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1 Equations

1.1 Basic equations

To do what follows, we need to introduce the set of equations we’ll be us-

ing, and the approximations we’ll need. First are the momentum equations,

written in vector form:

∂

∂t
~u+ ~u · ∇~u+ 2Ω × ~u = −1

ρ
∇p− gk̂ +

1

ρ

∂

∂z
~τ (1)

Here~u is the velocity,ρ is the density,p is the pressure,g is gravity,~τ is

the applied stress andΩ is the rotation vector for the earth. Note that this

equation is actually three equations in one—one for each spatial dimen-

sion.

We also have the continuity equation:

∂

∂t
ρ+ ~u · ∇ρ+ ρ(∇ · ~u) = 0 (2)

This expresses the conservation of mass. If the flux of density into a fixed

volume is positive, the total mass will increase. Despite the simplicity of

that idea, the equation is nonlinear and non-trivial.

But to simplify matters, we will make theBoussinesqapproximation.

This assumes that:

ρ = ρ0 + ρ′(x, y, z, t) (3)

whereρ0 is a constant and that:

ρ0 ≫ |ρ′|
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The density of water is nearly a constant—it changes only slightly when

heated (over a reasonable range). So we can replaceρ in most of the equa-

tions by the constantρ0. This simplifies the continuity equation a lot:

∂

∂t
ρ0 + ~u · ∇ρ0 + ρ0(∇ · ~u) = 0 (4)

or:

∇ · ~u = 0 (5)

Thus the Boussinesq fluid isincompressible. This means that volume is

conserved.

The momentum equation is also simplified somewhat because the pres-

sure term is now linear:

1

ρ
∇p → 1

ρ0
∇p (6)

The Boussinesq approximation is valid for the ocean and approximately

so for the planetary boundary layer in the atmosphere. It is not accurate

in the troposphere, due to the compressibility of air. But ifone usespres-

sure coordinates, the pressure term is also linearized and the flow is in-

compressible. So the equations are similar to the Boussinesq ones we use

hereafter.

We also require the stress term on the RHS of the momentum equa-

tion. We will write this as the sum of an (unspecified) forcingterm and a

diffusive damping term:

1

ρ

∂

∂z
τ = F + ν∇2~u (7)
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The forcing could for example be the wind acting on the ocean,or con-

vective motion in the atmosphere. The diffusion term represents molecular

dissipation, withν ≈ 10−5 m2/sec.

We will alter the momentum equation slightly. For one, we canrewrite

the advective term using incompressibility. Notice that:

∇ · (~ua) = ~u · ∇a+ a(∇ · ~u) = ~u · ∇a (8)

Second, we can write the gravity term as the gradient of thegeopotential,

gz. Put together, we can write the momentum equation as:

∂

∂t
~u+ ∇ · (~u ◦ ~u) + 2Ω × ~u = −∇(

p

ρ0
+ gz) + F + ν∇2~u (9)

The circle in the advection term signifies a tensor product, because this ac-

tually represents 9 terms, in three separate equations. Thus thex-component

is:

∂

∂t
u+ ∇ · (~uu) − fzv = − 1

ρ0

∂

∂x
p+ F x + ν∇2u (10)

wherefz = 2Ωsin(θ) is the vertical component of the Coriolis acceleration

(I’m ignoring the term involving the horizontal component,which is very

small).

Interestingly, there is only one nonlinear term in this equation: the

second term, the advection of momentum. This is aquadraticnonlinear-

ity, because it involves the product of the unknown velocities. Turbulence

springs from this term, as we’ll see shortly.
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1.2 Scaling

Not all the terms in the momentum equation are equally important. To see

this, we approximate each of the terms with “typical” values, i.e.U , L, P ,

etc. The x-momentum equation scales as:

∂

∂t
u+ ∇ · (~uu) − fzv = − 1

ρ0

∂

∂x
p+ F x + ν∇2u

U

T

U 2

L
fU

P

ρ0L
F

νU

L2
(11)

If we divide through by the last term, we get:

L2

νT

UL

ν

fL2

ν

PL

ρ0νU

FL2

νU
1 (12)

Thus the advection term is a factor ofUL/ν times the size of the dissip-

ation term. This parameter is theReynold’s number. How big is this? At

the scale of weather systems in the atmosphere, we have:

UL

ν
≈ (10m/sec)(106m)

10−5m2/sec
= 1012

This means that advection ismuchmore important than molecular dissip-

ation at these scales.

The second point concerns the time scale,T . We can rewrite the first

scaling term thus:

L2

νT
=
Tν

T
(13)

This is the ratio between the actual time scale of the motion,T , and the

dissipation time scale, Tν = L2/ν. This is the time scale approximately

that is required for molecular friction to bring the motion at scaleL to rest.

How long is this? At the weather scales:
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Tν =
L2

ν
≈ (106m)2

10−5m2/sec
= 1017 sec

This is roughly1012 days, or about3 × 109 years—roughly one fourth the

age of the present universe! So we would have to wait for a verylong time

for molecular dissipation to halt a storm system.

Of course the dissipation time scale is a strong function of the spatial

scale. Consider a cup of coffee. Say you add sugar to the coffee and stir it.

How long do you have to wait for it to slow down? Assuming a cup 10 cm

across, the dissipation time scale is:

Tν =
L2

ν
≈ (0.1m)2

10−5m2/sec
= 103 sec

This is about 15 minutes. But coffee settles down much fasterthan this,

perhaps over 15 seconds. We’ll see why shortly.

Another important scaling can be obtained if we instead divide through

the scales byfU , the size of the Coriolis term. Then we obtain:

∂

∂t
u+ ∇ · (~uu) − fzv = − 1

ρ0

∂

∂x
p+ F x + ν∇2u

1

fT

U

fL
1

P

fUρ0L

F

fU

ν

fL2
(14)

The ratio of the advective term to the Coriolis term is thusU/fL. This is

theRossby number. This is also small at large scales. Atsynoptic scales

(order 1000 km in the atmosphere), the Rossby number is roughly 0.1.

Then the Coriolis term is 10 times larger than the advective term. Scaling

the other terms, we find that the pressure gradient term is about the same

size. So the dominant balance at weather scales is between the third and

fourth terms, known as thegeostrophic balance.
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Figure 1: A time series of temperature measured over a certain period. The upper panel
shows the whole time series, while the middle and lower panels show the low-pass and
high-pass filtered time series.

2 Statistics in a nutshell

Turbulence often appears to be “noise” in a signal. Considerthe temperat-

ure time seriesT (t) in the upper panel of Fig. (1). The temperature varies

slowly in time, but it also has a high frequency component. Ifwe low-pass

filter the time series, we get the signal in the middle panel. This has a

smooth, even quasi-predictable looking, variation. If on the other hand we

high-pass filter the time series, we get the signal in the lower panel. This

appears to be “white noise”, i.e. a random signal with no dominant fre-

quencies. This part of the signal looks completely unpredictable, i.e. we

don’t know from one instant to the next how it will behave.
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Figure 2: The probability density function (PDF) of the high-pass filtered time series in
Fig. (1). The dashed curve is a Gaussian PDF.

Turbulence signals are often like in the lower panel. They are funda-

mentally unpredictable (we will demonstrate this in sec. 4). So rather than

worrying about the exact values of the signal at any given time, we focus

instead onstatistics. We are more concerned about the range of possible

values and themoments—the mean, the variance, etc.

The moments can be derived from theprobability density function(PDF).

To obtain this, we calculate a histogram from the signal by counting the

number of times the temperature falls in selected ranges, e.g. between

−0.2 and−0.1. Then we normalize the histogram so that:

∫ ∞

−∞
p(T ) dT = 1 (15)

The result shows us the probability of getting a particular value.

Fig. (2) shows the PDF for the high-pass filtered time series.We see

that the value is most often around zero. But values as large as±0.7 occa-

sionally occur.

The moments can be derived from the PDF. For example, themean
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temperature is:

< T >=
∫ ∞

−∞
Tp(T ) dT (16)

The mean for the distribution shown is−0.0022. This is close to zero, as

we expected.

The width of the PDF is determined by the second moment, thevari-

ance:

V =< (T− < T >)2 >=
∫ ∞

−∞
(T− < T >)2 p(T ) dT (17)

For the distribution shown, the variance is0.0386. A better indicator of

the actual width though is thestandard deviation, which is the root of the

variance:

SD = (< (T− < T >)2 >)1/2 (18)

In the present case, this is0.1965. You can see that the PDF falls to roughly

half its maximum value at±0.2. This means that the temperature in the

high pass filtered time series is most often between−0.2 and0.2.

We can also calculate higher moments. The third order momentis the

skewness:

S =

∫∞
−∞(T− < T >)3 p(T ) dT

SD3
(19)

It is traditional to normalize the skewness by the cube of thestandard de-

viation so that the result is a non-dimensional number. The skewness in-

dicates how asymmetric about the origin the distribution is. In our case,

S=0.0271; the PDF is slightly skewed toward positive values.

The fourth order moment is also useful—this is thekurtosis:
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K =

∫∞
−∞(T− < T >)4 p(T ) dT

SD4
(20)

also occasionally called the “flatness” factor. The value reflects the shape

of the PDF. If the PDF has a sharp peak in the middle and long wings, the

kurtosis is large. In our case, k=2.9792.

If the kurtosis is near the value of three (as it is here), thenthe PDF is

close to aGaussianor “normal” distribution. The Gaussian is defined:

p(T ) =
1√
2πδ2

exp(−(T− < T >)2

2δ2
) (21)

This is indicated by the dashed curve in Fig. (2). We see our PDF is indeed

close to normal.1 It is advantageous having a Gaussian PDF because all the

moments can be derived analytically.

3 The Fourier transform

Another operation we’ll be using is the Fourier transform. The basic idea

is that we project a function onto a basis of sinusoidal functions:

T (t) =
∑

ω
T̂ (ω)eiωt (22)

where the sum goes over the range of the frequency,ω. We prefer the

complex sinusoidal function because it’s easier to work with than sines

and cosines.

We can extract the component at a single frequency by Fouriertrans-

forming, thus:
1There is a theorem in statistics called the Central Limit Theorem which states that the sum of inde-

pendent processes has a PDF which converges to a Gaussian.
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1

T

∫ T

0
T (t) exp(−iωt) dt =

1

T

∫ T

0
T̂ (ω) dt = T̂ (ω) (23)

whereT is, for example, the length of the record.

This is a Fourier transform in time. But the transform can be made in

space as well. For instance, we can write:

ψ(x, y) =
∑

k

∑

l

ψ̂(k, l)eikx+ily (24)

Then the corresponding transform is:

ψ̂(k, l) =
1

L2

∫∫ L

0
ψ(x, y)e−ikx−ily dxdy (25)

assuming that the domain extends from[0, L].

An advantage of the Fourier transform is that it makes takingderivatives

easy. Ifψ above is the 2-D streamfunction, such that:

u = − ∂

∂y
ψ, v =

∂

∂x
ψ (26)

then:

û(k, l) = −ilψ̂(k, l), v̂ = ikψ̂ (27)

Another useful point is concerns the energy. Say we have a domain

with dimensionsx = [0, L] andy = [0,M ]. The total kinetic energy in the

domain is:

E =
1

LM

∫∫ 1

2
(u2 + v2) dxdy (28)

The Fourier version of this is:
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E =
1

2

∑

k

∑

l

|û|2 + |v̂|2 (29)

Thus the kinetic energy is the sum of the squares of the Fourier amplitudes

by wavenumber. This result is due toParseval’s theorem. Written in terms

of the streamfunction, the energy is:

E =
1

2

∑

k

∑

l

(k2 + l2)|ψ̂|2 (30)

Very often, we’ll talk about the energyspectrum. This is just:

E(k, l) =
1

2
(|û|2 + |v̂|2) (31)

Then the total energy is the sum of the spectrum over all wavenumbers.

The spectrum shows contribution to the energy by wavenumber(or fre-

quency). This has traditionally been a central quantity in turbulence.

4 A chaotic example

As noted earlier, the “trouble” with the momentum equation is the quad-

ratic nonlinearity on the LHS. It’s useful to consider how this affects the

solution in a simple case.2 The x-momentum equation is again:

∂

∂t
u+ ∇ · (~uu) − fv = − 1

ρ0
∇p+ Fx + ν∇2u (32)

We’ll approximate this with a “toy” example:

d

dt
u+ ru2 = 1 − u (33)

2This example is based on one by Frisch (1995).

14



This has only a single variable,u(t). The terms on the RHS are simple

forcing and dissipation terms. The equation has a quadraticnonlinearity,

and that is multiplied byr, which is essentially the Reynolds number for

the problem. Ifr is small, the flow is viscous and the equation is approx-

imately linear. Ifr is order one or larger, it is nonlinear.

We will discretize the equation, using a simple Euler routine with a time

stepdt = 1:

u(t+ 1) − u(t)

1
+ ru(t)2 = 1 − u(t) (34)

We can rewrite this as:

u(t+ 1) = F (u(t)) = 1 − ru(t)2 (35)

This is a variant of the “logistic map”.3

The behavior of the system depends strongly on the parameter, r. If r

is very small (less than 0.01), the solution approaches u=1.0. This is the

viscous limit when the forcing determines the solution.

If r is larger than that, the solution approaches a smaller value. This is

known as afixed point. We find the fixed points by solving:

d

dt
u = −ru2 + 1 − u = 0 (36)

This quadratic equation has solutions:

u = − 1

2r
±

√
1 + 4r

2r
(37)

There are two roots, one positive and one negative. Withr = 0.1, the roots

areu = 0.9161 andu = −10.9161. Solving (35) numerically (in Matlab),
3The logistic map was originally proposed in a paper by May (1976). His was an idealized model of a

biological system where the growth rate of a population is proportional to the population itself. The paper
became a landmark in the chaos literature.
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Figure 3: . Two solutions of the logistic map with u(0)=0. Thesolution at right has r=0.1
and the one on the right has r=0.75.

we see that the solution rapidly converges to the positive root (left panel of

Fig. 3).

Why does it favor the positive root over the negative one? To see, we

perform linear stability analysis. Let’s say the solution is near a fixed

point, denotedua. The fixed point is such that:

F (ua) = ua (38)

So if we start at the fixed point, the mapping stays there. If weare near the

fixed point, we can write:

u = F (ua) + δ(t) (39)

whereδ is a small deviation. Putting this into (35), we have:

u(t+1) = F (ua)+ δ(t+1) = F (ua + δ(t)) ≈ F (ua)+F ′(ua)δ(t) (40)

after using a Taylor expansion. We keep only the first term, consistent with

a “linear” analysis. Cancelling theF (ua) on both sides, we get:
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δ(t+ 1) = F ′(ua)δ(t) (41)

Whether|δt| increases or decreases depends therefore onF ′(ua). If we

think in terms of iterations, we have that:

δn+1 = (F ′(ua))δn = (F ′(ua))
2δn−1 = (F ′(ua))

nδ1 (42)

Thus if:

|F ′(ua)| < 1 (43)

thenδ will asymptote to zero. Note that if0 < F ′(ua) < 1, thenδ de-

cays monotonically to zero, while if−1 < F ′(ua) < 0, thenδ oscillates

as it decays. Likewise, ifF ′(ua) > 1, δ increases monotonically and if

F ′(ua) < −1, δ oscillates and increases. Ifδ decreases in time, then we

say thatua is a stablefixed point; if δ increases, it is an unstable fixed

point.

We have that:

F ′(u) = −2ru (44)

With the positive root,ua = .9161 so thatF ′(ua) = −0.1832. So we

expect decaying oscillations. In fact, there are oscillations in Fig. (3), but

the decay is so rapid we don’t see them. The other root,ua = 10.9161 has

F ′(ua) = −2.1832. Thus this point is unstable. So the numerical solution

converges to the positive root rather than the negative one.

The oscillations are more noticeable whenr is larger. An example, with

r = 0.75, is shown in the right panel of Fig. (4). However, the solution is

again approaching the positive root, which withr = 0.75 is u = 2/3. Note
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thatF ′(ua) = −1 in this case—so the linear stability analysis indicates we

are on the border between stable and unstable solutions.
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Figure 4: . The solution (left) and spectrum (right) with r=0.8.

Indeed, increasingr somewhat more, we find the oscillations don’t die

out. Consider the case withr = 0.8 (left panel of Fig. 4). Nowu oscillates

around the fixed point atu = 0.6559. An alternate way of looking at this is

with the spectrum ofu, as a function of the (non-dimensional) frequency,

ω. There is a single peak atω = 0.5.

