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1 General dynamics

The motion in the atmosphere and ocean is governed by a set of equa-

tions, known as theNavier-Stokesequations. These equations are used to

produce our forecasts, for the weather and also for ocean currents. While

there are details about these equations which are uncertain(for example,

how we parametrize processes smaller than the grid size of the models),

they are for the most part accepted as fact. Let’s consider how these equa-

tions come about.

1.1 Derivatives

A fundamental aspect is how various fields (temperature, wind, density)

change in time and space. Thus we must first specify how to takederivat-

ives.

Consider a scalar,ψ, which varies in both time and space, i.e.ψ =

ψ(x, y, z, t). This could be the wind speed in the east-west direction, or

the ocean density. By the chain rule, the total change in theψ is:

dψ =
∂

∂t
ψ dt+

∂

∂x
ψ dx+

∂

∂y
ψ dy +

∂

∂z
ψ dz (1)

so:

dψ

dt
=

∂

∂t
ψ + u

∂

∂x
ψ + v

∂

∂y
ψ + w

∂

∂z
ψ =

∂

∂t
ψ + ~u · ∇ψ (2)

where(u, v, w) the components of the velocity in the(x, y, z) directions.

On the left side, the derivative is a total derivative. That implies thatψ on

the left side is only a function of time. This the case whenψ is observed

following the flow. For instance, if you measure temperature in a balloon,
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moving with the winds, you only see changes in time. We call this the

Lagrangianformulation. The derivatives on the right side though are par-

tial derivatives. These are relevant for an observer ata fixed location. This

person records temperature as a function of time, but her information also

depends on her position. An observer at a different locationwill generally

have a different records (depending on how far away she is). We call the

right side theEulerianformulation.

1.2 Continuity equation

zδ

yδ

xδxδ

yδ δzρu ρu
xδ
δ ρu yδ δz+ [ ]

x x +   xδ

Figure 1: A infinitesimal element of fluid, with volumeδV .

Consider a box fixed in space, with fluid (either wind or water)flowing

through it. The flux of density through the left side is:

(ρu) δy δz (3)

Using a Taylor expansion, we can write the flux through the right side as:

[ρu+
∂

∂x
(ρu)δx] δy δz (4)

If these density fluxes differ, then the box’s mass will change. The net rate

of change in mass is:
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∂

∂t
M =

∂

∂t
(ρ δx δy δz) = (ρu) δy δz − [ρu+

∂

∂x
(ρu)δx] δy δz

= − ∂

∂x
(ρu)δx δy δz (5)

The volume of the box is constant, so:

∂

∂t
ρ = − ∂

∂x
(ρu) (6)

Taking into account all the other sides of the box we have:

∂ρ

∂t
= − ∂

∂x
(ρu) − ∂

∂y
(ρv) − ∂

∂z
(ρw) = −∇ · (ρ~u) (7)

We can rewrite the RHS as follows:

∇ · (ρ~u) = ρ∇ · ~u+ ~u · ∇ρ (8)

Thus the continuity equation can also be written:

∂ρ

∂t
+ ∇ · (ρ~u) =

∂ρ

∂t
+ ~u · ∇ρ+ ρ(∇ · ~u) =

dρ

dt
+ ρ(∇ · ~u) = 0 (9)

The first version of the equation is its Eulerian form. It states that the

density at a location changes if there is a divergence in the flux into/out

of the region. The last version is the Lagrangian form. This says that the

density of a parcel of fluid advected by the flow will change if the flow is

divergent, i.e. if:

∇ · ~u 6= 0 (10)
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We can also obtain the continuity equation using a Lagrangian (mov-

ing) box. We assume the box contains a fixed amount of fluid, so that it

conserves it mass,M . Then therelativechange of mass is also conserved:

1

M

d

dt
M = 0 (11)

The mass is the density times the volume of the box, so:

1

ρV

d

dt
(ρV ) =

1

ρ

dρ

dt
+

1

V

dV

dt
= 0 (12)

Expanding the volume term by using the chain rule:

1

V

dV

dt
=

1

δx

∂δx

dt
+

1

δy

∂δy

dt
+

1

δz

∂δz

dt
=

1

δx
δ
∂x

dt
+

1

δy
δ
∂y

dt
+

1

δz
δ
∂z

dt
→ ∂u

∂x
+
∂v

∂y
+
∂w

∂z
(13)

asδ → 0. So:

1

ρ

dρ

dt
+ ∇ · ~u = 0 (14)

which is the same as (9). Again, the density changes in proportion to the

velocity divergence; the divergence determines whether the box shrinks

or grows. If the box expands/shrinks, the density decreases/increases, to

preserve the box’s mass.

1.3 Equations of motion

The continuity equation pertains to mass. Now we consider the fluid velo-

cities. We can derive expressions for these from Newton’s second law:

~a = ~F/m (15)

The forces acting on a fluid parcel (a vanishingly small box) are:
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• pressure gradients:1ρ∇p

• gravity:~g

• friction: ~F

For a parcel with densityρ, we can write:

d

dt
~u = −1

ρ
∇p+ ~g + ~F (16)

This is themomentum equation, written in its Lagrangian form. Under the

influence of the forcing terms, on the RHS, the air parcel willaccelerate.

Actually, this is the momentum equation for a non-rotating earth. There

are additional acceleration terms which come about due to rotation. As op-

posed to thereal forces shown in (16), rotation introducesapparentforces.

A stationary parcel on the earth will rotate with the planet.From the per-

spective of an observer in space, that parcel is traveling incircles, complet-

ing a circuit once a day. Since circular motion represents anacceleration

(the velocity is changing direction), there is a corresponding force.

δΑδΘ

γ

Ω

γ

Α

Figure 2: The effect of rotation on a vector,A, which is otherwise stationary. The vector
rotates through an angle,δΘ, in a timeδt.
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Consider such a stationary parcel, on a rotating sphere, with its position

represented by a vector,~A (Fig. 2). During the time,δt, the vector rotates

through an angle:

δΘ = Ωδt (17)

whereΩ is the sphere’s rotation rate. We will assumeΩ = const., which

is reasonable for the earth on weather time scales. The change inA is δA,

the arc-length:

δ ~A = | ~A|sin(γ)δΘ = Ω| ~A|sin(γ)δt = (~Ω × ~A) δt (18)

So we can write:

limδ→0

δ ~A

δt
=
d ~A

dt
= ~Ω × ~A (19)

If the vector is not stationary but moving in the rotating frame, one can

show that:

(
d ~A

dt
)F = (

d ~A

dt
)R + ~Ω × ~A (20)

TheF here refers to the fixed frame andR to the rotating one. If~A = ~r,

the position vector, then:

(
d~r

dt
)F ≡ ~uF = ~uR + ~Ω × ~r (21)

So the velocity in the fixed frame is just that in the rotating frame plus the

velocity associated with the rotation.

Now consider that~A is velocity in the fixed frame,~uF . Then:

(
d~uF

dt
)F = (

d~uF

dt
)R + ~Ω × ~uF (22)
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Substituting in the previous expression foruF , we get:

(
d~uF

dt
)F = (

d

dt
[~uR + ~Ω × ~r])R + ~Ω × [~uR + ~Ω × ~r] (23)

Collecting terms, we get:

(
d~uF

dt
)F = (

d~uR

dt
)R + 2~Ω × ~uR + ~Ω × ~Ω × ~r (24)

We now have two additional terms: theCoriolis andcentrifugalaccelera-

tions. Plugging these into the momentum equation, we obtain:

(
d~uF

dt
)F = (

d~uR

dt
)R + 2~Ω × ~uR + ~Ω × ~Ω × ~r = −1

ρ
∇p+ ~g + ~F (25)

Consider the centrifugal acceleration. This is the negative of the cent-

ripetal acceleration and acts perpendicular to the axis of rotation (Fig. 3).

The force projects onto both the radial and the N-S directions. This sug-

gests that a parcel in the Northern Hemisphere would accelerate upward

and southward. But these accelerations are balanced by gravity, which

acts to pull the parcel toward the centerandnorthward. The latter occurs

because rotation changes the shape of the earth itself, making it ellipsoidal

rather than spherical. The change in shape results in an exact cancellation

of the N-S component of the centrifugal force.

