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. GOVERNING EQUATIONS FOR THE OCEAN
1.1 Momentum and mass conservation

We study motion in an ocean with dengityThe ocean is rotating about thaxis
with constant angular velocit@sing, whereg is the latitude an@ is the angular

velocity of the earth (assumed constant here) hearore, X, y) are horizontal

coordinate axes along the undisturbed sea surackthez-axis is directed upwards.
The respective unit vectors afe j,k) . The position of the free surface is given
byz=n(x,y,t), wherer is referred to as the surface elevation, isdime. The
atmospheric pressure at the surface is denotdé, pyy,t . The bottom topography

does not vary with time, and is givenby -H X ¥ ; see the sketch in Fig. 1.1.
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Fig 1.1Definition sketch.

The velocity in the fluid is/ = (u,v,w )and the pressure is The momentum
equation in a frame of reference fixed to the eeattthen be written

ﬂsa_"wu]]v:—fﬁxv—imp—ng+lf(\7), (1.1.1)
dt ot P



whereJ=7d/dx+ jd/dy +ka/dzis the gradient operator. Furthermagés the
acceleration due to gravity, anfd= 2Qsing is the Coriolis parameter. In (1.1.1) we
have neglected the horizontal component of thedllstiorce, the tidal force, and the
effect of the centrifugal force (due to the earttw&ation) on the apparent gravity. If
we let they-axis point northwardsf is only a function of.. We may then write

approximately that

df
f=1f + — =f + By, 1.1.2
0 ( dyjoy o tBY ( )
where
f, = 2Qsing,,
1d . 2Q (1.1.3)
==——(2Q =— )
B Rd¢( sing),, ~ cosg,

This is called thdeta-planeapproximation.
We have denoted the friction force on a fluid jséetby F @) in (1.1.1). It can

take various forms depending on the flow conditidra laminar flow of an

incompressible Newtonian fluid it becomes

2 2 2
FE=u 02+62+02 v =u0%, (1.1.4)
ox~ o0y° 0z

wherevis themolecularviscosity, andd® =9% /x> + 0%/ dy* + 0/ 0z°is the Laplace
operator. In cases when a large scale mean motmur®in a turbulent environment,
we may take

F =03V, (1.1.5)
0° 9° 9°

where 03 = A% —— + AV —— + AD —_  HereAW, A%, AP are theurbulenteddy

0x oy 0z

viscosity coefficients in the-, y-, andz-directions respectively (or for shoegldy



viscositied. The eddy viscositiea®, A¥ andA® are generally different, but they are
all much larger than th@olecularviscosity. Usually we have

AY ~ AV > AP S>> (1.1.6)
The eddy viscosities can vary in time and spacewelhere assume that they are
constants. In some cases where it is importamtttoduce frictional damping without
complicated mathematics, we may take

F=-rv, (1.1.7)

wherer is a constant friction coefficient. This last versis called Rayleigh friction,
and is formally similar to frictional damping inp@rous medium (Darcy friction).
Finally, in applications where one studies theigaly integrated fluid properties, the
horizontal friction force components are often @gsed in terms of the horizontal

frictional shear stressas”, 7 as

(x) (y)
F(X) :i r , F(y) :i T_ , (1.1.8)
az\ p 0z\ p

The conservation of mass for a fluid particle barexpressed mathematically as

DW:—E(a—pwmpjs—i% (1.1.9)
p\ ot p dt

As long as we do not consider sound waves, we eglect the small variation of
density following a fluid particle. The conservatiof mass then reduces to

Olv=0. (1.1.10)
This relation (the continuity equation) actuallypexsses the conservation of volume.
It is of course exact for a fluid of constant dépghomogeneous incompressible
fluid). However, we shall use (1.1.10) throughdus text for all oceanic applications.