Increasingr further, the behavior becomes more complex. The case

with r = 1.3 is shown in Fig. (5). We see thatu is oscillating about the

fixed point (atu = 0.5731), but the oscillations are less regular. Looking

at the spectrum, we see why: there are nowthreedominant frequencies;

the solution is a superposition of three waves.

Increasingr further, the solution becomes even more complex as more

and more frequencies appear. Withr = 2 (Fig. 6), the solution is fully

chaotic; u oscillates between -1 and +1, but the motion is erratic and unpre-

dictable. Sometimes there are rapid changes and sometimes slower ones.

In addition, the spectrum (right panel) is nearly “white” (flat), indicating

equal contributions across the range of frequencies.
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Figure 5: . The solution with r=1.3.
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Figure 6: . The solution with r=2.

Chaos is implies that the system is sensitively dependent onthe initial

condition. The initial value in Fig. (6) isu(0) = 0.1. Let’s change that

slightly though tou(0) = 0.10001. The two curves are plotted in Fig. (7).

We see that initially the curves are together. But shortly after t=10, they

begin to diverge. And by t=20, the two are essentially independent of one

another. This is a central difficulty with chaotic systems: unless you know

the initial conditionsexactly, it’s impossible to make a correct prediction.

And there will always be some error in the initial conditions.

Given that the motion is unpredictable, it doesn’t make sense to worry
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Figure 7: . The solution with r=2, with two initial values which are nearly the same.

about the exact value ofu at any given time. Rather, we can focus on the

statistics. The PDF ofu is shown in Fig. (8) for both of the initial values

used in Fig. (7). Despite that the two time series were very different, the

PDFs are almost identical. We see thatu takes on all values in the range

from [-1:1]. We also see that u is most frequently near the extremes, -1

and 1. These are the extremes of the oscillations, sou spends more time

in their neighborhood (the same is true for a simple sinusoidal oscillation).

Note too that unlike with our noise example earlier, this PDFisn’t remotely

Gaussian. The kurtosis is roughly 1.5, well below the Gaussian value of 3.

With this value ofr, it’s actually possible to predict the shape of the

PDF. Making a suitable change of variables (see Frisch, 1995), one can

convert this to a “tent map”, which has auniform (or flat) PDF. Then one

can convert back again tou to predict the PDF. The solution is:

p(u) =
1

π
√

1 − u2
(45)

This is indicated by the red curve in Fig. (8).

There are several points here. One is that the system is fullychaotic at
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r = 2. If this is our Reynolds number, we see that the value is very low.

With a Reynolds number of1012, as in the atmosphere, it isn’t surprising

the motion is chaotic.

Second, becauseu explores the entire range of values between -1 and

1, we say the motion isergodic. Given (almost) any initial value, we can

expectu to take on any other value in the range. Thus if we did anensemble

of experiments, measuringu at a point and then we averaged all the values

we obtained, we would get the same answer if we just averagedu in time.

We say thatu is behaving in a probabilities way.

Lastly, we caution about taking the logistic map too literally. The pro-

gression from stable fixed points, to more and more oscillations to chaos

is typical of nonlinear systems with few degrees of freedom.In the at-

mosphere or ocean, where there are many, many degrees of freedom, the

transition from stability to chaos is usually less clean. Nevertheless, the

logistic map gives us a good idea of what a quadratic nonlinearity can do.
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Exercise: Another map

Analyze the equation:

du

dt
+ ru2 = (r − 1)u (46)

with dt = 1.

a) Write the equation as a map.

b) What are the fixed points? Are they stable or not?

c) Write a Matlab code to solve the mapping. Check the solution for

various values ofr.

d) Write a second code to calculate the spectrum ofu. Check the spectra

in the cases in (b).

e) What are the critical values ofr where transitions occur? When are

the solutions fully chaotic? Plot time series to show this.

5 Conservation laws

Central in what follows are twoconservation laws. These are for energy

and enstrophy.

5.1 Energy

If we take the dot product of the momentum equation with the velocity, we

get:

∂

∂t

1

2
|~u2| + ∇ · (~u1

2
|~u2|) = −∇ · [~u( p

ρ0
+ gz)] + ~u · F + ν~u · ∇2~u (47)

We’ve used incompressibility to rewrite the pressure gradient/geopotential

term. Note too that the Coriolis term has vanished—this is because it is

perpendicular to the velocity.
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We integrate this over a volume. We’ll consider one of three types of

(idealized) volume:

• A domain enclosed by solid walls

• A periodicdomain, where flow out one side comes in the other side

• A channel (periodic in one direction, walled in the other)

At solid walls, the normal component of the velocity vanishes. With peri-

odic conditions, the velocity is the same on opposite boundaries, so their

difference is zero.4

The main effect is on the integral of divergences. Consider:

∫∫∫

∇ · (~uG) dV =
∫

�
�

�
�

∫

G~u · n̂ dS = 0 (48)

which is the advection of some quantity,G. By Gauss’s theorem, the in-

tegral can be converted to a surface integral. This then vanishes with solid

walls because the normal velocity is zero. With periodic boundary condi-

tions, it also vanishes. Consider for example the integral in thex direction:

∫ L

0

∂

∂x
(uG) dx = u(L)G(L)− u(0)G(0) = 0 (49)

By periodicity, the two terms are equal so their difference is zero.

Thus, if we integrate (47) over the volume, we get:

d

dt
E =

∫∫∫

~u · F dV + ν
∫∫∫

~u · ∇2~u dV (50)

where:
4Boundaries can be important places, supporting boundary layers which are sometimes turbulent them-

selves. We purposely avoid such issues here.
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E =
∫∫∫ 1

2
|~u2| dV (51)

is the total kinetic energy. This states that the total energy changes only

in response to forcing and dissipation. Advection doesn’t change the total

energy; it only redistributes energy in the domain. Dissipation causes the

energy todecrease. To see this, we use a vector identity:

∇2~u = ∇(∇ · ~u) −∇× (∇× ~u) = −∇× ~ω (52)

where~ω is the total vorticity. The first term vanishes by incompressibility.

Taking the dot product with~u, we get:

~u · ∇2~u = −~u · (∇× ω) = −~ω · (∇× ~u) + ∇ · (~ω × ~u) (53)

using another vector identity. Now when we integrate over space, the last

term vanishes:

∫∫∫

∇ · (~ω × ~u) dV =
∫

�
�

�
�

∫

(~ω × ~u) · n̂ dS = 0 (54)

So we can write:

ν
∫∫∫

~u · ∇2~u dV = −ν
∫∫∫

~ω · (∇× ~u) dV = −ν
∫∫∫

|~ω|2 dV (55)

So the energy equation, without forcing, is:

d

dt
E = −ν

∫∫∫

|~ω|2 dV (56)

The energy dissipation is proportional to the integral of the squared vorti-

city, also known as theenstrophy. Because the RHS is negative definite,

the energy can only decrease in time.
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A question which will become important later on is whether the energy

is conservedwhen the viscosity goes to zero. It could happen that the

enstrophy increases asν decreases. Say for example that:

∫∫∫

|~ω|2 dV ∝ C

ν
(57)

in the limit of small viscosity. Then we would have

dE

dt
= −C (58)

regardless of how smallν was. For this to happen, there must beproduc-

tion of vorticity in the absence of forcing (i.e. the vorticity doesn’t just

decrease). To see whether or not this is the case, we turn to the vorticity

equation.

5.2 Vorticity and enstrophy

We get the vorticity equation by taking the curl of the momentum equation.

This calculation is easier if we first rewrite the momentum equation thus:

∂

∂t
~u + (~ω + 2~Ω) × ~u = −∇(

p

ρ0
+

1

2
|~u2| + Φg) + F + ν∇2~u (59)

Taking the curl, we get:

∂

∂t
~ω + ~u · ∇~ωa + ~ωa(∇ · ~u) = ~ωa · ∇~u+ ∇×F + ν∇2~ω (60)

where:

~ωa = ∇× ~u+ 2~Ω
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is the absolute vorticity. The third term vanishes by incompressibility.

Assuming for the moment that the rotation vector,~Ω is constant, we’re left

with:

d

dt
~ω = ~ωa · ∇~u+ ∇×F + ν∇2~ω (61)

The question is whether the enstrophy,|~ω|2 will be bounded if there

is no forcing (F = 0) and if the viscosity,ν, is decreased toward zero.

Multiplying by ~ω, we obtain:

1

2

d

dt
|~ω|2 = ~ω · (~ωa · ∇~u) + ν~ω · ∇2~ω (62)

Integrating this in space, and using the same vector identities that we did

with the energy, we obtain:

d

dt

∫∫∫ 1

2
|~ω|2 dV =

∫∫∫

~ω · (~ωa · ∇~u) dV − ν
∫∫∫

|∇ × ~ω|2 dV (63)

The last term is negative definite, causing a decay in the enstrophy. But

the middle term has an undetermined sign—in fact, this can act as a source

of enstrophy. So we cannot say whetherE is conserved in the limit of

vanishing viscosity. What happens in such high Reynolds number fluids

is that the velocity gradients become very large at small scales. So the

enstrophy can be very large.

However, this isn’t the case intwodimensions. In this case, the velocity

is purely horizontal:

~u = (u, v, 0) (64)

The vorticity, which is perpendicular to the velocity, is purely vertical:
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~ω = (0, 0,
∂

∂x
v − ∂

∂y
u) ≡ ζk̂ (65)

In addition, the planetary rotation vector is predominantly vertical at large

scales:

2~Ω ≈ 2Ωsin(θ)k̂ ≡ f k̂ (66)

So:

ωa · ∇~u = (ζ + f)k̂ · ∇(uî+ vĵ) = 0 (67)

So the source of enstrophy is absent in a 2-D flow and that the enstrophy

can only decrease in time. This means the energyis conserved in the in-

viscid limit in 2-D, i.e.

limν→0
dE

dt
= 0 (68)

This has an enormous effect on 2-D flows.

But is the enstrophy conserved in 2-D with vanishing viscosity? Without

the production term, the RHS of equation (63) is negative definite. But it is

not guaranteed that enstrophy is conserved unless we know that curl of the

vorticity is bounded in this limit. To see that, we have to consider the next

equation, for thepalinstrophy. It turns out there is a source term for that

as well. So we can’t assume enstrophy is conserved—just as wecouldn’t

assume energy was conserved in 3-D.

Thus in the limitν → 0, the energy is conserved in 2-D. In 3-D, it isn’t

necessarily conserved. What we will see is that even ifν is minuscule, the

energy can decrease in 3-D. But this doesn’t happen in 2-D. This suggests
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that energy isn’t affected by the dissipation at very small scales in 2-D.

We’ll see why shortly.

6 3-D turbulence

Now we return to the coffee cup. Why does it spin down so quickly?

More specifically, how can dissipation, acting at molecularscales, affect

the energy at the scale of the coffee cup? We’ll see that this has to do with

how energy is exchanged between scales. To understand that better, we

turn first to the energy.

6.1 Triad interactions

To understand how energy is transferred between scales, we will work in

Fourier space. Imagine the forcing,F , happens at large scales. This is

the spoon stirring the coffee. Assume too the dissipation isat the molecu-

lar scale. This implies that there is a range ofintermediatescales where

the forcing and dissipation aren’t relevant. At these scales, it is advection

which dominates the changes in the velocity.

We can illustrate how this works by focusing on just one of theadvect-

ive terms, in the x-momentum equation:

∂

∂t
u = −u ∂

∂x
u (69)

We first write the velocity on the LHS in terms of its Fourier transform:

u =
∑

k

û(~k, t) eikxx+ikyy+ikzz (70)

The summation is over the three wavenumbers,(kx, ky, kz). The RHS in-

volves the product of two velocities. As such, we need two different trans-
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forms:

−u ∂
∂x
u = −∑

l

∑

m
mxû(~l, t) û(~m, t) e

i(lx+mx)x+i(ly+my)y+i(lz+mz)z (71)

The factor ofmx comes from taking the x-derivative.

Now let’s take the Fourier transform of the LHS. We multiply both sides

the whole equation byexp(−ikxx − ikyy − ikzz) and integrate over the

domain. On the RHS, we have an integral like:

1

L3

∫∫∫ L

0
ei(lx+mx−kx)x+i(ly+my−ky)y+i(lz+mz−kz)z

If:

~k = ~l + ~m

Then the integral is one. If not, the integral is zero.5 Thus the result is:

∂

∂t
û(k̂, t) = −∑

l

∑

m
mx û(~l, t) û(~m, t) δ(~l + ~m− ~k) (72)

where:

δ(x) =







1 if x = 0

0 if x 6= 0

is the delta function. The same result would obtain if we had simply ap-

plied theconvolution theorem. The results shows that wave interactions

occur between groups of three waves, ortriads.6

So a wave with~k = (3, 3, 0) will interact with waves with(1, 2, 0) and

(2, 1, 0). This is known as alocal interaction, because the wavenumbers

for the triad are all similar. But the same wave will also be affected by the
5Actually, we assume we have an integral number of wavenumbers in the domain. So for example

kx = nπ/L.
6The triad interaction can also be derived directly from the convolution theorem of Fourier transforms.
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waves with(−10, 2, 0) and(13, 1, 0). These have a much smaller scale in

the x-direction. This is anon-local interaction, as the components have

very different sizes.

Consider Fig. (9), which shows a hypothetical energy spectrum,E . We

plot the spectrum as a function of the total wavenumber:

κ ≡ (k2
x + k2

y + k2
z)

1/2

The wavenumber is on thex-axis. Note that increasing wavenumber im-

pliesdecreasingsize; so the large scales are on the left. Now the fluid is

forced at a large scale, perhaps by the spoon in the cup. This produces an

energy spectrum like that in dash-dot line—a spike at the forcing scale. In-

teractions between wavenumbers cause the spectrum to spread out, as the

energy is transferred to other wavenumbers. Local interactions cause the

energy tocascadeto smaller scales (larger wavenumbers). At later times,

there is energy across a range of wavenumbers. Then non-local interac-

tions can occur, between large and small scale waves.

Eventually energy arrives at the smallest scales, where it is dissipated by

molecular interactions. So this is how molecular dissipation can bring the

coffee to rest: because turbulence transfers energy down tothe dissipation

scales.

Exercise: 2-D triads

Triad interactions also occur in 2-D. In this case, we can write the vor-

ticity equation as:

∂

∂t
ζ + u

∂

∂x
ζ + v

∂

∂y
ζ = 0 (73)

In 2-D, the velocity and vorticity can be written in terms of astreamfunc-
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Figure 9: A hypothetical cascade of an initially narrow bandenergy spectrum to smaller
scales. We imagine that energy is conserved during the cascade, so that the area under the
curves is conserved (despite appearances).

tion:

u = − ∂

∂y
ψ, v =

∂

∂x
ψ, ζ =

∂

∂x
v − ∂

∂y
u = ∇2ψ (74)

Say that:

ψ =
∑

k

∑

l

ψ̂(k, l)eikxx+ikyy (75)

Fourier transform the vorticity equation, assuming a domain with lengths

2π in each direction. Substitute in the expansions above and obtain an

equation for∂
∂tψ(~k). Show that the advective terms contribute in triads.

6.2 Kolmogorov’s inertial range

Thus forcing puts energy into the system and dissipation removes it. We as-

sume the forcing happens at much larger scales than the dissipation, which

happens on molecular scales, and that there is a range of scales in between
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where neither forcing or dissipation are important. As the great British

scientist, Lewis Fry Richardson put it:

Big whirls have little whirls,

that feed on their velocity.

And little whirls have littler whirls,

and so on to viscosity.

Kolmogorov proposed a theory in 1941 for this transfer, which has be-

come known as theinertial range. The theory employs a number of as-

sumptions:

• We assume the turbulence isisotropic—the same in all directions. So

instead of usingE(k, l,m), we can focus onE(κ), whereκ is the

magnitude of the wavenumber vector.

• We also assume the turbulence ishomogeneous—the same at all loc-

ations in space. So we can speak about the dynamics in wavenumber

space, without worrying about variations from place to place.

• And we assume that triad interactions arelocal. This reason for this

will become clearer later on.

As stated, the details of the forcing and dissipation don’t matter in the

inertial range. Thus theonly important parameter in the inertial range is

the rate at which energy is transferred downscale. We call this the energy

flux, ǫ.