The radial component on the other hand is overcome by gravity. If this

weren’t true, the atmosphere would fly off the earth. So the centrifugal

forcemodifies gravity, reducing it over what it would be if the earth were

stationary. Thus we can absorb the centrifugal force into gravity:

g′ = g − ~Ω × ~Ω × ~r (26)
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g

g

*

Ω

Ω
2
R

R

Figure 3: The centrifugal force and the deformed earth. Hereis g is the gravitational
vector for a spherical earth, andg∗ is that for the actual earth. The latter is anoblate
spheroid.

How big a modification is this? One can show that the centrifugal force at

the equator is about0.034m/sec2—or roughly 1/300th as large asg. The

correction is so small in fact that we will ignore it (and dropthe prime on

g).

So the momentum equation can be written:

(
d~uR

dt
)R + 2~Ω × ~uR = −1

ρ
∇p+ ~g + ~F (27)

There is only one rotational term to worry about, the Coriolis force.

There are three spatial directions and each has a corresponding mo-

mentum equation. In what follows, we will assume that we are in a local-

ized region of the atmosphere, centered at a latitude,θ. Then we can define

local coordinates (x, y, z) such that:

δx = acos(θ)δφ, δy = aδθ, δz = δR

whereφ is the longitude,a is the earth’s radius andR is the radius. Thusx

is the east-west coordinate,y the north-south coordinate andz the vertical
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coordinate. We define the corresponding velocities:

u ≡ dx

dt
, v ≡ dy

dt
, w ≡ dz

dt

The momentum equations will determine the accelerations in(x,y,z).

Ωcosθ
Ω    sinθ

θ

Ω

Figure 4: A region of the atmosphere at latitudeθ. The earth’s rotation vector projects
onto the local latitudinal and radial coordinates.

The Coriolis term (which is a vector itself) projects onto both they and

z directions:

2~Ω × ~u = (0, 2Ωy, 2Ωz) × (u, v, w) =

2Ω(w cosθ − v sinθ, u sinθ,−u cosθ) (28)

Adding terms, we have:1

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+ 2Ωw cosθ − 2Ωv sinθ = −1

ρ

∂p

∂x
+ Fx (29)

1If we had used spherical coordinates instead, we would have several additionalcurvatureterms. How-
ever, these terms are negligible at the scales of interest and so are left out here.
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∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ 2Ωu sinθ = −1

ρ

∂p

∂y
+ Fy (30)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
− 2Ωu cosθ = −1

ρ

∂p

∂z
− g + Fz (31)

whereFi is the frictional force acting in thei-direction.

The momentum equations are complex andnonlinear, involving products

of velocities. As such, they are essentially unsolvable in this form. How-

ever, not all the terms are equally important. To see which ones dominate,

we scalethe equations. This means we estimate the sizes of the various

terms in the equation by using reasonable values for the variables at the

scales we’re interested in.

1.4 Scaling the horizontal acceleration

For example, take thex-momentum equation, neglecting (for now) the fric-

tion term:

∂

∂t
u+ u

∂

∂x
u+ v

∂

∂y
u+ w

∂

∂z
u+ 2Ωw cosθ − 2Ωv sinθ = −1

ρ

∂

∂x
p

U

T

U 2

L

U 2

L

UW

D
2ΩW 2ΩU

△p
ρL

1

2ΩT

U

2ΩL

U

2ΩL

W

2ΩD

W

U
1

△p
2ΩρUL

In the third line, we have divided through by the scaling for the vertical

component of the Coriolis acceleration,2ΩU . By doing this, all the terms

on the third line aredimensionlessparameters, i.e. they have no units.
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What we will do is to evaluate each and see how it compares to one (the

size of the vertical Coriolis term). We have made an (educated) guess that

this term is one of the largest. If any of the other terms is much less than

one, we can neglect it. If however another term is much greater than one,

our assumption that the Coriolis term was the largest was wrong and we

will have to divide again, using the larger term.

To see how large the terms are, we plug in typical values. We will use

values for the atmosphere, typical of weather disturbances(the result using

typical oceanic values is the same):

U ≈ 10 m/sec, 2Ω =
4π

86400 sec
= 1.45 × 10−4sec−1 ≈ 10−4sec−1,

L ≈ 106 m, D ≈ 104 m, T = L/U ≈ 105 sec a ≈ 6400 km

△HP/ρ ≈ 103 m2/sec2, W ≈ 1 cm/sec, (32)

The horizontal scale, 1000 km, is known as thesynoptic scalein the at-

mosphere. This is a typical horizontal scale for pressure systems. The

time scale, proportional to the length scale divided by the velocity scale,

is theadvectivetime scale. This is what you’d expect, for example, if a

front were advected by the winds past an observer. With an advective time

scale, we have:

1

2ΩT
=

U

2ΩL

So the first term is the same size as the second and third terms.This ratio

is a well-known quantity in meteorology and oceanography, and is known

as theRossby number. It has a value at synoptic scales of
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U

2ΩL
= 0.1

Thus the first three terms are roughly 10 times smaller than the vertical

Coriolis term.

However, the other terms are even smaller. The fourth term:

W

2ΩD
= 0.01

is about 10 times smaller than the Rossby number, and thus is 100 times

smaller than the Coriolis term. And the fifth term, the other Coriolis term,

W

U
= .001

is even smaller.

So is there anything to balance the vertical Coriolis term? The pressure

gradient term scales as:

△p
2ΩρUL

= 0.70 ≈ 1

So the pressure gradient term is comparable in size to the vertical Coriolis

term.

1.5 Geostrophic balance

The scaling suggests that the first order balance in the momentum equa-

tions is between the vertical component of the Coriolis acceleration and

the pressure gradient:

−fv ≈ −1

ρ

∂

∂x
p (33)
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+fu ≈ −1

ρ

∂

∂y
p (34)

where

f ≡ 2Ωsinθ

This is the vertical component of the Coriolis parameter, the only one

which is important at these scales. Relations (33, 34) represent thegeo-

strophic balance. This is one of two fundamental balances at synoptic

scales. The balance implies that if we know the pressure and density, we

can deduce the velocities. So the winds or currents can be determined from

maps of the pressure and density.

p/ ρ
L

H
fu

Figure 5: The geostrophic balance.

Consider the flow in Fig. (5). The pressure is high to the southand low

to the north. Left alone, the pressure difference would force flow to the

north. But the Coriolis force causes the flow to beparallel to the pressure

contours. Because∂∂yp < 0, we have from (34) thatu > 0, so the flow

is eastward. The Coriolis acceleration is to the right of themotion, and

this exactly balances the pressure gradient force, which isto the left. Be-

cause the two forces balance, the motion is constant in time—there is no

acceleration.
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L

H

Figure 6: Geostrophic flow with non-constant pressure gradients.

If the pressure gradient changes in space, so will the geostrophic ve-

locity. In Fig. (6), the flow accelerates into a region with more closely-

packed pressure contours, then decelerates exiting the region.

L

H

Figure 7: Geostrophic flow around pressure anomalies.

As a result of the geostrophic relations, we can take pressure maps and

use them to estimate the winds, as in Fig. (7). From the previous argu-

ments, the flow is counter-clockwise orcyclonic around a low pressure
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system. It is also clockwise oranti-cyclonicaround a high pressure. So

geostrophy is why the winds blow counter-clockwise around ahurricane.

Sincef = 2Ωsinθ, the Coriolis force varies with latitude. It is strongest

at high latitudes, and weaker at low latitudes. Note too thatit is negative

in the southern hemisphere! Thus the flow in Fig. (5) would instead be

westward, with the Coriolis force acting to the left. In addition, the Coriolis

force is identicallyzeroat the equator. So the geostrophic balancecannot

hold there.

1.6 The quasi-horizontal momentum equations

One problem with the geostrophic balances (33, 34) is that they cannot

be used for prediction. Given the pressure field now, we can deduce the

velocities now—but we can’t predict what they will be in the future. This is

because we have lost the time derivative terms in the momentum equations.

To do prediction, we must therefore include the next largestterms in the

momentum equations, i.e. those which are of order Rossby number.

dHu

dt
− fv = −1

ρ

∂

∂x
p (35)

The same reasoning yields:

dHv

dt
+ fu = −1

ρ

∂

∂y
p (36)

where the Lagrangian derivative:

dH

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y

now does not include the vertical advection term. Thus the advection in

these approximate equations isquasi-horizontal. This implies that synop-
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tic scale motion is approximatelytwo-dimensional, i.e. like motion con-

fined to a tabletop. The vertical motion is generally much smaller.

1.7 Other momentum balances

u

u

θ

r

Figure 8: Circular flow.