Since the free surface is a material surfacekitematic boundary condition can
be written as



%(z—/])zo, z=n(x,y,t), (1.1.11)
or, equivalently
Dn
w=—=, z=7. 12)1
ot n (1.2)

The kinematic boundary condition at the bottom bee®
D
E(H H)=0, z=-H(xYy), (1.1.13)

or

w=-vVI[OH z=-H. (1.1.14)

1.2 Equations for the Lagrangian volume transport
By integrating the continuity equatidi[v = 0 the vertical, and applying the

boundary conditions (1.1.12) and (1.1.14), we Brdctly

a7 a7
n,=-— | uwz-— | wz, (1.2.1
0X =, oy -,

where a subscript denotes partial differentiatitimoughout this text we will
alternate between writing partial derivatives iit,fand (for economic reasons) as
subscripts. The integrals in (1.2.1) are volumegparts per unit length in the and
y-direction, respectively. Since we here integra®veen material surfaces (the

bottom and the free surface) theses fluxes aredgeangianvolume fluxes:

1

U = J-LdZ,

B (€)%
V, = j\dz

-H

This means that (1.2.2) captures the total fluitwodl particles through vertical
planes. Hence, (1.2.1) becomes

n=-U,-V,. (1.p.3



In the momentum equations (1.1.1) we apply thesBmesq approximation, i.e.
we assume that the density changes are only immgont@onnection with the action
of gravity. This means that we can tgke= p, , where p, is a constant reference
density, in the horizontal components of (1.1.@)edrating the acceleration term in

(1.1.1), using the boundary conditions, we findatlya

j(u +V [Du)dz= Uu+ J'uzdz+—J-vudz,

-H

: (1.2.4)
j(v +vJYdz=V, +— juvdz+— jv dz
Assuming thap = P (Xx,y,t), z=7 , we obtain from the horizontal pressure terms
in (1.1.1)

n

1" _1( o
-— [ pdz= ——(&_J;pdz— Py, - PBHXJ,

IOI‘ -H IOI‘
\ ) (1.2.5)
1 1[0
-— | p,dz=——| — | pdz- Py, - B,H, |,
o L op (ay_jH o y]

where we have defined the bottom presye p(—H) . We then may write for the

horizontal fluxes

n n
U,-fV =- jpdz+ L YT J' F®dz- j utdz- 2 [vudz
p 6>< PR X oy
(1.2.6)
_ 10 R .R T t 0
VLt+fUL————jpdz+—ny+—Hy+ j F dz——juvdz——j\f'dz
P: 0y 1, P A H 0X 3, oy

In later applications we shall simplify these exegtiations (exact under the

Boussinesq approximation), and find them very usefu

1.3 Shallow water dynamics



If the horizontal length scale of the motion isywaruch larger than the vertical length
scale (which never can be larger than the oceatihépe main balance in the
vertical momentum equation (1.1.1) is hydrostatec,

p,=—09. (1.3.1)
This is the basis for what we denoteshallow-waterdynamics. It means, when we
return to the vertical component in (1.1.1), tlnet vertical acceleratiobw/dt and the
friction force must be so small that they do ndiceably alter the hydrostatic
pressure distribution. A more quantitative discossif this problem is found in Sec.

2.4. In this case we can write the pressure
n
p:gjp(x y 2, dZ + Py(x, y,t). (1.3.2)

For a homogeneous ocean, the density is conétgn . Then

P=-p9(z—7)+Fs. (BB.
If we disregard the effect of friction for this eashe horizontal components of (1.1.1)

can thus be written

Du 1
—-fv=-gn,-—P, 1.8.4
dt g”x ,00 554 ( B
V. tu=-gp,-1p, (1.3.5)
dt b
We realize that the right-hand sides of (1.3.4) @n8.5) are independent nfBy
utilizing thatv = Dy/dt andf = fp + £y, (1.3.4) can be written
D 1 1
—|lu- f —— 2 | =_ -—- P 1.3.6
dt[ Y=o BY j a7, 0, (1.3.6)

From (1.3.6) it follows thaD(u — f,y— By*/2)/dt is independent of Thus, this is

also true for(u— f,y - By* /2) and thereby also fay, if u andv were independent of
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z at timet = 0. Similarly, from (1.3.5) we find thatis independent . We can

accordingly write

us= u(x,y,t),} (1.3.7)

V= V(X Y,t).
Furthermore, it now follows from (1.1.10) thatis independent of Hence, by
integrating in the vertical:
w=-(u,+v,)z+Cx§t,) (1.3.8)
The functionC is obtained by applying the boundary conditiori (14) at the ocean
bottom. The vertical velocity can thus be written
w=-(u, +v, )(z+H)-uH, -vH, . (1.3.9

