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1 Equations
1.1 Basic equations

To do what follows, we need to introduce the set of equatioef e us-
ing, and the approximations we’ll need. First are the moonargquations,
written in vector form:

0 ~ 10

—1u 2() = —= —— 1
atqu -V + X U pr gk+pazT ()

Here is the velocity,p is the densityp is the pressure; is gravity, 7 is
the applied stress arfd is the rotation vector for the earth. Note that this
equation is actually three equations in one—one for eachaspimen-
sion.

We also have the continuity equation:

0
8tp-l—u Vp+p(V-1)=0 (2)

This expresses the conservation of mass. If the flux of deimga a fixed
volume is positive, the total mass will increase. Despitegimplicity of
that idea, the equation is nonlinear and non-trivial.

But to simplify matters, we will make thBoussines@pproximation.

This assumes that:

p:po—i—p'(x,y,z,t) (3)

wherep, is a constant and that:

po > |p]



The density of water is nearly a constant—it changes onghsi when
heated (over a reasonable range). So we can replacaost of the equa-
tions by the constant,. This simplifies the continuity equation a lot:

0 . S
apo—l—u'Vpo—l—po(V-U):O (4)

or:

V-i=0 (5)

Thus the Boussinesq fluid incompressible This means that volume is
conserved.
The momentum equation is also simplified somewhat becaega és-
sure term is now linear:
1

1
-Vp — —Vp (6)
P Po

The Boussinesq approximation is valid for the ocean andeqopately
so for the planetary boundary layer in the atmosphere. lbisancurate
in the troposphere, due to the compressibility of air. Buiné usepres-
sure coordinatesthe pressure term is also linearized and the flow is in-
compressible. So the equations are similar to the Boussimess we use
hereatfter.

We also require the stress term on the RHS of the momentum equa
tion. We will write this as the sum of an (unspecified) forctegn and a
diffusive damping term:

10

T =T+ vV (7)
poz



The forcing could for example be the wind acting on the ocearcon-
vective motion in the atmosphere. The diffusion term repnésmolecular
dissipation, withv ~ 10~° m?/sec.

We will alter the momentum equation slightly. For one, we cawrite
the advective term using incompressibility. Notice that:

V. (da)=u-Va+a(V-u)=1u-Va (8)

Second, we can write the gravity term as the gradient ofjgapotential

gz. Put together, we can write the momentum equation as:

%ﬁ+v-(ﬁoﬁ)+29xﬁ:—V(p£+gz)+f+l/v26 9)
0

The circle in the advection term signifies a tensor prodwetabse this ac-
tually represents 9 terms, in three separate equations tfibu-component
IS:

0 10

e oy —fo=——— FJZ 2 1
atquV (du) — f.v poﬁxp+ + vV-iu (10)

wheref, = 2Qsin(0) is the vertical component of the Coriolis acceleration
(’'m ignoring the term involving the horizontal componewhich is very
small).

Interestingly, there is only one nonlinear term in this dmma the
second term, the advection of momentum. This guadraticnonlinear-
ity, because it involves the product of the unknown velesitiTurbulence
springs from this term, as we’ll see shortly.



1.2 Scaling

Not all the terms in the momentum equation are equally ingmartTo see
this, we approximate each of the terms with “typical”’ values U, L, P,

etc. The x-momentum equation scales as:

10
%u—l—v (uu) — fou = —%%ZH‘Fx‘FVVQU
U U? P vU
— — — F — 11
T L v polL L? (11)
If we divide through by the last term, we get:

2 2 2

L UL fL PL FL 1 (12)

vT v v povU vU
Thus the advection term is a factor GfL. /v times the size of the dissip-

ation term. This parameter is tiieynold’s numberHow big is this? At
the scale of weather systems in the atmosphere, we have:
UL _ (10m/sec)(10°m)
v 1079m2/sec

This means that advectionmsuchmore important than molecular dissip-

= 10"

ation at these scales.
The second point concerns the time scdle,We can rewrite the first
scaling term thus:

L2 T,
v T
This is the ratio between the actual time scale of the motigrand the

(13)

dissipation time scalel,, = L?/v. This is the time scale approximately
that is required for molecular friction to bring the motidrsaalel to rest.
How long is this? At the weather scales:

7



L2 (105m)?
T, =—~ = 10%7
v 107°m?/sec oee

This is roughly10'? days, or abou$ x 10 years—roughly one fourth the
age of the present universe! So we would have to wait for a leery time
for molecular dissipation to halt a storm system.

Of course the dissipation time scale is a strong functiorhefdpatial
scale. Consider a cup of coffee. Say you add sugar to theecaffe stir it.
How long do you have to wait for it to slow down? Assuming a cOpcfin

across, the dissipation time scale is:

L2 (0.1m)?
)= — R = 10?
v 107°m?/sec oo

This is about 15 minutes. But coffee settles down much faktar this,

perhaps over 15 seconds. We’ll see why shortly.
Another important scaling can be obtained if we insteaddéivhrough
the scales by U, the size of the Coriolis term. Then we obtain:

0 10
_ du) — foo=——— 0 2
atquV (du) — fv o 8xp+ +vV-u
1 U P F v
—  Z 14
LY JumL fU I (14)

The ratio of the advective term to the Coriolis term is thysf L. This is
the Rossby numberThis is also small at large scales. #noptic scales
(order 1000 km in the atmosphere), the Rossby number is hpugh.
Then the Coriolis term is 10 times larger than the advecavmt Scaling
the other terms, we find that the pressure gradient term istdbe same
size. So the dominant balance at weather scales is betweeghitth and
fourth terms, known as thgeostrophic balance

8



A temperature time series with "turbulence"

Low pass filtered signal

Figure 1: A time series of temperature measured over a ngy&iod. The upper panel
shows the whole time series, while the middle and lower Faslebw the low-pass and
high-pass filtered time series.

2 Statistics in a nutshell

Turbulence often appears to be “noise” in a signal. Congltetemperat-
ure time serieq§’(t) in the upper panel of Fig. (1). The temperature varies
slowly in time, but it also has a high frequency componentvdflow-pass
filter the time series, we get the signal in the middle pandiis has a
smooth, even quasi-predictable looking, variation. Iflo@ dther hand we
high-pass filter the time series, we get the signal in the tqve@el. This
appears to be “white noise”, i.e. a random signal with no cami fre-
guencies. This part of the signal looks completely unptebie, i.e. we

don’t know from one instant to the next how it will behave.



High pass filtered PDF

25

15F

p(x)

0.5

Figure 2: The probability density function (PDF) of the higass filtered time series in
Fig. (1). The dashed curve is a Gaussian PDF.

Turbulence signals are often like in the lower panel. Theyfanda-
mentally unpredictable (we will demonstrate this in sec.3Y rather than
worrying about the exact values of the signal at any giver tiwe focus
Instead orstatistics We are more concerned about the range of possible
values and thenoments-the mean, the variance, etc.

The moments can be derived from fhrebability density functio(PDF).
To obtain this, we calculate a histogram from the signal byntiog the
number of times the temperature falls in selected rangegs, leetween
—0.2 and—0.1. Then we normalize the histogram so that:

| p(T)dT =1 (15)
The result shows us the probability of getting a particukdue.

Fig. (2) shows the PDF for the high-pass filtered time senis.see
that the value is most often around zero. But values as lag#®) & occa-
sionally occur.

The moments can be derived from the PDF. For examplejrtban
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temperature is:

<T>=/[ O; Tp(T)dT (16)

The mean for the distribution shown+4g).0022. This is close to zero, as
we expected.

The width of the PDF is determined by the second momentyé#ne
ance

V=< (T-<T>>= [ (T-<T>PpT)dl  (17)

For the distribution shown, the variance(i$386. A better indicator of
the actual width though is th&andard deviationwhich is the root of the

variance:

SD = (< (T— < T >)*>)1/? (18)

In the present case, this(isl965. You can see that the PDF falls to roughly
half its maximum value at-0.2. This means that the temperature in the
high pass filtered time series is most often betweér? and0.2.

We can also calculate higher moments. The third order momdhée

skewness

2 (T— < T > p(T)dT
SD3
It is traditional to normalize the skewness by the cube ofstla@dard de-

S =

(19)

viation so that the result is a non-dimensional number. Kesvaess in-
dicates how asymmetric about the origin the distributionlrsour case,
S=0.0271; the PDF is slightly skewed toward positive values

The fourth order moment is also useful—this is Kugtosis

11



I (T— < T >)p(T)dT
SD*
also occasionally called the “flatness” factor. The valdkects the shape

K= (20)

of the PDF. If the PDF has a sharp peak in the middle and longsyitihe
kurtosis is large. In our case, k=2.9792.

If the kurtosis is near the value of three (as it is here), tihenPDF is
close to aGaussiaror “normal” distribution. The Gaussian is defined:

1 (T— < T >)?
T) = —
p( ) \/W 6519]9( 252 )
This is indicated by the dashed curve in Fig. (2). We see ol Biindeed
close to normat. It is advantageous having a Gaussian PDF because all the

(21)

moments can be derived analytically.

3 The Fourier transform

Another operation we’ll be using is the Fourier transfornhebasic idea
Is that we project a function onto a basis of sinusoidal fuomst

ﬂ@:;f@wm (22)

where the sum goes over the range of the frequencyWe prefer the
complex sinusoidal function because it's easier to workhwitan sines
and cosines.

We can extract the component at a single frequency by Fouaes-

forming, thus:

IThere is a theorem in statistics called the Central Limitdfeen which states that the sum of inde-
pendent processes has a PDF which converges to a Gaussian.

12



, 1 /T . .
T/ t) exp(—iwt) dt = ?/0 T(w)dt =T (w) (23)
whereT' is, for example, the length of the record.

This is a Fourier transform in time. But the transform can B@ein

space as well. For instance, we can write:

U(z,y) = g ; bk, ety (24)

Then the corresponding transform is:

9k 1) = = ([ v, y)e ™ drdy (25)

assuming that the domain extends friimL|.
An advantage of the Fourier transform is that it makes tallgmyatives
easy. Ify) above is the 2-D streamfunction, such that:

i, d
== —_—— = — 2
then:
a(k,l) = —il(k,1), b =ik (27)

Another useful point is concerns the energy. Say we have aanom
with dimensionse = [0, L] andy = [0, M]. The total kinetic energy in the

domain is:

E = ﬁ // %(u2 + v?) dedy (28)

The Fourier version of this is:

13



1 . X
E =233 [af* +[of (29)
k1
Thus the kinetic energy is the sum of the squares of the Foamelitudes

by wavenumber. This result is dueRarseval’s theoremWritten in terms
of the streamfunction, the energy is:

B = S Y (K 4 PP (30)
k1

Very often, we’ll talk about the energgpectrum This is just:

£k, 1) = (al + [of) (31)

Then the total energy is the sum of the spectrum over all wawders.
The spectrum shows contribution to the energy by wavenur(dyeire-
guency). This has traditionally been a central quantitynbalence.

4 A chaotic example

As noted earlier, the “trouble” with the momentum equatisnhe quad-
ratic nonlinearity on the LHS. It's useful to consider howsthffects the
solution in a simple caseThe x-momentum equation is again:

0

1
—u+ V- (iu) — fv=——Vp+ F, + vV (32)
ot Po

We'll approximate this with a “toy” example:

d
au—l—mﬁ:l—u (33)

°This example is based on one by Frisch (1995).
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This has only a single variable,t). The terms on the RHS are simple
forcing and dissipation terms. The equation has a quadnatntinearity,
and that is multiplied by, which is essentially the Reynolds number for
the problem. Ifr is small, the flow is viscous and the equation is approx-
imately linear. Ifr is order one or larger, it is nonlinear.

We will discretize the equation, using a simple Euler roaitiith a time
stepdt = 1:

u(t+1) —u(t)
1
We can rewrite this as:

+ru(t)? =1 —u(t) (34)

u(t+1) = F(u(t)) = 1 — ru(t)? (35)

This is a variant of the “logistic map®.
The behavior of the system depends strongly on the parametédr-
Is very small (less than 0.01), the solution approachesQu=This is the
viscous limit when the forcing determines the solution.
If ~ is larger than that, the solution approaches a smaller valnis is
known as dixed point We find the fixed points by solving:
d

%u:—mﬁ—l—l—u:o (36)

This quadratic equation has solutions:

1 Jitd
w——— g YO (37)
2r 2r

There are two roots, one positive and one negative. YWith0.1, the roots
areu = 0.9161 andu = —10.9161. Solving (35) numerically (in Matlab),

3The logistic map was originally proposed in a paper by May7@)9 His was an idealized model of a
biological system where the growth rate of a population @pprtional to the population itself. The paper
became a landmark in the chaos literature.

15



logistic map with r=0.1 logistic map with r=0.75
T T T T T T T 1 T T T T T T T

2500 3000 3500 4 1500 2000 2500
time time

Figure 3: . Two solutions of the logistic map with u(0)=0. Tdwution at right has r=0.1
and the one on the right has r=0.75.

we see that the solution rapidly converges to the positige(teft panel of
Fig. 3).

Why does it favor the positive root over the negative one? € we
perform linear stability analysis Let’s say the solution is near a fixed
point, denoted.,. The fixed point is such that:

F(u,) = u, (38)

So if we start at the fixed point, the mapping stays there. lawenear the

fixed point, we can write:

u = F(ug) + d(t) (39)

whered is a small deviation. Putting this into (35), we have:

u(t+1) = F(ug)+0(t+1) = F(us+0(t)) = F(us) + F'(us)d(t) (40)

after using a Taylor expansion. We keep only the first terms=tent with
a “linear” analysis. Cancelling th8(u,) on both sides, we get:

16



O(t+1) = F'(uy)d(t) (41)

Whether|d;| increases or decreases depends therefor€ @n). If we
think in terms of iterations, we have that:

On+1 = (F/(ua)>5n = (F/(ua))chnfl = (Fl(ua)>n51 (42)

Thus if;

[F'(ua)| < 1 (43)

theno will asymptote to zero. Note that if < F'(u,) < 1, thend de-
cays monotonically to zero, while #1 < F'(u,) < 0, thend oscillates
as it decays. Likewise, it"(u,) > 1, ¢ increases monotonically and if
F'(u,) < —1, 6 oscillates and increases. dfdecreases in time, then we
say thatu, is a stablefixed point; if § increases, it is an unstable fixed
point.

We have that:

F'(u) = —2ru (44)

With the positive rootu, = .9161 so thatF’(u,) = —0.1832. So we
expect decaying oscillations. In fact, there are osaifaiin Fig. (3), but
the decay is so rapid we don’'t see them. The other got; 10.9161 has
F'(u,) = —2.1832. Thus this point is unstable. So the numerical solution
converges to the positive root rather than the negative one.