The geostrophic balance occurs at synoptic scales, but other balances

are possible at smaller scales. To see this, consider a perfectly circular

flow (Fig. 8). The momentum equation in cylindrical coordinates (e.g.

Batchelor,Fluid Mechanics) for the velocity in the radial direction is given

by:

d

dt
ur −

u2
θ

r
− fuθ = −1

ρ

∂

∂r
p (37)

The termu2
θ/r is called thecyclostrophicterm and is related to the cent-

ripetal acceleration. It is a curvature term like those found with spherical

coordinates. If the flow issteady(not changing in time), then we have:

u2
θ

r
+ fuθ =

1

ρ

∂

∂r
p (38)

U 2

R
2ΩU

△p
ρR
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U

2ΩR
1

△p
2ρΩUR

We have scaled the equation as before. Note that the scale of the cyc-

lostrophic term is determined by the Rossby number. Let’s define that as

ǫ.

1.7.1 Geostrophic flow

If ǫ ≪ 1, the cyclostrophic term is much smaller than the Coriolis term.

Then, we must have:

△p
2ρΩUR

≈ 1

and we have the geostrophic balance again:

fuθ =
1

ρ

∂

∂r
p (39)

Note that if the term on the RHS wasn’t order one, the pressuregradient

wouldn’t be large enough to balance the Coriolis force and there would be

no velocity.

1.7.2 Cyclostrophic flow

Now consider ifǫ≫ 1. For example, a tornado at mid-latitudes has:

U ≈ 30m/s, f = 10−4sec−1, R ≈ 300m,

So ǫ = 1000. Then the cyclostrophic term dominates over the Coriolis

term. As we noted earlier, that means that we shouldn’t have divided the

scaling parameters by2ΩU , but rather byU 2/R. Then we would have:

1
2ΩR

U

△p
ρU 2
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Now the second term, which is just1/ǫ, is very small (0.001 for the tor-

nado) and we require:

△p
ρU 2

≈ 1

In this case, we have thecyclostrophic wind balance:

u2
θ

r
=

1

ρ

∂

∂r
p (40)

Notice that this is anon-rotatingbalance, becauseΩ doesn’t enter. The

pressure gradient is balanced by the centrifugal acceleration.

We can solve for the velocity after multiplying byr and then taking the

square root:

uθ = ±
√

√

√

√

r

ρ

∂

∂r
p (41)

There are two interesting points about this. One is that onlylow pressure

systems are permitted, because we require∂
∂rp > 0 in order to get a real

solution. Second,either signof wind is allowed. So our tornado can have

either cyclonic or anti-cyclonic winds.

However, we know that tornadoes are low pressure systems with cyc-

lonic flow. The reason the flow is cyclonic has to do with how thetornado

spins up (i.e. how it forms). Indeed, the winds in the tornadoaren’t 30

m/sec all the time, but are much weaker while they are spinning up. The

spin-up, it turns out, favors cyclonic winds.

1.7.3 Inertial flow

There is a third possibility, that there is no radial pressure gradient at all.

This is calledinertial flow. Then:

19



u2
θ

r
+ fuθ = 0 → uθ = −fr (42)

This corresponds to circular motion in “solid body rotation” (with the ve-

locity increasing linearly from the center, as it would witha solid). The

velocity is negative, implying the rotation is clockwise (anti-cyclonic) in

the Northern Hemisphere. The time for a parcel to complete a full circle

is:

2πr

uθ
=

2π

f
=

0.5 day

|sinθ| , (43)

This is known as the “inertial period”. “Inertial oscillations” are frequently

seen at the ocean surface, and are excited by the winds and other forcing.

They are much rarer in the atmosphere.

1.7.4 Gradient wind

The last possibility is thatǫ = 1, in which case all three terms in (38) are

important. This is thegradient wind balance. We can then solve foruθ

using the quadratic formula:

uθ = −1

2
fr±1

2
(f 2r2+

4r

ρ

∂

∂r
p)1/2 = −1

2
fr±1

2
(f 2r2+4 r f ug)

1/2 , (44)

after substituting in the definition of the geostrophic velocity. Note that if

the pressure gradient vanishes, we recover the inertial velocity.

The gradient wind estimate clearly differs from the geostrophic estim-

ate. The difference is typically about 10-20 % at mid-latitudes. To see this,

we rewrite (38) thus:

u2
θ

r
+ fuθ =

1

ρ

∂

∂r
p = fug (45)
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Then:

ug

uθ
= 1 +

uθ

fr
(46)

The last term scales as the Rossby number. So ifǫ = 0.1, the gradient

wind estimate differs from the geostrophic value by 10 %. At low latitudes,

whereǫ can be 1-10, the gradient wind estimate is more accurate.

1.8 Hydrostatic balance

Now we scale the vertical momentum equation. For this, we need an es-

timate of the vertical variation in pressure:

△V P/ρ ≈ 105m2/sec2

Neglecting the friction term,Fz, we have:

∂

∂t
w+u

∂

∂x
w+v

∂

∂y
w+w

∂

∂z
w−u2 + v2

a
−2Ωucosθ = −1

ρ

∂

∂z
p−g (47)

WU

L

UW

L

UW

L

W 2

D

U 2

a
2ΩU

△VP

ρD
g

UW

gL

UW

gL

UW

gL

W 2

gD

U 2

ga

2ΩU

g

△VP

gρD
1

10−8 10−8 10−8 10−11 2 × 10−6 10−4 1 1

Notice that we used the advective time scale,L/U , for the time scaleT and

we have divided through byg, which we assume will be large. The vertical

pressure gradient and gravity terms are much larger than anyof the others.
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However this is somewhat misleading because we obtain the same balance

if there isno motion at all! In particular, ifu = v = w = 0, the vertical

momentum equation is:

∂

∂z
p = −ρg (48)

This is called the “hydrostatic balance” or literally the “non-moving fluid

balance”. In addition, the two horizontal momentum equations reduce to:

1

ρ

∂

∂x
p =

1

ρ

∂

∂y
p = 0 (49)

So our non-moving atmosphere hasp = p(z), and no winds.

We aren’t particularly interested in this component of the flow, since

we’re interested in the moving part. The latter comes from the dynamic

(moving) portion of the pressure field. So we separate the pressure and

density into static and dynamic components:

p(x, y, z, t) = p0(z) + p′(x, y, z, t)

ρ(x, y, z, t) = ρ0(z) + ρ′(x, y, z, t) (50)

Generally the dynamic components are much smaller than the static com-

ponents, so that:

|p′| ≪ |p0| (51)

Then we can write:

−1

ρ

∂

∂z
p− g = − 1

ρ0 + ρ′
∂

∂z
(p0 + p′)− g ≈ − 1

ρ0

(1− ρ′

ρ0

)
∂

∂z
(p0 + p′)− g

≈ − 1

ρ0

∂

∂z
p′ + (

ρ′

ρ0

)
∂

∂z
p0 = − 1

ρ0

∂

∂z
p′ − ρ′

ρ0

g (52)
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Note we neglect terms proportional to the product of the dynamical vari-

ables, likep′ρ′.

Now the question is: how do we scale the dynamical pressure terms?

Measurements suggest the vertical variation ofp′ is comparable to the ho-

rizontal variation, so:

1

ρ0

∂

∂z
p′ ∝ △HP

ρ0D
≈ 10−1m/sec2 .

The perturbation density,ρ′, is roughly1/100 as large as the static density,

so:
ρ′

ρ0

g ≈ 10−1m/sec2 .

To scale these, we again divide byg. So both terms are of order10−2.

So while they are smaller than the static terms, they are still two orders of

magnitude largerthan the next largest term in (47). So the approximate

vertical momentum equation is still the hydrostatic balance, but for the

perturbation pressure and density:

∂

∂z
p′ = −ρ′g (53)

A model which uses this equation instead of the full verticalmomentum

equation is called a "hydrostatic model"; a model which usesthe full ver-

tical momentum is a "non-hydrostatic model". Notice that inthe hydro-

static model, we have no information about∂
∂tw and so have lost the ability

to predict changes in the vertical velocity. Instead,w is usually diagnosed

from the other variables.

1.9 The equations of state

In addition to the momentum and continuity equations, we require equa-

tions relating the density, temperature and, for the ocean,the salinity. In
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the atmosphere, the density and temperature are linked via the Ideal Gas

Law:

p = ρRT (54)

whereR = 287 Jkg−1K−1 is the gas constant for dry air. The law is thus

applicable to a dry gas, i.e. one without moisture, but a similar equation

applies in the presence of moisture if one replaces the temperature with the

so-called “virtual temperature”.