Sinceu andv here are independentnf(1.3.4) and (1.3.5) reduce to

u, +uu +vu, - fv=-gn, —%PSX, (1.3.30

Vv, Huy, +vv, + fu=-gn, —%Psy, (1.3.11)

From (1.2.3) we easily obtain

1, +(u(H +n)), +(v(H +1)), =0. (1.3.12)
To solve this set of equations we require threg@inbnditions, e.g. the distribution
of u, v, andz in space at time= 0. If the fluid is limited by lateral boundariésalls),
we must in addition ensure that the solutions fyatie requirements of no flow
through impermeable walls. We repeat that the wglaf (1.3.10)-(1.3.12) rest on (i):
hydrostatic balance in the vertical direction (khatwater assumption), (ii): constant

density, and (iii): no friction.

1.4 Conservation of potential vorticity
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We return to the inviscid, homogeneous, shallowewatean. For this case we may
derive a very powerful theorem governing the po#norticity. First, we define the
vertical component of thelative vorticity in our coordinate system by

{=v,~u,. (1.4.1)
In addition, every particle in this coordinate gystpossessespanetaryvorticity f,
arising from solid body rotation with angular vetgcQsing . Hence, theabsolute
vertical vorticity for a particle becomédst+ ¢ . We shall derive an equation for the
absolute vorticity. It is obtained by differentiagi the equations (1.3.10) and (1.3.11)

by-0/0y andd/ox, respectively, and then add the resulting equoatio

Mathematically, this means to operate the curlhenviector equation to eliminate the

gradient terms. Sindes independent of time, we find that

D

E(f +{)=-(f +{)(u, +v,). (1.4.2)
By using thaH is independent of time (1.3.12) can be written

D

E(H +7)=—(H +n)(u, +v,). (1.4.3)

Here,H + 77 is the height of a vertical fluid column. We defithepotential vorticity

Q by

(1.4.4)

By eliminating the horizontal divergence betweed @) and (1.4.3), we find f@

that

DQ_
=0, (1.4.5)

This equation expresses the fact that a given nahtagitical fluid column always

moves in such a way that its potential vorticitgaserved.
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Alternatively, we can apply Kelvin’s circulatiohgorem for an inviscid fluid to
derive this important result. Kelvin's theorem stathat the circulation of the
absolute velocity around a closed material curiv@ggs consisting of the same fluid
particles) is conserved. For a material curva the horizontal plane, Kelvin’'s and

Stokes’ theorems yield

abs.

V.. [OF = [[k QO %V, )do = const, (1.4.6)
fuior =

wheregis the area inside. Furthermore, in the surface integral:
KQOxV,)=f+{. (3.
When the surface areain (1.4.6) approaches zero, we have
(f +{)do = const. (1.4.8)
In addition, the mass of a vertical fluid columrtiwWbasedo must be conserved, and
hence
P(H +n)do = const. (1.4.9)
This is valid for all times, since a vertical fluudlumn will remain vertical; see
(2.3.7). In our case the fluid is homogeneous andmpressible, i.eis the same for
all particles. Thus, by eliminatingo between (1.4.8) and (1.4.9), we find as before

that

=const, (1.4.10)

or, equivalently,DQ/dt= 0
In the ocean we usually have thdt4<f and jj| <<H. For stationary flow,
assuming thatH| >> [1n| andfOH| >> H [04], (1.4.5) yields approximately that
viO(f/H)=0. 411)

On anf-plane, this equation reduces to
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VIOH =0. 412)
Accordingly, the flow in this case follows the Imef constanH (i.e. the bottom
contours). This phenomenon is caltegographic steeringOn a beta-plane the flow

will follow the contours of the functiorf /H ; see (1.4.11).