The oscillations are more noticeable wheis larger. An example, with
r = 0.75, is shown in the right panel of Fig. (4). However, the solnti®
again approaching the positive root, which witk= 0.75isu = 2/3. Note

17



that /"' (u,) = —1in this case—so the linear stability analysis indicates we
are on the border between stable and unstable solutions.

logistic map with r=0.8 Spectrum with r=0.8

03H g
10° | E
02H b
0.1 i 107 ]
1 1 1 1 1 1 1 1 1 107 . . . .
0 10 20 30 40 50 60 70 80 90 100 0 01 02 03 0
time

4 05 0.6 0.7 0.8 0.9
frequency

Figure 4: . The solution (left) and spectrum (right) with r&0

Indeed, increasing somewhat more, we find the oscillations don’t die
out. Consider the case with= 0.8 (left panel of Fig. 4). Now: oscillates
around the fixed point at = 0.6559. An alternate way of looking at this is
with the spectrum ofi, as a function of the (non-dimensional) frequency,
w. There is a single peak at= 0.5.

Increasingr further, the behavior becomes more complex. The case
with » = 1.3 is shown in Fig. (5). We see thatis oscillating about the
fixed point (atu = 0.5731), but the oscillations are less regular. Looking
at the spectrum, we see why: there are ribrvee dominant frequencies;
the solution is a superposition of three waves.

Increasing- further, the solution becomes even more complex as more
and more frequencies appear. With= 2 (Fig. 6), the solution is fully
chaotig u oscillates between -1 and +1, but the motion is erratic aipae:n
dictable. Sometimes there are rapid changes and sometioves ®nes.

In addition, the spectrum (right panel) is nearly “white’afjl, indicating
equal contributions across the range of frequencies.

18



logistic map with r=1.3

Spectrum with r=1.3

energy

e A A
L L L T L I L L .

50
time

Figure 5:

logistic map with r=2

04 0.5 0.6
frequency

. The solution with r=1.3.

Spectrum with r=2

50
time

04 0.5 0.6
frequency

Figure 6: . The solution with r=2.

Chaos is implies that the system is sensitively dependetti@mitial
condition. The initial value in Fig. (6) is(0) = 0.1. Let's change that
slightly though tou(0) = 0.10001. The two curves are plotted in Fig. (7).
We see that initially the curves are together. But shorttgraf=10, they
begin to diverge. And by t=20, the two are essentially inceleat of one
another. This is a central difficulty with chaotic systemstess you know
the initial conditionsexactly it's impossible to make a correct prediction.

And there will always be some error in the initial conditions

Given that the motion is unpredictable, it doesn’t make s¢asvorry

19



Logistic map, r=2, with u(0)=0.1 and 0.10001
1 T T T T T T T
| |
n

0.8

0.6

04

0.2

-0.21

-0.61

-0.81

Figure 7: . The solution with r=2, with two initial values vai are nearly the same.

about the exact value af at any given time. Rather, we can focus on the
statistics. The PDF aof is shown in Fig. (8) for both of the initial values
used in Fig. (7). Despite that the two time series were veifgr@int, the
PDFs are almost identical. We see thatkes on all values in the range
from [-1:1]. We also see that u is most frequently near theeexés, -1
and 1. These are the extremes of the oscillations, spends more time
in their neighborhood (the same is true for a simple sinudasdcillation).
Note too that unlike with our noise example earlier, this R&Ft remotely
Gaussian. The kurtosis is roughly 1.5, well below the Gaunsgalue of 3.

With this value ofr, it's actually possible to predict the shape of the
PDF. Making a suitable change of variables (see Frisch, 199t can
convert this to a “tent map”, which hasuaiform (or flat) PDF. Then one
can convert back again toto predict the PDF. The solution is:

! (45)

p(u) = ——
This is indicated by the red curve in Fig. (8).
There are several points here. One is that the system isdindlptic at

20



25

: :
—&—u(0)=0.1
—#— u(0)=0.10001 i

Um(-u?) 2

p(u)

Figure 8: . The histogram of the logistic map with r=2 and 00,&terations. The red
curve is the analytical prediction for this magu) = 1/(7v/1 — u?).
r = 2. If this is our Reynolds number, we see that the value is vany |
With a Reynolds number af0'?, as in the atmosphere, it isn’t surprising
the motion is chaotic.

Second, becauseexplores the entire range of values between -1 and
1, we say the motion isrgodic Given (almost) any initial value, we can
expect, to take on any other value in the range. Thus if we diéasemble
of experiments, measuringat a point and then we averaged all the values
we obtained, we would get the same answer if we just averagedme.
We say that: is behaving in a probabilities way.

Lastly, we caution about taking the logistic map too litgral'he pro-
gression from stable fixed points, to more and more osa@ltgtito chaos
Is typical of nonlinear systems with few degrees of freeddmthe at-
mosphere or ocean, where there are many, many degrees abrineéhe
transition from stability to chaos is usually less clean.véitheless, the
logistic map gives us a good idea of what a quadratic noniityezan do.

21



Exercise Another map
Analyze the equation:

— +rut=(r—1u (46)
with dt = 1.

a) Write the equation as a map.

b) What are the fixed points? Are they stable or not?

c) Write a Matlab code to solve the mapping. Check the saluftoo
various values of.

d) Write a second code to calculate the spectrum @heck the spectra
in the cases in (b).

e) What are the critical values ofwhere transitions occur? When are
the solutions fully chaotic? Plot time series to show this.

5 Conservation laws

Central in what follows are twoonservation laws These are for energy

and enstrophy.

5.1 Energy

If we take the dot product of the momentum equation with tHecity, we

get:

We've used incompressibility to rewrite the pressure gratigeopotential
term. Note too that the Coriolis term has vanished—this abse it is
perpendicular to the velocity.

22



We integrate this over a volume. We’ll consider one of thygees of
(idealized) volume:

e A domain enclosed by solid walls
e A periodicdomain, where flow out one side comes in the other side

e A channel (periodic in one direction, walled in the other)

At solid walls, the normal component of the velocity vansh@/ith peri-
odic conditions, the velocity is the same on opposite boriagaso their
difference is zerd.

The main effect is on the integral of divergences. Consider:

///V-(ﬁG)dV:#Gﬁ-ﬁdS:O (48)

which is the advection of some quantity, By Gauss’s theorem, the in-
tegral can be converted to a surface integral. This therstiasiwith solid
walls because the normal velocity is zero. With periodicrimary condi-
tions, it also vanishes. Consider for example the integrtiiex direction:

/OL %(UG) dr = u(L)G(L) — u(0)G(0) =0 (49)

By periodicity, the two terms are equal so their differersearo.
Thus, if we integrate (47) over the volume, we get:

%E = [[a-Fav+v|l[a-vadv (50)

where:

4Boundaries can be important places, supporting boundgeydavhich are sometimes turbulent them-
selves. We purposely avoid such issues here.
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oy %wﬂ qv (51)

Is the total kinetic energy. This states that the total enettanges only
in response to forcing and dissipation. Advection doedmeinge the total
energy; it only redistributes energy in the domain. Dissgracauses the
energy todecreaseTo see this, we use a vector identity:

Vi=V(V-10)-Vx(Vxi)=-Vxa& (52)

whered is the total vorticity. The first term vanishes by incompiietisy.
Taking the dot product withi, we get:

0 Vi=—i- (Vxw) =-6-(Vxd)+V-(@xad) (53)

using another vector identity. Now when we integrate ovacspthe last

term vanishes:

///v (& x @) dV = ﬁ hdS =0 (54)

So we can write;

v [[[i-V¥idv = v [[[&-(V x @) dV = —v [[[ |5 dV  (55)

So the energy equation, without forcing, is:

—E = —v [[[|&]* av (56)
The energy dissipation is proportional to the integral & $iquared vorti-

city, also known as thenstrophy Because the RHS is negative definite,
the energy can only decrease in time.

24



A question which will become important later on is whether émergy
IS conservedvhen the viscosity goes to zero. It could happen that the
enstrophy increases aglecreases. Say for example that:

/// G2 dV % (57)
in the limit of small viscosity. Then we would have
dFE
b 58
pn C (58)

regardless of how small was. For this to happen, there mustgreduc-
tion of vorticity in the absence of forcing (i.e. the vorticity ekn't just
decrease). To see whether or not this is the case, we turm teotticity

equation.

5.2 Vorticity and enstrophy

We get the vorticity equation by taking the curl of the monuemequation.
This calculation is easier if we first rewrite the momenturaaopn thus:

9 B, 1
o+ (@ +200) x i = —V(p£ +5|@ + @) + F+0V%E (59)
0

Taking the curl, we get:

%Q+ﬁ-Vﬁa+oﬁa(V-ﬁ) =&, - Vi+V x F+vVis (60)

where:
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Is the absolute vorticity The third term vanishes by incompressibility.
Assuming for the moment that the rotation vecfois constant, we're left
with:

G =0, -Vi+V xF+vVia (61)

The question is whether the enstrophy|? will be bounded if there
Is no forcing (F = 0) and if the viscosityy, is decreased toward zero.
Multiplying by &, we obtain:

V25 (62)

Integrating this in space, and using the same vector igestiat we did
with the energy, we obtain:

%///%W WV = [[[6- (@, Vi) av —v [[[ |V xSPdv (63)

The last term is negative definite, causing a decay in theapist. But
the middle term has an undetermined sign—in fact, this chasaa source
of enstrophy. So we cannot say whetliens conserved in the limit of
vanishing viscosity. What happens in such high Reynoldsbairfiuids
is that the velocity gradients become very large at smalescaSo the
enstrophy can be very large.

However, this isn’'t the case twodimensions. In this case, the velocity
IS purely horizontal:

U= (u,v,0) (64)

The vorticity, which is perpendicular to the velocity, isrply vertical:
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L 0 J . s
o = (0,0, ol ayu) = (k (65)

In addition, the planetary rotation vector is predominarértical at large
scales:

~

20 ~ 2Q0sin(0)k = fk (66)
So:

we - Vi=(C+ fk-V(u+v))=0 (67)

So the source of enstrophy is absent in a 2-D flow and that thecgny
can only decrease in time. This means the enegpnserved in the in-
viscid limit in 2-D, i.e.

dE

lim, .o — =
iy~ — 0 (68)

This has an enormous effect on 2-D flows.

Butis the enstrophy conserved in 2-D with vanishing visty@sWithout
the production term, the RHS of equation (63) is negativendefiBut it is
not guaranteed that enstrophy is conserved unless we krabwuH of the
vorticity is bounded in this limit. To see that, we have to sider the next
equation, for theyalinstrophy It turns out there is a source term for that
as well. So we can’'t assume enstrophy is conserved—just amwdn’t
assume energy was conserved in 3-D.

Thus in the limitr — 0, the energy is conserved in 2-D. In 3-D, it isn’t
necessarily conserved. What we will see is that evenisfminuscule, the
energy can decrease in 3-D. But this doesn’t happen in 2-I3.sSllygests
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that energy isn't affected by the dissipation at very smedllss in 2-D.
We'll see why shortly.

6 3-D turbulence

Now we return to the coffee cup. Why does it spin down so quikl
More specifically, how can dissipation, acting at molecsleales, affect
the energy at the scale of the coffee cup? We'll see that #ssdndo with
how energy is exchanged between scales. To understandetiet, bve
turn first to the energy.

6.1 Triad interactions

To understand how energy is transferred between scales,jliwgark in
Fourier space. Imagine the forcing, happens at large scales. This is
the spoon stirring the coffee. Assume too the dissipati@ tse molecu-
lar scale. This implies that there is a rangargérmediatescales where
the forcing and dissipation aren’t relevant. At these sgatas advection
which dominates the changes in the velocity.

We can illustrate how this works by focusing on just one ofdteect-

ive terms, in the x-momentum equation:

—U=—u—=u (69)
We first write the velocity on the LHS in terms of its Fouriearisform:

U — Z fL(E, t) pikawtikyy+ik.z (70)
k

The summation is over the three wavenumbégks, k,, k.). The RHS in-
volves the product of two velocities. As such, we need twiedsint trans-
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forms:

0 = | | |
_ugu = — Z Z mzﬂ(l, t) fL(ﬁ”L’ t) 62(lx—l-mx)m+z(ly+my)y+z(lz+mz)z (71)
[ m

The factor ofm, comes from taking the x-derivative.

Now let’s take the Fourier transform of the LHS. We multipbth sides
the whole equation byxp(—ik,z — ik,y — ik.z) and integrate over the
domain. On the RHS, we have an integral like:

i ///L ei(lw+mw_kw)m"‘i(ly"‘my_ky)y‘f‘i(lz‘i‘mz—kz)z
L3 JJJo

k=1+m

Then the integral is one. If not, the integral is zérbhus the result is:

—a(k,t) = — ; > my a(l t) (i, 1) S(I+m — k) (72)

Is the delta function. The same result would obtain if we hatply ap-
plied theconvolution theorem The results shows that wave interactions
occur between groups of three wavestrads.®

So a wave withi = (3,3, 0) will interact with waves with(1, 2, 0) and
(2,1,0). This is known as docal interaction, because the wavenumbers
for the triad are all similar. But the same wave will also bieeied by the

SActually, we assume we have an integral number of wavenusnbethe domain. So for example
ky =mnn/L.
5The triad interaction can also be derived directly from thevolution theorem of Fourier transforms.
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waves with(—10,2,0) and(13, 1,0). These have a much smaller scale in
the z-direction. This is anon-localinteraction, as the components have
very different sizes.

Consider Fig. (9), which shows a hypothetical energy speatif. We
plot the spectrum as a function of the total wavenumber:

k= (k24K + k)7

The wavenumber is on the-axis. Note that increasing wavenumber im-
pliesdecreasingsize; so the large scales are on the left. Now the fluid is
forced at a large scale, perhaps by the spoon in the cup. Ttusipes an
energy spectrum like that in dash-dot line—a spike at therigrscale. In-
teractions between wavenumbers cause the spectrum talsputas the
energy is transferred to other wavenumbers. Local intenagtcause the
energy tocascaddo smaller scales (larger wavenumbers). At later times,
there is energy across a range of wavenumbers. Then noniibeaac-
tions can occur, between large and small scale waves.

Eventually energy arrives at the smallest scales, wheselissipated by
molecular interactions. So this is how molecular dissgatan bring the
coffee to rest: because turbulence transfers energy dote tdissipation
scales.

Exercise 2-D triads
Triad interactions also occur in 2-D. In this case, we caneathe vor-
ticity equation as:

0 0

0

In 2-D, the velocity and vorticity can be written in terms o$taeamfunc-
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Initial energy

E(k)

"cascade"

final energy

k

Figure 9: A hypothetical cascade of an initially narrow bamergy spectrum to smaller
scales. We imagine that energy is conserved during thedassa that the area under the
curves is conserved (despite appearances).

tion:
0 0 0 0 9
U——a—yl/}a U—%% C—%U—a—yu—vlb (74)
Say that:
=3 1k, 1)t (75)
k1

Fourier transform the vorticity equation, assuming a domath lengths
27 in each direction. Substitute in the expansions above atairohn
equation for%w(E). Show that the advective terms contribute in triads.

6.2 Kolmogorov’s inertial range

Thus forcing puts energy into the system and dissipatioovesit. We as-
sume the forcing happens at much larger scales than thealssi, which
happens on molecular scales, and that there is a range efscddetween

31



where neither forcing or dissipation are important. As tiheag British
scientist, Lewis Fry Richardson put it:

Big whirls have little whirls,
that feed on their velocity.
And little whirls have littler whirls,
and so on to viscosity.