In the ocean, both salinity and temperature affect the density. The de-

pendence is expressed in an equation of state:

ρ = ρ(T, S) = ρc(1 − αT (T − Tref) + αS(S − Sref)) + h.o.t. (55)

whereρc is a constant,Tref andSref are reference values for temperature

and salinity and whereh.o.t. means “higher order terms”. Increasing the

temperature or decreasing the salinity reduces the density(makes lighter

water). An important point is that the density is dominated by the first

term,ρc, which is constant. We exploit this in the next section.

1.10 The Boussinesq Approximation

The fact that the oceanic density is dominated byρc allows us to make

theBoussinesqapproximation. In this, we take the density to be constant,

except in the “buoyancy term” on the RHS of the hydrostatic relation in

(53).

Making this approximation, the geostrophic relations become:

−fv = − 1

ρc

∂

∂x
p (56)
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fu = − 1

ρc

∂

∂y
p (57)

whereρc is a constant.

In addition, with a constant density the continuity equation reduces to

simply:

dρc

dt
+ ρc(∇ · ~u) = 0 → ∇ · ~u = 0 (58)

So oceanic flow is approximatelyincompressible.

These two alterations—having a constant density in the horizontal mo-

mentum equations and no density at all in the continuity equation—greatly

simplify calculations.

Making the Boussinesq approximation apparently removes density vari-

ations. But what we do is to retain the variable density in thehydrostatic

relation, i.e.:

∂

∂z
= −ρ(x, y, z, t)g (59)

This buoyancyterm allows density variations to come into play in the

flows.

1.11 Pressure Coordinates

We cannot responsibly apply the Boussinesq approximation to the atmo-

sphere, except possibly in the planetary boundary layer (this is often done,

for example, when considering the surface Ekman layer). Butit is possible

to achieve the same simplifications if we change the verticalcoordinate to

pressure instead of height.
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We do this by exploiting the hydrostatic balance. Consider apressure

surface in two dimensions,(x, z). Applying the chain rule, we have:

△p =
∂p

∂x
△ x +

∂p

∂z
△ z = 0 (60)

on the surface. Substituting the hydrostatic relation, we get:

∂p

∂x
△ x− ρg △ z = 0 (61)

so that:

∂p

∂x
|z = ρg

△z
△x |p ≡ ρ

∂Φ

∂x
|p (62)

where the subscripts indicate derivatives taken in vertical (z) and pressure

(p) coordinates and whereΦ is thegeopotential:

Φ ≡
∫ z

0
g dz (63)

Making this alteration removes the density from momentum equation

because:

−1

ρ
∇p|z → −∇Φ|p

So the geostrophic balance in pressure coordinates is simply:

fv =
∂

∂x
Φ, fu = − ∂

∂y
Φ (64)

If we know the geopotential on a pressure surface, we can diagnose the

velocities—without knowing the density.

In addition, the coordinate change simplifies the continuity equation.

Consider a Lagrangian box with a volume:
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δV = δx δy δz = −δx δy δp
ρg

(65)

after substituting from the hydrostatic balance. The mass of the box is:

ρ δV = −1

g
δx δy δp

Conservation of mass implies:

1

δM

d

dt
δM =

g

δxδyδp

d

dt
(
δxδyδp

g
) = 0 (66)

Rearranging:

1

δx
δ(
dx

dt
) +

1

δy
δ(
dy

dt
) +

1

δp
δ(
dp

dt
) = 0 (67)

If we let δ → 0, we get:

∂u

∂x
+
∂v

∂y
+
∂ω

∂p
= 0 (68)

whereω is the velocity perpendicular to the pressure surface (likew is

perpendicular to az-surface). Thus the change to pressure coordinates

results in incompressible flow, as under the Boussinesq approximation.

Again it seems like the density has fallen out of the problem.But we

retain it in the hydrostatic equation, which takes a slightly different form.

Now we have that:

dp = −ρgdz = −ρdΦ (69)

So:

dΦ

dp
= −1

ρ
= −RT

p
(70)
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after invoking the Ideal Gas Law (54). Thus density (or equivalently tem-

perature) variations are still important.

1.12 Thermal wind

If we combine the geostrophic and hydrostatic relations, weget the thermal

wind relations. These tell us about the velocity shear. Take, for instance,

thep-derivative of the geostrophic balance forv:

∂v

∂p
=

1

f

∂

∂x

∂Φ

∂p
= − R

pf

∂T

∂x
(71)

after using (70). Note that thep passes through thex-derivative because it

is constant on an isobaric surface. Likewise:

∂u

∂p
=

R

pf

∂T

∂y
(72)

after using the hydrostatic relation (70). Thus the vertical shear is propor-

tional to the lateral gradients in the temperature.

The thermal wind relations for the ocean derive from takingz-derivatives

of the Boussinesq geostrophic relations (56-57), and then invoking the hy-

drostatic relation. The result is:

∂v

∂z
= − 1

ρcf

∂ρ

∂x
(73)

∂u

∂z
=

1

ρcf

∂ρ

∂y
(74)

Thus the shear in the ocean depends on lateral gradients indensity, which

can result from changes in either temperature or salinity.

The thermal wind is thus parallel to the temperature contours, with the

warm wind on the right. In the ocean, the thermal wind is parallel to the
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δu  /δz

Light

Heavy

Figure 9: The thermal wind shear associated with a density gradient in they-direction.

density contours, with light water on the right. This is illustrated in Fig.

(9). There is a density gradient iny, meaning the shear is purely in the

x-direction. The density increases to the north, so the gradient is positive.

So∂u/∂z is positive. Thus the zonal velocity is increasing going up,i.e.

with the warm air to the right.

The analogous situation for the atmosphere is if the warm airis on the

right. Then the temperature gradient iny is negative, so that∂u/∂p < 0.

Sou decreases as the pressure increases. However, the pressureincreases

goingdownward. So we would infer that∂u/∂z is positive, just like in the

ocean case.

If the temperature is only a function of pressure,T = T (p), thenT is

constant on pressure surfaces in the atmosphere. It followsthat there is no

vertical shear— the geostrophic winds are constant with height. Likewise,

if density is constant onz-surfaces, there is no vertical shear in the currents.

A flow with zero vertical shear is called abarotropicflow. We will study

barotropic flows in section (2).

There is also the possibility that the magnitude of the velocity changes

with height but not the direction, as shown in Fig. (10). Thisis anequi-
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Figure 10: Vertical shear in the equivalent barotropic case. Note that the geostrophic
velocities and the temperature contours are parallel.
.

valent barotropicflow. In this case, the shear vectors are parallel to the

velocities themselves and are also parallel to the temperature contours.

Using the thermal wind relation, we can estimate the strength of the jet

stream, under the equivalent barotropic assumption. The zonally-averaged

temperature decreases with latitude on the earth (the polesare colder than

the equator). This means that∂T/∂y < 0, so thatu should increase with

height (Fig. 11).

To get an estimate of the wind speed aloft, we integrate the thermal

wind balance in pressure. First we rewrite the zonal balanceslightly:

p
∂u

∂p
=

∂u

∂ln(p)
=
R

f

∂T

∂y
(75)

Thus we have:

∫ p

ps
du = u(p) − u(ps) =

R

f

∫ p

ps

∂T

∂y
d ln(p) (76)

T is a function of pressure, but let’s replace it with the mean temperature
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Figure 11: The jet stream on a zonally-average earth.

integrated over the height; call thatT . Then we get:

u(p) − u(ps) =
R

f

∂T

∂y
ln(

p

ps
) (77)

At 30N, the zonally-averaged temperature gradient is roughly 0.75 Kdeg−1.

Assuming the wind is zero at the earth’s surface, we can estimate the mean

zonal wind at the level of the jet stream (250 hPa):

ug(250) =
287

2Ωsin(30)
ln(

250

1000
) (− 0.75

1.11× 105m
) = 36.8 m/sec (78)

This is comparable to the speed of the jet stream at this height.

The equivalent barotropic assumption is also used in simplified models

of the atmosphere and ocean. A notable example is an equivalent baro-

tropic model of the Antarctic Circumpolar Current, the large current which

flows around Antarctica. However, in most cases the atmosphere and ocean

are more complicated, with both the velocities’ speedanddirection chan-
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ging with height. Thus we say that the atmosphere and ocean are baro-

clinic). So the temperature and geopotential contours are not parallel and

the geostrophic wind can advect temperature.