Now the spectrum,E(k), has dimensions ofL3/T 2. That’s because

energy has units ofL2/T 2, and the energy is the sum over wavenumbers

of the spectrum (and the wavenumber has units ofL−1). The flux on the
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other hand has units ofL2/T 3, proportional to energy over time. So from

dimensional considerations alone, we can see that:

E(k) = Cǫ2/3k−5/3 (76)

whereC is a constant.

The inertial range begins near the forcing scale. It extendsdown to a

scale where dissipation begins to be important. We can deduce this scale

by equating time scales. The dissipation time scale, mentioned before, is:

Tν ∝ L2

ν
∝ ν−1k−2 (77)

The cascade time scale can be deduced from the flux from dimensions:

Ta ∝ ǫ−1/3k−2/3 (78)

In the dissipation range, the dissipation time scale is shorter than the cas-

cade time scale, because energy decays before it is transferred. The oppos-

ite is true in the cascade range. At the transition between the cascade and

the dissipation ranges, the two scales are equal. Equating them, we get:

kν = (
ǫ

ν3
)1/4 (79)

The corresponding length scale,Lν = (ν3/ǫ)1/4, is now called theKolmogorov

scale. This marks the boundary between the inertial and dissipative ranges.

The Kolmogorov formulation is also self-consistent with regards to dis-

sipation. As noted earlier, the energy dissipation rate is given by:

D = −ν
∫∫∫

|~ω|2 dV

The term in the integral has a scale:
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νU 2

L2
∝ νk2U 2

U 2 scales as the total energy, orǫ2/3k−2/3. So the energy dissipation (per

unit volume) scales as:

D ∝ νǫ2/3k4/3

At the dissipation wavenumber,kν, this equals

ν ǫ2/3 ǫ
1/3

ν
= ǫ

So the dissipation rate is equal to the energy flux across the inertial range.

The Kolmogorov construct is self-consistent in that the amount of energy

put in by the forcing is removed by dissipation.

But notice something—the dissipation rate isindependent ofν! Ima-

gine that we makeν smaller and smaller. Then the dissipation scaleLν is

similarly smaller. But the dissipationrate is the same. The only difference

is that the inertial range carries the energy to smaller scales.

This is a critical point. Because of the downscale cascade, energy will

not be conserved in a 3-D fluid, so long as there is even an infinitesimal

amount of dissipation. Energy can only be conserved if thereis identically

zerodissipation, which can never be realized.

The Kolmogorov picture can be illustrated as in Fig. (10). The energy is

injected at wavenumber,κf , and at a rateǫ. It then cascades downscale at

the same rate,ǫ, to the dissipation wavenumber,κν, where it is dissipated

at the same rate. In the inertial range, the only parameter which matters is

ǫ, yielding the characteristicκ−5/3 spectrum.
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Figure 10: The Kolmogorov energy spectrum.

6.3 Shell models

A simple way to understand the Kolmogorov model is as follows. Imagine

the turbulence involves energy transfer between discrete wavenumber bins

(Fig. 11). In the figure, we have four bins, and so four different scales

of wave. Energy enters at the largest scale (k = 1) and is removed by

dissipation at the smallest scale (k = 8).

In drawing the figure this way, we make the assumption that thewavenum-

ber interactions arelocal. Thus energy transfer occurs only between adja-

cent bins. The situation would be much more complicated if weallowed

for transfer between all the bins.

The rate that energy is transferred fromk = 1 to k = 2 is given byǫ.

This is the same rate as energy is transferred tok = 4. Imagine this were

not so. Say the energy transfer fromk = 2 to k = 4 was onlyǫ/2. Then

the energy would be entering thek = 2 bin faster than it was leaving, and
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Figure 11: Energy transfer in the shell model. Energy is put in at the largest scale (k = 1)
and removed at the smallest (k = 8).

the energy in the bin would increase in time. The spectrum then would not

be stationary in time. So the transfer rate must be the same between all

bins.

Also notice that the rate that energy is removed from the lastbin (k = 8)

is alsoǫ. So the dissipation rate is equal to the flux. Again, if this weren’t

so, the energy would pile up in the smallest bin.

In fact, this is a real possibility. In numerical models withtoo little dis-

sipation, the energy cascades to the smallest scales fasterthan it’s taken

out. So the energy increases at the smallest scales and the model sub-

sequently blows up. The shell model illustrates why this is so.

Exercise: Structure functions

Kolmogorov (1941) did not actually derive the form of the energy spec-

trum. Rather, he derived relations for the velocitystructure functions.

These are powers of the velocity difference between two points. For ex-

ample, the second order structure function is:
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S(r) =< |u(~x+ r) − u(~x)|2 > (80)

The brackets indicate anensembleaverage, i.e. an average over a number

of observations. Use dimensional analysis to deduce howS(r) varies with

the separation,r. Compare this to the spectrum. Consider also the third

order structure function, which has a special significance in turbulence the-

ory.

6.4 Observations

Observations support Kolmogorov’s prediction for the energy spectrum.

An example is shown in Fig. (12), from measurements in a jet inthe

laboratory (Champagne, 1978). Thek−5/3 dependence is seen clearly over

roughly two decades of wavenumber.

Another well-known example is the observations of Grant et al. (1962)

in a tidally-mixed fjord on the west coast of the US. This alsoyielded

strong evidence of ak−5/3 spectrum (Fig. 13).

There are numerous other examples as well, from the atmospheric bound-

ary layer, in laboratory experiments and in numerical simulations.

However, where the model is less successful is at predictingthehigher

moments. Energy, like the variance, is a second order statistic, being pro-

portional to the velocity squared. But one can also look at higher powers,

such as the skewness and the kurtosis. Or, one can look at velocity PDFs.

What is typically found is that the differences between velocities at sep-

arated points (see the exercise above on structure functions) are not Gaus-

sian. As shown in Fig. (14), the PDFs for velocity differences with large

separations are close to Gaussian. But as the separation,r, approaches the
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Figure 12: The energy spectra for the stream-wise and transverse velocity components in
a jet, withRe = 626. From Champagne (1978).

Kolmogorov scale, the wings of the PDFs become more and more exten-

ded.

What this implies is that while the velocities themselves may have an

approximately Gaussian distribution, the velocitygradientsare not Gaus-

sian. What one sees if one measures the gradients is that large values

occasionally occur, much larger than would be expected for aGaussian

process. Such episodes appear as “bursts” in the time series. We say that

the turbulence is “intermittent”.

This can be taken into account in the shell model above, by stating that

the turbulence fills only a fraction of the bins. This is the idea behind

the “β-model”. Such a model yields the same spectra as Kolmogorov,but

predicts deviations in the higher moments, as observed.
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Figure 13: Energy spectrum from towed measurements in a tidal basin by Grant et al.
(1962). The boxed region shows the region of transition to the dissipative range.

7 2-D turbulence

At synoptic scales in the atmosphere and ocean, the motion ismore nearly

two dimensional than three dimensional. This is because thevertical velo-

city, suppressed by rotation, is much smaller than the horizontal velocities.

Turbulence in two dimensions is similar to that in 3-D, but also quite dif-

ferent.

We take the motion to be identically two-dimensional, so that the velo-

city is given by:

~u = (u, v, 0) (81)

Now the continuity equation is just:
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Figure 14: PDFs of the velocity differences for different separations,r. At the largest
separations, near the forcing scale, the PDFs are nearly Gaussian. But approaching the
Kolmogorov scale, the wings of the PDF become more and more extended.

∂

∂x
u+

∂

∂y
v = 0 (82)

This implies we can write the velocities in terms of a streamfunction,ψ:

u = − ∂

∂y
ψ, v =

∂

∂x
ψ (83)

The vorticity is perpendicular to the velocity, so it only has a vertical com-

ponent:

~ω = (
∂

∂x
v − ∂

∂y
u) k̂ = ∇2ψ (84)

We usually refer to the 2-D vorticity asζ. The equation for the 2-D vorti-

city follows from (61):

∂

∂t
ζ + ~u · ∇(ζ + f) = ∇×F + ν∇2ζ (85)
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κ/2 κ 2κ

Figure 15: A triad in two dimensions. Energy flows from the center box to the other two.
Each box has a scale which is twice that of the box to it’s right.

As noted earlier, the vorticity production term is absent because the vorti-

city and velocity are perpendicular.

7.1 A triad interaction

The interesting aspect about 2-D turbulence is illustratednicely in an art-

icle by Fjørtoft (1953).7 We look at a triad interaction between three

wavenumbers, as illustrated in Fig. (15). Energy is initially in the cen-

ter box, at wavenumberk. The energy flows to the other two boxes, one

which has waves twice as largeκ/2 and the other twice as small2κ. The

energy in the boxes isE0, E1 andE2, going from left to right.

Fjørtoft takesν = 0, so that both the energy and enstrophy are con-

served. This is a reasonable assumption in the inertial range, where dissip-

ation is unimportant. Thus:

E0 +E2 = E1 (86)

and:

Z0 + Z2 = Z1 (87)
7A remarkable, short paper...with no references! Fjørtoft argues all his points on first principles.
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Now these two statements are related to each other, as follows.

The energy in 2-D is:

E =
1

2
(u2 + v2) =

1

2
(k2 + l2)ψ2 (88)

The enstrophy on the other hand is:

Z =
1

2
(
∂

∂x
v − ∂

∂y
u)2 =

1

2
(k2 + l2)2ψ2 = κ2E (89)

So the enstrophy conservation statement for the boxes can bewritten:

κ2
0E0 + κ2

2E2 = κ2
1E1 (90)

Using our values for the wavenumbers, we have:

κ2

4
E0 + 4κ2E2 = κ2E1 (91)

or simply:

1

4
E0 + 4E2 = E1 (92)

We can combine this with the energy equation to obtain:

E0 =
4

5
E1, E2 =

1

5
E1 (93)

Thus 80% of the energy goes to thelargerscale wave. Energy is apparently

going upscale rather than downscale!

What about the enstrophy? We have:

Z0 =
κ2

4
E0 =

κ2

4

4

5
E1 =

1

5
Z1 (94)

Similarly, we find:

42



Z2 =
4

5
Z1 (95)

So the situation is reversed: 80% of the enstrophy goes to thesmaller wave.

If you use different size waves, you will find different fractions of en-

ergy and enstrophy transfer. But as shown by Merillees and Warn (1975),

most triads nevertheless act as the one above and transfer energy to larger

scales.

Exercise: Another triad

Consider the general case whereκ0 = κ1/n and κ2 = nκ1. What

fraction of energy goes to the larger wavenumber and what fraction to the

smaller. What about the enstrophy?

7.2 An integral argument

Another way to see this was proposed by Batchelor (1953), pretty much on

the last page of his seminal bookHomogeneous Turbulence. Imagine we

have a narrow energy spectrum initially, as in Fig. (9). The spectral peak

will broaden in time, as energy is passed to other wavenumbers via triad

interactions. We can express this as:

d

dt

∫

(κ− κi)
2E dκ > 0 (96)

whereκi is the wavenumber peak of the initial spectrum. Expanding the

LHS, we get:

d

dt
[
∫

κ2E dκ− 2κi

∫

κE dκ+ κ2
i

∫

E dκ] > 0 (97)

Now the first term is the enstrophy and the last term is proportional to the

total energy, both of which are constant in time. So we must have:
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d

dt

∫

κE dκ < 0 (98)

Written another way, this is:

d

dt
(

∫

κE dκ
∫

E dκ
) =

d

dt
κm < 0 (99)

Thusκm, the mean wavenumber of the spectrum, isdecreasing in time.

That implies that the spectrum is shifting to the left, toward larger scales.

Consistent with Fjørtoft, Batchelor concludes that energyis moving up-

scale in 2-D.

We can use a similar argument to see what’s happening to the enstrophy

(Salmon, 1998). If the spectrum is spreading, we also can write:

d

dt

∫

(κ2 − κ2
i )

2E dκ > 0 (100)

Expanding this, we get:

d

dt
[
∫

κ4E dκ− 2κ2
i

∫

κ2E dκ+ κ4
i

∫

E dκ] > 0 (101)

The second term is proportional to the total enstrophy, and the last term to

the total energy. So we have:

d

dt

∫

κ4E dκ =
d

dt

∫

κ2 Z dκ > 0 (102)

So:

d

dt

∫

κ2 Z dκ
∫

Z dκ
> 0 (103)

Thus the mean square wavenumber for the enstrophy isincreasingin time;

the enstrophy spectrum is shifting to the right, toward small scales.
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Thustwo cascades are occurring simultaneously in 2-D: there is an en-

ergy cascade to larger scales, and an enstrophy cascade to smaller scales.

That implies that there are two cascade ranges.

Exercise: Batchelor, part 2

Re-do Batchelor’s arguments using themeanwavenumber instead of

the initial wavenumber. Assume that the variance in wavenumber increases

in time. Do you get the same results?

7.3 The two inertial ranges

That there are two inertial ranges in forced 2-D turbulence was realized by

Kraichnan (1967), Leith (1968) and Batchelor (1969). We assume the fluid

is forced and that the spectrum is stationary (not changing in time), just as

in the Kolmogorov case in 3-D.

As noted, there are two inertial ranges. One is the energy cascades

range. Dimensionally, this is exactly the same as in the Kolmogorov case.

The energy cascades at a rateǫ, and the spectrum has the form:

E(κ) = Cǫ2/3κ−5/3 (104)

exactly as in three dimensions. The only difference is the direction of

transfer, which is nowupscale. So if the forcing were, say, at the 1 km

scale, it could conceivably produce eddies 1000 km large! This is truly

remarkable.

But what to do about that energy? The energy after all is dissipated at

the other end of the spectrum, at small scales. Presently we have no means

to remove energy at large scales. So the energy will just pileup there, and

the spectrum will never reach a steady state.
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To avoid this, we require dissipation which acts at large scales. A good

candidate isEkman friction, which acts equally at all scales. As seen pre-

viously,8 we can include Ekman friction by adding a linear term in the

vorticity equation. Specifically, we modify (85) thus:

∂

∂t
ζ + ~u · ∇(ζ + f) = F − rζ + ν∇2ζ (105)

whereF is the forcing and where

r =
fδE
2H

is the inverse of the Ekman spin-down time. HereH is the depth of the

fluid andδE is the Ekman layer thickness.

To see that Ekman friction acts equally at all scales, consider the case

without forcing or small scale dissipation, withf = const. Then:

d

dt
ζ = −rζ (106)

The solution to this is:

ζ(t) = ζ(0)e−rt (107)

So the vorticity decays exponentially, regardless of the scale.

Where does Ekman friction terminate the upscale cascade? Asbefore,

we equate time scales. The Ekman damping time scale is justr−1. The

advection time scale in the energy cascade is:

τ ∝ ǫ−1/3κ−2/3

Equating them, we can solve for the large scale dissipation wavenumber:
8See the notes from GEF2220 and GEF4500.
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κr = (
r3

ǫ
)1/2 (108)

This is the boundary between the energy inertial range and the largest

scales, which are dominated by Ekman friction.

Now to the other inertial range. This is where enstrophy cascades down-

scale, to smaller scales. In analogy to the energy range, here we have an

enstrophy cascade rate,η. From the enstrophy equation, we know the en-

strophy transfer has units of1/T 3, as the enstrophy has units of1/T 2.

From dimensional grounds, we infer the spectrum has a shape:

E(κ) = Cη2/3κ−3 (109)

So this is steeper than the energy inertial range.

An interesting thing about the enstrophy cascade range is that, unlike

with the energy inertial range, the advective time scale isindependent of

the length scale. We have simply that:

τ ∝ η−1/3 (110)

In fact, this time scale is determined by the largest eddies in the cascade

range. The enstrophy cascade is essentially non-local—thesmaller scales

are stirred by the eddies at the top of the inertial range.

Equating this time scale with the dissipation time at small scales,τd =

(νκ2)−1, we get the dissipation wavenumber:

κν = (
η1/3

ν
)1/2 (111)

This is where the enstrophy cascade terminates. We can calculate the rate

at which enstrophy is dissipated by scaling the enstrophy equation (63). At
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the dissipation scale, the RHS of (63) scales as:

ν |∇ × ζ|2 ∝ ν
U 2

L4
∝ ν

η2/3κ−2
ν

κ−4
ν

= ν
η2/3η1/3

ν
= η (112)

So as with the energy cascade in 3-D turbulence, the enstrophy cascade is

independent of the viscosity,ν. Even ifν is very small, enstrophy is trans-

ferred to the small scales to be dissipated. Thus enstrophy isnotconserved

in 2-D turbulence, since it will always (eventually) be dissipated.