Kolmogorov proposed a theory in 1941 for this transfer, \utias be-
come known as thanertial range The theory employs a number of as-

sumptions:

e \We assume the turbulencesstropic—the same in all directions. So
instead of using®(k, [, m), we can focus or(x), wherek is the

magnitude of the wavenumber vector.

e We also assume the turbulencdr@mogeneousthe same at all loc-
ations in space. So we can speak about the dynamics in wawemum
space, without worrying about variations from place to plac

e And we assume that triad interactions &real. This reason for this

will become clearer later on.

As stated, the details of the forcing and dissipation dordttar in the
inertial range. Thus thenly important parameter in the inertial range is
the rate at which energy is transferred downscale. We daltiie energy
flux, e.

Now the spectrumF(k), has dimensions of.?/T?. That's because
energy has units of?/7?, and the energy is the sum over wavenumbers
of the spectrum (and the wavenumber has unité of). The flux on the
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other hand has units df? /T3, proportional to energy over time. So from

dimensional considerations alone, we can see that:

E(k) = C&B3E5/3 (76)
whereC' is a constant.
The inertial range begins near the forcing scale. It extelen to a
scale where dissipation begins to be important. We can dethig scale
by equating time scales. The dissipation time scale, meedidefore, is:

LQ
T, x — ox v k2 (77)

1%
The cascade time scale can be deduced from the flux from diomens

T, < e V323 (78)

In the dissipation range, the dissipation time scale istehdinan the cas-
cade time scale, because energy decays before it is treatsf@ihe oppos-
ite is true in the cascade range. At the transition betweerrcdiscade and
the dissipation ranges, the two scales are equal. Equéigamg, we get:

ky = ()" (79)

V3
The corresponding length scalg, = (v%/¢)'/4, is now called thé&olmogorov
scale This marks the boundary between the inertial and dissipaginges.
The Kolmogorov formulation is also self-consistent witgaeds to dis-
sipation. As noted earlier, the energy dissipation ratevisrgby:

D=—v[[[ & av

The term in the integral has a scale:
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2
’% x vk2U?

U? scales as the total energy, @k ~%/%. So the energy dissipation (per

unit volume) scales as:
D o ve3E*3

At the dissipation wavenumbe,, this equals
1/3

€
V€2/3—:€
1%

So the dissipation rate is equal to the energy flux acrossgéal range.
The Kolmogorov construct is self-consistent in that the ant@f energy
put in by the forcing is removed by dissipation.

But notice something—the dissipation ratansgependent of! Ima-
gine that we make smaller and smaller. Then the dissipation sdales
similarly smaller. But the dissipatiaiate is the same. The only difference
Is that the inertial range carries the energy to smallelescal

This is a critical point. Because of the downscale cascauegyg will
not be conserved in a 3-D fluid, so long as there is even an tedimal
amount of dissipation. Energy can only be conserved if tissigentically
zerodissipation, which can never be realized.

The Kolmogorov picture can be illustrated as in Fig. (10)e €nhergy is
injected at wavenumbet;,;, and at a rate. It then cascades downscale at
the same rate;, to the dissipation wavenumbey,, where it is dissipated
at the same rate. In the inertial range, the only paramet@twhatters is
¢, yielding the characteristic—°/3 spectrum.
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Figure 10: The Kolmogorov energy spectrum.

6.3 Shell models

A simple way to understand the Kolmogorov model is as follolwgagine
the turbulence involves energy transfer between discrat@mumber bins
(Fig. 11). In the figure, we have four bins, and so four diffé¢rscales
of wave. Energy enters at the largest scéle<{ 1) and is removed by
dissipation at the smallest scale= 8).

In drawing the figure this way, we make the assumption thawthenum-
ber interactions arcal. Thus energy transfer occurs only between adja-
cent bins. The situation would be much more complicated ill@ved
for transfer between all the bins.

The rate that energy is transferred frégm= 1 to £ = 2 is given bye.
This is the same rate as energy is transferreld to 4. Imagine this were
not so. Say the energy transfer frdm= 2 to £ = 4 was onlye/2. Then
the energy would be entering tlhe= 2 bin faster than it was leaving, and
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Forcing

k=1 k=2 k=4 k=8
Dissipation

Figure 11: Energy transfer in the shell model. Energy is paitithe largest scalé & 1)
and removed at the smallegt £ 8).

the energy in the bin would increase in time. The spectrum w@uld not
be stationary in time. So the transfer rate must be the satme=be all
bins.

Also notice that the rate that energy is removed from theliasc = 8)
Is alsoe. So the dissipation rate is equal to the flux. Again, if thisevet
so, the energy would pile up in the smallest bin.

In fact, this is a real possibility. In numerical models witio little dis-
sipation, the energy cascades to the smallest scales thatert’s taken
out. So the energy increases at the smallest scales and el sub-
sequently blows up. The shell model illustrates why thisis s

Exercise Structure functions

Kolmogorov (1941) did not actually derive the form of the \yyespec-
trum. Rather, he derived relations for the velocstyucture functions
These are powers of the velocity difference between twotpoiRor ex-

ample, the second order structure function is:
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S(r) =< |u(@+ 1) — u(®)]* > (80)

The brackets indicate ansemblaverage, i.e. an average over a number
of observations. Use dimensional analysis to deduce$iowvaries with

the separatiorn;. Compare this to the spectrum. Consider also the third
order structure function, which has a special significandaribulence the-
ory.

6.4 Observations

Observations support Kolmogorov’s prediction for the ggespectrum.
An example is shown in Fig. (12), from measurements in a jehen
laboratory (Champagne, 1978). The’/® dependence is seen clearly over
roughly two decades of wavenumber.

Another well-known example is the observations of Granl.etl®62)
in a tidally-mixed fjord on the west coast of the US. This ajselded
strong evidence of &~°/3 spectrum (Fig. 13).

There are numerous other examples as well, from the atmospoeind-
ary layer, in laboratory experiments and in numerical satiahs.

However, where the model is less successful is at predittmgigher
moments Energy, like the variance, is a second order statistic)gopro-
portional to the velocity squared. But one can also look gihér powers,
such as the skewness and the kurtosis. Or, one can look attydhDFs.

What is typically found is that the differences between giies at sep-
arated points (see the exercise above on structure fusgiioa not Gaus-
sian. As shown in Fig. (14), the PDFs for velocity differenedth large
separations are close to Gaussian. But as the separategpproaches the
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Figure 12: The energy spectra for the stream-wise and teasswelocity components in
a jet, with Re = 626. From Champagne (1978).

Kolmogorov scale, the wings of the PDFs become more and moea-e
ded.

What this implies is that while the velocities themselveg/have an
approximately Gaussian distribution, the velogtadientsare not Gaus-
sian. What one sees if one measures the gradients is thatJaiges
occasionally occur, much larger than would be expected fGaassian
process. Such episodes appear as “bursts” in the time s¥veesay that
the turbulence is “intermittent”.

This can be taken into account in the shell model above, lingtehat
the turbulence fills only a fraction of the bins. This is theadbehind
the “4-model”. Such a model yields the same spectra as Kolmogbuiv,

predicts deviations in the higher moments, as observed.
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Fioure 12, Seventeen speotra compared to the theories of Kolmogoroff, Heisenberg and
Kovesznay. The straight line bas a slope of —$, the curved solid line is Heisenberg's theory
and the dashed line is Kovasznay’'s theory. Within the sqosre, the observaiions are too
erowded to display on this scale and they are shown in figurs 13,

Figure 13: Energy spectrum from towed measurements in aldakan by Grant et al.
(1962). The boxed region shows the region of transition ¢odissipative range.

7 2-D turbulence

At synoptic scales in the atmosphere and ocean, the motiaors nearly
two dimensional than three dimensional. This is becausedtieal velo-
city, suppressed by rotation, is much smaller than the bota velocities.
Turbulence in two dimensions is similar to that in 3-D, bugoagjuite dif-
ferent.

We take the motion to be identically two-dimensional, sd tha velo-
city is given by:

U= (u,v,0)

(81)

Now the continuity equation is just:
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0 0

This implies we can write the velocities in terms of a streametion,:

0 0
T T (53)
The vorticity is perpendicular to the velocity, so it onlysreavertical com-
ponent:
a 8 a 2
b= (—v — — = 4
W (8xv ayu) k= YNV* (84)

We usually refer to the 2-D vorticity as The equation for the 2-D vorti-

city follows from (61):

%C+ﬁ-V(C+f)=VXf+VV2C (85)

40



K/2 K 2K

Figure 15: A triad in two dimensions. Energy flows from theteefox to the other two.
Each box has a scale which is twice that of the box to it’s right
As noted earlier, the vorticity production term is abserddaese the vorti-

city and velocity are perpendicular.

7.1 Atriad interaction

The interesting aspect about 2-D turbulence is illustraiedly in an art-
icle by Fjgrtoft (1953). We look at a triad interaction between three
wavenumbers, as illustrated in Fig. (15). Energy is ifitiah the cen-
ter box, at wavenumbeér. The energy flows to the other two boxes, one
which has waves twice as largg¢2 and the other twice as smalk. The
energy in the boxes 8y, £; and E,, going from left to right.

Fjartoft takesy = 0, so that both the energy and enstrophy are con-
served. This is a reasonable assumption in the inertiak;amigere dissip-

ation is unimportant. Thus:

Ey+ Ey = E; (86)

and:

Zo+ 7y = 74 (87)

A remarkable, short paper...with no references! Fjgriaftias all his points on first principles.
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Now these two statements are related to each other, as follow
The energy in 2-D is:

E = %(uQ +0?) = %(k:Q + 1?)e? (88)

The enstrophy on the other hand is:

7= —(zv—=—u)= %(H + ))%)? = K*FE (89)

So the enstrophy conservation statement for the boxes camitben:

K%E() + K%EQ = K%El (90)
Using our values for the wavenumbers, we have:

2

"By + 4% Ey = KBy (91)
or simply:
1
ZEO +4FE, = Ey (92)

We can combine this with the energy equation to obtain:

4 1
Ey = 5E1, Ey = 5E1 (93)

Thus 80% of the energy goes to theger scale wave. Energy is apparently
going upscale rather than downscale!
What about the enstrophy? We have:

K 4
Jy= —Fy= ——F, =—-Z7 94
o= E="E=2 (94)

Similarly, we find:
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Z — gzl (95)

So the situation is reversed: 80% of the enstrophy goes tntiadler wave.

If you use different size waves, you will find different fremts of en-
ergy and enstrophy transfer. But as shown by Merillees anch\(i®75),
most triads nevertheless act as the one above and transfgydn larger
scales.

Exercise Another triad

Consider the general case wherge = x1/n and ks = nk;. What
fraction of energy goes to the larger wavenumber and wheatiérato the
smaller. What about the enstrophy?

7.2 An integral argument

Another way to see this was proposed by Batchelor (1953itypraich on
the last page of his seminal boslomogeneous Turbulencémagine we
have a narrow energy spectrum initially, as in Fig. (9). Tpbecsral peak
will broaden in time, as energy is passed to other wavenusnbartriad
interactions. We can express this as:

d

%/(/ﬁ—/ﬁi)QEd/i>O (96)
wherex; IS the wavenumber peak of the initial spectrum. Expandimg th
LHS, we get:

d o ' 2

%[//ﬁ Ed/ﬂ;—Qmi/mEdm—l—/ﬁi/Ed/ﬁ]>O (97)
Now the first term is the enstrophy and the last term is progaat to the
total energy, both of which are constant in time. So we mugtha
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%/mEdm<0 (98)

Written another way, this is:

d [k Edk _i

dt
Thusk,,, the mean wavenumber of the spectrumgesreasing in time

That implies that the spectrum is shifting to the left, tosvlarger scales.
Consistent with Fjgrtoft, Batchelor concludes that enasgshoving up-
scale in 2-D.

We can use a similar argument to see what's happening to gtephy
(Salmon, 1998). If the spectrum is spreading, we also catewri

d

7 /(/432 — k)2 Edk >0 (100)
Expanding this, we get:
%[/ 4Ed/{—2/{?/52Edm+/{?/Edﬁ]>O (101)

The second term is proportional to the total enstrophy, hadast term to
the total energy. So we have:

%/.54Edm:%/./£2de>O (102)
So:
d [ Kk*Z dk
aln 2 dr 1
Q[ Zdn " (103)

Thus the mean square wavenumber for the enstroghgrsasingin time;
the enstrophy spectrum is shifting to the right, toward $sales.
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Thustwo cascades are occurring simultaneously in 2-D: there is an en
ergy cascade to larger scales, and an enstrophy cascadealtersnales.
That implies that there are two cascade ranges.

Exercise Batchelor, part 2
Re-do Batchelor’'s arguments using tt.eanwavenumber instead of
the initial wavenumber. Assume that the variance in wavdsemmcreases

in time. Do you get the same results?

7.3 The two inertial ranges

That there are two inertial ranges in forced 2-D turbulenas realized by
Kraichnan (1967), Leith (1968) and Batchelor (1969). Weiassthe fluid
Is forced and that the spectrum is stationary (not changinigne), just as
in the Kolmogorov case in 3-D.

As noted, there are two inertial ranges. One is the energyadas
range. Dimensionally, this is exactly the same as in the Kglonov case.
The energy cascades at a ratand the spectrum has the form:

E(k) = Ce3r5/3 (104)

exactly as in three dimensions. The only difference is thieation of
transfer, which is nowipscale So if the forcing were, say, at the 1 km
scale, it could conceivably produce eddies 1000 km largeils Ehtruly
remarkable.

But what to do about that energy? The energy after all is phted at
the other end of the spectrum, at small scales. Presenthaweerio means
to remove energy at large scales. So the energy will justyplthere, and
the spectrum will never reach a steady state.
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To avoid this, we require dissipation which acts at largeéescaA good
candidate i<£kman friction which acts equally at all scales. As seen pre-
viously? we can include Ekman friction by adding a linear term in the
vorticity equation. Specifically, we modify (85) thus:

0
§C+ﬁ-V(C+f):f—rC+uV2C (105)
whereF is the forcing and where

L Joe
2H

Is the inverse of the Ekman spin-down time. Héfas the depth of the
fluid andég is the Ekman layer thickness.

To see that Ekman friction acts equally at all scales, camngiie case
without forcing or small scale dissipation, with= const. Then:

—C =1 (106)

The solution to this is:

¢(t) = ¢(0)e™ (107)
So the vorticity decays exponentially, regardless of tladesc
Where does Ekman friction terminate the upscale cascaddseiase,
we equate time scales. The Ekman damping time scale ig justThe
advection time scale in the energy cascade is:

T oc e V323

Equating them, we can solve for the large scale dissipatenrenumber:

8See the notes from GEF2220 and GEF4500.
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o = (2 (108)

€
This is the boundary between the energy inertial range aadaiyest

scales, which are dominated by Ekman friction.

Now to the other inertial range. This is where enstrophy&dss down-
scale, to smaller scales. In analogy to the energy range,iehave an
enstrophy cascade ratg, From the enstrophy equation, we know the en-
strophy transfer has units daf/T?, as the enstrophy has units bf7>.
From dimensional grounds, we infer the spectrum has a shape:

E(k) = Cnp?3k3 (109)

So this is steeper than the energy inertial range.