1.5 The storm surge equations

From experience we know that when it comes to caimguhe change of sea level
due to atmospheric wind and pressure fields, weapaty the hydrostatic
approximation (1.3.2), and neglect the densityataomn in the vertical. For such
motion, referred to astorm surgethe water appears to be quasi-homogeneous, and
we can use a constant reference density everywRerthermore, the horizontal
velocities are fairly small, which can justify theglect of the nonlinear convective

acceleration terms on the right-hand side of ().Z'Bis linearization is also

consistent with the assumption t]vy?t« H . The volume fluxes in this linear problem

are the Eulerian fluxes given by
0 0
Uc=[udz V= [vdz. (1.5.1)
-H -H

Utilizing a friction force of the type (1.1.8), vilken find for the storm surge problem:
Ug = Ve =—gHn, —HP, /1 p, +1 1 p, -1 | p,,

Ve, U ==GH, ~HRy 9, + 1 =1l (15.2)

r r
= _(U Ex +VEy)'
Here r{°,r{") are the wind stresses along the mean posititineobcean

surfacez= Qand ¢ {°,r{’) are the frictional stresses at the bottoa-H x y(.,For

operational use, the surface pressure gradientsbsaeed from weather
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analyses/prognoses, and the wind stresses ardyuslaled to the wind speed

(uy,Vye) at 10 m height through
Is= IOaCD|\710|\710 : 3B)
Here p, is the density of air, and, is a drag coefficient which is typically in the

rangelx10~° -3x107 (higher values for stronger winds). The bottom ivietis more
difficult to model. Sometimes a linear frictiontime fluxes is applied, i.e.

Ty =0 KV, (1.5.4)
whereK is a constant bottom friction coefficient. Moreduently, friction laws that
are quadratic in the mean velocity are used abotm.

It is important to realize that (1.5.2) is a linead set of equations for the
Eulerian volume fluxes (1.5.1). Unlike the nonlineagrangian fluxes (1.2.2), they
do not contain any mean wave momentum. Hence ¢ sturge equations only
yield the surface elevation and mean currents ieddny wind stress and atmospheric
pressure gradients along the sea surface. In Ghdpte return to the intriguing

problem of mean currents induced by surface wavése ocean.

[I. ADJUSTMENT UNDER GRAVITY IN A HOMOGENEOUS, NON-

ROTATING OCEAN

2.1 Linear waves in an ocean of finite depth

For a homogeneous fluid at rest, the surface igtotal. If we initially establish a
surface elevation which deviates from the horizhtite subsequent motion will be in
the form of surface gravity waves. Since the dgrithe ocean is about one
thousand times larger than the density of the gbmere, we can neglect the effect of

the air on the oceanic wave motion. In this chapteconsider surface gravity waves
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with short periods much shorter than the inertaiqu 272/ f (~16 hrs at mid

latitude). It is obvious that the earth’s rotatigil have very little effect on the orbital
motion in such waves, so we can neglect it. Fombenent we also neglect the effect
of friction on the wave motion. This is motivated thg fact that wind-generated
waves in the open ocean (swell) may propagateundteds of kilometres without

being severely dampé&drrom (1.1.1) the momentum equation now reduces to

=-—[p-gk, (2.1.1)

where p, is the constant density. For this case we hava #elvin’s theorem for the

velocity circulation along a material closed cupe

D.lQ_

t§\7mr:o. 12)
y

If the velocity circulation initially is zero, whitwe here assume, it will remain zero

for all times, i.e.

jvmr:o. 2.1.3)
/4

Then the velocity can be derived from a potengial.e.

<

=0¢, (2.1.4)
or
u=g,v=¢,w=4¢,. (2.1.5)
Accordingly, from the continuity equation [V = We obtain
D%p= Q (2.1.6)

In general we have that

! However, we will see later on that the effectridtion as well as the Coriolis force will be impant
for determining the nonlinear mean current (th&)dnduced by surface waves.
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D(%sz =V [V +V x (0 xV) . (2.1.7)

Since the last term here (the vorticity) is zeanir(2.1.4), we realize that (2.1.1) can

be written

Y 1 2 _
O —+g@+=(O +0gz|=0. 2.1.8
Pearioo el 219

When integrating this equation in space, the iratgn constant can be set equal to

zero. Hence

1
ﬁz_W_E(D@Z_ gz. (2.1.9)
b

This is the Euler equation for the pressure.
If the ocean bed is flat, which we assume here sandted atz = —H , we must

have at the ocean bottom
W:%ZO, z=-H. (2.1.10)

This constitutes the kinematic boundary conditibtha ocean bottom.