κ ν

E

κ f

κ −5/3

κ −3

κ r

η

ηε

ε

η

ε

Figure 16: The energy spectrum for stationary 2-D turbulence, forced at wavenumberκf .

We summarize the cascades in Fig. (16). Energy and enstrophyare “in-

jected” into the system at wavenumberκf . There are two inertial ranges:

theκ−5/3 range at larger scales and theκ−3 range at smaller scales. Energy

cascades at a rate,ǫ, and enstrophy at a rate,η. Energy is removed at large

scales by Ekman friction and at small scales by molecular dissipation.

Exercise: Energy dissipation rate

Check that the energy lost to Ekman damping at the upper limitof the
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energy range is also equal toǫ.

7.4 Physical interpretation

But what is enstrophy? How do we visualize these different cascades?

To see, it helps to understand the difference between the streamfunction

and vorticity, and between energy and enstrophy. The vorticity is:

ζ = ∇2ψ

In terms of Fourier-transformed variables, we have:

ζ̂ = −κ2ψ̂

So the vorticity is multiplied by the wavenumber squared. That means that

vorticity is like a high-pass filtered version of the streamfunction.

Shown in Fig. (17) is the streamfunction obtained from a 2-D turbu-

lence simulation (run without forcing, from random initialconditions).

The field is fairly smooth, with high and low pressure regionsside by

side. In the right panel is the vorticity field at the same time. This has

much more small scale structure. There are vortices, but also many small

filaments between the vortices. We could hardly have guessedthese struc-

tures existed, looking at the streamfunction.

The energy essentially reflects the streamfunction, and theenstrophy

the vorticity. From before, we showed that:

Z(κ) = κ2E (113)

So the enstrophy is like a high-pass version of the energy. While the energy

reflects the large scale structures, the high and low pressures in Fig. (17),

the enstrophy is more affected by the small scale filaments being strained
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Figure 17: A snapshot of the streamfunction (left) and vorticity (right) from a 2-D turbu-
lence simulation. Note the vorticity has much more small scale structure.

out betweenthe pressure systems. It is these filaments which are being

dissipated by the small scale damping.

7.5 The vortex view

The tradition view of 2-D turbulence, following Kraichnan (1967), is in

terms of the Fourier components. Like Kolmogorov (1941), wehave as-

sumed the turbulence is homogeneous and isotropic. But as with the ve-

locity gradients in 3-D turbulence, 2-D turbulence exhibits intermittency.

And this intermittency is hard to miss— if one looks at the vorticity field.

Beginning in the 1980s, the computer power was sufficient to simulate

2-D turbulence at reasonably large Reynolds numbers. What researchers

began to see was that the vorticity is dominated by long livedor “coherent”

vortices. These are essentially the cyclones (and anticyclones) which are

familiar in the weather. Atmospheric vortices also persistfor long periods
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of time—it is possible to track storms from their origin in the western

Atlantic to their demise in the Nordic Seas.

Vortices also account forextremevelocities. An observer at a fixed

location will notice the velocities rise and fall, then a vortex will strike and

the velocities will be very large, as with a hurricane. Having vortices also

mean the flow is no longer homogeneous—the vortex parts of theflow are

distinct from other locations.

In two seminal papers, McWilliams (1984, 1990) noticed thatfreely-

evolving (unforced) turbulence quickly evolves to a state where the vor-

tices dominate the flow, as the vorticity between vortices isstrained out

and dissipated. Thereafter, the evolution is primarily a process ofmergers

between vortices. Positive vortices (cyclones) merge withother cyclones

and negative vortices (anticyclones) merge with other anticyclones. The

merged vortices are larger than the vortices which joined tomake them. In

this way, energy is shifted toward larger scales—the flow is dominated by

fewer, larger vortices.
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Figure 18: Snapshots of the vorticity from a 2-D turbulence simulation. The panel at left
is at an earlier time, and the one at right at a later time.
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This is illustrated in Figs. (18). The left panel shows the vorticity from

a simulation begun with random initial conditions. After a short period,

vortices emerge, with both signs (cyclones and anticyclones). As time

goes by, the vortices merge, so there are fewer at later times(right panel).

Left to itself, the system would eventually evolve to a dipole—one cyclone

and one anticylcone.

McWilliams (1990) studied the statistics of the vortices. He found that

the number of vortices decays as apower law(Fig. 19), i.e.:

Nv ∝ t−α (114)

whereα ≈ 0.7. The finding was supported in a subsequent calculations

using “point vortices” (right panel of Fig. 19).

Figure 19: The number of vortices as a function of time for a freely-evolving turbulence
simulation (left panel); from McWilliams (1990). The number of vortices in a “point
vortex” simulation (right panel); from Weiss and McWilliams (1993).

The vortices are important for the flow. Carnevale et al. (1991) showed

that all the important measures in these simulations could be explained in

terms of the vortex statistics. Theirs is a “mean field theory”, and it goes as
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follows. Assume that the vortices arepatchesof uniform vorticity, positive

or negative. Thus the vorticity of a vortex can be written:

ζ =







ζc if r ≤ b

0 if r > b

Hereb is the radius of the vortex patch.

The patch also has a velocity field. Using cylindrical coordinates and

assuming no radial flow, we have:

ζ =
1

r

∂

∂r
(rv) (115)

So:

v =
1

r

∫ r

0
ζr dr (116)

Thus for the patch:

v =







ζcr/2 if r ≤ b

ζcb
2/(2r) if r > b

Using this, we can calculate the energy of the vortex. Integrating over the

domain (which we assume is larger than the vortex radius,b), we get:

E =
1

L2

∫ L

0

v2

2
r dr = Cζ2

c b
4 (117)

whereC is a constant which depends on the domain scale,L (we’ve as-

sumed a square domain here, for simplicity).

If there is more than one vortex, the total energy is the sum ofthe con-

tributions from all the vortex patches:

E =
∑

i

Ei (118)
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We will neglect the energy associated with the integrationsbetween the

vortices. To write this sum, we make a mean field approximation; we have

replace the sum above withN times the average vortex quantities, ifN is

the total number of vortices. Thus we have:

E ∝ 1

L2
NC ζ2

c b
4 ∝ ρ ζ2

c b
4 (119)

whereρ is the vortex density in the domain,N/L2.

Now, we demand that energy be conserved in this system—soE =const.

Thus:

ρ ζ2
c b

4 = const. (120)

We know that:

ρ ∝ t−α (121)

with α ≈ 0.7. This means that the product ofζ2
c b

4 must increaseat the

same rate.

Carnevale et al. make one further assumption—that the vortex amp-

litude is also conserved in mergers. If we take two patches and combine

them, the amplitude won’t change. That implies that the meanamplitude

is also constant. So:

b ∝ tα/4 (122)

The mean vortex radius is growing in time. Likewise, the meanarea is also

growing:

A = πb2 ∝ tα/2 (123)
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This is the inverse cascade in the model—mergers are producing larger and

larger vortices.

Interestingly, the vortex mergers donot conserve enstrophy. The en-

stropy for a single vortex is:

Z =
1

L2

∫∫

ζ2 dA =
1

L2
ζ2
cπb

2 (124)

because the vorticity is constant inside and zero outside the patch. Again

the total enstrophy is the sum over all the patches:

Z =
∑

i

Zi =
1

L2
N ζ2

c π b
2 ∝ ρ ζ2

c b
2 (125)

Thus we have that:

Z ∝ t−α t0 tα/2 = t−α/2 (126)

Given McWilliams’ value forα = 0.7, this implies the enstrophy decays

ast−0.35. This is remarkable, because except for the mergers, this vortex

patch system hasno dissipationat all. The prediction was supported by

numerical simulations (Fig. 20).

Why does enstrophy decrease? During mergers, smallfilamentsare cast

off. These are then assumed to be dissipated by small scale damping. The

mergers thus conserve energy, but they don’t conserve vorticity.

The vortex view of 2-D turbulence is that the dynamics are determined

by the vortices. Vortex mergers conserve energy, but enstrophy decreases

in time, as filaments are cast off. This is basically the same conclusion

that we reached in discussing the inertial ranges. But the vortex view is an

appealing physical description which is easy to grasp. We’ll return to the

mean vortex model later on.
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Figure 20: Vortex statistics from the simulations of from Weiss and McWilliams (1993).
HereN , r andΓ are the vortex number and their mean radius and circulation.Z is the
enstrophy andK is the vorticity kurtosis. The predictions from the mean vortex theory
are indicated by lines.

Exercise: Enstrophy conservation

What if vortex mergers conserved enstrophy instead of energy? Show

that in this case, the total energy wouldgrow in time. Thus the two quant-

ities cannot be simultaneously conserved in this model.

7.6 Passive tracer spectra

Thus far, we have focused on vorticity, which is anactivetracer. Advection

of an active tracer changes the flow. Thus momentum, density and vorticity

are active tracers. But we can also ask what happens to apassivetracer,

which has no affect on the flow. Examples are smoke, ash from volcanic
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plumes and spilled oil. Temperature is often considered to be a passive

tracer, but since it affects the density, it is actually an active one.

The equation for a passive tracer can be written thus:

∂

∂t
C + ~u · ∇C = κ∇2C (127)

So time changes in the tracer occur because of advection, or by diffusion.

The coefficient,κ, is the diffusivity. This is usually different from the

viscosity, which dictates how molecular mixing affects thevelocity. The

main difference between this equation and that for momentumis that the

tracer concentration,C, does not affect the velocity. So the advection term

is linear. This is why the tracer is “passive”.

Just as with energy and vorticity, we can speak of a spectra ofthe pass-

ive tracer. We can in particular talk about the tracer variance— the vari-

ation about the mean. If we Fourier transform, we can consider the tracer

fluctuations as a function of scale—exactly as we do with enstrophy (the

vorticity variance) or energy (the velocity variance).

What would such a spectrum look like? Following our previousar-

guments, we might expect that in a turbulent inertial range,the flux of

tracer variance across scales will be constant. Otherwise the tracer vari-

ance would pile up at a certain scale (so we’d see filaments of acertain

width emerging in the flow). The flux of volcanic ask would haveunits of

concentration of ash squared per second. Let’s call this fluxχ.

Now the spectrum of tracer,P (κ) will have units of tracer squared times

length (so that the integral over all wavenumbers will yieldtracer squared).

So, on dimensional grounds, we expect:
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P =
χτ

κ
(128)

whereτ is the turbulent time scale.

Here is where the passive element comes in. The tracer doesn’t affect

the time scale,τ ; that only depends on the active portion of the flow, the

vorticity. So forτ , we will use the time scales inferred for the turbulent

ranges.

For the energy range,τ = ǫ−1/3κ−2/3. Substituting in, we get:

P (κ) = χǫ−1/3κ−5/3 (129)

So in the energy range, the tracer spectrum has the same slopeas the energy

spectrum.

For the enstrophy range, we haveτ = η−1/3. As noted, the enstrophy

range is “non-local” because the time scale is set by the largest eddies in

the range (as opposed to a “local” range, where the time scaleis determined

by the eddies which have the same size). Substituting in, we get:

P (κ) = χη−1/3κ−1 (130)

So the spectra is shallower than the energy spectrum. Interestingly though,

the tracer spectrum is thesameas the enstrophy spectrum (see below).

This implies that vorticity is advected in the enstrophy rangelike a passive

tracer, even though it is an active tracer. The reason is that the enstrophy

range is non-local; all fields are advected passively by the largest eddies in

the range.

The spectra are summarized in Fig. (21). We assume that tracer is

being put in at the largest scales. Tracer variance then cascadesdownscale,
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through both the energy and enstrophy ranges. The spectral slopes are

κ−5/3 andκ−1.

κ f

κ −5/3

κ r

κ −1

ε

χ

κ−3

χ

χ

P

Figure 21: The passive energy spectrum in forced 2-D turbulence. The forcing is applied
atκf , and the tracer is introduced at large scales, atκχ. Note the tracer variance cascades
downscale at all scales.

Exercise: Enstrophy spectrum

Derive the enstrophy spectrum in the two inertial ranges for2-D turbu-

lence. Show then that the slope in the enstropy range is the same as that

for a passive tracer.

7.7 Predictability

Another interesting application of turbulence phenomenology is to pre-

dictability. Imagine the atmosphere was really just a 2-D turbulent fluid.

Now consider that there is an error in the initial conditionsat some small

scale. We know the winds at large scales, from measurements,but we can’t

know them precisely at, say, the 1 meter scale. Because the atmosphere is
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chaotic, these slight differences in the modelled initial state and the actual

state will grow, eventually disturbing the forecasts at large scales. But how

quickly will this happen?

7.7.1 Lorenz Model

The usual point of reference for atmospheric predictability is Lorenz’s

(1963) model. This model is essentially athree mode truncationof the

equations describing a convective fluid system, under the influence of heat-

ing of the lower boundary. In other words, we Fourier transform the vari-

ables and only retain three terms. His equations can be written:

dx

dt
= σ(y − x)

dy

dt
= rx− y − xz

dz

dt
= xy − bz (131)

Herex, y, z are “state variables”, representing temperature and velocity

in the convective system, and whereσ, r, b are various parameters. The

equations are nonlinear, due to thexz andxy terms in the second and third

equations. As with the logistic map (sec. 4), these terms arethe source of

the system’s unpredictability.

The equations have three fixed points:

(x, y, z) = (0, 0, 0), (a, a, r − 1), (−a,−a, r − 1) (132)

Here

a =
√

b(r − 1)
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The first solution is the trivial one, with no motion. The other two have

convection, with opposing circulation.

If you integrate the equations numerically, you find that thesystem or-

bits around one of the two non-trivial fixed points for a while, then abruptly

makes a transition to orbit around the other. These transitions are unpre-

dictable. And as with the logistic map, the system exhibits asensitive

dependence on the initial condition.

Predictability is a measure of how quickly the system diverges under

a change in the initial condition. In the Lorenz model, the error growth

depends on where the system is in phase space, i.e. in(x, y, z) space. But

the error generally growsexponentiallyin time, and the magnitude of the

error depends on that of the initial condition. So the smaller the initial

error, the longer it takes for the error to propagate throughthe system.

However, the Lorenz model isn’t very realistic. Think if we truncated

our turbulence model with only three wavelengths. Energy could pass from

to the other, but it couldn’t go any further. Thus energy would have to

recycle between the three wavenumbers.

7.7.2 Predictability in 2-D turbulence

As we’ve seen, the actual turbulence system has a huge range of access-

ible wavenumbers. Furthermore, our turbulence can be forced, and it can

acquire a statistically stationary state. There is no forcing or dissipation in

the Lorenz model, so it is never in a steady state; energy continually moves

back and forth between scales.

So how do errors propagate through a turbulent system?9 If the cascade
9The researcher C. Leith from the National Center for Atmospheric Research (NCAR) was an early

proponent of using turbulence models to understand predictability. The following section is based on the
presentation in Vallis’s book,Atmospheric and Oceanic Fluid Dynamics.
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is local, an error at one scale would affect the next largest scale. Then

that scale would affect the next scale, and so on up to the largest scales.

The total time to reach the largest scale would then be an integral over all

wavenumbers.

To express this mathematically, we can speak of a “spectrum”of inter-

action times:

P =
τ(κ)

κ
(133)

Again we divide byκ so that the integral over all wavelengths will produce

a quantity with units of time, i.e.:

T =
∫ κ1

κ0

τ

κ
dκ (134)

Hereκ1 is the scale where the error is introduced, andκ0 is our “weather

scale”, the large scale we’re focused on.