An interesting thing about the enstrophy cascade rangeats tinlike
with the energy inertial range, the advective time scaladependent of
the length scaleWe have simply that:

T X 77*1/3 (110)

In fact, this time scale is determined by the largest eddidbe cascade
range. The enstrophy cascade is essentially non-localsatadler scales
are stirred by the eddies at the top of the inertial range.

Equating this time scale with the dissipation time at smadlas,r; =
(vk?)~1, we get the dissipation wavenumber:

1/3
oy = ()1 (111)

1%
This is where the enstrophy cascade terminates. We canaiaithe rate

at which enstrophy is dissipated by scaling the enstropbgigaon (63). At
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the dissipation scale, the RHS of (63) scales as:

12 2/3,.—2 2/3,1/3
V|V><C\20<V—40<V77 /1” —, =1 (112)
L K v

So as with the energy cascade in 3-D turbulence, the enstcgdtade is

independent of the viscosity, Even ifv is very small, enstrophy is trans-
ferred to the small scales to be dissipated. Thus enstreuiotconserved
in 2-D turbulence, since it will always (eventually) be dsged.

Ky Kt Ky
Figure 16: The energy spectrum for stationary 2-D turbudefarced at wavenumbaet;.

We summarize the cascades in Fig. (16). Energy and ensteyphin-
jected” into the system at wavenumber. There are two inertial ranges:
thex°/3 range at larger scales and the’ range at smaller scales. Energy
cascades at a rate,and enstrophy at a rate, Energy is removed at large
scales by Ekman friction and at small scales by moleculaighsion.

Exercise Energy dissipation rate
Check that the energy lost to Ekman damping at the upper difritie
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energy range is also equaldo

7.4 Physical interpretation

But what is enstrophy? How do we visualize these differeatades?
To see, it helps to understand the difference between tharsfunction
and vorticity, and between energy and enstrophy. The wyrig

¢ =V
In terms of Fourier-transformed variables, we have:

C=—r%
So the vorticity is multiplied by the wavenumber squaredatlfheans that
vorticity is like a high-pass filtered version of the streamdtion.

Shown in Fig. (17) is the streamfunction obtained from a 2ifb-
lence simulation (run without forcing, from random initiebnditions).
The field is fairly smooth, with high and low pressure regi@nde by
side. In the right panel is the vorticity field at the same tinTéis has
much more small scale structure. There are vortices, batraény small
filaments between the vortices. We could hardly have gudbsse struc-
tures existed, looking at the streamfunction.

The energy essentially reflects the streamfunction, anctisérophy
the vorticity. From before, we showed that:

Z(k) = K*FE (113)

So the enstrophy is like a high-pass version of the energyléite energy
reflects the large scale structures, the high and low pressuaiFig. (17),
the enstrophy is more affected by the small scale filamentgylstrained
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vorticity, t=3, j1dbluank
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Figure 17: A snapshot of the streamfunction (left) and etsti(right) from a 2-D turbu-
lence simulation. Note the vorticity has much more smallesstucture.

out betweerthe pressure systems. It is these filaments which are being
dissipated by the small scale damping.

7.5 The vortex view

The tradition view of 2-D turbulence, following Kraichnah967), is in
terms of the Fourier components. Like Kolmogorov (1941),haee as-
sumed the turbulence is homogeneous and isotropic. Butthsthe ve-
locity gradients in 3-D turbulence, 2-D turbulence extsbritermittency.
And this intermittency is hard to miss— if one looks at thetigty field.
Beginning in the 1980s, the computer power was sufficieninulate
2-D turbulence at reasonably large Reynolds numbers. \Msatarchers
began to see was that the vorticity is dominated by long liédoherent”
vortices. These are essentially the cyclones (and andiogsl) which are
familiar in the weather. Atmospheric vortices also perfgstong periods
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of time—it is possible to track storms from their origin inethvestern
Atlantic to their demise in the Nordic Seas.

Vortices also account foextremevelocities. An observer at a fixed
location will notice the velocities rise and fall, then aterwill strike and
the velocities will be very large, as with a hurricane. Havuortices also
mean the flow is no longer homogeneous—the vortex parts dfdveare
distinct from other locations.

In two seminal papers, McWilliams (1984, 1990) noticed thaely-
evolving (unforced) turbulence quickly evolves to a stateere the vor-
tices dominate the flow, as the vorticity between vorticestiained out
and dissipated. Thereatfter, the evolution is primarily@pss ofmergers
between vortices. Positive vortices (cyclones) merge wikier cyclones
and negative vortices (anticyclones) merge with othercgalbnes. The
merged vortices are larger than the vortices which joinedd&e them. In
this way, energy is shifted toward larger scales—the flowoimithated by

fewer, larger vortices.

Vortlmty at t 5 Vorticity at t=50
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Figure 18: Snapshots of the vorticity from a 2-D turbuleniceutation. The panel at left
is at an earlier time, and the one at right at a later time.
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This is illustrated in Figs. (18). The left panel shows thetiedy from
a simulation begun with random initial conditions. After lzost period,
vortices emerge, with both signs (cyclones and anticydpné\s time
goes by, the vortices merge, so there are fewer at later {(irigga panel).
Left to itself, the system would eventually evolve to a dgselone cyclone
and one anticylcone.

McWilliams (1990) studied the statistics of the vortice® fdund that
the number of vortices decays ap@wver law(Fig. 19), i.e.:

N, oc t @ (114)

wherea =~ 0.7. The finding was supported in a subsequent calculations
using “point vortices” (right panel of Fig. 19).
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Figure 19: The number of vortices as a function of time foregly-evolving turbulence
simulation (left panel); from McWilliams (1990). The nuntbaf vortices in a “point
vortex” simulation (right panel); from Weiss and McWilliang1993).

The vortices are important for the flow. Carnevale et al. (3%howed
that all the important measures in these simulations coalledplained in
terms of the vortex statistics. Theirs is a “mean field th&agd it goes as

52



follows. Assume that the vortices goatchesof uniform vorticity, positive
or negative. Thus the vorticity of a vortex can be written:

¢ = (. ifr<b
10 ifr>b

Hereb is the radius of the vortex patch.
The patch also has a velocity field. Using cylindrical conades and

assuming no radial flow, we have:

¢ =~ (rv) (115)

So:

1
v = ;/0 Crdr (116)
Thus for the patch:

| Ger/2 if r<b
T v (2r) dfr > b

Using this, we can calculate the energy of the vortex. lat@gg over the
domain (which we assume is larger than the vortex radiysve get:

1 L v?
E=— / %rdr:C’Cfb4 (117)

where(C' is a constant which depends on the domain sdal@ye've as-
sumed a square domain here, for simplicity).

If there is more than one vortex, the total energy is the sutheton-
tributions from all the vortex patches:

E=YE, (118)
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We will neglect the energy associated with the integratioetsveen the
vortices. To write this sum, we make a mean field approximaiie have
replace the sum above withi times the average vortex quantitiesNifis
the total number of vortices. Thus we have:

1
F x ﬁNC Cotocpo? (119)

wherep is the vortex density in the domain/ 2.
Now, we demand that energy be conserved in this system&—=soonst.
Thus:

pC? b* = const. (120)

We know that:

poxt™™ (121)

with a ~ 0.7. This means that the product ¢f b* mustincreaseat the
same rate.

Carnevale et al. make one further assumption—that the wairt®p-
litude is also conserved in mergers. If we take two patchéscambine
them, the amplitude won’t change. That implies that the neeaplitude
Is also constant. So:

b ox ¢4 (122)

The mean vortex radius is growing in time. Likewise, the maa@a is also

growing:

A = 7b? x t? (123)
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This is the inverse cascade in the model—mergers are pmugllaciger and
larger vortices.

Interestingly, the vortex mergers amt conserve enstrophy. The en-
stropy for a single vortex is:

1 2 1 2_12
Z:zﬁﬂCdA:Z%ﬂb (124)
because the vorticity is constant inside and zero outsiel@éich. Again
the total enstrophy is the sum over all the patches:

1
Z:Z&:zﬁwﬁﬁmpﬁw (125)

Thus we have that:

Z ot 042 = /2 (126)

Given McWilliams’ value fora. = 0.7, this implies the enstrophy decays
ast 3. This is remarkable, because except for the mergers, thiexo
patch system haso dissipationat all. The prediction was supported by
numerical simulations (Fig. 20).

Why does enstrophy decrease? During mergers, $iaatlentsare cast
off. These are then assumed to be dissipated by small saalginig The
mergers thus conserve energy, but they don’t conservecitgrti

The vortex view of 2-D turbulence is that the dynamics areeined
by the vortices. Vortex mergers conserve energy, but guisyrdecreases
In time, as filaments are cast off. This is basically the saoreltision
that we reached in discussing the inertial ranges. But thexeiew is an
appealing physical description which is easy to grasp. Méetlirn to the
mean vortex model later on.
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FIG. 10. A comparison of average vortex number N (1), vorlex radius
ry(t), vortex circulation magnitude U, (1), enstrophy Z,01), and kurtosis
K, (#) from the modified point-vortex model [solid lines) and scaling
theory (dotted lines). In the model, & £ < & + 1., where i,=0.050 and
Iy == 0.14 is the earliest time for one of the 30 cycles to reach N= 100

Figure 20: Vortex statistics from the simulations of fromi¥g¢eand McWilliams (1993).
Here NV, r andI are the vortex number and their mean radius and circulatibrs the
enstrophy andy is the vorticity kurtosis. The predictions from the meanterrtheory
are indicated by lines.

Exercise Enstrophy conservation

What if vortex mergers conserved enstrophy instead of gf2e&how
that in this case, the total energy woglcbw in time. Thus the two quant-

ities cannot be simultaneously conserved in this model.

7.6 Passive tracer spectra

Thus far, we have focused on vorticity, which isativetracer. Advection
of an active tracer changes the flow. Thus momentum, densityarticity
are active tracers. But we can also ask what happeng#ssivetracer,
which has no affect on the flow. Examples are smoke, ash frdoanc
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plumes and spilled oil. Temperature is often consideredet@ Ipassive
tracer, but since it affects the density, it is actually ativacone.
The equation for a passive tracer can be written thus:
0

%C + - VC = kV3C (127)

So time changes in the tracer occur because of advectiory, diffbsion.
The coefficient,x, is thediffusivity. This is usually different from the
viscosity, which dictates how molecular mixing affects tledocity. The
main difference between this equation and that for momensutimat the
tracer concentratiort,, does not affect the velocity. So the advection term
Is linear. This is why the tracer is “passive”.

Just as with energy and vorticity, we can speak of a spectizeqiass-
ive tracer. We can in particular talk about the tracer vangan the vari-
ation about the mean. If we Fourier transform, we can consigetracer
fluctuations as a function of scale—exactly as we do withrepsly (the
vorticity variance) or energy (the velocity variance).

What would such a spectrum look like? Following our previas
guments, we might expect that in a turbulent inertial rarige, flux of
tracer variance across scales will be constant. Othenhiséracer vari-
ance would pile up at a certain scale (so we’'d see filamentsceftain
width emerging in the flow). The flux of volcanic ask would hawets of
concentration of ash squared per second. Let’s call thisyflux

Now the spectrum of traceF,(x) will have units of tracer squared times
length (so that the integral over all wavenumbers will yieéter squared).

So, on dimensional grounds, we expect:
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p=X (128)

K
wherer is the turbulent time scale.

Here is where the passive element comes in. The tracer dad#fact
the time scaler; that only depends on the active portion of the flow, the
vorticity. So forr, we will use the time scales inferred for the turbulent
ranges.

For the energy range, = ¢ '/3x~2/3. Substituting in, we get:

P(k) = xe 1375/ (129)

Sointhe energy range, the tracer spectrum has the sameasltpeenergy
spectrum.

For the enstrophy range, we hawve= /3. As noted, the enstrophy
range is “non-local” because the time scale is set by theesrgddies in
the range (as opposedto a “local’ range, where the time scdétermined
by the eddies which have the same size). Substituting in,eile g

P(k) = xn P! (130)

So the spectra is shallower than the energy spectrum. $titegéy though,
the tracer spectrum is threameas the enstrophy spectrum (see below).
This implies that vorticity is advected in the enstrophygalike a passive
tracer, even though it is an active tracer. The reason is that thiecgrigy
range is non-local; all fields are advected passively bydhgelst eddies in
the range.

The spectra are summarized in Fig. (21). We assume that tisce
being putin at the largest scales. Tracer variance therdasdownscale
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through both the energy and enstrophy ranges. The speldpsssare

k93 andk L.

Ky Kt

Figure 21: The passive energy spectrum in forced 2-D turtlméleThe forcing is applied
atxy, and the tracer is introduced at large scales, afNote the tracer variance cascades
downscale at all scales.

Exercise Enstrophy spectrum
Derive the enstrophy spectrum in the two inertial range2#0rturbu-
lence. Show then that the slope in the enstropy range is the sa that

for a passive tracer.

7.7 Predictability

Another interesting application of turbulence phenomegglis to pre-
dictability. Imagine the atmosphere was really just a 2-fbwlent fluid.

Now consider that there is an error in the initial conditi@some small
scale. We know the winds at large scales, from measurenentse can't
know them precisely at, say, the 1 meter scale. Becausertiesphere is
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chaotic, these slight differences in the modelled initiatesand the actual
state will grow, eventually disturbing the forecasts agéascales. But how
quickly will this happen?

7.7.1 Lorenz Model

The usual point of reference for atmospheric predictabibt Lorenz’s

(1963) model. This model is essentiallytlaee mode truncatioof the

equations describing a convective fluid system, under fihesince of heat-
ing of the lower boundary. In other words, we Fourier transfehe vari-

ables and only retain three terms. His equations can beewritt

dx

ngf(y—x)
@—m’— —xz
at Y

%:xy—bz (131)

Here x, y, z are “state variables”, representing temperature and wgloc
In the convective system, and wherer, b are various parameters. The
equations are nonlinear, due to theandzy terms in the second and third
equations. As with the logistic map (sec. 4), these termsharsource of
the system’s unpredictability.

The equations have three fixed points:

(xaya Z) - (07070)7 (CL,CL,?"— 1)7 (_a7 —a,r — 1) (132)
Here

a=/b(r—1)
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The first solution is the trivial one, with no motion. The atheo have
convection, with opposing circulation.

If you integrate the equations numerically, you find thatgtkistem or-
bits around one of the two non-trivial fixed points for a whtleen abruptly
makes a transition to orbit around the other. These transitare unpre-
dictable. And as with the logistic map, the system exhibitseasitive
dependence on the initial condition.

Predictability is a measure of how quickly the system diverges under
a change in the initial condition. In the Lorenz model, theoegrowth
depends on where the system is in phase space, i(e, inz) space. But
the error generally growsxponentiallyin time, and the magnitude of the
error depends on that of the initial condition. So the smale initial
error, the longer it takes for the error to propagate thrahgrsystem.

However, the Lorenz model isn’t very realistic. Think if weincated
our turbulence model with only three wavelengths. Energyatpass from
to the other, but it couldn’t go any further. Thus energy vdobave to

recycle between the three wavenumbers.