In this chapter we consider waves wstihallamplitudes. As a first
approximation we neglect terms in the governinga¢iqus that are proportional to
the square of the wave amplitude, i.e.limearizeour equations. In this

approximation, the kinematic boundary conditioth&t surface becomes

9 _\w=9¢ ,_o (2.1.11)

ot 0z

We consider a wave solution in the form of a comleurier component
n=Aexp((kx—at .)) (2.1.12)

From (2.1.6), (2.1.10), and (2.1.11) we then obtain

__ icAcoshk(z+H)
ksinh(kH)

expi(kx— at). (2.1.13)
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Hence, the real parts of the velocities in the nasn be written

_ aAcoshk(z+H))

- coskx— at),
sinh(H) (2.1.14)
W= aAsirllh(k(z+ H)) sin(kx— ). o
sinh(kH)

For the real part of the pressure we find fromlithearized version of (2.1.9) that

p _ &’Acoshk(z+H))

-at) - gz. 2.1.15
foN ksinhkH) costox—at) - gz ( )

For surface waves in the ocean we can neglecfftbet ef the air above the water.

This means that we can tae= a0the surface. Hence, from the dynamic boundary

condition p(n7) = O, the linearized version of (2.1.9) yields

o’ Acoshk(n7 + H))
gksinh(kH)

1 = Acoskx— at) = cosfkx—at) . (2.1.16)

Utilizing that 7| << H , we obtain for the frequency
o’ = gktanhkH). (2.1.17)

For waves propagating in the positix«direction, we find for the phase speed that

c= (2.1.18)

Q:(gA tanh@7H //])j”z
K 27T '

It is readily seen thatincreases monotonically with increasing wavelen§tich
waves are called dispersive waves (positive digp@rsHence, for an ensemble of
waves with various wavelengths generated at ainddeation, the longer waves will
move faster, and disappear from the generation @res is like ocean swell escaping
from the storm centre. The extreme cases of (21 aE8(a): Deep-water waves

(kH >>1). Then

w /‘ 1/2
Csz[g_j . (2.1.19)
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(b): Waves in shallow watelk << )1Then
c=(gH)"?. (20)
To first order in wave amplitude we find that idiual fluid particles in surface
wave motion moves in closed paths. If the Lagramg@ordinates of a single particle
is (x_,z), we can write

X _yo %z, (2.1.21)
ot ot

whereu andw are given by (2.1.14). Defining

_ Acoshk(z+H)) _ Asinh(k(z+ H))

R sinhkH) ' R sinhkH) (2.1.22)
we find from (2.1.21) that
O =X, (2 =) (2.1.23)
R R;

We realize that the particle path is elliptic wedntre in(x,,z, } The major half axis
is R, and the minor half axis IR,. They both decrease with depth. For infinitely

deep waterR - R,, and the particles move in circles. We shall se€hapter V that

when we consider nonlinear wave motion, the paripeth is not closed. Each
particle has a forward spiralling motion which gwése to a mean forward drift of
particles. This means that waves do induce a cuime¢he medium through which

they propagate.

2.2 Wave groups and group velocity
Up to now we have considered one single wave coergoif we have two wave
components the same amplitude, but with slightffedeént wave numbers and

frequencies, they can be written in complex form as
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0. =% Aexpi{(k + AK)X - (w+ A B,
2 2.2.1)
n. = % Aexpi{(k - AK)X - (- A B},

where|Ak/K <<1, |Aw/a}<<1. Each of the two components above is a solution to

our wave problem. Since we work with linear theaigo the sum, +7_ of the two

components becomes a solution. This superpositiarbe written

n,+n.= % Aexpi(kx - at)[expi (Akx— Aat) + exp(i(Akx - Aat))]
A (2.2.2)
= AcosAk(x —A—fjtjexpi(kx— at).

We denote the real part of (2.2.2)pyrepresenting the physical solution. We then

n= Aco{Ak[x—i—ftnco{k[x —%tj} : (2.2.3)

This shows thaty is an amplitude-modulated wave train consistingesfes of wave

find

groups, as shown in Fig. 2.1, where we have plojted as a function ox for

Ak/k =0.1.