Consider the enstrophy cascade first. Hereτ = η−1/3, so:

T =
∫ κ1

κ0

η−1/3

κ
dκ = η−1/3 ln(

κ1

κ0
) (135)

The predictability time depends on the scale of the error, sowe can increase

the predictability time by reducing the scale of the error (increasingκ1). In

addition, the errors grow exponentially in time. Rewritingthe equation in

terms of scales,L ∝ κ−1, we get:

L0 = L1 e
η1/3T (136)

So scale of the error increases with a rate proportional toη1/3. Thus the

enstrophy range is in line with our expectations from the Lorenz model.
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Now consider the energy inertial range. Thenτ = ǫ−1/3κ−2/3. Substi-

tuting in, we get:

T =
∫ κ1

κ0
ǫ−1/3κ−5/3 dκ ∝ ǫ−1/3κ−2/3|κ1

κ0 (137)

Now if the scale of the error is much smaller than the largest eddies, we

have:

T ≈ ǫ−1/3κ
−2/3
0 (138)

Thus with an energy cascade, the predictability time isindependentof the

scale of the error! This is quite different from the Lorenz model. The

reason is that in the energy cascade the interaction time decreases with

increasing wavenumber. So the error propagation depends onthe largest

scales, where the error transfer is the slowest.

7.7.3 Predictability in the atmosphere

Given these ideas, what would we infer about the atmosphere.To know

that, we need an idea of the energy spectra. Nastrom and Gage (1985)

used velocity data collected from over 6000 commercial aircraft to cal-

culate wavenumber spectra. The spectra are shown in Figure (22). These

indicate aκ−3 range from 100-2000 km and aκ−5/3 range at smaller scales.

Theκ−3 range is thought to be en enstrophy cascade (e.g. Lindborg, 1999).

The dynamical basis of theκ−5/3 range is still debated. If it is a 2-D en-

ergy cascade, it implies a source of energy at small scales. The scales are

somewhat too large to be a 3-D energy range, but some have argued for

that. Others have suggested it is due to temperature anomalies on the tro-

popause (Tulloch and Smith, 2006). Whatever the case, the small scale
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range islocal.

Figure 22: Kinetic energy spectra from data collected on commercial airplanes over the
U.S. The zonal and meridional components are shown, with thelatter shifted one decade
to the right. Note the lower x-axis is mislabeled— it should say “wavelength”. From
Nastrom and Gage (1985).

Given what we now know about 2-D turbulence, we infer that thepre-

dictability is limited by the local range at small scales, and by the transition

scale, 100 km. The latter would determineκ0 in the previous discussion.

So regardless of how good our observations are, we could not improve the

predictability time. Using approximate values for the dissipation rate, we

obtain a value ofT on the order of a week. We caution though that the

dissipation rate is not well-known; indeed, even its sign isdebated in the
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smaller scale range.

8 Geostrophic turbulence

Figure (22) raises some interesting questions though. The two dimensional

system we have considered so far is very idealized. The flow inthe at-

mosphere and ocean are affected by planetary rotation, stratification and

bottom topography, to name only a few complicating factors.Yet we still

see energy spectra which resemble those in pure 2-D turbulence. How can

this be?

Geostrophic turbulence is what happens when we add these more real-

istic factors. The name comes from an article (Charney, 1971) where two

dimensional turbulence was considered in a quasi-geostrophic fluid with

continuous stratification. But we use the term to also encompass variations

in f and in topography. We begin withf .

8.1 The Beta-effect

The vorticity equation (61) in two dimensions is given by:

∂

∂t
ω + ~u · ∇ωa = ν∇2ω (139)

Using only the vertical component of the vorticity, this is:

∂

∂t
ζ + ~u · ∇(ζ + f) = ν∇2ζ (140)

Before we assumed thatf was constant, so that it drops out of the vorticity

equation completely. Thus a constant Coriolis parameter has no effect on

2-D turbulence.
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Now let’s examine what happens whenf varies with latitude. For this,

we will use theBeta-plane approximation. Specifically, we Taylor-expand

the Coriolis parameter about a central latitude,θ0:

f(θ) = f(θ0) +
df

dθ
(θ0) (θ − θ0) +

1

2

d2f

dθ2
(θ0) (θ − θ0)

2 + ... (141)

We neglect the higher order terms, so that:

f ≈ f(θ0) +
df

dθ
(θ0) (θ − θ0) ≡ f0 + βy (142)

where

f0 = 2Ωsin(θ0)

β =
1

a

df

dθ
(θ0) =

2Ω

a
cos(θ0)

and

y = a(θ − θ0)

Herea is the radius of the earth.

Substituting this into the vorticity equation, and neglecting the dissipa-

tion for the moment, we obtain:

∂

∂t
ζ + ~u · ∇ζ + βv = 0 (143)

The fundamental difference here is that meridional motion can induce

changes in the relative vorticity. This can be seen clearly if we rewrite

the equation in Lagrangian form:

d

dt
(ζ + βy) = 0 (144)
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This implies:

ζ + βy = const. (145)

for a parcel. If the parcel moves north, to greatery, it’s vorticity must

decrease. As such, theβ-effectconstrainsNorth-South motion.

The linear version of the vorticity equation is just:

∂

∂t
ζ + βv = 0 (146)

Written in terms of the 2-D streamfunction, this is:

∂

∂t
∇2ψ + β

∂

∂x
ψ = 0 (147)

Substituting a wave solution:

ψ = ψ̂ eikx+ily−iωt (148)

we obtain:

ω = − βk

k2 + l2
(149)

which is the dispersion relation forRossby waves. Rossby waves, dis-

covered by C. G. Rossby (1936) are fundamental to our understanding of

time variability in the atmosphere.

Rossby waves have a zonal phase speed of:

cx =
ω

k
= − β

k2 + l2
(150)

So Rossby waves always propagate to the west (in the absence of a mean

flow) and larger waves move faster than smaller waves.
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Now let’s put advection back into the problem. Now we expect that

the flow can also be turbulent. But which scales are turbulentand which

are wave-like? We can get a rough idea by simply scaling the vorticity

equation:

∂

∂t
ζ + ~u · ∇ζ + βv = 0

U

LT

U 2

L2
βU

1

βLT

U

βL2
1 (151)

Recall that the vorticity scales asU/L. In the last line, we’ve divided

through byβU . We see that the advective term scales asU(βL2)−1. This

is essentially the Rossby number, if we substitutef ≈ βL.

If this parameter is small, the equation should be approximately linear

and the flow will be dominated by Rossby waves. If it is large, theβ term

will be unimportant and the dynamics will be turbulent.

Thus we expect a “boundary” between wave and turbulent dynamics,

with the latter occurring at small scales and the former at larger scales. The

separation scale is often called the “Rhines scale” after Rhines (1975):

Lβ =

√

√

√

√

U

β
(152)

At Lβ, all three terms in the vorticity equation are of equal importance.

Note we haven’t specified a time scale in the vorticity equation. This is

because we assume the time scale adjusts to the dynamics. With Rossby

waves, the first term should balance the third, so thatT = (βL)−1. If

turbulence, we would expect the advective time scale,T = L/U .
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Imagine we have a source of energy at some small scaleLf (our “spoon”,

stirring the fluid). This will generate a cascade to larger scales. But at

some scale, Rossby waves will dominate over turbulence. At these scales,

the dynamics will be quasi-linear and turbulent transfers will be weak or

non-existent. So we expect thatβ will halt or arrest the cascade. At what

scale does this occur?

An interesting thing happens though when you run a numericalsimu-

lation of this. An example is shown in Fig. (23), of simulations with a

barotropic fluid on a sphere. Recall that a sphere is periodicin thex dir-

ection. The simulations show the energy cascade does indeedarrest, but

the arrest isanisotropic) in that the flow develops zonal jets. The result is

a banded structure, reminiscent of the Jovian atmosphere.

The anisotropy comes about because the Rossby wave dispersion rela-

tion is also anisotropic—there is ak in the numerator, but nol. As such,

different scales of motion have different wave periods, depending on their

zonal and meridional extent. If we write the wave time scale as:

τβ ∝ |ω−1| =
k2 + l2

βk
(153)

we see that the time scale increaseswithout boundask → 0. Zonal jets

havek = 0.

We can re-write the wave time in terms of the total wavenumbervector,

κ:

τβ =
κ2

βκcos(θ)
=

κ

βcos(θ)
(154)

Hereθ is the angle the wavevector makes, i.e.:
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Figure 23: Numerical simulations of forced barotropic turbulence on a sphere. Note the
formation of banded flow, superimposed over a field of eddies.The mean zonal velocities
are indicated in the inserts. From Williams (1978).

(k, l) = [κcos(θ), κsin(θ)] (155)

At the transition from turbulence to Rossby waves, the wave time scale

equals the turbulent time scale. In the energy cascade, thisis:

τ = ǫ−1/3κ−2/3 (156)

The two time scales are equal when:
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Figure 24: The boundary between turbulence and Rossby waves. For plotting, we assume
β3/ǫ = 1.

ǫ−1/3κ−2/3 =
κ

βcos(θ)
(157)

or:

κ ≡ κβ = (
β3

ǫ
)1/5cos3/5(θ) (158)

(Vallis and Maltrud, 1993). This has two components:

(kβ, lβ) = [(
β3

ǫ
)1/5cos8/5(θ), (

β3

ǫ
)1/5cos3/5(θ)sin(θ)] (159)

The result is an arrestboundaryin (k, l) space. The boundary is plotted

in Fig. (24). It has two symmetric lobes. Outside the lobes, the wavenum-

bers are participating in triad interactions and moving energy toward the

lobes. Inside the lobes, the dynamics are essentially linearly and the energy

flux is weak.

71



Figure 25: Spectra from a freely-evolving 2-D turbulence simulation, plotted in
wavenumber space. From Vallis and Maltrud (1993).

Vallis and Maltrud (1993) tested this prediction with numerical simula-

tions. They employed a 2-D model, with random initial conditions. The

latter were isotropic and covered a specified band in wavenumber space

(upper left panel of Fig. (25). The initial spectrum thus appears as a ring

in (k.l) space. As time proceeds, energy spreads inward, shifting toward

smaller wavenumbers. But it ceases at the lobe structures described above.

Vallis and Maltrud called these “dumbbell” structures.

The “dumbbell” shape explains the anisotropy observed in Fig. (23).

Consider energy moving in along the axis wherel = 0 (the x-axis in the

figure). The energy cascade here would stop atk = 1. But energy moving

along the y-axis, withk = 0, will proceed nearly to the center. The reason
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is that if k = 0, the meridional velocity is zero and theβ term drops out

of the vorticity equation. So for zonal motion, it is as if theβ effect were

non-existent.

This implies that a forced cascade withβ will produce structures with

k = 0—zonal jets—as in Fig. (23). But there are also eddies superimposed

on the bands; this is the turbulence at smaller scales. The mean velocities

indicate alternating eastward and westward flow. However that flow is

asymmetric; the eastward jets are sharper than the westwardones. This is

a consequence of barotropic stability, which favors sharper eastward jets.

Exercise: Topographic arrest

A bottom slope acts exactly like theβ-effect in a barotropic fluid. The

vorticity equation (see eq. 182 below) can be written:

∂

∂t
ζ + ~u · ∇(ζ + h) = 0 (160)

whereh is the topographic elevation. Say thath = αx (the bottom slopes

up to the east). Find the dispersion relation for the waves (assume periodic

boundary conditions inx andy). Now solve for the arrest wavenumber.

Draw it in (k, l) space. What type of structures do you expect?

8.2 Beta turbulence in a closed basin

Zonal jets can exist in re-entrant domains, like the atmosphere. Indeed, the

Jet Stream is a zonal jet, albeit a highly time-dependent one. But can such

jets exist in theocean, where there are lateral (continental) boundaries?

To see, we must consider Rossby waves in a closed basin. Thesehave

a slightly different structure and dispersion relation than the plane Rossby

waves discussed above. The waves have a dual structure— a propagating
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wave superimposed upon a stationary envelope. The latter ensures that

there is no flow on the boundaries. For a rectangular basin, the stream-

function takes the form (e.g. Pedlosky, 1987):

ψ = Acos(kx− ωt)sin(
mπx

Lx
)sin(

nπy

Ly
) (161)

HereLx andLy and the lengths of the domain inx andy. The two sine

terms ensure that the streamfunction vanishes on the boundaries, and the

wavelengths are quantized. This solution is referred to as abarotropic

basin mode.

The dispersion relation for a basin mode is given by:

ω = ωmn = − β

2π(m2/L2
x + n2/L2

y)
1/2

(162)

This too is quantized, i.e. there are only discrete values ofthe frequency,

corresponding to the discrete wavenumbers. The dispersionrelation re-

sembles the plane Rossby wave dispersion relation, except that there is no

“k” in the numerator. This makes all the difference.

The time scale for basin modes is the inverse of the frequency, which

we can write as:

τ =
κ

β
(163)

whereκ = 2π(m2/L2
x + n2/L2

y)
1/2 is the (quantized) total wavenumber.

Equating this to the turbulent time scale in the energy range:

ǫ−1/3κ−2/3 =
κ

β
(164)

yields:
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κβ = β3/5ǫ−1/5 (165)

for the arrest wavenumber (LaCasce, 2002). The important thing here is

that the wave-turbulence boundary with basin modes isisotropic. There is

no reason to expect zonal jets.

Numerical simulations confirm this. Shown in Fig. (26) are the stream-

functions from two forced simulations, one in a periodic domain (left

panel) and one with solid walls (right). The former shows zonally-elongated

structures, spanning the domain. The closed basin simulation on the other

hand has mostly isotropic eddies. The only place where the flow is zonally

elongated is along the northern boundary (where in fact a stationary gyre

develops; Fofonoff, 1954).
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Figure 26: Streamfunctions from a forced 2-D turbulence simulations with periodic (left)
and solid wall (right) boundary conditions.

We quantify the arrest further, as follows. In the simulations shown,

the damping was with Ekman friction. The latter adds a term,r~u, to the

RHS of the vector momentum equation. With this, the integrated energy

equation (50) can be written:
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d

dt
E =

∫∫∫

~u · ~F dV − r
∫∫∫

~u · ~u dV = ǫ− 2rE (166)

whereE is the total kinetic energy. Notice that the forcing yields the en-

ergy flux, ǫ. In a statistically steady state, the LHS on average is zero,

leaving:

ǫ = 2rE (167)

Using this, we estimate the arrest scale as:

Lβ =
2π

κβ
= 2πβ−3/5(2rE)1/5 (168)

We compare this estimate to the simulations by calculating spatial cor-

relations in the velocity field. In an eddy, the velocities are correlated (or

anti-correlated) across the eddy. Outside the eddy, the velocities are uncor-

related with those in the eddy. So we can use velocity correlations to find

the size of the eddies.

We plot the correlations as ellipses in Fig. (27). The solid and dashed

curves correspond to two different ways of calculating the correlation (either

using parallel velocities along a line—the longitudinal velocities—or per-

pendicular velocities—the transverse velocities). Both yield the same res-

ult; the eddy scales are isotropic and they are consistent with the length

scale estimate in (168).

For comparison, the correlation ellipses from two simulations in a peri-

odic domain are shown in Fig. (28). In this case, the longitudinal correl-

ations (corresponding to theu velocities) are elongated in thex-direction.

So this indicates large scale, coherent zonal flow. The transverse correla-

tions on the other hand (corresponding to thev velocities in thex-direction)
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Figure 27: Velocity correlation ellipses from a series of experiments in a closed basin.
The solid ellipses are from the longitudinal correlations (with values [0.8 0.6 0.4]); the
dashed ellipses are transverse correlations (with values of [0.5 0]). The vertical lines
indicate the arrest scale from (168). From LaCasce (2002).

are more nearly isotropic. These reflect the small scale eddies superim-

posed on the zonal jets.

Thus the arrest in a rectangular basin is similar to that described by

Rhines (1975)—but it is isotropic. The isotropy stems from the fact that

the wave time scale in a basin is also isotropic. So the boundaries prevent

the formation of zonal jets. This example also highlights the importance

of using time scales to understand how the turbulence behaves.

However, this case is still quite unrealistic in terms of theocean, as the
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Figure 28: The velocity correlation ellipses from two simulations in a periodic domain.
From LaCasce (2002).

bottom is entirely flat. The actual ocean of course has significant topo-

graphy. We consider that next.

8.3 Topography

Bottom topography in a barotropic fluid acts very much like the β-effect.

But instead of limiting N-S motion, topography inhibits motion across the

depth contours. Thus an inverse cascade would be expected to generate

jets over a topographic slope, exactly as seen in the last section. This was

demonstrated by Vallis and Maltrud (1993).

But a major difference with topography is that it need not be asimple

linear slope. We have mountains, ridges and closed basins. How would we

expect such features to alter the inverse cascade?