In oceanography, relations (73) and (74) are routinely usedto estimate

ocean currents from density measurement made from ships. Ships collect

hydrographicmeasurements of temperature and salinity, and these are then

used to determineρ(x, y, z, t), from the equation of state (55). Then the

thermal wind relations are integrated upward from chosen level to determ-

ine (u, v) above the level, for example:

u(x, y, z) − u(x, y, z0) =
∫ z

z0

1

ρcf

∂ρ(x, y, z)

∂y
dz (79)

If (u, v, z0) is set to zero at the lower level, it is known as a “level of no

motion”. Such thermal-wind derived estimates were used to map the global

currents in the World Ocean Circulation Experiment (WOCE) during the

1990s.

1.13 The vorticity equation

We can obtain a very useful equation from the momentum equations if we

cross-multiplythem. Specifically, we take∂∂x of the y-momentum equa-

tion (36) and subtract∂∂y of the x-momentum equation (35). Doing this

eliminates the pressure terms on the RHS, leaving (after some algebra):

∂

∂t
ζ + u

∂

∂x
ζ + v

∂

∂y
ζ + (f + ζ)(

∂

∂x
u+

∂

∂y
v) + v

∂

∂y
f = 0 (80)

where

ζ =
∂

∂x
v − ∂

∂y
u
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is the curl of the horizontal velocities. This is thevorticity. Actually, it is

the vertical component of the full vorticity:

~ζ = ∇× ~u

which has components:

ζx =
∂

∂y
w − ∂

∂z
v =

∂

∂y
w

ζy =
∂

∂z
u− ∂

∂x
w = − ∂

∂x
w

ζz ≡ ζ =
∂

∂x
v − ∂

∂y
u (81)

Because the synoptic scale motion is quasi-two dimensional, the most im-

portant component is the vertical one, which is perpendicular to the plane

of motion. Hereafter we refer to this as therelative vorticityand we drop

thez subscript.

L H

ζ > 0 ζ < 0

Figure 12: The relative vorticities of a low pressure (left)and high pressure (right) system.

What is vorticity? It is essentially a measure of shear or spin. Consider a

low pressure system (Fig. 12). This has northward flow on the eastern side
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(from geostrophy) and southward flow on the western side. That implies

thatv is increasingwith x. Likewise, it has westward flow to the north and

eastward flow to the south, sou is decreasing withy. Thus

ζ =
∂v

∂x
− ∂y

∂y
> 0

for the low pressure. Similarly,ζ is negative for a high pressure.

Note the vorticity equation involves a term which is:

v
∂

∂y
f

Actually, f = 2Ωsin(θ), is a function of latitude. But latitude is related to

y, by the relation:

y = aθ

wherea again is the earth’s radius. Sof is also a function ofy. Later on

we’ll make approximations and writef explicitly in terms ofy.

We can write the vorticity equation is a more compact form:

dH

dt
(ζ + f) = −(f + ζ)(

∂

∂x
u+

∂

∂y
v) (82)

We can do this becausef is only a function ofy, so that:

dH

dt
f = (

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
)f = v

∂

∂y
f

Equation (82) suggests that the relative vorticity andf are basically on

equal footing. So we often refer tof as theplanetaryvorticity. If we look

down on the North Pole, we see the earth rotating cyclonically, like a low

pressure system. So the planet appears to have a positive vorticity. This

makes sense becausef = +2Ω at the North Pole. Likewise, if we look
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instead at the South Pole, we would see the earth rotating anti-cyclonically.

So we would say the planetary vorticity was negative there (wheref =

−2Ω).

By cross-multiplying, we have eliminate the pressure on theright hand

side of the momentum equations in the oceanic case. Similarly, we elim-

inate the geopotential on RHS in the atmospheric case. Thus equation (82)

applies toboth the atmosphere and ocean. The dynamics of the two sys-

tems are indeed very similar at synoptic scales; we can basically study

both simultaneously. Another advantage with using vorticity is that it is a

scalar, unlike the velocity which is a vector. This helps when visualizing

complex flows.

Equation (82) states that the sum of the relative and planetary vorticit-

ies, which we call theabsolute vorticity, is not conserved following a fluid

parcel. Rather it changes in response to horizontal divergence. Consider a

hypothetical case where the divergence is constant:

∂

∂x
u+

∂

∂y
v = D = const. (83)

First we letD > 0, which corresponds to a divergent flow (for example,

below a downdraft at the surface; Fig. 13). Then the vorticity equation

(82) is:

d

dt
ζa = −ζaD (84)

This implies:

ζa = ζa(0) e−Dt (85)

This implies that the absolute vorticity decays to zero, or that:
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Figure 13: Divergent flow at the surface below a downdraft, producing anticyclonic cir-
culation.

limt→∞ζ → −f (86)

This is true regardless of the initial vorticity of the air parcel. Cyclonic

and anticyclonic anomalies both become anticyclones with avorticity ap-

proaching−f .

Physically, the outward flow associated with the divergenceis diverted

to the right by the Coriolis force (Fig. 13). This produces anticyclonic

(clockwise) circulation.

Now consider convergent flow, withD < 0 (Fig. 14). In this case we

have:

ζa = ζa(0) eDt (87)

So the vorticity increases without bound. But it would appear that we

could get either intense cyclones or anti-cyclones, depending on whether

ζ(0) < 0 or ζ(0) > 0.
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Figure 14: Convergent flow at the surface feeding an updraft.

To see which is more likely, we can scale the absolute vorticity:

ζ + f

U

L
f

U

fL
1

The relative vorticity scales asU/L, because it involves the velocity shear.

Thus if the Rossby number is small, then:

ζ + f ≈ f > 0 (88)

in the Northern Hemisphere. So the air outside the convergent region

should have positive vorticity, due to the planetary rotation. Convergent

flow thus favors intensecyclonesrather than anticyclones. The inward

flow in a convergence is steered to the right, generating cyclonic flow (Fig.

14). This is why intense storms (like hurricanes) are usually cyclonic.
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2 Barotropic flows

As noted before, one can assume that the density in the ocean is approxim-

ately constant. This is not a reasonable assumption for the atmosphere, ex-

cept perhaps in the planetary boundary layer (in the lowest kilometer over

the surface). Nevertheless, the dynamics found in barotropic flows—flows

without vertical shear—are largely the same as those with shear. Since the

barotropic system is much simpler, it is useful to study.

2.1 Shallow Water Equations

It is convenient to focus on the equations inz-coordinates. As seen before,

the momentum equations are well-approximated by their quasi-horizontal

versions:

dHu

dt
− fv = − 1

ρc

∂

∂x
p (89)

dHv

dt
+ fu = − 1

ρc

∂

∂y
p (90)

These are just the Boussinesq equations. However, we will now also take

the density constant in the hydrostatic relation:

∂p

∂z
= −ρcg (91)

In addition, we have the continuity equation for a constant density fluid,

which is just the incompressible condition:

∂

∂x
u+

∂

∂y
v +

∂

∂z
w = 0 (92)
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Consider a layer of fluid, as shown in Fig. (15). The lower boundary

is atz = −H(x, y), whereH is a function which represents bottom topo-

graphy (i.e. mountains). The upper layer is atz = η(x, y, t). This is afree

surface, i.e. it can move, like the surface of the ocean or the tropopause in

the atmosphere. If the upper surface were flat, then it would be atz = 0.

If the bottom were flat, it would be atz = −D. SoD is theundisturbed

depth of the fluid.

z=−H(x,y)

z=n(x,y,t)

D

Figure 15: The fluid layer.

As we noted before, there is no vertical shear in a barotropicfluid. You

can see this as follows. If we take thez-derivative of the momentum equa-

tions and substitute in from the hydrostatic relation, we get:

dH

dt

∂u

∂z
− f

∂v

∂z
= − 1

ρc

∂

∂x

∂p

∂z
=

g

ρc

∂

∂x
ρc = 0 (93)

and similarly:

dH

dt

∂v

∂z
+ f

∂u

∂z
= 0 (94)
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These equations imply that the vertical shear can’t change.If it is initially

zero, it will stay zero. This is called the Taylor-Proudman theorem. Con-

stant density flows have no vertical shear.

