde/aegativer
and one towards positive

n(xayvt) = F}(LU + COt7y> + FT(LU - COtay) :
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We allow for structure in thg-direction and this remains to be determined.
It turns out that rotation enters in this way, in determiniihg structure
of the wave away from the wall. From themomentum equation, (139),
we can derive the velocity component parallel to the wall:
u=-L(R-F).
Co

Substituting this into thg-momentum equation, (140), we obtain:

9 f d f
Yr=tp “p__tlp
oy ' et Oy co

The solutions are exponentials, with an e-folding scal¢/ot{ / f = Lp,
the deformation radius:

Fyocexp(y/Lp) Fr ocexp(—y/Lp) .

The exact solution depends on the where the wall is. We chihese
solution which decays away from the wall (is trapped theather than
one which grows indefinitely. If the wall covers the regipn- 0, then the
only solution decaying (in the negatiyedirection) isF;. If the wall covers
the regiony < 0, only F, is decaying. Thus, in both cases, the Kelvin wave
propagates at the gravity wave speed with the teaills right

Note though that the decay is also affected by the sigh ¢ffwe are in
the southern hemisphere, whefre< 0, the Kelvin waves propagate with
the wall to their left.

2.9 Rossby waves

In the previous cases, we togkto be constant. A result of this is that the
“geostrophic mode” had no time dependence. It was a steady dl®in
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the example in (2.7). But when we allow for variationsfofwe pick up a
low frequency oscillation.

So let's see what happens whéraries. The simplest way to do this
Is to extend the domain slightly, by retaining another temthie Taylor
expansion off:

f =~ 2Qsin(0y) 4+ 2Qcos(6y) (0 — 0y) (143)

Usingy = af, we have:

[~ fo+BHy—uy) (144)
where:
f() = 2982?1((90)
and
8= ?cos((%)

Writing f like this is known as thg-plane approximation

Now the shallow water continuity equation is given in (106).the
bottom is flat,H is constant. Moreover, let's assume that the upper layer
Is also flat and sef = 0. This is therigid lid approximation the effect is
to filter out gravity waves. Then the continuity equationimdy:

0 0

(geu+ 7,0 =0 (145)

With a rigid lid, the flow ishorizontally non-divergent
We can take advantage of this by writing the velocities imteiof a

streamfunction. Specifically, we write:
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0 0

u=—-———1, v= %w (146)

Then:

0, 0, 0 000
Ox oy Oz Oy Oy Ox

With zero divergence, the vorticity equation (82) reduces t

) =0 (147)

W+ )= (C+ By =0 (149)
using thes-plane approximation. Note we can ignore thhgerm, a con-
stant.

This equation is still nonlinear, involving the product betvelocities
and the relative vorticity. So we will again linearize it. iShime we will
do it slightly different, by allowing for a constant, backgnd zonal flow
in addition to the weak perturbations. Specifically, we &irit

wu=U+u, v=1 (149)

whereU is a constant. The mean flow,, could be the Jet Stream in the
atmosphere or the Gulf Stream in the mid-Atlantic. The redavorticity
Is then:

(150)

TheU term vanishes because it's constant. Substituting thesedmgnor-
ing products of primed terms yields:

0 ., o , 0 B
aé’ + U%C +Ugay(ﬁy) =0 (151)
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We rewrite this in terms of our streamfunction, noting that V. The
result is:

0 0
(§+U%)

This is theRossby wave equation

V2 + ﬁag@/} =0 (152)
e

To solve it, we substitute in a Fourier wave solution:
Y(,y,t) oc Pk, 1, w)errrilyiot

This yields:

(_Z-w + ZkU)(—kQ . ZQ)Qﬁeik:x—i-ily—iwt + ikﬁlﬁeikx—i_i@_iwt —0 (153)
The wave part, as always, drops out leaving:
Ok

k2 4 12
This is theRossby wave dispersion relatioiike the gravity wave dis-

w=Uk —

(154)

persion relations, this connects the frequency with theanwambers. But
this relation has several interesting features about tbislike with the

gravity wave dispersion relation, where the frequency atdpended on
the magnitude of the wavevectat, the Rossby wave frequency is propor-

tional to k£, the zonal wavenumber. This means the frequency varies with

the direction of wave propagation. Notice too that the waves cannot have

k = 0, because then they would have zero frequency (they woultheot
wave-like).
The phase speed in the zonal direction is:
w s s

Y- —y_ 155
c=p U=l (155)
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wherek is the total wavenumber. Thus the phase speed depends on the
wavenumber, so the waves are dispersive. The largest speediswhen

k and! are small, corresponding to long wavelengths. Thus largessva
move faster than small waves.