This question was addressed in two independent, simultaneous papers—

by Bretherton and Haidvogel (1976) and by Salmon, Holloway and Hende-

rshott (1976). Both considered freely-evolving (unforced) turbulent flows

over essentially any type of bottom topography. Salmon et al. used ideas

from statistical mechanics to predict the most likely flow one would ex-
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pect to find. Bretherton and Haidvogel used the calculus of variations. The

two approaches are in fact related, as demonstrated later byCarnevale and

Frederiksen (1987).

8.3.1 The barotropic vorticity equation

To do this problem, we require the vorticity equation for a barotropic fluid

with variable depth. We obtain this as follows. Neglecting variations inf

and forcing, the vorticity equation for a 2-D fluid is:

∂

∂t
ζ + ~u · ∇ζ + (ζ + f0)(∇ · ~u) = ν∇2ζ (169)

We will assume that the velocities aren’t purely 2-D, but that they are

quasi-geostrophic. So the velocities are:

~u = (u, v, ǫw) (170)

whereǫ, the Rossby number is small. So while not being exactly hori-

zontal, the vertical velocity is much smaller. Note then that the continuity

equation is:

∂

∂x
u+

∂

∂y
v + ǫ

∂

∂z
w = 0 (171)

Furthermore, the vorticity is much smaller thanf0, because by scaling

we have:

|ζ|
f0

∝ U

f0L
= ǫ (172)

Collecting these terms, we can write the vorticity equationthus:

ǫ
∂

∂t
ζ + ǫ~u · ∇ζ − (ǫζ + f0)ǫ

∂w

∂z
= ǫν∇2ζ (173)
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To first order in the Rossby number, this is:

∂

∂t
ζ + ~u · ∇ζ − f0

∂w

∂z
= ν∇2ζ (174)

Now if the fluid is barotropic, there is no vertical shear.10 As such, it

is easy to integrate the equation over the depth of the fluid. Assume the

lower boundary is atz = −H(x, y) and that the upper boundary is a rigid

surface, atz = 0. Then the integrated equation is:

H
∂

∂t
ζ +H~u · ∇ζ − f0w|0−H = Hν∇2ζ (175)

The vertical velocity at the upper boundary is zero. At the bottom, we can

obtainw as follows. A parcel following the bottom has:

z = −H (176)

Taking the Lagrangian derivative of both sides, we get:

w = −dH
dt

= −~u · ∇H (177)

To be consistent with the quasi-geostrophic approximation, we require that

the bottom topography be small. So we write:

H(x, y) = D − h(x, y)

where

|h| ≪ D (178)

Using this in the integrated vorticity equation, we get:
10This is a consequence of theTaylor-Proudman theorem. See Pedlosky (1987) or my notes from

GEF2220.
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∂

∂t
ζ + ~u · ∇ζ +

f0

H
~u · ∇h = ν∇2ζ (179)

or:

∂

∂t
ζ + ~u · ∇(ζ +

f0

D
h) = ν∇2ζ (180)

Note too that the horizontal velocities are non-divergent to order Rossby

number. So we can write the equation:

∂

∂t
ζ + ∇ · [~u(ζ + h)] = ν∇2ζ (181)

I’ve absorbed the factor off0/D into the topographic height,h, for simpli-

city. Lastly, we rewrite this in terms of the streamfunction, thus:

∂

∂t
∇2ψ + ∇ · [~u(∇2ψ + h)] = ν∇4ψ (182)

This is the barotropic potential vorticity equation.

8.3.2 Conserved quantities

There are two conserved quantities in the limit of vanishingdissipation,

i.e. ν → 0. One is the energy:

1

2

∂

∂t

∫∫

(u2 + v2) dxdy = 0 (183)

The proof of this is left for an exercise. We also conserve “total enstrophy”.

First note that we can rewrite the vorticity equation (182) thus:

∂

∂t
q + ∇ · (~uq) = 0 (184)

where
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q ≡ ∇2ψ + h (185)

is the total vorticity. If we multiply the equation byq and integrate over

space, we get:

∂

∂t

1

2

∫∫

q2 dxdy +
∫∫

∇ · (~u q
2

2
) dxdy = 0 (186)

The second term on the LHS is zero:

∫∫

∇ · (~u q
2

2
) dxdy =

∮ q2

2
~u · n̂ dl (187)

by Gauss’ Law. This vanishes in a periodic domain or one with lateral

walls.

So the total enstrophy,q2/2, is also conserved. We will call thisQ.

Note though that the enstrophy itself isnot conserved. This is because the

interaction with the topography itself can produce enstrophy.

Exercise: Energy conservation

Prove that the integrated kinetic energy is conserved, starting directly

with the vorticity equation (182), ifν = 0.

8.3.3 Minimum enstrophy

Under a dual cascade scenario, we’d expect the energy to shift to large

scales and thetotal enstrophy to more to smaller scales. If the dissipation

is non-zero, the total enstrophy will then be dissipated. Bretherton and

Haidvogel suggested that the turbulence would thereby act to minimizethe

total enstrophy, while conserving the energy.

82



To do this, we use thecalculus of variations, as follows. LetQ be the

total enstrophy. Its minimum occurs where itsvariation vanishes. This is

as when a function has a maximum or minimum when it’s first derivative

vanishes. We take the variation thus:

δQ = δ
∫∫ 1

2
(∇2ψ + h)2 dA =

∫∫

(∇2ψ + h)δ(∇2ψ + h) dA = 0 (188)

We assume the topography is fixed, but the streamfunction canvary. So

the equation is:

∫∫

(∇2ψ + h)δ(∇2ψ) dA = 0 (189)

Now this could correspond to either a minimum or maximum. To find

out, we’d have to evaluate the second variation. We won’t do that; we’ll

simply assume the extremum is a minimum.

However, this only tells us whereQ has an extremum. We haven’t

said anything about the energy. But we can impose energy conservation

by using the method ofLagrange multipliers. In particular, we define a

functional:

F = Q+ µ(E −E0) (190)

Here the constantµ is a Lagrange multiplier andE is the kinetic energy:

E =
1

2

∫∫

(u2 + v2) dA =
1

2

∫∫

|∇ψ|2 dA (191)

E0 is the kinetic energy of the system (it is a constant).

If we take the variation ofF with respect toµ, we get:
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δF

δµ
= E − E0 = 0 (192)

So this implies that the solution will have an energy ofE0.

If, on the other hand, we keepµ constant and take the variation ofF ,

we get:

δF = δ(Q+ µ(E − E0)) = δQ+ µδE = 0 (193)

The variation ofE0 is zero since it is a constant. Substituting in the ex-

pressions forQ andE, we have:

δQ+ µδE =
∫∫

(∇2ψ + h)δ(∇2ψ) dA+ µ
∫∫

∇ψ · δ∇ψ dA (194)

Both integrals in (194) can be rewritten using integration by parts, assum-

ing either periodic boundary conditions or thatψ vanishes on the boundar-

ies. So we can write:

∫∫

∇ψ · δ∇ψ dA = −
∫∫

∇2ψ · δψ dA (195)

Also:

∫∫

(∇2ψ + h)δ∇2ψ dA = −
∫∫

∇(∇2ψ + h) · δ∇ψ dA =

∫∫

∇2(∇2ψ + h)δψ dA (196)

Combining the terms, we get:

δQ+ µδE =
1

2

∫∫

∇2(∇2ψ + h− µψ)δψ dA = 0 (197)

We require that the integral vanish for all variationsδψ. For this to happen,

we must have:
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∇2ψ + h− µψ = 0 (198)

This is is known as the “Euler-Lagrange equation” for the problem. We

can solve this by Fourier transforming both the streamfunction and the

topography:

ψ =
∑

k,l

ψ̂(k, l)eikx+ily, h =
∑

k,l

ĥ(k, l)eikx+ily (199)

Substituting both into the Euler-Lagrange equation, we cansolve forψ̂ in

terms ofĥ:

ψ̂ =
ĥ

µ+ k2 + l2
=

ĥ

µ+ κ2
(200)

Thus the predicted streamfunction resembles the topography. If we

know the transform of the topography, we have the transform of the stream-

function. Then we can inverse transform to obtain the actualstreamfunc-

tion.

But what is this exactly? According to the variational calculation, this

is the flow which has the minimum total enstrophy for a given kinetic en-

ergy. The minimum enstrophy streamfunction resembles the topography.

In other words, the minimum enstrophy solution has flow parallel to the

isobaths.

But the flow isn’t entire parallel to the isobaths. This is because the

denominator in (200) filters the small scales. At large scales, so thatκ ≪
µ, ψ ≈ ĥ/µ. But at small scales,ψ ≈ ĥ/κ2, which goes to zero asκ gets

large. So the flow looks like a low-pass filtered version of thetopography.

In particular, there will be anticyclonic flow over seamounts and cyclonic

flow in basins. This is often observed in the ocean.
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What determinesµ, the multiplier? If the energy is conserved, then we

have:

E =
1

2

∑

k,l

κ2ψ2 =
1

2

∑

k,l

κ2ĥ2

(µ+ κ2)2
(201)

So if we know the initial energy, we can determineµ. The largerE is, the

smallerµ will be. And the smallerµ is, the greater the low-pass filtering

effect will be. Thus energetic flows will evolve to more coarse representa-

tions of the topography than weak flows.

The results from a numerical simulation from Bretherton andHaidvogel

(1976) are shown in Fig. (29). This was a freely-evolving experiment, i.e.

one without forcing. The initial streamfunction is shown inthe lower left

panel and the topography in the upper left panel. After a period of time, the

streamfunction settles down into the configuration shown inthe lower right

panel. The streamfunction strongly resembles the topography, and has the

same signs. Thus there is cyclonic flow in the depression in the upper part

of the domain. But note too that the streamfunction has less small scale

structure than the topography—evidence of the low pass filtering effect

predicted by the variational solution.

Observations in the ocean show that mean flows are often correlated

with bottom topography. The present theory is one possible explanation

for this.

8.4 Stratification

So far, we have looked only at barotropic flows. But the atmosphere and

ocean are stratified, and many important dynamics stem from having a

stratification. Storms in the atmosphere derive from baroclinic instability,
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Figure 29: A numerical simulation from Bretherton and Haidvogel (1976). The topo-
graphy is shown in the upper left panel and the initial streamfunction in the lower left
panel. The final streamfunction is shown in the lower right panel. Notice that this is very
similar to the topography.

and the Gulf Stream is also known to be thus unstable. In barotropic turbu-

lence, we speak of triad interactions among horizontal wavenumbers. But

with stratification, we can furthermore have interactions between waves

with differentvertical structure. Thus the problem becomes three dimen-

sional.

But we are interested in large scale turbulence, and the flow is still pre-

dominantly two dimensional at large scales, even with stratification. So it

will turn out that many of the concepts we have seen so far willcarry over
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to the stratified case.

The following will be based on the stratified quasi-geostrophic poten-

tial vorticity (QGPV) equation. A derivation is given by Pedlosky (1987)

(and is also given in my lecture notes from GEF4500). We will use the

Boussinesq form of the QGPV equation. The equation can be written:

∂

∂t
q + ~uh · ∇q = 0 (202)

where

q = ∇2ψ +
∂

∂z
(
f 2

0

N2

∂ψ

∂z
) (203)

This is the potential vorticity. It is comprised of two parts: the relative vor-

ticity and thestretchingvorticity. The latter depends on vertical gradients

in the streamfunction.N2 is the Brunt-Vaisala frequency. Note too that

the advecting velocities in QG are the horizontal velocities; the vertical

velocity is of order Rossby number smaller. Likewise the Laplacian is the

horizontal Laplacian, not the three-dimensional one.

For concreteness, we assume we have a periodic domain in(x, y) and

solid boundaries atz = 0 and z = 1. The boundary condition on the

vertical boundaries is that the vertical velocity vanishes. This can be shown

to be satisfied if∂∂zψ = 0.

8.4.1 Conserved quantities

We can derive an energy equation if we multiply the PV equation byψ and

integrate over the volume:

∫∫∫

ψ
∂

∂t
∇2ψ dV +

∫∫∫

ψ
∂

∂t

∂

∂z
(
f 2

0

N2

∂ψ

∂z
) dV +

∫∫∫

ψ~u ·∇q dV = 0 (204)
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Note I’ve dropped the “h” subscript on the velocity. Consider the third

term. We can use the following identity:

∇ · (q~uψ) = qψ∇ · ~u + q~u · ∇ψ + ψu · ∇q (205)

The first term on the RHS is zero from continuity (at first orderin the

Rossby number). The second term is zero because the velocityis parallel

to the streamfunction contours. So the dot product with the gradient is

zero. Thus the third term in (204) is:

∫∫∫

ψ~u · ∇q dV =
∫∫∫

∇ · (qψ~u) dV =
∫

�
�

�
�

∫

ψq (~u · n̂) dS = 0 (206)

after applying Gauss’s theorem. This is zero because of periodicity in x

andy and because the vertical velocity vanishes at the top and bottom.

Using integration by parts with the first term in (204), we get:

∫∫∫

ψ
∂

∂t
∇2ψ dV = −1

2

∫∫∫

|∇ψ|2 dV = −1

2

∫∫∫

(u2 + v2) dV (207)

This is the (horizontal) kinetic energy. Again, only the horizontal velocities

contribute to the kinetic energy to a first approximation.

Then there’s the other term. Now we apply integration by parts in the

vertical:

∫∫∫

ψ
∂

∂t

∂

∂z
(
f 2

0

N2

∂ψ

∂z
) dV =

∫∫

ψ
∂

∂t

f 2
0

N2

∂ψ

∂z
|10 dA− 1

2

∂

∂t

∫∫∫ f 2
0

N2
(
∂ψ

∂z
)2 dV

(208)

The first term on the RHS vanishes because∂
∂zψ vanishes on the vertical

boundaries. The second term on the RHS is proportional to thesquared

temperature; it is thepotential energy. Thus we have:
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∂

∂t

1

2

∫∫∫

(
∂ψ

∂x
)2 + (

∂ψ

∂y
)2 +

f 2
0

N2
(
∂ψ

∂z
)2 dV = 0 (209)

So the total energy—the horizontal kinetic plus potential—is conserved.

This is our first conserved quantity.

Now if we multiply the PV equation byq and integrate that over space,

we get:

∂

∂t

1

2

∫∫∫

q2 dV = 0 (210)

So the second conserved quantity is the potential enstrophy(the square of

the PV).

In fact, there are an infinite number of conserved quantities(see the

exercise); but we’ll focus on these two.

8.4.2 Energy cascade

With these two conserved quantities, we can demonstrate that the energy

shifts to larger scales and the enstrophy to smaller scales,using an argu-

ment like Batchelor’s (1953), as shown by Charney (1971).

Let’s assume that the Brunt-Vaisala frequency,N , is also constant. Then

we can redefine the vertical coordinate thus:

z∗ =
N

f0
z (211)

Doing this, the PV is simply:

q = ∇2ψ +
∂2

∂z∗2
ψ ≡ ∇2

3ψ (212)

where∇3 is the three dimensional Laplacian, with the new vertical co-

ordinate. Likewise, the energy is:
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E =
1

2

∫∫∫

|∇3ψ|2 dV (213)

and the enstrophy is:

Q =
1

2

∫∫∫

(∇2
3ψ)2 dV (214)

We will Fourier transform the streamfunction as follows:

ψ(x, y, z) =
∑

k,l,n

ψ̂eikx+ilycos(nπz) (215)

We use the cosine expansion in the vertical so that the vertical derivative

of ψ vanishes on the vertical boundaries (atz = 0 andz = 1). With this,

we have:

E =
1

2

∫

κ2|ψ̂|2 dκ (216)

and

Q =
1

2

∫

κ4|ψ̂|2 dκ =
1

2

∫

κ2E dκ (217)

where

κ2 = k2 + l2 + n2π2 (218)

is the total wavenumber squared.

Now we can proceed exactly as in 2-D. Consider a spectrum peaked at

some three-dimensional wavenumber,κ1. We assume the peak will spread,

so that:

∂

∂t

∫

(κ− κ1)
2E dκ > 0 (219)
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Expanding:

∂

∂t

∫

κ2E dκ− 2κ1
∂

∂t

∫

κE dκ+ κ2
1

∂

∂t

∫

E dκ > 0 (220)

The first and third terms are zero, so;

∂

∂t

∫

κE dκ < 0 (221)

which implies the total energy shifts to smallerκ. There is an inverse cas-

cade, as in 2-D turbulence. But note that this is not only to larger horizontal

scales—it is also to largerverticalscales. This means the flow will become

more barotropicin time.