Now imagine we’re at a depth,−z, in the fluid. We can integrate the

hydrostatic relation up to the upper surface, thus:

∫ η

−z

∂p

∂z
dz = p(η) − p(−z) = −ρcg(η + z) (95)

Herep(η) is the pressure above the fluid layer, for example the atmospheric

pressure above the ocean. We will ignore this. Taking the gradient of the

integrated relation, we then get:

∇p(−z) = ρcg∇η (96)

Using this in the momentum equations, we get:

dHu

dt
− fv = −g ∂

∂x
η (97)

dHv

dt
+ fu = −g ∂

∂y
η (98)

So gradients in the upper surface height cause pressure gradients in the

fluid interior, and these force the flow. These are theshallow water mo-

mentum equations. They can also be derived from the full momentum

equations assuming a constant density and a smallaspect ratio, the ratio

between the depth of our fluid,D, and the typical horizontal length scale,

L. The latter is usually 1000 times the former, so the aspect ratio for the

ocean and atmosphere is very small.

The shallow water momentum equations have three unknowns,u, v and

η—so the system is not closed. We need one additional equation. To get
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this, we turn to the incompressibility condition. Integrating that over the

entire fluid depth, we get:

∫ η

−H
(
∂

∂x
u +

∂

∂y
v) dz + w(η) − w(−H) = 0 (99)

Because the horizontal velocities have no vertical shear, we can move them

through the integral, leaving:

(η +H)(
∂

∂x
u+

∂

∂y
v) + w(η) − w(−H) = 0 (100)

Now we need the vertical velocities at the upper and lower boundaries.

We get these by noting that a fluid parcel on the boundary stayson the

boundary. For a parcel on the upper surface:

z = η (101)

We take the derivative of this, using the full Lagrangian derivative:

dz

dt
= (

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
)z = w(η) =

dHη

dt
(102)

Notice the last derivative is a horizontal one becauseη = η(x, y, t). A

similar relation applies at the lower boundary:

w(−H) = −dHH

dt
(103)

The horizontal derivative occurs becauseH = H(x, y). Of course the

lower boundary isn’t moving, but the term is non-zero because of the ad-

vective component, i.e.:

dHH

dt
= ~uH · ∇H (104)
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Putting these into the continuity equation, we get:

dH

dt
(η +H) + (η +H)(

∂

∂x
u+

∂

∂y
v) = 0 (105)

This is the Lagrangian form of the equation. In Eulerian terms, this is:

∂

∂t
η + u

∂

∂x
(η +H) + v

∂

∂y
(η +H) + (η +H)(

∂

∂x
u+

∂

∂y
v) =

∂

∂t
η + ∇ · (~u(η +H)) = 0 (106)

These provide us with our third equation, involvingu, v andη. Now we

have a closed system.

2.2 Conservation of potential vorticity

If we cross-differentiate the shallow water equations (97-98), we obtain a

vorticity equation, exactly like that in (82):

dH

dt
(ζ + f) = −(f + ζ)(

∂

∂x
u+

∂

∂y
v) (107)

We can eliminate the horizontal divergence from this by using the Lag-

rangian form of the shallow water continuity equation (105). The result

is:

dH

dt
(ζ + f) = (

ζ + f

η +H
)
d

dt
(η +H) (108)

or:

1

H + η

d

dt
(ζ + f) − ζ + f

(H + η)2

d

dt
(H + η) = 0

or equivalently:

d

dt
(
ζ + f

H + η
) = 0 . (109)
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Thus the absolute vorticity is conserved if we divide the sumby the

total depth of the fluid. This is called the “potential vorticity” (PV), a

fundamental quantity in shallow water dynamics. It is closely related to a

more general quantity derived originally by Ertel (1942) and bearing his

name (“the Ertel potential vorticity”). There are numerousexamples of

how PV conservation affects motion in rotating fluids.

2.3 Linear system

The three shallow water equations (97, 98, 106) are nonlinear because each

has terms which involve products of the unknownsu, v andη. As such,

they are difficult to solve analytically. However, solutions are possible if

we linearizethe equations. The linear solutions include phenomena like

gravity and planetary waves, which are frequently observedin the atmo-

sphere and ocean.

The central idea in linearizing the system is to assume the motion is

weak. So, for example, we assume the height deviations are much smaller

than the stationary (non-changing) water depth, i.e.

|η| ≪ H(x, y) .

We assume too that the temporal changes in the velocity are greater than

those due to advection, or

U

T
≫ U 2

L
,

which implies that

U ≪ L

T
.

Making these approximations, the shallow water equations reduce to:
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∂

∂t
u− fv = −g ∂

∂x
η (110)

∂

∂t
v + fu = −g ∂

∂y
η (111)

∂

∂t
η +

∂

∂x
(Hu) +

∂

∂y
(Hv) = 0 (112)

Note thatH remains in the parentheses in (112) because we allow for spa-

tial variations in the bottom depth, i.e.H = H(x, y).

2.4 Constant f, flat bottom

We can simplify the system further if we assume that the rotation rate,f , is

constant. This is known as the “f -plane approximation”, and it applies if

the area under consideration is small. To see this, we expandf in a Taylor

series:

f = 2Ωsin(θ) ≡ 2Ω[ sin(θ0) + (θ − θ0)cos(θ0) +O|(θ − θ0)
2|] . (113)

Hereθ0 is the central latitude of our plane of fluid. We see that thef -plane

approximation applies when we can neglect all but the first term in the

expansion,2Ωsin(θ0).

We will assume moreover that the bottom is flat. This isn’t necessary,

but simplifies the algebra a bit. With these two assumptions,we can reduce

(110-112) to a single equation, as follows. If we cross-multiply the mo-

mentum equations, we get the linear version of the vorticityequation(82),

with a constantf :
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∂

∂t
ζ = −fχ (114)

whereχ = ∂
∂xu+ ∂

∂yv is the horizontal divergence. We can get an equation

for the divergence by taking∂∂x of (110) and adding∂
∂y of (111). That

yields:

∂

∂t
χ− fζ = −g∇2η (115)

We can then eliminate the vorticity by taking a time derivative of the di-

vergence equation and substituting in from the vorticity equation:

∂2

∂t2
χ+ f 2χ = −g ∂

∂t
∇2η (116)

Then we eliminateχ using (112). The result is:

∂

∂t
{( ∂

2

∂t2
+ f 2) η − c20∇2η} = 0 . (117)

Herec0 =
√
gH has the units of a velocity. We will see later this is related

to the speed of gravity waves. This equation is linear and hence can be

solved forη. Once we know the surface height,η, we can determine the

velocities,u andv.

2.5 Gravity waves, no rotation

First let’s examine the solutions where there is no rotation. Then equation

(117) reduces to:

∂

∂t
{ ∂

2

∂t2
η − c20∇2η} = 0 . (118)

This equation has three time derivatives and so admits threesolutions. One

is a steadysolution in whichη does not vary with time. Notice that if
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η = η(x, y), equation (118) is trivially satisfied. This is referred to as the

“geostrophic mode”, and we’ll take this up later.

The other two solutions are time-varying and come from solving the

portion of the equation in the braces. This is a second-orderwave equation,

and we can obtain a general solution if we Fourier transform the surface

height:

η̂(k, l, ω) =
∫ ∫ ∫

η(x, y, t) eikx+ily−iωt dx dy dt

Here,k andl arewavenumbers. They are related to the wavelengths in the

x andy directions:

λx =
2π

k
, λy =

2π

l
(119)

The constantω is thefrequency. This is related to theperiodof the wave,

which is like a wavelength in time:

T =
2π

ω
(120)

Substituting the expansion into equation (118), we get:

−(ω2 − c20κ
2) η̂ = 0 , (121)

whereκ ≡ (k2 + l2)1/2 is the modulus of the wavevector. So:

ω = ±c0 κ , (122)

This expression thus relates the wave frequency to its wavenumber. It is

referred to as the wavedispersion relation. We see that short wavelength

(large wavenumber) waves have higher frequencies. So shortwaves seen

from a beach will have shorter periods than long waves.
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How quickly do the waves move? Thephase speedof the wave, or the

speed at which the crests move, is given by:

c =
ω

κ
= ±c0 = ±

√

gH . (123)

So short and long waves propagate at thesame speed. We say the waves are

“non-dispersive” because an initial disturbance, which isgenerally com-

posed of different wavelengths, will not separate into longand short waves.

Any initial condition will produce waves moving with speedc0.

As an example, consider the one-dimensional case, in which the motion

is purely in thex-dimension:

∂2

∂t2
η − c20

∂2

∂x2
η = 0 . (124)

All solutions to this equation have the form:

η = Fl(x+ c0t) + Fr(x− c0t) .