7.7.2 Predictability in 2-D turbulence

As we've seen, the actual turbulence system has a huge rérageass-
ible wavenumbers. Furthermore, our turbulence can be doad it can
acquire a statistically stationary state. There is no fayar dissipation in
the Lorenz model, so it is never in a steady state; energyraaily moves
back and forth between scales.

So how do errors propagate through a turbulent sysfetfithe cascade

9The researcher C. Leith from the National Center for AtmesjghResearch (NCAR) was an early
proponent of using turbulence models to understand piallity. The following section is based on the
presentation in Vallis’s boolkytmospheric and Oceanic Fluid Dynamics.
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Is local, an error at one scale would affect the next largest scaleenTh
that scale would affect the next scale, and so on up to thesagrales.
The total time to reach the largest scale would then be agraitever all
wavenumbers.

To express this mathematically, we can speak of a “spectafnmiter-

action times:

P = @ (133)

Again we divide byx so that the integral over all wavelengths will produce
a quantity with units of time, i.e.:

w1l T
T=1[ ~dk (134)
k0 K

Herek, is the scale where the error is introduced, apds our “weather
scale”, the large scale we're focused on.
Consider the enstrophy cascade first. Here /3, so:
w1 1/3

T = dk = n~1/3 ln(ﬂ) (135)
K0 K K

The predictability time depends on the scale of the erronesoan increase

the predictability time by reducing the scale of the errnc(easing:,). In
addition, the errors grow exponentially in time. Rewritithg equation in
terms of scalesl, « ~~1, we get:

Lo= L """ (136)

So scale of the error increases with a rate proportionglta Thus the
enstrophy range is in line with our expectations from thednarmodel.
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Now consider the energy inertial range. Ther- ¢~ /3523, Substi-
tuting in, we get:

k1 =
=/, e V3T di oc e 13K (137)

Now if the scale of the error is much smaller than the largdsdies, we
have:

T o e Vg ? (138)

Thus with an energy cascade, the predictability timadependenof the
scale of the error! This is quite different from the Lorenzdab The
reason is that in the energy cascade the interaction timesases with
increasing wavenumber. So the error propagation depentisedargest
scales, where the error transfer is the slowest.

7.7.3 Predictability in the atmosphere

Given these ideas, what would we infer about the atmospheré&know
that, we need an idea of the energy spectra. Nastrom and G8§6)(
used velocity data collected from over 6000 commercialraftdo cal-
culate wavenumber spectra. The spectra are shown in FigRje These
indicate a~* range from 100-2000 km andka®/? range at smaller scales.
Thex 3 range is thought to be en enstrophy cascade (e.g. Lindb®9§) 1
The dynamical basis of the >/ range is still debated. If it is a 2-D en-
ergy cascade, it implies a source of energy at small scales.sales are
somewhat too large to be a 3-D energy range, but some havedafgu
that. Others have suggested it is due to temperature aresaalithe tro-
popause (Tulloch and Smith, 2006). Whatever the case, tladl soale
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Figure 22: Kinetic energy spectra from data collected onroencial airplanes over the
U.S. The zonal and meridional components are shown, withattex shifted one decade
to the right. Note the lower x-axis is mislabeled— it shoudy Swavelength”. From
Nastrom and Gage (1985).

Given what we now know about 2-D turbulence, we infer thatytres
dictability is limited by the local range at small scalesq &y the transition
scale, 100 km. The latter would determirgin the previous discussion.
So regardless of how good our observations are, we coulanprbve the
predictability time. Using approximate values for the giasion rate, we
obtain a value ofl" on the order of a week. We caution though that the
dissipation rate is not well-known; indeed, even its sigdabated in the
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smaller scale range.

8 Geostrophic turbulence

Figure (22) raises some interesting questions though. waditmensional
system we have considered so far is very idealized. The flothanat-
mosphere and ocean are affected by planetary rotatiorifisation and
bottom topography, to name only a few complicating factMet. we still
see energy spectra which resemble those in pure 2-D turdmilétow can
this be?

Geostrophic turbulence is what happens when we add theseneslr
istic factors. The name comes from an article (Charney, 1@hkre two
dimensional turbulence was considered in a quasi-gedstdloid with
continuous stratification. But we use the term to also en@asipariations
in f and in topography. We begin with

8.1 The Beta-effect

The vorticity equation (61) in two dimensions is given by:

0
Y + 1 - Vw, = vVw (139)

Using only the vertical component of the vorticity, this is:

%g +@-V(C+ f)=vVX (140)

Before we assumed thgtwas constant, so that it drops out of the vorticity
equation completely. Thus a constant Coriolis parametemnbaeffect on
2-D turbulence.
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Now let’s examine what happens whémwvaries with latitude. For this,
we will use theBeta-plane approximatiarSpecifically, we Taylor-expand
the Coriolis parameter about a central latitu@le,

2
f(0) = f(6h) + Z—Jg(@o) (0 — 6o) + % %(90) (0 —60)" + ... (141)

We neglect the higher order terms, so that:

df

f = f(0) + @(90) (0 —06) = fo+ By (142)
where
fo = 2982?1((90)
1d 202
g = ad—];(eo) = 7005(00)
and
y = a(f — )

Herea is the radius of the earth.
Substituting this into the vorticity equation, and neglegtthe dissipa-

tion for the moment, we obtain:

%Hﬁ-vum:o (143)

The fundamental difference here is that meridional motian ;nduce
changes in the relative vorticity. This can be seen clednya rewrite

the equation in Lagrangian form:

d
¢+ By) =0 (144)
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This implies:

(¢ + By = const. (145)

for a parcel. If the parcel moves north, to greajeit’s vorticity must
decrease. As such, tlikeffectconstrainaNorth-South motion.
The linear version of the vorticity equation is just:

%c +Bu =0 (146)

Written in terms of the 2-D streamfunction, this is:

—v% + 5 ¢ =0 (147)

Substituting a wave solution:

¢ _ 772 eikx—i-ily—iwt (148)
we obtain:
k
W= _qut 2 (149)

which is the dispersion relation fdRossby wavesRossby waves, dis-
covered by C. G. Rossby (1936) are fundamental to our uratetistg of
time variability in the atmosphere.
Rossby waves have a zonal phase speed of:
w s

S 150
“T T TRrRyp (150)

So Rossby waves always propagate to the west (in the abseéagaean

flow) and larger waves move faster than smaller waves.
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Now let’s put advection back into the problem. Now we expéett t
the flow can also be turbulent. But which scales are turbwdadtwhich
are wave-like? We can get a rough idea by simply scaling thicity

equation:

8 T —
EC‘FU'VC—FﬁU—O

U U?

r 1z U

1 U

ST A0 1 (151)

Recall that the vorticity scales d$/L. In the last line, we've divided
through by3U. We see that the advective term scaleg/48L%)~!. This
Is essentially the Rossby number, if we substittite G L.

If this parameter is small, the equation should be approtaindinear
and the flow will be dominated by Rossby waves. If it is lardpe, 2 term
will be unimportant and the dynamics will be turbulent.

Thus we expect a “boundary” between wave and turbulent dygsam
with the latter occurring at small scales and the formerrgtliascales. The
separation scale is often called the “Rhines scale” aftené&(1975):

U

Li=\5 (152)

At Lg, all three terms in the vorticity equation are of equal intance.
Note we haven'’t specified a time scale in the vorticity eqpratirhis is
because we assume the time scale adjusts to the dynamids Rd46by
waves, the first term should balance the third, so that (8L)"!. If
turbulence, we would expect the advective time schle; L/U.
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Imagine we have a source of energy at some small €galeur “spoon”,
stirring the fluid). This will generate a cascade to largealess. But at
some scale, Rossby waves will dominate over turbulenceheése scales,
the dynamics will be quasi-linear and turbulent transfeitlve weak or
non-existent. So we expect thawill halt or arrestthe cascade. At what
scale does this occur?

An interesting thing happens though when you run a numesioal-
lation of this. An example is shown in Fig. (23), of simulatgowith a
barotropic fluid on a sphere. Recall that a sphere is periodiee x dir-
ection. The simulations show the energy cascade does iradeest, but
the arrest isinisotropiq in that the flow develops zonal jets. The result is
a banded structure, reminiscent of the Jovian atmosphere.

The anisotropy comes about because the Rossby wave d@pezta-
tion is also anisotropic—there iskain the numerator, but nb As such,
different scales of motion have different wave periods etejing on their

zonal and meridional extent. If we write the wave time scale a

= (153)

we see that the time scale increasgathout boundask — 0. Zonal jets
havek = 0.

We can re-write the wave time in terms of the total wavenumbetor,

KJQ K

A= Brcos(0) - Beos(0)
Hered is the angle the wavevector makes, i.e.:

(154)
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Figure 23: Numerical simulations of forced barotropic tuémce on a sphere. Note the
formation of banded flow, superimposed over a field of eddibe.mean zonal velocities
are indicated in the inserts. From Williams (1978).

(k,1) = [kcos(0), ksin(0)] (155)

At the transition from turbulence to Rossby waves, the wawve tscale
equals the turbulent time scale. In the energy cascadeasthis

T =¢ /323 (156)
The two time scales are equal when:
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Figure 24: The boundary between turbulence and Rossby waeesplotting, we assume

B3/e = 1.

~1/3,.-2/3 _ K
N = (157)
or.
K= kg = (ﬁ—3)1/5cos3/5(9) (158)

€
(Vallis and Maltrud, 1993). This has two components:

(k5o 15) = () 2cos®5(9), () /5c0s3(0)sin(9)] (159)

€ €

The resultis an arresbundaryin (%, [) space. The boundary is plotted
in Fig. (24). It has two symmetric lobes. Outside the lobles Wwavenum-
bers are participating in triad interactions and movingrgnéoward the
lobes. Inside the lobes, the dynamics are essentiallyrlynaad the energy

flux is weak.
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Figure 25: Spectra from a freely-evolving 2-D turbulencendiation, plotted in
wavenumber space. From Vallis and Maltrud (1993).

Vallis and Maltrud (1993) tested this prediction with nuimat simula-
tions. They employed a 2-D model, with random initial cormais. The
latter were isotropic and covered a specified band in waveeurspace
(upper left panel of Fig. (25). The initial spectrum thus @@s as a ring
in (k.l) space. As time proceeds, energy spreads inward, shiftimartb
smaller wavenumbers. But it ceases at the lobe structusesided above.
Vallis and Maltrud called these “dumbbell” structures.

The “dumbbell” shape explains the anisotropy observed gn E23).
Consider energy moving in along the axis whére 0 (the x-axis in the
figure). The energy cascade here would stop at1. But energy moving
along the y-axis, witlhk = 0, will proceed nearly to the center. The reason
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Is that if £ = 0, the meridional velocity is zero and thteterm drops out
of the vorticity equation. So for zonal motion, it is as if theeffect were
non-existent.

This implies that a forced cascade withwill produce structures with
k = 0—zonal jets—as in Fig. (23). But there are also eddies soyparsed
on the bands; this is the turbulence at smaller scales. Tla@ nedocities
indicate alternating eastward and westward flow. Howevat tlow is
asymmetric; the eastward jets are sharper than the wesomad This is
a consequence of barotropic stability, which favors shagpstward jets.

Exercise Topographic arrest
A bottom slope acts exactly like theeffect in a barotropic fluid. The
vorticity equation (see eq. 182 below) can be written:

8 7 —
ac+u-V(c+h)_o (160)

whereh is the topographic elevation. Say that ax (the bottom slopes
up to the east). Find the dispersion relation for the wavesui@e periodic
boundary conditions iz andy). Now solve for the arrest wavenumber.
Draw it in (k, ) space. What type of structures do you expect?

8.2 Beta turbulence in a closed basin

Zonal jets can exist in re-entrant domains, like the atmesphndeed, the
Jet Stream is a zonal jet, albeit a highly time-dependent Baecan such
jets exist in theocean where there are lateral (continental) boundaries?
To see, we must consider Rossby waves in a closed basin. hese
a slightly different structure and dispersion relationthiae plane Rossby
waves discussed above. The waves have a dual structure—pagatong
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wave superimposed upon a stationary envelope. The latseres that
there is no flow on the boundaries. For a rectangular basenstiteam-
function takes the form (e.g. Pedlosky, 1987):

mmrx., .  NTY
— 161
L s (161)

Here L, and L, and the lengths of the domain inandy. The two sine

Y = Acos(kx — wt)sin(

terms ensure that the streamfunction vanishes on the boasgdand the
wavelengths are quantized. This solution is referred to haratropic
basin mode
The dispersion relation for a basin mode is given by:
p

= 162
w w 27‘(‘(7’)12/[/%"—7’1/2/[/5)1/2 ( )

This too is quantized, i.e. there are only discrete valuah®frequency,

corresponding to the discrete wavenumbers. The dispersiation re-
sembles the plane Rossby wave dispersion relation, extafptitere is no
“k” in the numerator. This makes all the difference.

The time scale for basin modes is the inverse of the frequemviagh
we can write as:

(163)

o K
"5
wherer = 2m(m?/L2 + n?/L%)"/? is the (quantized) total wavenumber.
Equating this to the turbulent time scale in the energy range

—1/3,.-2/3 _ % (164)

yields:
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kg = 33015 (165)

for the arrest wavenumber (LaCasce, 2002). The importamg there is
that the wave-turbulence boundary with basin modesogopic. There is
no reason to expect zonal jets.

Numerical simulations confirm this. Shown in Fig. (26) are $tream-
functions from two forced simulations, one in a periodic dam(left
panel) and one with solid walls (right). The former showsaltyrelongated
structures, spanning the domain. The closed basin siranlan the other
hand has mostly isotropic eddies. The only place where theiflaonally
elongated is along the northern boundary (where in factteostay gyre
develops; Fofonoff, 1954).

Periodic, =200 Basin, B—ZOO

By

~ 02
s 0

s |
0

-0.8

4

Figure 26: Streamfunctions from a forced 2-D turbulenceusations with periodic (left)
and solid wall (right) boundary conditions.

We quantify the arrest further, as follows. In the simulaishown,
the damping was with Ekman friction. The latter adds a terif),to the
RHS of the vector momentum equation. With this, the integtanergy
equation (50) can be written:
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d r o L B
%E:///u-fd‘/—r///u-udv—6—27“E (166)
where E' is the total kinetic energy. Notice that the forcing yielts en-

ergy flux, e. In a statistically steady state, the LHS on average is zero,

leaving:

e =2rE (167)

Using this, we estimate the arrest scale as:

2 :
Ly =" =22B735(2rE)\/5 (168)

kg
We compare this estimate to the simulations by calculatoagial cor-

relations in the velocity field. In an eddy, the velocities aorrelated (or
anti-correlated) across the eddy. Outside the eddy, tloenes are uncor-
related with those in the eddy. So we can use velocity cdroelsto find
the size of the eddies.

We plot the correlations as ellipses in Fig. (27). The sotid dashed
curves correspond to two different ways of calculating threedation (either
using parallel velocities along a line—the longitudinalogties—or per-
pendicular velocities—the transverse velocities). Ba#idythe same res-
ult; the eddy scales are isotropic and they are consistahttive length
scale estimate in (168).