8.4.3 The vortex view

Again, we can invoke a vortex view, to obtain a physical impression of

this process of barotropization. In geostrophic turbulence, the vortices are

potential vortices, having both relative and stretching vorticity.

Consider a vortex, with potential vorticityq. We can scale the PV as

follows:

q = ∇2ψ +
f 2

0

N2

∂2

∂z2
ψ

UL

L2

f 2
0UL

N2H2

1
f 2

0L
2

N2H2
(222)

I’ve divided through by the scaling for the relative vorticity, and I’m taking

N2=const. We see that the relative scale of the stretching vorticity depends

on the vortex size,L. We can rewrite this term as:

f 2
0L

2

N2H2
=
L2

L2
d

(223)
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where

Ld =
NH

f0
(224)

is thedeformation radius. If the vortex is much larger than the deformation

radius, the stretching vorticity dominates and if the vortex is much smaller

thanLd, the relative vorticity dominates.

Imagine we have a three-dimensional QG simulation, with random ini-

tial flow. The flow will organize itself into vortices, on differentlevelsin

the flow. These vortices will be smaller than the deformationradius and

dominated by relative vorticity. So they will behave just like vortices in

2-D turbulence. Like-sign vortices will merge, making larger vortices.

As the vortices become larger, the stretching vorticity is more import-

ant. We see, in particular, that the vortices have greater vertical extent. So

they begin to interact with vortices on other levels. Occasionally, like-sign

vortices will verticallyalign with one another. This is just like a merger,

but between two vortices on different levels.

The flow thus evolves to a system of fewer and fewer vortices, with

greater and greater vertical extent. This is the physical meaning of Char-

ney’s 3-D cascade.

The potential vorticity from such a simulation, from McWilliams et al.

(1999), is shown in Fig. (30). The flow started with a 3-D random initial

condition. In the upper panel is the PV at an intermediate time. Already

it is clear that like-sign vortices are congregating together. At a later time,

shown in the lower panel, the vertical alignment is clear, and two large

tornado-like structures have formed.

Thus the vortex view again illustrates the behavior that we have deduced

from spectral considerations.
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Figure 30: Potential vorticity from a 3-D QG simulation fromrandom initial conditions.
The upper panel shows the PV at an intermediate time and the lower panel at a late time.
Note the vertical alignment of the vortex structures.

8.4.4 Enstrophy cascade

Another prediction of Charney’s is that there will be an enstrophy cascade

in quasi-geostrophic turbulence. This will have an energy spectrum given

by:

E(κ) ∝ η−2/3κ−3 (225)

whereη is now the total enstrophy transfer rate, with units ofsec−3. The

difference here is that the wavenumber is the full three-dimensional wavenum-

ber given above. However, Charney assumes that the turbulence is iso-
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tropic in the three directions,(x, y, z∗). That implies that the energy spec-

trum will be the same for the horizontal kinetic energy, or indeed even one

component, i.e. foru2.

This is a possible explanation for theκ−3 range below 2000 km in the

Nastrom and Gage spectra in Fig. (22). The atmosphere is not a2-D fluid,

but at large scales it is quasi-geostrophic. Moreover, in the troposphere the

Brunt-Vaisala frequency is approximately constant, so Charney’s stretched

vertical coordinate is a reasonable choice. Further analysis has shown that

the enstrophy flux in this range is downscale, as expected foran enstrophy

cascade (Lindborg, 1999). So it seems like this really is an enstrophy cas-

cade.

There arealso indications of an enstrophy cascade in the ocean. Wang

et al. (2009) calculated energy spectra from current measurements collec-

ted from a ferry steaming between the U.S. and Bermuda, across the Gulf

Stream. The results (Fig. 31) also show a clearκ−3 range. The peak of

the scale corresponds to roughly the 50 km scale. In addition, the kin-

etic and potential energy show the same slope, consistent with Charney’s

assumption of an energy flow which is isotropic in the three dimensional

wavenumber.

Thus the addition of stratification hasn’t changed the situation greatly.

However, as the flow becomes more barotropic, the boundarieswill even-

tually become important. So it may be that Charney’s construction works

better at small scales, i.e. in the enstrophy range. Moreover, where does

baroclinic instability fit in? Instability implies a conversion of large scale

potential energy to kinetic energy at the deformation radius. How do we

reconcile this with an inverse cascade? The answer can be found in de-

tailed consideration of the triad interactions occurring in a baroclinic sys-
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Figure 31: Kinetic energy spectra from ADCP data collected from a ferry steaming
between the U.S. and Bermuda. The left panel shows theu andv components, and the
right panel the kinetic and potential energies. From Wang, Flagg, Donohue and Rossby
(2009).

tem (next section).

Exercise: Enstrophy conservation

Show thatany function of the potential vorticityq is also conserved in

the QG system.

8.4.5 Cascades in a two mode system

Triad interactions become very complicated when we have vertical modes

in addition to the horizontal wavenumbers. However, we can get a good

idea of how the system behaves when we consider only two vertical modes.11

Consider again the PV equation, which we write thus:
11The following is based on Salmon (1980).
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∂

∂t
q + u

∂

∂x
q + v

∂

∂y
q =

∂

∂t
q − ∂ψ

∂y

∂

∂x
q +

∂ψ

∂x

∂

∂y
q = 0 (226)

We can write this in shorthand form thus:

∂

∂t
q + J(ψ, q) = 0 (227)

TheJ(, ) function is called theJacobian. It is defined as:

J(a, b) =
∂a

∂x

∂b

∂y
− ∂b

∂x

∂a

∂y
(228)

We’ll takeN = const., so the PV is:

q = ∇2ψ +
f 2

0

N2

∂2

∂z2
ψ (229)

Assuming the fluid depth is such that0 ≤ z ≤ H, we can express the

streamfunction in terms ofvertical modes, thus:

ψ(x, y, z, t) =
∑

n
ψn(x, y, t)cos(

nπz

H
) (230)

We will only consider the first two terms:

ψ(x, y, z, t) = ψB(x, y, t) + ψT (x, y, t) cos(
nπz

H
) (231)

HereψB is thebarotropicstreamfunction; it does not vary in the vertical.

ψT is thefirst baroclinicmode. It is the gravest of the cosine modes; if we

integrate it in the vertical, it vanishes. We will exploit this below.

The PV also has two components:

q = ∇2ψB + (∇2 − F )ψT cos(
nπz

H
) (232)
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where

F =
π2f 2

0

N2H2
(233)

Notice that this parameter has units ofL−2. Thus the square root ofF

is like a wavenumber. This corresponds to the inverse of the deformation

radius.

Plugging the streamfunction and PV into the PV equation, we get:

∂

∂t
∇2ψB +

∂

∂t
(∇2 − F )ψT cos(

nπz

H
) + J(ψB,∇2ψB)+

J(ψB, (∇2 − F )ψT )cos(
nπz

H
) + J(ψT ,∇2ψB)cos(

nπz

H
)+

J(ψT , (∇2 − F )ψT )cos2(
nπz

H
) = 0 (234)

We can isolate the time derivative of the barotropic streamfunction if we

integrate this equation inz over the depth of the fluid, and then divide by

the depthH:

∂

∂t
∇2ψB + J(ψB,∇2ψB) +

1

2
J(ψT , (∇2 − F )ψT ) = 0 (235)

The terms multiplied by cosine vanish, and the cosine squared term integ-

rates to one half. This is the vorticity equation for the barotropic mode.

Notice that the barotropic vorticity can change by two terms. The first in-

volves the barotropic velocity advecting the barotropic vorticity, and the

second the baroclinic velocity advecting the baroclinic vorticity.

Similarly, we can obtain an equation for the baroclinic vorticity if we

multiply the equation bycos(nπz/H) and integrate over the depth. Then

we get:
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∂

∂t
(∇2 − F )ψT + J(ψB, (∇2 − F )ψT ) + J(ψT ,∇2ψB) = 0 (236)

after cancelling a common factor of 1/2. This is the baroclinic vorticity

equation. This states the baroclinic PV changes when the barotropic velo-

city advects baroclinic PV, and vice versa.

Each PV equation has an energy relation associated with it. If we mul-

tiply (235) byψB and integrate over the area of the domain, we get:

d

dt

∫∫

|∇ψB|2 dA−
∫∫

ψBJ(ψT , (∇2 − F )ψT ) dA = 0 (237)

after integrating by parts. Note the barotropic advection term vanishes

when integrated over the area. The first term is the barotropic energy,

which is purely kinetic. This isnot conserved, because of the interaction

with the baroclinic mode.

Likewise, multiplying (236) byψT and integrating over area, we get:

d

dt

∫∫

[|∇ψT |2 + F |ψT |2] dA−
∫∫

ψTJ(ψB, (∇2 − F )ψT ) dA = 0 (238)

again, after integration by parts. The first term is the change in the total

baroclinic energy, which has both kinetic and potential parts. The baro-

clinic energy isn’t conserved either, due to the interaction with the baro-

tropic mode.

However, if we integrate by parts again, we can show that:

−
∫∫

ψBJ(ψT , (∇2 − F )ψT ) dA =
∫∫

ψTJ(ψB, (∇2 − F )ψT ) dA (239)

So adding the two equation energy equations together, we get:
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d

dt

∫∫

|∇ψB|2 + |∇ψT |2 + F |ψT |2 dA = 0 (240)

So the total energy, barotropic plus baroclinic, is conserved.

After a similar derivation, you can show that:

d

dt

∫∫

(∇2ψB)2 + ((∇2 + F )ψT )2 dA = 0 (241)

So the total enstrophy is also conserved.

Now, how energy is transferred in the two mode system dependson the

triad interactions. To see how these work, we’ll focus on thebarotropic PV

equation (235). We write this for Fourier components, and weleave out

the summations for simplicity. The equation then looks likethis:

− ∂

∂t
(k2

x + k2
y)ψB1e

ik·x + J(ψB2,−(m2
x +m2

y)ψB3)e
im·x+in·x

+J(ψT 1,−(q2
x + q2

y + F )ψT 2)e
ip·x+iq·x = 0 (242)

Note that I’m usingn now as a horizontal wavenumber (not the vertical

mode number). To extract an equation for the barotropic streamfunction

with wavenumbers(kx, ky), we multiply byψB1e
−ik·x and integrate over

the area. The result is:

− ∂

∂t
(k2

x + k2
y)|ψB1|2 + Re{ψ∗

B1J(ψB2,−(m2
x +m2

y)ψB3)}δ(m+ n− k)

+Re{ψ∗
B1J(ψT 1,−(q2

x + q2
y + F )ψT 2)}δ(p+ q − k) = 0 (243)

This equation accounts for the change in barotropic energy at wavenum-

ber (kx, ky). Remember that the two advection terms involve sums over

many wavenumbers. Interactions between wavenumber triadscan transfer

energy.
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We see though that there are two types of triad. The first involves inter-

actions between three barotropic waves. This corresponds to the triads we

considered previously. The second though is something new,and involves

the barotropic wave (at(kX , ky)) and two baroclinic waves.

Consider a triad of barotropic waves first. These conserve barotropic

energy and enstrophy:

d

dt
(E1 +E2 + E3) = 0

d

dt
(Z1 + Z2 + Z3) = 0 (244)

We can rewrite the enstrophy relation thus:

d

dt
(κ2

1E1 + κ2
2E2 + κ2

3E3) = 0 (245)

This is exactly like Fjørtoft’s barotropic example. We expect then that

energy will shift to larger scales and enstrophy to smaller scales.

Now consider the barotropic/baroclinic triads. The enstrophy relations

are:

d

dt
(κ2

1E1 + (κ2
2 + F )E2 + (κ2

3 + F )E3) = 0 (246)

This is more complicated than the barotropic case because oftheF terms

(which also affect the baroclinic energies). Consider firstthat all three

members of the triad have scales well below the deformation radius, so

that(κ1, κ2, κ3) ≫ F . Then the enstrophy equation is, approximately:

d

dt
(κ2

1E1 + κ2
2E2 + κ2

3E3) = 0 (247)

This is the same as with the barotropic triad. Thus we expect energy to

be transferred to the triad member with the largest scale (regardless of
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whether this is barotropic or baroclinic). Energy would thus shift toward

the deformation radius.

Now consider that we have a large scale triad, so that(κ1, κ2, κ3) ≪ F .

Then we have, approximately:

d

dt
(FE2 + FE3) = 0 (248)

This simply states that energy will pass between the two baroclinic waves.

But the direction of transfer is undetermined—we can’t say whether energy

is moving up or downscale.

Does this mean that baroclinic energy at large scales can’t transition to

smaller scales? It would seem so. But what about baroclinic instability?

In that, energy is transferred from a baroclinic mean shear to barotropic

eddies. This would seem to contradict the present finding. Infact the

problem here is the assumption oflocal interactions. What about a non-

local interaction, between a large scale baroclinic mode and smaller scale

barotropic and baroclinic waves?

The usual models of baroclinic instability (the Eady model,the Charney

model and the Philips model) all involve a baroclinic shear with no lateral

shear. So we could express this as a baroclinic mode in which:

(κ2
2 + F )ψT 1 = FψT 1 (249)

(the Laplacian is zero because the mode is constant inx andy). Making

no other assumptions about scales, we have:

d

dt
(E1 +E2 + E3) = 0

d

dt
(κ2

1E1 + FE2 + (κ2
3 + F )E3) = 0 (250)
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Using the first equation, we can eliminatedE2/dt from the enstrophy equa-

tion. This yields:

d

dt
(κ2

1E1 − FE1 − FE3 + (κ2
3 + F )E3) = 0 (251)

or:

d

dt
κ2

3E3 =
d

dt
((F − κ2

1)E1) (252)

This implies that the energy in both the other modes can increase in time

if:

κ2
1 < F (253)

In other words, if the barotropic wave is larger than the deformation radius,

it can take energy from the primary baroclinic wave. This is precisely the

short-wave cut-off that we found when we studied the Eady model—only

the long waves can be unstable.

But more than that, the barotropic wave can be much smaller than the

primary baroclinic wave. Recall that the most unstable wavein the Eady

problem has a scale somewhat larger than the deformation radius. Such a

triad isnon-local, because there is a large separation in scales between the

triad members.

We can summarize the results by using a schematic diagram (Fig. 32),

which is based on Salmon’s (1980). The energy at small scalescascades

to larger scales in both the baroclinic and barotropic modesvia local inter-

actions. Baroclinic modes with scales larger than the deformation radius

are unstable and transfer energy non-locally to the barotropic modes. Then

energy eventually cascades locally to large scales in the barotropic mode.
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Figure 32: A idealized diagram indicating the tendencies for energetic transfer in the
two layer model. The upper line represents the baroclinic mode and the lower line the
barotropic mode. Based on a figure of Salmon’s (1980).

An important point here is that baroclinic instability in this turbulence

context is simply a non-local triad interaction. This meansthat the transfer

to the barotropic mode isgenericfor large scale baroclinic modes. Thus,

for example, a large scale baroclinic Rossby wave can be unstable too

(LaCasce and Pedlosky, 2004; Isachsen et al., 2008). There is no need

to have a stationary flow, as employed in the Eady, Charney andPhilips

models.

9 Turbulent Diffusion

Now we will focus on how turbulent flows advect passive tracers, and in

particular what happens with particles and pairs of particles. In section

(7.6), we examined how the spectrum of passive tracer variance would

look in a given turbulent inertial range. In that case, we treated the tracer

as a continuous Eulerian field, like vorticity. But now we will take a more

Lagrangian view.
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9.1 Single particle dispersion

9.1.1 Random walk

The essence of single particle motion is captured in therandom walkor

“drunkard’s walk” problem. This is the basis of “Brownian motion”, as

studied by Einstein (1905). Consider an idealized drunk person. Imagine

he takes uniform steps, of lengths. But because he is drunk, each step is

randomly oriented and uncorrelated with the previous step.We can write

his position as:

~Dn = ~Dn−1 + ~s (254)

where~s is the random displacement. So the squared displacement of the

drunk is:

| ~Dn|2 = | ~Dn−1|2 + s2 + ~Dn−1 · ~s (255)

wheres is the magnitude of~s. Now, if we have a party of drunks, each

moving in this way, we can average the mean square displacement for the

whole group. If you think of a “cloud” of drunks, the root meansquare

displacement is proportional to the cloud’s radius. Averaging, we get:

< | ~Dn|2 >=< | ~Dn−1|2 > +s2 (256)

where the brackets indicate an average over all the drunks. The cross cor-

relation term vanishes because the drunks’ steps are uncorrelated with their

previous steps. Now, assuming the drunks all start at the pub, at zero dis-

placement, we have:

< | ~D1|2 >= 0 + s2 (257)
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and

< | ~D2|2 >= 2s2 (258)

so

< | ~Dn|2 >= ns2 (259)

Thus the root mean square displacement is:

(< | ~Dn|2 >)1/2 =
√
ns (260)

If the drunks take steps at uniform time, e.g. one step per second, then the

rms displacement grows ast1/2 power. This is a characteristic feature of

Brownian motion. We will see later that single particle dispersion behaves

the same way, when the particle motion is uncorrelated.