Substituting this into (124) yields:

c20(F
′′
l + F ′′

r ) − c20(F
′′
l + F ′′

r ) = 0 ,

where the prime indicates differentiation with respect to the argument of

the function. The functionFl represents a wave which propagates to the

left, towards negativex, whileFr propagates to the right. One can see this

by noting that the arguments ofFl andFr remain constant with increasing

time if x is decreasing in time and increasing, respectively.

Because there are two unknown functions, we require two setsof condi-

tions to fully determine the solution. For instance, consider the case when

η(t = 0) = F(x),
∂

∂t
η(t = 0) = 0 .
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This means the height has a certain shape att = 0, and that the initial wave

is not moving. Then we must have:

Fl = Fr =
1

2
F(x) .

So the disturbance splits in two, with half propagating to the left and half

to the right, both with speedc0.

2.6 Gravity waves with rotation

Now consider what happens whenf 6= 0. If we ignore the steady solution,

the linearized shallow water equation (117) is:

(
∂2

∂t2
+ f 2) η − c20 ∇2η = 0 . (125)

Fourier transformingη, as before, we obtain the following dispersion rela-

tion:

ω = ±(f 2 + c20κ
2)1/2 . (126)

This is the dispersion relation for “Poincaré waves”, whichare gravity

waves with rotation. For large wavenumbers (small waves), this is ap-

proximately:

ω = ±c0κ (127)

which is the same as the dispersion relation for non-rotating gravity waves.

However, in the other limit, asκ→ 0, the relation is approximately:

ω = ±f (128)
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Figure 16: The gravity wave dispersion relations for the non-rotating and constant rotation
cases.

So the frequency asymptotes to the inertial frequency (sec.1.7.3) for large

waves. We plot the non-rotating and rotating dispersion relations in Fig.

(16).

The rotating and non-rotating frequencies are similar when:

λ =
2π

κ
≪

√
gH

f
≡ LD . (129)

The scale,LD, is the Rossbydeformation radius(or sometimes the “ex-

ternal deformation radius”). At wavelengths small compared to the de-

formation radius, rotation is unimportant; the waves essentially do not

“feel” the earth’s rotation.

At scales larger than the deformation radius, the frequencyasymptotes

to f . In this case, gravity is unimportant because we would obtain the

same result if we had ignored the pressure gradient terms in the momentum

equations. Such waves are the inertial oscillations discussed in sec. (1.7.3);

they have the same period equal to the Coriolis parameter,f .
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We defined the phase speed as the ratio of the frequency to the wave

number. Non-rotating gravity waves have the same phase speed regard-

less of their wavenumber and are thus non-dispersive. Rotation causes the

gravity waves to disperse because the phase speed is now:

c =
ω

κ
= ±(f 2 + c20κ

2)1/2

κ
= c0 (1 + (

f

c0κ
)2)1/2 .

In the short wave limit, the waves are approximately non-dispersive and

traveling at speed,c0. But the larger waves propagate faster. So an arbitrary

initial disturbance will break into sinusoidal components, with the larger

wavelengths moving away fastest.

As noted, rotation becomes important at scales larger than the deform-

ation radius. But how big is the deformation radius? Using typical values

and a latitude of 45 degrees, the deformation radius is:
√
gH

f
≈

√
10 ∗ 4000

10−4
= 2000 km ,

which is a rather large scale, corresponding to about 20 degrees of latitude.

At such scales, our assumption of a constant Coriolis parameter is certainly

not correct. So a more proper treatment of the large wave limit in such deep

water would have to take the variation off into account. Of course if the

depth is less, the deformation radius will be smaller; this is the case for

example in bays and shallow seas.

2.7 Geostrophic adjustment

We noted earlier that the linear shallow water equation (117) admits three

solutions; two are propagating waves and one is independentof time. This

third solution is trivial in the absence of rotation. But with rotation, the
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Figure 17: The evolution of a sea surface discontinuity in the absence of rotation.

solution, known as the “geostrophic mode”, plays a central role in the at-

mosphere and ocean. To illustrate this mode, we consider an initial value

problem for gravity waves, first without and then with rotation.

We consider again the one-dimensional problem, for simplicity. We

assume the initial sea surface has a front (a discontinuity)atx = 0:

η(x, t = 0) =
η0

2
sgn(x) ,

where thesgn function is1 if the argument is greater than zero and−1

if not. This could represent, for example, the initial sea surface deviation

generated by an earthquake. Without rotation, the solutionfollows from

section (2.5):

η(x, t) =
η0

4
(sgn(x− c0t) + sgn(x+ c0t)) .

We see the discontinuity splits into two fronts, one propagating to the left

and one to the right (Fig.17). The height in the wake of the twofronts is

zero (since 1 + (-1) =0). There is no motion here.

The case with rotation is different because of the geostrophic mode. In

this case, the relaxing front must conserve potential vorticity, and this will

not allow a flat final state. If the PV is conserved, then from (109) we have:

ζ + f

H + η
= const. .

We assume there is no motion in the initial state. Then we have:
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vx + f

H + η
=

f

H + (η0/2)sgn(x)
. (130)

wherevx = ∂
∂xv. Notice the vorticity is justvx because the front is one-

dimensional. Cross-multiplying and re-arranging, we get:

[H +
η0

2
sgn(x)] vx − fη = −f η0

2
sgn(x) . (131)

We will assume the initial interface displacement is much smaller than the

total depth, i.e.|η0| ≪ H. Also, the final state is not time dependent. So

the x-momentum equation is just the geostrophic balance:

fv = gηx , (132)

With these two changes, we get:

ηxx −
1

L2
D

η = − η0

2L2
D

sgn(x) . (133)

where again,LD =
√
gH/f is the deformation radius.

Equation (133) is an ordinary differential equation. We solve it separ-

ately forx > 0 andx < 0. Forx > 0, we have:

ηxx −
1

L2
D

η = − η0

2L2
D

. (134)

The solution for this which decays asx→ ∞ is:

η = Aexp(−x/LD) +
η0

2
. (135)

The corresponding solution forx < 0 which decays asx→ −∞ is:

η = B exp(x/LD) − η0

2
. (136)
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Figure 18: The sea surface height after geostrophic adjustment, beginning with a discon-
tinuity, with rotation. The red curve shows the final interface shape and the blue curve the
meridional velocity,v.

We thus have two unknowns,A andB. We find them by matchingη and

ηx atx = 0. That way the height and the velocity,v, will be continuous at

x = 0. The result is:

η =
η0

2
(1 − exp(− x

LD
)) x ≥ 0

= −η0

2
(1 − exp(

x

LD
)) x < 0 (137)

The final state is plotted in Fig. (18). Recall that without rotation, the

final state was flat, with no motion. With rotation, the initial front slumps,

but does not vanish. Associated with this tilted height is a ameridional jet,

intensified atx = 0:

v =
gη0

2fLD
exp(− |x|

LD
) . (138)

The flow is directed into the page. Thus the final state with rotation is one

in motion, in which the tilted interface is supported by the Coriolis force

acting on a meridional jet.

2.8 Kelvin waves

So far we have examined wave properties without worrying about bound-

aries. Boundaries can cause waves to reflect, changing theirdirection of
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propagation. But in the presence of rotation, boundaries can also support

gravity waves which aretrappedthere; these are called Kelvin waves.

The simplest example of a Kelvin wave pertains to a infinitelylong

wall. Let’s assume this is oriented parallel to thex-axis, and lies aty = 0.

Because of the no-normal flow condition at the wall, we havev = 0 at

y = 0. In fact, we can obtain solutions which havev = 0 everywhere.

Because our linear wave equation (117) is expressed in termsof η, it is

preferable to go back to the linearized shallow water equations (110-112)

and setv = 0 there. This yields:

∂

∂t
u = −g ∂

∂x
η, (139)

fu = −g ∂
∂y
η (140)

∂

∂t
η +

∂

∂x
Hu = 0 . (141)

Notice that an equation forη can be derived with only thex-momentum

and continuity equations:

∂2

∂t2
η − c20

∂2

∂x2
η = 0 . (142)

This is just the linearized shallow water equation (117) in one dimension

without rotation. Indeed, rotation drops out of thex-momentum equation

becausev = 0. As a result, Kelvin waves will be non-dispersive, like non-

rotating gravity waves. From section (2.5), we know the general solution

to equation (142) involves two waves, one propagating towards negativex

and one towards positivex:

η(x, y, t) = Fl(x+ c0t, y) + Fr(x− c0t, y) .
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We allow for structure in they-direction and this remains to be determined.