For comparison, the correlation ellipses from two simoladiin a peri-
odic domain are shown in Fig. (28). In this case, the longtaldcorrel-
ations (corresponding to thevelocities) are elongated in thedirection.
So this indicates large scale, coherent zonal flow. The vease correla-
tions on the other hand (corresponding todivelocities in thec-direction)
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Figure 27: Velocity correlation ellipses from a series opesments in a closed basin.
The solid ellipses are from the longitudinal correlationdlf values [0.8 0.6 0.4]); the
dashed ellipses are transverse correlations (with valt¢d.® 0]). The vertical lines

indicate the arrest scale from (168). From LaCasce (2002).

are more nearly isotropic. These reflect the small scaleesdsliperim-

posed on the zonal jets.

Thus the arrest in a rectangular basin is similar to that rieesat by
Rhines (1975)—but it is isotropic. The isotropy stems frdra fact that
the wave time scale in a basin is also isotropic. So the baieslarevent
the formation of zonal jets. This example also highlights itnportance
of using time scales to understand how the turbulence bshave

However, this case is still quite unrealistic in terms of tltean, as the
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Figure 28: The velocity correlation ellipses from two sietidns in a periodic domain.
From LaCasce (2002).

bottom is entirely flat. The actual ocean of course has saamifitopo-
graphy. We consider that next.

8.3 Topography

Bottom topography in a barotropic fluid acts very much like theffect.
But instead of limiting N-S motion, topography inhibits nwoot across the
depth contours Thus an inverse cascade would be expected to generate
jets over a topographic slope, exactly as seen in the lasbsed his was
demonstrated by Vallis and Maltrud (1993).

But a major difference with topography is that it need not [stnaple
linear slope. We have mountains, ridges and closed basow wduld we
expect such features to alter the inverse cascade?

This question was addressed in two independent, simultesspers—
by Bretherton and Haidvogel (1976) and by Salmon, Hollowayldende-
rshott (1976). Both considered freely-evolving (unforceabulent flows
over essentially any type of bottom topography. Salmon.etis¢d ideas
from statistical mechanics to predict the most likely floneomould ex-
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pect to find. Bretherton and Haidvogel used the calculus m@trans. The
two approaches are in fact related, as demonstrated latéainevale and
Frederiksen (1987).

8.3.1 The barotropic vorticity equation

To do this problem, we require the vorticity equation for adtiopic fluid
with variable depth. We obtain this as follows. Neglectigiations inf

and forcing, the vorticity equation for a 2-D fluid is:

O iV (¢ )V ) = v (169)

We will assume that the velocities aren’t purely 2-D, butt tiney are
guasi-geostrophicSo the velocities are:

U= (u,v, ew) (170)

wheree, the Rossby number is small. So while not being exactly hori-
zontal, the vertical velocity is much smaller. Note thert tha continuity
equation is:

0 0

0
ot + a—yv + Y= 0 (171)

Furthermore, the vorticity is much smaller th&n because by scaling

we have:

%ocfo%:e (172)

Collecting these terms, we can write the vorticity equatiors:

e%(j +et-V(— (e + fo)eaa—zj = eV (173)
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To first order in the Rossby number, this is:

L
ot
Now if the fluid is barotropic, there is no vertical shé&rAs such, it

7-V(— fog—f = vV (174)

IS easy to integrate the equation over the depth of the fluiskuAe the
lower boundary is at = —H(x, y) and that the upper boundary is a rigid
surface, at = 0. Then the integrated equation is:

H%C + Hit- V¢ — fowl’y, = HUVX (175)

The vertical velocity at the upper boundary is zero. At th#di, we can
obtainw as follows. A parcel following the bottom has:

2=—H (176)

Taking the Lagrangian derivative of both sides, we get:

dH
=~ _§-VH 177
o u-V (177)

To be consistent with the quasi-geostrophic approximati@require that

w =

the bottom topography be small. So we write:
where

h| < D (178)

Using this in the integrated vorticity equation, we get:

0This is a consequence of thkaylor-Proudman theorem See Pedlosky (1987) or my notes from
GEF2220.
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_g T v/t @ﬁ Vh = vV (179)

or:

—C-I—u V(¢ + foh) VLTS (180)

Note too that the horizontal velocities are non-divergemirtier Rossby

number. So we can write the equation:

%C + V- [d@(¢ + h)] = vV (181)

I've absorbed the factor of,/ D into the topographic height, for simpli-
city. Lastly, we rewrite this in terms of the streamfunctitmus:

%v% + V- [@(V* + h)] = vV (182)

This is the barotropic potential vorticity equation.

8.3.2 Conserved quantities

There are two conserved quantities in the limit of vanishdiggipation,
l.e.v — 0. One is the energy:

28t//u—|—v)dxdy—0 (183)

The proof of this is left for an exercise. We also conservéltenstrophy”.
First note that we can rewrite the vorticity equation (18R)st

gtq+v (ug) =0 (184)

where
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0=V +h (185)

Is the total vorticity. If we multiply the equation by and integrate over
space, we get:

mzﬂqmw+ﬂv %dmwﬂ) (186)

The second term on the LHS is zero:

J[v-@ M@_fqﬁ

by Gauss’ Law. This vanlshes in a periodic domain or one vatbkrhl

dl (187)

§>

walls.

So the total enstrophy;®/2, is also conserved. We will call thi§.
Note though that the enstrophy itselfnet conserved. This is because the
interaction with the topography itself can produce enstyop

Exercise Energy conservation
Prove that the integrated kinetic energy is conservedtirsgadirectly
with the vorticity equation (182), i = 0.

8.3.3 Minimum enstrophy

Under a dual cascade scenario, we'd expect the energy totgHdrge
scales and th&otal enstrophy to more to smaller scales. If the dissipation
IS non-zero, the total enstrophy will then be dissipatedetiBgrton and
Haidvogel suggested that the turbulence would therebyamirtimizethe
total enstrophy, while conserving the energy.
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To do this, we use thealculus of variationsas follows. Let() be the
total enstrophy. Its minimum occurs wherevtgriation vanishes. This is
as when a function has a maximum or minimum when it’s firstvdgite

vanishes. We take the variation thus:
_ 1 2 2 o
5Q—5//2(V b+ h)? dA =

J[(V*0 + h)5(V* + h) dA = 0 (188)

We assume the topography is fixed, but the streamfunctiorvaan So
the equation is:

J[(V+ 0)a(VP) dA =0 (189)

Now this could correspond to either a minimum or maximum. Td fi
out, we'd have to evaluate the second variation. We won'thaa; twe’ll
simply assume the extremum is a minimum.

However, this only tells us wher@ has an extremum. We haven't
said anything about the energy. But we can impose energyeoaton
by using the method dfagrange multipliers In particular, we define a
functional

F=Q+uE — E) (190)

Here the constant is a Lagrange multiplier anfl' is the kinetic energy:

_ 1 2 2 _ 1 2
E—§//(u +v)dA_§//|w\ dA (191)
Ey is the kinetic energy of the system (it is a constant).
If we take the variation of” with respect tqu, we get:
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5—F:E—Eo:0 (192)
Op

So this implies that the solution will have an energykif
If, on the other hand, we kegpconstant and take the variation bt

we get:

SF = 6(Q + u(E — Ey)) = 6Q + udE = 0 (193)

The variation ofF) is zero since it is a constant. Substituting in the ex-
pressions for) and £/, we have:

0Q + pdE = [[(V2 + h)3(V?) dA+ pu [[ V-6V dA - (194)

Both integrals in (194) can be rewritten using integratigrphrts, assum-
ing either periodic boundary conditions or thiavanishes on the boundar-

ies. So we can write:

[ V-0V dA = — [[ V-5 dA (195)
Also:
J[(V20 + 0oV dA = — [[ V(Y% + h) -5V dA =

] VP (V0 + h)oy dA (196)

Combining the terms, we get:

5Q + pdE = % J[ VAV + h — pp)dy dA = 0 (197)

We require that the integral vanish for all variations For this to happen,

we must have:
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V2 +h —up =0 (198)

This is is known as the “Euler-Lagrange equation” for thelgem. We
can solve this by Fourier transforming both the streamioncand the
topography:

w _ Zlﬁ(l{, l>eikx+ily’ h = Z ib(k, l)eikx+ily (199)
kil kil

Substituting both into the Euler-Lagrange equation, westave fore in
terms ofh:

~ ~

. h h
— = 200
v pt k212 pt R (200)

Thus the predicted streamfunction resembles the topograffhwe

know the transform of the topography, we have the transfditimesstream-
function. Then we can inverse transform to obtain the acttrabmfunc-
tion.

But what is this exactly? According to the variational cédtion, this
Is the flow which has the minimum total enstrophy for a givemekic en-
ergy. The minimum enstrophy streamfunction resemblesdpegraphy.
In other words, the minimum enstrophy solution has flow pelréb the
iIsobaths.

But the flow isn’t entire parallel to the isobaths. This is d&ese the
denominator in (200) filters the small scales. At large sgade thak <
1, ¥ ~ h/p. But at small scales) ~ h/x2, which goes to zero asgets
large. So the flow looks like a low-pass filtered version oftthography.
In particular, there will be anticyclonic flow over seamauand cyclonic

flow in basins. This is often observed in the ocean.
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What determineg, the multiplier? If the energy is conserved, then we
have:
1 1 K2h?2
E= Y ml =08 oy
2% 297 (u+rK?)?
So if we know the initial energy, we can determimeThe largerF is, the

(201)

smallery will be. And the smaller: is, the greater the low-pass filtering
effect will be. Thus energetic flows will evolve to more caarspresenta-
tions of the topography than weak flows.

The results from a numerical simulation from Bretherton dadlvogel
(1976) are shown in Fig. (29). This was a freely-evolvingemxment, i.e.
one without forcing. The initial streamfunction is shownrtie lower left
panel and the topography in the upper left panel. After aogesf time, the
streamfunction settles down into the configuration shovthérlower right
panel. The streamfunction strongly resembles the topbgramd has the
same signs. Thus there is cyclonic flow in the depressionauiper part
of the domain. But note too that the streamfunction has Iesdlscale
structure than the topography—evidence of the low passifijeeffect
predicted by the variational solution.

Observations in the ocean show that mean flows are oftenlatmde
with bottom topography. The present theory is one possikdaeation
for this.

8.4 Stratification

So far, we have looked only at barotropic flows. But the atrhesp and
ocean are stratified, and many important dynamics stem fravmg a
stratification. Storms in the atmosphere derive from bamn@cinstability,
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Figure 29: A numerical simulation from Bretherton and Haigel (1976). The topo-
graphy is shown in the upper left panel and the initial strfegction in the lower left
panel. The final streamfunction is shown in the lower righitgdaNotice that this is very
similar to the topography.
and the Gulf Stream is also known to be thus unstable. In tmgotturbu-
lence, we speak of triad interactions among horizontal wangers. But
with stratification, we can furthermore have interactioe$ween waves
with differentvertical structure. Thus the problem becomes three dimen-
sional.

But we are interested in large scale turbulence, and the §awli pre-
dominantly two dimensional at large scales, even withiftation. So it

will turn out that many of the concepts we have seen so faroaiity over
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to the stratified case.

The following will be based on the stratified quasi-geodtiogpoten-
tial vorticity (QGPV) equation. A derivation is given by Hesky (1987)
(and is also given in my lecture notes from GEF4500). We wsk the
Boussinesq form of the QGPV equation. The equation can deewri

9, .
where
9, f§ ov
2 0
1=V + 5 (355,) (203)

This is the potential vorticity. Itis comprlsed of two partke relative vor-
ticity and thestretchingvorticity. The latter depends on vertical gradients
in the streamfunction.V? is the Brunt-Vaisala frequency. Note too that
the advecting velocities in QG are the horizontal velositithe vertical
velocity is of order Rossby number smaller. Likewise thelbajan is the
horizontal Laplacian, not the three-dimensional one.

For concreteness, we assume we have a periodic doméin gn and
solid boundaries at = 0 andz = 1. The boundary condition on the
vertical boundaries is that the vertical velocity vanishdss can be shown
to be satisfied iy = 0.

8.4.1 Conserved quantities

We can derive an energy equation if we multiply the PV equiby:) and

integrate over the volume:

///¢atv2¢dv+///¢§ti ]@ng )dV + [[[ wii-VqdV =0 (204)
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Note I've dropped the “h” subscript on the velocity. Consitlee third
term. We can use the following identity:

V- (qu) = gV - d + qu - Vi + Yu - Vq (205)
The first term on the RHS is zero from continuity (at first ordethe
Rossby number). The second term is zero because the velpityallel

to the streamfunction contours. So the dot product with tfaelignt is
zero. Thus the third term in (204) is:

JJ] vi-vaav = [|[ V- (@) dV = g (a-a)ds =0  (206)

after applying Gauss’s theorem. This is zero because obgheriy in x
andy and because the vertical velocity vanishes at the top ardrbot
Using integration by parts with the first term in (204), we:get

///¢ VQWV_“///‘WPW———// Wty dV (207)

Thisis the (horizontal) kinetic energy. Again, only theizontal velocities
contribute to the kinetic energy to a first approximation.
Then there’s the other term. Now we apply integration bygarthe

vertical:

d 0 f (iw o f2oy f azw
/// otz ]\;)2 0z V:// @ﬁ?@ 2@15/// ]\?2 82 (208)

The first term on the RHS vanishes becag%s@ vanishes on the vertical
boundaries. The second term on the RHS is proportional tedoared
temperature; it is thpotential energyThus we have:
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f& 0%,
8t 5 /// +N2(8z> dV =0 (209)
So the total energy—the horlzontal kinetic plus potentie-eonserved.

This is our first conserved quantity.
Now if we multiply the PV equation by and integrate that over space,

we get:

8t2 ///q dV =0 (210)
So the second conserved quantity is the potential enstrbaysquare of
the PV).

In fact, there are an infinite number of conserved quant{see the
exercise); but we’ll focus on these two.

8.4.2 Energy cascade

With these two conserved quantities, we can demonstratéhi@anergy
shifts to larger scales and the enstrophy to smaller scasé®sg an argu-
ment like Batchelor’s (1953), as shown by Charney (1971).

Let's assume that the Brunt-Vaisala frequen¢€yjs also constant. Then
we can redefine the vertical coordinate thus:

N
7= —z 211
7o (1)
Doing this, the PV is simply:
9 0?
¢=VU+o V= Vi (212)

where V3 is the three dimensional Laplacian, with the new vertical co
ordinate. Likewise, the energy is:
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E= % ] 1950)? av (213)

and the enstrophy is:

Q=3 JJ[(V3wyav (214)

We will Fourier transform the streamfunction as follows:

U(w,y,2) = 3 bt Meos(nz) (215)
k,l.n

We use the cosine expansion in the vertical so that the eéderivative
of ¢) vanishes on the vertical boundaries {fat 0 andz = 1). With this,

we have:

E= 1/' K202 dr (216)

2
and
Q= 1//§4\1ﬂ\2d/€ = 1/ k*E dk (217)
2 2

where

k: =k + 1+ n’n? (218)

Is the total wavenumber squared.