9.1.2 Diffusion

Now we will show that a diffusing cloud, with a constant diffusivity, has a

radius which also increases ast1/2 power. The equation for a passive tracer

was given in (127). Now we will consider what happens to the tracer in

the absence of advection, so that the equation is:

∂

∂t
C = κ∇2C (261)

We define the variance of the cloud as:

< r2 >=

∫∫

r2C dA
∫∫

C dA
(262)

The variance is essentially the radius squared of the cloud of tracer. We are

interested in how this changes in time, i.e.∂
∂t < r2 >. We can obtain an
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equation for this by multiplying the tracer equation byr2 and integrating

over space. Assuming that the spreading is isotropic (the same in every

direction), we have (using cylindrical coordinates):

∂

∂t

∫ ∞

0
r2C rdr =

∫ ∞

0
r2 κ

1

r

∂

∂r
(r
∂

∂r
C) rdr

= −2κ
∫ ∞

0
r2 ∂

∂r
C dr = 4κ

∫ ∞

0
C rdr (263)

after using integration by parts. Thus:

∂

∂t
< r2 >=

∂

∂t

∫∫

r2C dA
∫∫

C dA
= 4κ (264)

Integrating this in time, we get:

< r2 >= 4κt (265)

So the rms radius of the cloud increases ast1/2, just as in a random walk.

So a random walk is adiffusive process. Drunks drifting from a pub behave

as a passive tracer, diffusing with a constant diffusivity.We often call the

time rate of change of the variance the “diffusivity” when dealing with

particles.

An alternate way of deriving the same result is to use the exact solution

to (261). Assume that the initial tracer distribution is a delta function at

the origin (as if all the the drunks are initially at a pub atr = 0). One can

show that the solution to (261) is given by:

C =
1

2πκt
exp(− r2

4κt
) (266)

The prefactor guarantees that:

∫ ∞

0
C r dr = 1 (267)
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We can use this solution to find the variance of the cloud. The result is:

< r2 >= 4κt (268)

9.1.3 Single particle dispersion

We’ve seen that randomly walking particles are essentiallydiffusing in

space. Taylor (1921) formalized this, in the following way.

Imagine we have a collection of particles. We can define the diffusivity

(in thex-direction) of the particle cloud by:

K ≡ 1

2

d

dt
< X2 >=< u(t)X(t) > (269)

The factor of1/2 is traditional, and cancels the other two when taking the

derivative. Realizing that the displacement at timet is just the integral of

the velocity, we can rewrite this as:

K =< u(t)
∫ t

0
u(t′)dt′ >=

∫ t

0
< u(t) u(t′) > dt′ (270)

Now if the velocity field isstationary(not changing in time), we can write:

K = ν2
∫ t

0
R(t′) dt′ (271)

where

R(t) ≡ 1

ν2
< u(0) u(t′) > (272)

and whereν2 is the velocity variance for the particles. Note that we can

substituteu(0) for u(t) because of stationarity (the velocity on average is

the same at any time).

108



The functionR(t) is the normalized integral of the velocityautocorrel-

ation. For the random walk, the velocity is uncorrelated at each step. But

generally the velocity is correlated for some period.

Taylor (1921) noticed that the diffusivity should behave the same in the

limits of short and long times. At short times, the autocorrelation can be

expanded in a Taylor series:

R(t) = 1 +
dR

dt
t+ ... (273)

As t → 0 then,R → 1 (the limit is one because we normalized by the

velocity variance,ν2). Thus we have:

limt→0 K = ν2t (274)

Thus the dispersion,< X2 >, increases ast2.

At long times, the behavior is also similar for diverse flows.Assuming

that the velocity eventually becomes decorrelated, we expect the integral

of the autocorrelation to converge:

TL =
1

ν2

∫ ∞

0
R(t′)dt′ = const. (275)

The integral has units of time and is known as theLagrangian integral

time. TL gives an indication of the predictability of the particle motion, i.e.

how long the velocity is correlated with itself. Thus the diffusivity is:

limt→∞ K = ν2TL (276)

and this is constant. We say that the system isdiffusive, and hence can be

modeled using a diffusion-type equation. Furthermore, thedispersion will
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increase ast, exactly as the mean square radius increases under a random

walk.

Thus an implication of Taylor’s work is that we can representmany

particle dispersion problems as a random walk. We can, for instance,

model ash spreading from a volcano as a mixture of advection (left out

here, but important) and a random walk. This opens the possibility for

stochastic modelsfor pollution spreading.

But there is a downside as well. Since single particle motionhas such

generic limits, it is not so useful when one is trying to distinguish different

types of flow. Say for example you would like to know whether there is an

energy or enstrophy cascade occurring. In both cases, the single particle

diffusivity should asymptote to a constant. We return to this shortly.

9.1.4 The vortex merger problem

In section (7.5), we showed that freely evolving 2-D turbulence can be

viewed as a merger process between discrete vortices. Carnevale et al.

(1991) constructed a theory in which the important flow statistics, like the

enstrophy, could be deduced from the vortex population. Theonly un-

known in their theory was the decay rate of the vortex density, ρ. Here we

show that can be accounted in terms of the dispersion of the vortices.12.

The numerical experiment in this case was a freely-evolving, 2-D tur-

bulence simulation in a periodic domain, from random initial conditions.

Vortices emerge at the early times and begin merging. At somepoint,

particles were deployed in the flow, and the dispersion of theparticles and

vortices was compared (left panel of Fig. 33). We see that after a short

time, the dispersion for vortices and particles is statistically indistinguish-
12The section follows LaCasce (2008)
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able. That implies that the vortices are dispersing exactlylike the passive

particles. Note too that the dispersion is increasingfasterthat diffusively.

A best fit of the data suggests:

< X2 >∝ t1.3 (277)

This implies that the diffusivity increases ast0.3. Such dispersion is called

“super-diffusive”, since the spreading is greater than in arandom walk.

As the vortex dispersion matches the particles’, we can think of a dif-

fusivity to characterize the vortex spreading. We can scalethe diffusivity

thus:

D =
1

2

d

dt
< X2 >=< uX >∝ UL (278)

whereU is the mean vortex velocity andL is the typical spacing between

vortices. Now if we have a vortex density ofρ, then the typical spacing is:

L ∝ ρ−1/2 (279)

The velocity on the other hand scales as the square root of thetotal energy,

given in (119):

U ∝ E1/2 ∝ ρ1/2ζc b
2 (280)

So the diffusivity scales as:

D ∝ UL ∝ ρ1/2ζc b
2ρ−1/2 ∝ Γ (281)

where

Γ = ζc πb
2 (282)
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is the mean vortexcirculation. So the diffusivity and the circulation should

behave the same way. In the experiment shown in the left panelof Fig.

(??), the diffusivity scales as:

D =
1

2

d

dt
< X2 >∝ t0.3 (283)

So the circulation, if this argument is correct, should scale the same way.

Shown in the right panel of Fig. (33) are the exponents,α, obtained

from a suite of experiments with different initial conditions and differ-

ent types of small scale damping. We see that the exponents tend to be

between 0.2-0.4, for both the diffusivity and circulation,for most of the

experiments. The average value for the exponent is roughlyα = 1/3.
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Figure 33: The dispersion for vortices (solid curve) and passive particles (dashed line) in a
2-D turbulence simulation (left panel). Shown in the right panel are the growth exponents,
α, from various runs for the vortex diffusivity and the mean vortex circulation. The value
is usually between 0.2-0.4. From LaCasce (2008).

If we know the scaling for the circulation, we can find the decay rate

for the density. This is because the total energy is conserved. So:

E = ρζ2
c b

4 = ρΓ2 = const. (284)
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Thus:

ρ ∝ Γ−2 ∝ t−2/3 (285)

This is close to the value,0.7, inferred by McWilliams (1990) and Weiss

and McWilliams (1993) (sec. 7.5). In other simulations, we find a value of

2/3 (Fig. 34), using a range of different initial conditions.
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Figure 34: Vortex density from 4 experiments with differentinitial conditions. The lines
indicate a decay oft−2/3. From LaCasce (2008).

The results shown in Fig. (33) are from numerical experiments with

very weak lateral damping. Increasing the damping accelerates the vortex

decay, because lateral diffusion causes the vortices to spread out, hence

increasing their chance for collisions. But nevertheless,it is fruitful to

think of vortex merger as a dispersion problem.

Note though that this problem has not been completely solved! All
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we’ve done is to shift the unknown. Previously, we didn’t know what set

the density decay. Now we know that, but we don’t know what determines

the dispersion exponent. So there is still work to be done.

9.2 Two particle dispersion

As noted, the single particle dispersion exhibits generic behavior and so

is not terribly useful for differentiating different typesof flow. Better in

this regard is the dispersion betweentwo particles, called “relative disper-

sion”. Rather than study how a particle drifts from its starting location, we

see how two particles separate in time. An advantage is that two particle

dispersion is unaffected by a constant background flow,U , whereas single

particle dispersion is.

Two particle dispersion is:

< |~x1(t)−~x2(t)|2 >=< |~x1(t)|2 > + < |~x2(t)|2 > −2 < ~x1 ·~x2 > (286)

If the flow is homogeneous, then:

< |~x1(t)|2 >=< |~x2(t)|2 >=< x2(t) > (287)

where< x2(t) is the single particle dispersion. Thus:

< |~x1 − ~x2|2 >= 2 < x2 > −2 < ~x1 · ~x2 > (288)

Now if the two particles are moving independently of one another, i.e.

if their velocities are uncorrelated, the cross correlation term will be zero.

This is what typically happens when the particles are far apart. Then two

particle dispersion is like single particle dispersion. Ifwe define the two

particle diffusivity, then in this limit we have:
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K2 ≡
1

2

d

dt
< |~x1 − ~x2|2 >= 2K1 (289)

whereK1 is the single particle diffusivity.

But what happens when the particle motionis correlated? This is where

relative dispersion is interesting. Two particles are measuring the velocit-

ies at the points in space and time where the particles are (Fig. 35). Thus

the difference between the particle velocities is equal to the difference in

Eulerian velocities at that time and location. Now if the flowis homogen-

eous, the mean square velocity difference for particles with a separationr

is the same as the mean square velocity difference for any twopoints in the

flow also with a separationr. This velocity difference is sometimes called

the “second order structure function”.

In turbulence, this scales with energy or enstrophy transfer rate, just as

the spectrum does. So in the energy cascade, we have:

< |~u1 − ~u2|2 >∝ ǫr2/3 (290)

The two thirds can be deduced from dimensional grounds:ǫ has units of

m2/sec3 and the square velocity difference has units ofm2/sec2. This

relation is known as “Kolmogorov’s 2/3 Law”.

u

u1

2

r

Figure 35: Two particles moving in a flow.
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In the enstrophy range, we find:

< |~u1 − ~u2|2 >∝ ηr2 (291)

So the velocity difference increases more rapidly with separation in the

enstrophy range.

We can deduce corresponding relations for the relative diffusivity. In

the energy range, the diffusivity scales as:

K2 ∝ ǫ1/3r4/3 (292)

because the diffusivity has units ofm2/sec. This relation was first noticed

by Richardson (1926). The connection to Kolmogorov’s theory was made

by Obukhov (1941) and Batchelor (1952). Notice that this implies:

d

dt
< (x1 − x2)

2 >=
d

dt
< r2 >∝ ǫ1/3r4/3 (293)

If we integrate this, we find that:

< r2 >∝ ǫt3 (294)

Integrating (293) is not strictly correct, because the LHS involves the mean

square separation, not the separation. But from a scaling perspective, this

is reasonable. The cubic growth is now known as “Richardson’s Law”.

In the enstrophy range, dimensional arguments suggest:

d

dt
< r2 >∝ η1/3r2 (295)

Integrating this in time, we get:

< r2 >∝ exp(η1/3t) (296)
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This is sometimes called “Lin’s Law”, after Lin (1972). So separations in

the enstrophy range grow exponentially in time.

These results can be compared with those that we derived for predictab-

ility, in sec. (7.7). In the enstrophy range, the scale of theerror was found

to increase asexp(η1/3t)—exactly as the separation in particles increases

here. Similarly, in the energy range we found:

T =
∫ κ1

κ0
ǫ−1/3κ−5/3 dκ ≈ ǫ−1/3κ−2/3|κ1

κ0 ≈ ǫ−1/3κ
−2/3
0 (297)

This implies that the length scale scales as:

L
2/3
0 ∝ ǫ1/3T (298)

asL0 = 2π/κ0. Thus:

L2
0 ∝ ǫT 3 (299)

The predictability relations are thus identical in form to the two particle

dispersion relations. This is not coincidental. In fact, two particle disper-

sion is actually a measure of Lagrangian predictability. Ifwe change the

initial condition of a particle slightly, the growth of the error is determined

by relative dispersion.

How do these predictions compare to observations? Morel andLarcheveque

(1974) calculated pair statistics for pairs of balloons deployed in the lower

stratosphere in the Southern Hemisphere during the French EOLE exper-

iment. The dispersion is seen to grow exponentially in time,during the

first 6 days and up to scales of 1000-2000 km. Thereafter, the two particle

dispersion increases linearly in time. From the turbulenceperspective, we
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would interpret this as evidence of an enstrophy cascade at scales below

1000 km, and random, uncorrelated motion at larger scales.

Figure 36: Relative dispersion for pairs of balloons from the EOLE experiment in the
Southern Hemisphere. From Morel and Larcheveque (1974).

It is interesting to compare this with the Nastrom and Gage (1985) en-

ergy spectrum, in Fig. (22). There we saw evidence of aκ−3 spectrum at

scales below roughly 2000 km. So the exponential growth seenhere would

be consistent. However, the energy spectrum also suggests aκ−5/3 range

at smaller scales. This would produce at3 growth in the dispersion, which

we don’t see. However, it’s possible that is occurring below100 km, the

smallest scale sampled by the balloons. Er-El and Peskin (1981) examined

another set of balloons, also from the Southern Hemisphere,and obtained
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exponential growth at scales below 1000 km.

Two results from the ocean are shown in Fig. (37). Both involve surface

buoys, deployed in the Gulf of Mexico during the SCULP experiment and

in the Nordic Seas during the POLEWARD experiment. In both cases, we

see indications of exponential spreading at the early times. In the Gulf, the

growth occurs below scales of
√

2000 = 45 km, and in the Nordic Seas it

happens below the 10 km scale. In the Gulf case, the dispersion at large

scales is super-diffusive. In the Nordic Seas case, the dispersion increases

ast3, up to 100 km, then grows diffusively thereafter. So it is possible there

is an inverse cascade happening between 10-100 km in the eastern Nordic

Seas.
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Figure 37: Relative dispersion for pairs of surface drifters in the Gulf of Mexico deployed
during the SCULP experiment (left panel) and in the Nordic Seas during the POLEWARD
campaign. Note the dispersion on the left is plotted on a semi-logarithmic plot and that
on the right is on a logarithmic plot. From LaCasce and Ohlmann (1974) and Koszalka et
al. (2009).

An interesting point is that 1000 km is comparable to the deformation

radius in the atmosphere, and 45 km is similar to the deformation radius in

the Gulf of Mexico. So both of these studies suggest exponential growth

below the deformation radius. This is what one would expect if baroclinic
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instability were causing a transfer of energy and enstrophyto the deform-

ation radius, and if enstrophy were cascading to smaller scales.

Following Richardson (1926), one can write an equation for the prob-

ability of pair separations. It is possible to solve this equation and then

compare the predicted probabilities with the observed distributions of pair

separations for balloons or drifters. The details can be found in LaCasce

(2010).
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