Second, all waves propagatestwardrelative to the mean velocity.

If U =0,c<0forall (k7). This is a distinctive feature of Rossby waves.
Satellite observations of Rossby waves in the Pacific Ockaw $hat the
waves, originating off of California and Mexico, sweep wesstd toward
Asia.

Third, the wave speed depends on the orientation of the wastsc
The most rapid westward propagation occurs when the crestrignted
north-south, withk # 0 andl! = 0. If the wave crests are oriented east-
west, so that = 0, then the wave frequency is zero and there is no wave
motion at all.

The phase speed also has a meridional component, and this e&ther
towards the north or south:

w Uk Ok

1l (R2+ D) (156)

The sign ofc, thus depends on the signs/oaind!. So Rossby waves can

Cy:

propagate northwest, southwest or west—but not east.

With a mean flow, the waves can be swept eastward, produceg th
appearance of eastward propagation. The short waves aessosxeptible
to eastward propagation. In particular, if

K> Ky = (g)l/2

the wave moves eastward. Longer waves move westward, apposhe

mean flow. Ifx = kg, the wave isstationaryand the crests don’t move
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at all—the wave is propagating west at exactly the same sfied¢dhe
background flow is going east. Stationary waves can only roifdine
mean flow is eastward, because the waves propagate westward.

Example At what background wind velocity is an isotropic wave with
a wavelength of 1000 km stationary? What about a wavelenig§9@0
km? Assume we are at 45 degrees N.

An isotropic wave has the same scales inttandy directions. So the
wave has wavenumbers:

2
=1 = 1—(;m1 —6.28 x 10 % m !

and:
K=k +12=2k>=7.90 x 107" m2

At 45 N, we have:

B 1 A7
6.3 x 10% 86400

o] cos(45) = 1.63 x 10" m tsec™?

So:

i 21'm/sec

Soif U = 0.21 m/sec, the wave is stationary.
For A = 5000 km, we find:

BXY 163 x 10711(5 x 109)2
= _ =52 157
U 2(47) o2 5.2m/sec (157)

What does a Rossby wave look like? Recall that proportional to

the geopotential, or the pressure in the ocean. So a siralseale is a
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sequence of high and low pressure anomalies. An exampleowgnsim
Fig. (19). The wave is proportional t@s(z)sin(y) and appears to be a
grid of high and low pressure regions.

Rossby wave, t=0

D O © O

ARNMIANITEY

N/
0O
Jil/aN

Figure 19: A Rossby wave, with = cos(x)sin(y). The red corresponds to high pressure
regions and the blue to low. The lower panel shows a “Hovmudliagram of the phases
aty = 4.5 as a function of time.

The whole wave in this case is propagating westward. Thus ifake a
cut at a certain latitude, hege= 4.5, and ploty(x, 4.5, t), we get the plot
in the lower panel. This shows the crests and troughs moviegsfward
at a constant speed (the phase speed). This is known as a tHevim
diagram.

Three examples from the ocean are shown in Fig. (20). These ar
Hovmuller diagrams constructed from sea surface heigtiterPacific, at
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Figure 20: Three Hovmuller diagrams constructed from sefasel height in the North
Pacific. From Chelton and Schlax (1996).

three different latitudes. We see westward phase promagatiall three
cases. Interestingly, the phase speed (proportional talttué the lines)

differs in the three cases. To explain this, one needs todakéfication

Into account. In addition, the waves are more pronouncetlovd$0-180
W than in the east. The reason for this is still unknown.
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