Now we can proceed exactly as in 2-D. Consider a spectrumepleatk
some three-dimensional wavenumbegr, We assume the peak will spread,
so that:

%/(Ii —K1)*Edr > 0 (219)
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Expanding:

%/I{QEdl{—2%1%/%Edli+ﬁ%%/Edl{>0 (220)

The first and third terms are zero, so;

0

a/HE dr < 0 (221)
which implies the total energy shifts to smallerThere is an inverse cas-
cade, as in 2-D turbulence. But note that this is not onlyrigdahorizontal

scales—itis also to largeertical scales. This means the flow will become

more barotropidn time.
8.4.3 The vortex view

Again, we can invoke a vortex view, to obtain a physical inggren of
this process of barotropization. In geostrophic turbudgriee vortices are
potential vorticeshaving both relative and stretching vorticity.

Consider a vortex, with potential vorticity. We can scale the PV as

follows:
2 2
_ o2, o 97
4=V N2 0z2
UL ngL
L? N2H?
f2L2
1 ﬁ (222)

I've divided through by the scaling for the relative vortygiand I'm taking
N2=const. We see that the relative scale of the stretchinggityrtiepends

on the vortex sizel.. We can rewrite this term as:

8L2 B L2

N I (223)
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where

Lq= N (224)
fo
Is thedeformation radiuslf the vortex is much larger than the deformation
radius, the stretching vorticity dominates and if the worgemuch smaller
than L, the relative vorticity dominates.

Imagine we have a three-dimensional QG simulation, wittdoam ini-
tial flow. The flow will organize itself into vortices, on ddfentlevelsin
the flow. These vortices will be smaller than the deformatiiius and
dominated by relative vorticity. So they will behave justelivortices in
2-D turbulence. Like-sign vortices will merge, making largortices.

As the vortices become larger, the stretching vorticity @enmport-
ant. We see, in particular, that the vortices have greatticaeextent. So
they begin to interact with vortices on other levels. Oaaaally, like-sign
vortices will verticallyalign with one another. This is just like a merger,
but between two vortices on different levels.

The flow thus evolves to a system of fewer and fewer vorticet) w
greater and greater vertical extent. This is the physicammg of Char-
ney’'s 3-D cascade.

The potential vorticity from such a simulation, from Mc\Wiélins et al.
(1999), is shown in Fig. (30). The flow started with a 3-D ramdaitial
condition. In the upper panel is the PV at an intermediate tillready
it is clear that like-sign vortices are congregating togetlit a later time,
shown in the lower panel, the vertical alignment is clead amo large
tornado-like structures have formed.

Thus the vortex view again illustrates the behavior that axestdeduced

from spectral considerations.
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Figure 30: Potential vorticity from a 3-D QG simulation framndom initial conditions.
The upper panel shows the PV at an intermediate time andwes [ganel at a late time.
Note the vertical alignment of the vortex structures.

8.4.4 Enstrophy cascade

Another prediction of Charney’s is that there will be an enyshy cascade
In quasi-geostrophic turbulence. This will have an enefgctrum given

by:

E(k) oc 23,73 (225)

wheren is now the total enstrophy transfer rate, with unitsef 3. The
difference here is that the wavenumber is the full threeedisional wavenum-
ber given above. However, Charney assumes that the tudmilisiso-
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tropic in the three directions;z, y, z*). That implies that the energy spec-
trum will be the same for the horizontal kinetic energy, ataed even one
component, i.e. fou?.

This is a possible explanation for the? range below 2000 km in the
Nastrom and Gage spectra in Fig. (22). The atmosphere is2x@t #uid,
but at large scales it is quasi-geostrophic. Moreover,artribposphere the
Brunt-Vaisala frequency is approximately constant, sor@égs stretched
vertical coordinate is a reasonable choice. Further aisatygs shown that
the enstrophy flux in this range is downscale, as expecteahfenstrophy
cascade (Lindborg, 1999). So it seems like this really isrestrephy cas-
cade.

There aralsoindications of an enstrophy cascade in the ocean. Wang
et al. (2009) calculated energy spectra from current measemts collec-
ted from a ferry steaming between the U.S. and Bermuda, satnesGulf
Stream. The results (Fig. 31) also show a cleat range. The peak of
the scale corresponds to roughly the 50 km scale. In additimkin-
etic and potential energy show the same slope, consistémtGiiarney’s
assumption of an energy flow which is isotropic in the threaatsional
wavenumber.

Thus the addition of stratification hasn’'t changed the sibnagreatly.
However, as the flow becomes more barotropic, the boundatilesven-
tually become important. So it may be that Charney’s consittn works
better at small scales, i.e. in the enstrophy range. Moreaxeere does
baroclinic instability fit in? Instability implies a conv@on of large scale
potential energy to kinetic energy at the deformation radidow do we
reconcile this with an inverse cascade? The answer can Inel foude-
tailed consideration of the triad interactions occurrin@ibaroclinic sys-
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Figure 31: Kinetic energy spectra from ADCP data collectexnf a ferry steaming
between the U.S. and Bermuda. The left panel shows thedv components, and the
right panel the kinetic and potential energies. From Waragd; Donohue and Rossby
(2009).

tem (next section).

Exercise Enstrophy conservation
Show thatanyfunction of the potential vorticity is also conserved in
the QG system.

8.4.5 Cascades in a two mode system

Triad interactions become very complicated when we haviiceémodes

in addition to the horizontal wavenumbers. However, we cainaggood

idea of how the system behaves when we consider only twaaéniodes?!
Consider again the PV equation, which we write thus:

1The following is based on Salmon (1980).
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0 9 o 0 0o 0o
AR UL Bl v Rl e UL WL (226)

We can write this in shorthand form thus:

0
574+ J(¥,q) =0 (227)

The J(, ) function is called thdacobian It is defined as:

ity = 200 Dbon -

We’'ll take N = const., so the PV is:
i o

N29z2
Assuming the fluid depth is such that< 2 < H, we can express the

q= V) + (229)

streamfunction in terms ofertical modesthus:

nmz

1/1(x,y,z,t) = ;@bn(x,y,t)COS(?) (230)
We will only consider the first two terms:
nmrz
77/}(557?%2715) - ¢B(x7y7t) +77/}T<x7y7t) COS(?) (231)

Here g is thebarotropic streamfunction; it does not vary in the vertical.
Yy is thefirst baroclinicmode. It is the gravest of the cosine modes; if we
integrate it in the vertical, it vanishes. We will exploiigtbelow.

The PV also has two components:

nmtz

q=VYp+ (V= F)r 005(7) (232)
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where

m f3
F= 5 (233)

Notice that this parameter has units bf2. Thus the square root of
Is like a wavenumber. This corresponds to the inverse of éfierchation
radius.

Plugging the streamfunction and PV into the PV equation, ate g
0

—V%B (V= )1/1T008(n22) T (Y, Vig)+
J (s, (7 F>¢T>cos<”}; ) + I, Vig)cos(“E)+
I, (V2 — F)sz)cos?(%) ~ 0 (234)

We can isolate the time derivative of the barotropic streenction if we
integrate this equation in over the depth of the fluid, and then divide by
the depthAH:

0

O+ I, V) + 3 (V2 — F)ir) =0 (235)

The terms multiplied by cosine vanish, and the cosine squaren integ-
rates to one half. This is the vorticity equation for the lanpic mode.
Notice that the barotropic vorticity can change by two terifise first in-
volves the barotropic velocity advecting the barotropictiedy, and the
second the baroclinic velocity advecting the baroclinidiedy.

Similarly, we can obtain an equation for the baroclinic @ty if we
multiply the equation byos(nrz/H) and integrate over the depth. Then
we get:
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9
ot
after cancelling a common factor of 1/2. This is the baroclirorticity

(V2 = F)or + J (U5, (V2 = F)or) + J(br, V3p) =0 (236)

equation. This states the baroclinic PV changes when tragrioaic velo-
city advects baroclinic PV, and vice versa.

Each PV equation has an energy relation associated withvite mul-
tiply (235) by z and integrate over the area of the domain, we get:

%// Vs dA — [[ vpd(vr, (V2 = F)r)dA =0 (237)

after integrating by parts. Note the barotropic advectiermt vanishes
when integrated over the area. The first term is the baratrepergy,
which is purely kinetic. This isiot conserved, because of the interaction
with the baroclinic mode.

Likewise, multiplying (236) by and integrating over area, we get:

%//“V?ﬁﬂ? + Flyr|*] dA — //¢TJ(¢Ba (V2 — FYdbr)dA =0 (238)

again, after integration by parts. The first term is the cleanghe total
baroclinic energy, which has both kinetic and potentiakgailhe baro-
clinic energy isn’'t conserved either, due to the interactoth the baro-
tropic mode.

However, if we integrate by parts again, we can show that:

— // WV (Yr, (V2 = Fr) dA = // brd (Yp, (V2 = F)gr) dA (239)

So adding the two equation energy equations together, we get
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%/] Vgl + |[Vor)? + Flgr|?dA =0 (240)

So the total energy, barotropic plus baroclinic, is consérv
After a similar derivation, you can show that:

%//(V%B)Q + (V2 + F)r)>dA = 0 (241)
So the total enstrophy is also conserved.

Now, how energy is transferred in the two mode system depemdise
triad interactions. To see how these work, we’ll focus ondheotropic PV
equation (235). We write this for Fourier components, andeese out
the summations for simplicity. The equation then looks tikis:

0

=5 (k2 B me™™ + T (Yo, —(mi + my)bps)e™

+J (1, — (g3 + @ + F)bpa)e? 1% = 0 (242)
Note that I'm usingn now as a horizontal wavenumber (not the vertical
mode number). To extract an equation for the barotropi@stfenction
with wavenumbersk,, k,), we multiply by ¢ p;e~** and integrate over
the area. The result is:

O 02 Rl + Rl (Wm, —(m 4 mi2)n) Yoo + 1 — )

+Re{t)pJ (Yr1, — (¢ + qz + F)r2) }o(p+q—k) =0 (243)
This equation accounts for the change in barotropic energyagenum-
ber (k;, k,). Remember that the two advection terms involve sums over

many wavenumbers. Interactions between wavenumber ceadgansfer

energy.
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We see though that there are two types of triad. The first wasointer-
actions between three barotropic waves. This correspantie ttriads we
considered previously. The second though is something ar@vinvolves
the barotropic wave (d¥x, k,)) and two baroclinic waves.

Consider a triad of barotropic waves first. These conservetiogic
energy and enstrophy:

d

%(El + FEy+ E3) =0

d

£(21 + Zy + Zg) =0 (244)

We can rewrite the enstrophy relation thus:

d
a(/{%El + k3 By + K3E3) =0 (245)

This is exactly like Fjgrtoft's barotropic example. We egpéhen that
energy will shift to larger scales and enstrophy to smaltaies.
Now consider the barotropic/baroclinic triads. The en#trorelations
are:
d

a(ﬂ-m + (k5 4+ F)Ey + (k3 + F)E3) =0 (246)

This is more complicated than the barotropic case becaude éf terms
(which also affect the baroclinic energies). Consider finsit all three
members of the triad have scales well below the deformatolius, so
that(k1, ko, k3) > F. Then the enstrophy equation is, approximately:

d
&(mm + 5By + Kk3E3) = 0 (247)

This is the same as with the barotropic triad. Thus we expeetgy to
be transferred to the triad member with the largest scalga(diess of
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whether this is barotropic or baroclinic). Energy wouldghahift toward
the deformation radius.

Now consider that we have a large scale triad, so(thats,, k3) < F.
Then we have, approximately:

d
ﬁ(FEQ + FE3) =0 (248)

This simply states that energy will pass between the twodbaro waves.
But the direction of transfer is undetermined—we can’t sagthier energy
IS moving up or downscale.

Does this mean that baroclinic energy at large scales qam'sition to
smaller scales? It would seem so. But what about baroclistability?
In that, energy is transferred from a baroclinic mean shedyarotropic
eddies. This would seem to contradict the present findingfath the
problem here is the assumptionlotal interactions. What about a non-
local interaction, between a large scale baroclinic modaksanaller scale
barotropic and baroclinic waves?

The usual models of baroclinic instability (the Eady motie, Charney
model and the Philips model) all involve a baroclinic shedahwo lateral
shear. So we could express this as a baroclinic mode in which:

(k3 + F)or = Foppy (249)

(the Laplacian is zero because the mode is constantandy). Making
no other assumptions about scales, we have:

d
£<E1 +E2+E3) — 0

d
ﬁ(l{%El + FEy+ (k3 + F)E3) =0 (250)
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Using the first equation, we can eliminat&, /dt from the enstrophy equa-
tion. This yields:

d

a(m%El — FE, — FE3+ (kj + F)E3) =0 (251)
or:
d d
T Ey = < ((F = k1) E) (252)

This implies that the energy in both the other modes can as&én time
if:

ki < F (253)

In other words, if the barotropic wave is larger than the deftion radius,
it can take energy from the primary baroclinic wave. Thisrsgsely the
short-wave cut-off that we found when we studied the Eadyeheanly
the long waves can be unstable.

But more than that, the barotropic wave can be much smaker tine
primary baroclinic wave. Recall that the most unstable wawhe Eady
problem has a scale somewhat larger than the deformatiausraBuch a
triad isnon-local because there is a large separation in scales between the
triad members.

We can summarize the results by using a schematic diagran 38,
which is based on Salmon’s (1980). The energy at small scalssades
to larger scales in both the baroclinic and barotropic metebcal inter-
actions. Baroclinic modes with scales larger than the dedtion radius
are unstable and transfer energy non-locally to the basmtraodes. Then
energy eventually cascades locally to large scales in traroaic mode.
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Non-local Local

Figure 32: A idealized diagram indicating the tendenciaseioergetic transfer in the
two layer model. The upper line represents the barocliniderand the lower line the
barotropic mode. Based on a figure of Salmon’s (1980).

An important point here is that baroclinic instability inghurbulence
context is simply a non-local triad interaction. This metre the transfer
to the barotropic mode igenericfor large scale baroclinic modes. Thus,
for example, a large scale baroclinic Rossby wave can beablestoo
(LaCasce and Pedlosky, 2004; Isachsen et al., 2008). Thare need
to have a stationary flow, as employed in the Eady, CharneyParigs

models.