It turns out that rotation enters in this way, in determiningthe structure

of the wave away from the wall. From thex-momentum equation, (139),

we can derive the velocity component parallel to the wall:

u = − g

c0
(Fl − Fr) .

Substituting this into they-momentum equation, (140), we obtain:

∂

∂y
Fl =

f

c0
Fl,

∂

∂y
Fr = − f

c0
Fr, .

The solutions are exponentials, with an e-folding scale of
√
gH/f = LD,

the deformation radius:

Fl ∝ exp(y/LD) Fr ∝ exp(−y/LD) .

The exact solution depends on the where the wall is. We choosethe

solution which decays away from the wall (is trapped there) rather than

one which grows indefinitely. If the wall covers the regiony > 0, then the

only solution decaying (in the negativey-direction) isFl. If the wall covers

the regiony < 0, onlyFr is decaying. Thus, in both cases, the Kelvin wave

propagates at the gravity wave speed with the wallto its right.

Note though that the decay is also affected by the sign off . If we are in

the southern hemisphere, wheref < 0, the Kelvin waves propagate with

the wall to their left.

2.9 Rossby waves

In the previous cases, we tookf to be constant. A result of this is that the

“geostrophic mode” had no time dependence. It was a steady flow, as in
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the example in (2.7). But when we allow for variations off , we pick up a

low frequency oscillation.

So let’s see what happens whenf varies. The simplest way to do this

is to extend the domain slightly, by retaining another term in the Taylor

expansion off :

f ≈ 2Ωsin(θ0) + 2Ωcos(θ0)(θ − θ0) (143)

Usingy = aθ, we have:

f ≈ f0 + β(y − y0) (144)

where:

f0 = 2Ωsin(θ0)

and

β ≡ 2Ω

a
cos(θ0)

Writing f like this is known as theβ-plane approximation.

Now the shallow water continuity equation is given in (106).If the

bottom is flat,H is constant. Moreover, let’s assume that the upper layer

is also flat and setη = 0. This is therigid lid approximation; the effect is

to filter out gravity waves. Then the continuity equation is simply:

(
∂

∂x
u+

∂

∂y
v) = 0 (145)

With a rigid lid, the flow ishorizontally non-divergent.

We can take advantage of this by writing the velocities in terms of a

streamfunction. Specifically, we write:
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u = − ∂

∂y
ψ, v =

∂

∂x
ψ (146)

Then:

∂

∂x
u+

∂

∂y
v =

∂

∂x
(− ∂

∂y
ψ) +

∂

∂y
(
∂

∂x
ψ) = 0 (147)

With zero divergence, the vorticity equation (82) reduces to:

dH

dt
(ζ + f) =

dH

dt
(ζ + βy) = 0 (148)

using theβ-plane approximation. Note we can ignore thef0 term, a con-

stant.

This equation is still nonlinear, involving the product of the velocities

and the relative vorticity. So we will again linearize it. This time we will

do it slightly different, by allowing for a constant, background zonal flow

in addition to the weak perturbations. Specifically, we write:

u = U + u′, v = v′ (149)

whereU is a constant. The mean flow,U , could be the Jet Stream in the

atmosphere or the Gulf Stream in the mid-Atlantic. The relative vorticity

is then:

ζ =
∂

∂x
v′ − ∂

∂y
u′ (150)

TheU term vanishes because it’s constant. Substituting these inand ignor-

ing products of primed terms yields:

∂

∂t
ζ ′ + U

∂

∂x
ζ ′ + vg

∂

∂y
(βy) = 0 (151)
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We rewrite this in terms of our streamfunction, noting thatζ = ∇2ψ. The

result is:

(
∂

∂t
+ U

∂

∂x
)∇2ψ + β

∂

∂x
ψ = 0 (152)

This is theRossby wave equation.

To solve it, we substitute in a Fourier wave solution:

ψ(x, y, t) ∝ ψ̂(k, l, ω)eikx+ily−iωt

This yields:

(−iω + ikU)(−k2 − l2)ψ̂eikx+ily−iωt + ikβψ̂eikx+ily−iωt = 0 (153)

The wave part, as always, drops out leaving:

ω = Uk − βk

k2 + l2
(154)

This is theRossby wave dispersion relation. Like the gravity wave dis-

persion relations, this connects the frequency with the wavenumbers. But

this relation has several interesting features about this.Unlike with the

gravity wave dispersion relation, where the frequency onlydepended on

the magnitude of the wavevector,κ, the Rossby wave frequency is propor-

tional tok, the zonal wavenumber. This means the frequency varies with

thedirectionof wave propagation. Notice too that the waves cannot have

k = 0, because then they would have zero frequency (they would notbe

wave-like).

The phase speed in the zonal direction is:

cx =
ω

k
= U − β

k2 + l2
≡ U − β

κ2
(155)
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whereκ is the total wavenumber. Thus the phase speed depends on the

wavenumber, so the waves are dispersive. The largest speedsoccur when

k and l are small, corresponding to long wavelengths. Thus large waves

move faster than small waves.

Second, all waves propagatewestwardrelative to the mean velocity,U .

If U = 0, c < 0 for all (k, l). This is a distinctive feature of Rossby waves.

Satellite observations of Rossby waves in the Pacific Ocean show that the

waves, originating off of California and Mexico, sweep westward toward

Asia.

Third, the wave speed depends on the orientation of the wave crests.

The most rapid westward propagation occurs when the crests are oriented

north-south, withk 6= 0 andl = 0. If the wave crests are oriented east-

west, so thatk = 0, then the wave frequency is zero and there is no wave

motion at all.

The phase speed also has a meridional component, and this canbe either

towards the north or south:

cy =
ω

l
=
Uk

l
− βk

l(k2 + l2)
(156)

The sign ofcy thus depends on the signs ofk andl. So Rossby waves can

propagate northwest, southwest or west—but not east.

With a mean flow, the waves can be swept eastward, producing the

appearance of eastward propagation. The short waves are more susceptible

to eastward propagation. In particular, if

κ > κs ≡ (
β

U
)1/2

the wave moves eastward. Longer waves move westward, opposite to the

mean flow. Ifκ = κs, the wave isstationaryand the crests don’t move
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at all—the wave is propagating west at exactly the same speedthat the

background flow is going east. Stationary waves can only occur if the

mean flow is eastward, because the waves propagate westward.

Example: At what background wind velocity is an isotropic wave with

a wavelength of 1000 km stationary? What about a wavelength of 5000

km? Assume we are at 45 degrees N.

An isotropic wave has the same scales in thex andy directions. So the

wave has wavenumbers:

k = l =
2π

106
m−1 = 6.28 × 10−6m−1

and:

κ2 = k2 + l2 = 2k2 = 7.90 × 10−11m−2

At 45 N, we have:

β =
1

6.3 × 106

4π

86400
cos(45) = 1.63 × 10−11m−1sec−1

So:

β

κ2
= .21m/sec

So ifU = 0.21 m/sec, the wave is stationary.

Forλ = 5000 km, we find:

Us =
βλ2

2(4π2)
=

1.63 × 10−11(5 × 106)2

8π2
= 5.2m/sec (157)

What does a Rossby wave look like? Recall thatψ is proportional to

the geopotential, or the pressure in the ocean. So a sinusoidal wave is a
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sequence of high and low pressure anomalies. An example is shown in

Fig. (19). The wave is proportional tocos(x)sin(y) and appears to be a

grid of high and low pressure regions.
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Figure 19: A Rossby wave, withψ = cos(x)sin(y). The red corresponds to high pressure
regions and the blue to low. The lower panel shows a “Hovmuller” diagram of the phases
aty = 4.5 as a function of time.

The whole wave in this case is propagating westward. Thus if we take a

cut at a certain latitude, herey = 4.5, and plotψ(x, 4.5, t), we get the plot

in the lower panel. This shows the crests and troughs moving westward

at a constant speed (the phase speed). This is known as a “Hovmuller”

diagram.

Three examples from the ocean are shown in Fig. (20). These are

Hovmuller diagrams constructed from sea surface height in the Pacific, at
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Figure 20: Three Hovmuller diagrams constructed from sea surface height in the North
Pacific. From Chelton and Schlax (1996).

three different latitudes. We see westward phase propagation in all three

cases. Interestingly, the phase speed (proportional to thetilt of the lines)

differs in the three cases. To explain this, one needs to takestratification

into account. In addition, the waves are more pronounced west of 150-180

W than in the east. The reason for this is still unknown.
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