9 Turbulent Diffusion

Now we will focus on how turbulent flows advect passive tracand in
particular what happens with particles and pairs of pasiclin section
(7.6), we examined how the spectrum of passive tracer w&iavould
look in a given turbulent inertial range. In that case, wated the tracer
as a continuous Eulerian field, like vorticity. But now we Make a more

Lagrangian view.
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9.1 Single particle dispersion
9.1.1 Random walk

The essence of single particle motion is captured inréimelom walkor
“drunkard’s walk” problem. This is the basis of “Brownian tiam”, as
studied by Einstein (1905). Consider an idealized drunkger Imagine
he takes uniform steps, of length But because he is drunk, each step is
randomly oriented and uncorrelated with the previous stég.can write
his position as:

—

D, =D, 145 (254)

wheres'is the random displacement. So the squared displacemelné of t
drunk is:

|Dnl* = |Dya|* + 8° + Dy - § (255)

wheres is the magnitude of. Now, if we have a party of drunks, each
moving in this way, we can average the mean square displattdorghe
whole group. If you think of a “cloud” of drunks, the root meaquare
displacement is proportional to the cloud’s radius. Averggwe get:

< |Dp|? >=< |Dp_1]* > +5° (256)

where the brackets indicate an average over all the drurtkes ciloss cor-
relation term vanishes because the drunks’ steps are @hei@a with their
previous steps. Now, assuming the drunks all start at the gdutero dis-

placement, we have:

< |Dif >=0+s (257)
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and

< |Dyf? >= 257 (258)

SO

< |D,|? >= ns’ (259)

Thus the root mean square displacement is:

(< |Dul? >)% = /ns (260)

If the drunks take steps at uniform time, e.g. one step p@amskt¢hen the
rms displacement grows @52 power. This is a characteristic feature of
Brownian motion. We will see later that single particle dispon behaves

the same way, when the particle motion is uncorrelated.
9.1.2 Diffusion

Now we will show that a diffusing cloud, with a constant d#futy, has a
radius which also increasesia$ power. The equation for a passive tracer
was given in (127). Now we will consider what happens to tlaedr in
the absence of advection, so that the equation is:

0

aC = kV2C (261)

We define the variance of the cloud as:

e Jr*CdA
- JCdA
The variance is essentially the radius squared of the clotrdaer. We are

(262)

interested in how this changes in time, |§ < r? >. We can obtain an
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equation for this by multiplying the tracer equation #¥yand integrating
over space. Assuming that the spreading is isotropic (theesa every
direction), we have (using cylindrical coordinates):

0 rx 00 10 0
E/O TQCTCZTZ/O 7"2&;5(7"%0) rdr

00 @ 00
= —25/0 TQEC dr = 45/0 C'rdr (263)
after using integration by parts. Thus:

0 ) o [r*CdA

— =———=4 264
o~ T ot joaa " (264)

Integrating this in time, we get:
<r?>=4xt (265)

So the rms radius of the cloud increases'as just as in a random walk.
So arandom walk is diffusive processDrunks drifting from a pub behave
as a passive tracer, diffusing with a constant diffusivitje often call the
time rate of change of the variance the “diffusivity” whenatieg with
particles.

An alternate way of deriving the same result is to use thetes@ation
to (261). Assume that the initial tracer distribution is dtaléunction at
the origin (as if all the the drunks are initially at a pubrat 0). One can
show that the solution to (261) is given by:

e (266)
N 27mt€xp 4Kt

The prefactor guarantees that:
/(;”Ordr:1 (267)
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We can use this solution to find the variance of the cloud. €kalt is:

< r? >=4xt (268)
9.1.3 Single particle dispersion

We've seen that randomly walking particles are essentdiffjusing in
space. Taylor (1921) formalized this, in the following way.
Imagine we have a collection of particles. We can define tfiesivity
(in the z-direction) of the particle cloud by:
1d

K=5-< X2 >=<u(t)X(t) > (269)

The factor ofl /2 is traditional, and cancels the other two when taking the
derivative. Realizing that the displacement at tiime just the integral of

the velocity, we can rewrite this as:

K=<u(t) [ u()dt' >= [ <utyu(t)> df  (270)

Now if the velocity field isstationary(not changing in time), we can write:

K =v* [ R(t) dt (271)
where
R(t) = % < u(0)u(t) > (272)

and where/? is the velocity variance for the particles. Note that we can
substituteu(0) for u(t) because of stationarity (the velocity on average is
the same at any time).
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The functionR(t) is the normalized integral of the velociautocorrel-
ation. For the random walk, the velocity is uncorrelated at eaep.sBut
generally the velocity is correlated for some period.

Taylor (1921) noticed that the diffusivity should behave §ame in the
limits of short and long times. At short times, the autoclatien can be
expanded in a Taylor series:

dR
R(t)=1+—"t+ . (273)

Ast — 0then,R — 1 (the limit is one because we normalized by the
velocity variancey?). Thus we have:

limy_o K = %t (274)

Thus the dispersionr; X2 >, increases ag.

At long times, the behavior is also similar for diverse flowssuming
that the velocity eventually becomes decorrelated, we eéxpe integral
of the autocorrelation to converge:

1

Ty =—
2

OOO R(t")dt' = const. (275)

The integral has units of time and is known as tlagrangian integral
time 77 gives an indication of the predictability of the particle toa, i.e.
how long the velocity is correlated with itself. Thus thefdivity is:

limy_oo K = V?T}, (276)

and this is constant. We say that the systewhffsisive and hence can be
modeled using a diffusion-type equation. Furthermoregdibpersion will
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Increase as, exactly as the mean square radius increases under a random
walk.

Thus an implication of Taylor's work is that we can represerany
particle dispersion problems as a random walk. We can, fetance,
model ash spreading from a volcano as a mixture of advecksndut
here, but important) and a random walk. This opens the péssitor
stochastic modelfor pollution spreading.

But there is a downside as well. Since single particle matias such
generic limits, it is not so useful when one is trying to digtiish different
types of flow. Say for example you would like to know whethearthis an
energy or enstrophy cascade occurring. In both cases, rigke article
diffusivity should asymptote to a constant. We return ts #tiortly.

9.1.4 The vortex merger problem

In section (7.5), we showed that freely evolving 2-D turlmge can be
viewed as a merger process between discrete vortices. \@dEnet al.
(1991) constructed a theory in which the important flow stas, like the
enstrophy, could be deduced from the vortex population. ditlg un-
known in their theory was the decay rate of the vortex dengitiere we
show that can be accounted in terms of the dispersion of thizes?.
The numerical experiment in this case was a freely-evolviB tur-
bulence simulation in a periodic domain, from random ihitianditions.
Vortices emerge at the early times and begin merging. At spanet,
particles were deployed in the flow, and the dispersion optrécles and
vortices was compared (left panel of Fig. 33). We see that aftshort
time, the dispersion for vortices and particles is staialy indistinguish-

12The section follows LaCasce (2008)
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able. That implies that the vortices are dispersing exdisiythe passive
particles. Note too that the dispersion is increasaggerthat diffusively.
A best fit of the data suggests:

< X?>x t'? (277)

This implies that the diffusivity increases #s. Such dispersion is called
“super-diffusive”, since the spreading is greater thaniaralom walk.

As the vortex dispersion matches the particles’, we carktbfra dif-
fusivity to characterize the vortex spreading. We can sttedaliffusivity
thus:

1d
D = 57 < X?>=<uX >x UL (278)

whereU is the mean vortex velocity anbdis the typical spacing between
vortices. Now if we have a vortex density pfthen the typical spacing is:

Lo p 12 (279)

The velocity on the other hand scales as the square root tftélesnergy,
given in (119):

U x EY? « p'/2¢, b? (280)

So the diffusivity scales as:

D x UL x p"?¢.0%p > x T (281)

where

I' = ¢nb? (282)
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Is the mean vortegirculation. So the diffusivity and the circulation should
behave the same way. In the experiment shown in the left periely.
(??), the diffusivity scales as:

1d
D = 57 < X2 >oc 03 (283)

So the circulation, if this argument is correct, should athé same way.

Shown in the right panel of Fig. (33) are the exponentspbtained
from a suite of experiments with different initial condii® and differ-
ent types of small scale damping. We see that the exponerdstaebe
between 0.2-0.4, for both the diffusivity and circulatiday most of the

experiments. The average value for the exponent is roughiyl /3.
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Figure 33: The dispersion for vortices (solid curve) andspeasparticles (dashed line) ina
2-D turbulence simulation (left panel). Shown in the rigahpl are the growth exponents,
«, from various runs for the vortex diffusivity and the meamtea circulation. The value
is usually between 0.2-0.4. From LaCasce (2008).

If we know the scaling for the circulation, we can find the decate
for the density. This is because the total energy is condese:

E = pC*b* = pI'* = const. (284)
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Thus:

pox 72 o t72/3 (285)

This is close to the valué),7, inferred by McWilliams (1990) and Weiss
and McWilliams (1993) (sec. 7.5). In other simulations, welfa value of
2/3 (Fig. 34), using a range of different initial conditions.

10°
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Time

Figure 34: Vortex density from 4 experiments with differemtial conditions. The lines
indicate a decay af %/%. From LaCasce (2008).

The results shown in Fig. (33) are from numerical experimevith
very weak lateral damping. Increasing the damping acdeletae vortex
decay, because lateral diffusion causes the vortices tadpout, hence
increasing their chance for collisions. But nevertheldéss fruitful to
think of vortex merger as a dispersion problem.

Note though that this problem has not been completely solvsid
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we've done is to shift the unknown. Previously, we didn’t nehat set
the density decay. Now we know that, but we don’t know whag¢deines
the dispersion exponent. So there is still work to be done.

9.2 Two particle dispersion

As noted, the single particle dispersion exhibits geneeicdvior and so
Is not terribly useful for differentiating different typexd flow. Better in
this regard is the dispersion betwe®ro particles, called “relative disper-
sion”. Rather than study how a particle drifts from its stayiocation, we
see how two particles separate in time. An advantage is\wwaparticle
dispersion is unaffected by a constant background fldwyhereas single
particle dispersion is.
Two particle dispersion is:

< |fl(t)—f2(t)|2 >=< |f1(t>‘2 >+ < ‘fg(t)‘Q > -2 < fl'fg > (286)

If the flow is homogeneouyshen:

< |Z1()|? >=< |To(t)|? >=< 2*(t) > (287)

where< z2(t) is the single particle dispersion. Thus:

<|T - TP >=2< 2> 2< T - Ty > (288)
Now if the two particles are moving independently of one aeqti.e.
if their velocities are uncorrelated, the cross correfaterm will be zero.
This is what typically happens when the particles are fartagden two
particle dispersion is like single particle dispersionwk define the two
particle diffusivity, then in this limit we have:
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1d .
Ky =5 < |7, — To|* >= 2K, (289)

where K is the single particle diffusivity.

But what happens when the particle motiscorrelated? This is where
relative dispersion is interesting. Two particles are maag the velocit-
ies at the points in space and time where the particles age 85). Thus
the difference between the particle velocities is equahé&difference in
Eulerian velocities at that time and location. Now if the flmdomogen-
eous, the mean square velocity difference for particleb wiseparation
Is the same as the mean square velocity difference for anpamws in the
flow also with a separation This velocity difference is sometimes called
the “second order structure function”.

In turbulence, this scales with energy or enstrophy transte, just as
the spectrum does. So in the energy cascade, we have:

< |ty — Wo]? >ox er?/? (290)

The two thirds can be deduced from dimensional grouad®s units of
m?/sec® and the square velocity difference has unitsiof/sec?. This
relation is known as “Kolmogorov's 2/3 Law”.

u;

Figure 35: Two particles moving in a flow.
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In the enstrophy range, we find:

< |ﬁ1 — ﬁ2|2 >X 777“2 (291)
So the velocity difference increases more rapidly with s&f@n in the
enstrophy range.

We can deduce corresponding relations for the relativeiglifity. In
the energy range, the diffusivity scales as:

Ky o /3473 (292)

because the diffusivity has units of /sec. This relation was first noticed
by Richardson (1926). The connection to Kolmogorov’s theeas made
by Obukhov (1941) and Batchelor (1952). Notice that thisliegp

d d
7 < (1 — x2)2 >= 7 < 12 >oc €l/3p4/3 (293)
If we integrate this, we find that:
< r? > et (294)

Integrating (293) is not strictly correct, because the LRM®Iives the mean
square separation, not the separation. But from a scalirgpeetive, this
Is reasonable. The cubic growth is now known as “Richardsbaw”.

In the enstrophy range, dimensional arguments suggest:

% <1 >0 n'3r? (295)

Integrating this in time, we get:

< r? > exp(n'/3t) (296)
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This is sometimes called “Lin’s Law”, after Lin (1972). Sgos@ations in
the enstrophy range grow exponentially in time.

These results can be compared with those that we derivedddigpab-
ility, in sec. (7.7). In the enstrophy range, the scale ofatrer was found
to increase asxzp(n'/*t)—exactly as the separation in particles increases
here. Similarly, in the energy range we found:

Kkl
T = . e BT dk ~ 6_1/3&_2/3|’,§(1) ~ 6_1/3:‘{62/3 (297)

This implies that the length scale scales as:

LY o 3T (298)

asLy = 27 /ky. Thus:

L} o €T (299)

The predictability relations are thus identical in formlte two particle
dispersion relations. This is not coincidental. In facto tparticle disper-
sion is actually a measure of Lagrangian predictabilitywédf change the
initial condition of a particle slightly, the growth of therer is determined
by relative dispersion.

How do these predictions compare to observations? Mordlaraheveque
(1974) calculated pair statistics for pairs of balloonsldggd in the lower
stratosphere in the Southern Hemisphere during the Fre@tlEExper-
iment. The dispersion is seen to grow exponentially in tiché;ing the
first 6 days and up to scales of 1000-2000 km. Thereafterytogarticle
dispersion increases linearly in time. From the turbulgrerspective, we
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would interpret this as evidence of an enstrophy cascadeatdssbelow
1000 km, and random, uncorrelated motion at larger scales.

SEPARATION D
2000 |- tkm)
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Figure 36: Relative dispersion for pairs of balloons frora BOLE experiment in the
Southern Hemisphere. From Morel and Larcheveque (1974).

It is interesting to compare this with the Nastrom and Ga@8%). en-
ergy spectrum, in Fig. (22). There we saw evidence of Aspectrum at
scales below roughly 2000 km. So the exponential growth sessmwould
be consistent. However, the energy spectrum also suggests’arange
at smaller scales. This would producé @rowth in the dispersion, which
we don’t see. However, it's possible that is occurring beld® km, the
smallest scale sampled by the balloons. Er-El and PeskBiljlxamined
another set of balloons, also from the Southern Hemisphaecpbtained
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exponential growth at scales below 1000 km.

Two results from the ocean are shown in Fig. (37). Both ine@lurface
buoys, deployed in the Gulf of Mexico during the SCULP exmemt and
in the Nordic Seas during the POLEWARD experiment. In bogesawe
see indications of exponential spreading at the early tidmethe Gulf, the
growth occurs below scales 2000 = 45 km, and in the Nordic Seas it
happens below the 10 km scale. In the Gulf case, the dispeasiarge
scales is super-diffusive. In the Nordic Seas case, thedigm increases
ast®, up to 100 km, then grows diffusively thereafter. So it isgibke there
IS an inverse cascade happening between 10-100 km in therreakirdic
Seas.
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Figure 37: Relative dispersion for pairs of surface drdtierthe Gulf of Mexico deployed
during the SCULP experiment (left panel) and in the NordiasS#uring the POLEWARD
campaign. Note the dispersion on the left is plotted on a degarithmic plot and that
on the right is on a logarithmic plot. From LaCasce and Ohim@®74) and Koszalka et
al. (2009).

An interesting point is that 1000 km is comparable to the drédion
radius in the atmosphere, and 45 km is similar to the defoamaadius in
the Gulf of Mexico. So both of these studies suggest expaalegrowth
below the deformation radius. This is what one would expdaaioclinic
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instability were causing a transfer of energy and enstrdphkie deform-
ation radius, and if enstrophy were cascading to smalldesca

Following Richardson (1926), one can write an equation tiergrob-
ability of pair separations. It is possible to solve this &iun and then
compare the predicted probabilities with the observedildigions of pair
separations for balloons or drifters. The details can badan LaCasce
(2010).
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