Fig. 2.1Sketch of wave groups.
The individual waves in the group will propagatéhnthe ordinary phase speed

c=«/k, while the group itself will propagate with theogp velocityc, = Aw/Ak .
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In the limit whenAk - Q the group velocity becomes the derivative offtequency
with respect to the wave number, i.e.

da
=—, 2.2.4
% = gk ( )

Sincea =kc, andk =27/ A, we note that (2.2.4) can be written as

cg:c—)la . 2AB)

So, if the phase speed increases with increasingleagth (normal dispersion), then

¢, <c. If the phase speed is independent of the waviigngn-dispersive waves),
we have that, =c.

It is a simple exercise to show from (2.1.17) ah@.4) that the general relation

between the group velocity and the phase velooitgdirface waves becomes

G _1f1, 2kH | (2.2.6)
c 2 sinh2kH)

2.3 The motion of a pulse in a shallow channel

In the previous analysis we have used the conddpaurier components to describe
the wave form. However for shallow-water waves,chirare non-dispersive, we can
easily derive solutions for arbitrary surface diggiments. We assume small
disturbances from the state of equilibrium in ticean, two-dimensional motiod/fy
= 0,v = 0), and constant depth. For linearized, shalleater waves in thg-direction

(2.1.1) reduces to

U, =-97,, } 32)

n, =—Hu,.
Eliminating the horizontal velocity, we find

,7tt - gH”xx = 0 (2)32
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This equation is called theaveequation and appears in many places in physics.
Instead of assuming a single Fourier componentlasien of this equation, we

realize immediately that a general solution cawh#en
n=F(x+ct)+F,(x—cit , ) (2.3.3)
wherec, = (gH)"?. If, at timet = 0, the surface elevation was such thatF(x), and
N =0, it is easy to see that the solution becomes
n :%{F(x+ e )+ F(x-c)}. (2.3.4)
From (2.3.1) and (2.3.3) we find for the accelenmti

U = =07, =—2{F'(x+ct) + F'(x— )}, (2.3.5)

N @

where F'(é) =dF/dé . Hence, the horizontal velocity is given by

u:—%{F(x+cot)— F(x-c)}. (2.3.6)

From (2.3.4) we can display the evolution of atiatly bell-shaped surface elevation

F(x) with typical widthL; see the sketch in Fig. 2.2.
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Fig. 2.2 Evolution of a bell-shaped surface elevation.

We note that the initial elevation splits into twientical pulses moving right and left
with velocity co = (gH)*2 In a deep ocearr(= 4000 m), the phase speedjs: 200

m s?, while in a shallow oceart(= 100 m) we have; = 30 m §*. If the maximum
initial elevation in this example Ig i.e.F(0) =h, we find from (2.3.6) that the

velocity in the ocean directly below peak of thghtthand pulse can be written

u :g_h, (2.3.7

2c,
whent >>L/cy, that is after the two pulses have split. If wieeta = 1 m as a typical
value, the deep ocean example yields2.5 cm §', while for the shallow ocean we
findu=17 cm §".

As a second example we consider an initial staptfan:
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1h, x>0,
F(Y={ 2 (Bp
_Eh, x<0
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Fig. 2.3Evolution of a surface step function

It is obvious that we in an example like this (watlstep in the surface tat 0) must
be careful when using linear theory, which requigesll gradients. In a more
realistic example where differences in height osgtlre initial elevation will have a
final (an quite small) gradient arourd: 0. Qualitatively, however, the solution

becomes as discussed above.

2.4 Validity of the hydrostatic approximation
Let us consider the validity of the hydrostatic mpmation in the case of waves in a

non-rotating ocean. We rewrite the pressure asleostatic part plus a deviation:
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P=p9(7-2)+Ps+p, (231
wherep is the non-hydrostatic deviation. The vertical comgnt of (2.1.1) becomes

to lowest order:

1l
W =—""7>D,, 42)
o

while the horizontal component can be written

1,
ut =_g,7x - px' (243
P,

0

The hydrostatic assumption implies that

<<|u. (20

1,
— Py
yo,

0
If the typical length scales in tixe andz-directions aré. andH, respectively, we

obtain from the continuity equation that
L
u~—mw, yo)
i == 43)

where ~ means order of magnitude. From (2.4.2)hsa find
p|_H’
— ~—u,|. 21.6
- @

Utilizing this result, the condition (2.4.4) redsd®

H?2/L® << 1 @en7
Thus, we realize that the assumption of a hydrespa¢ssure distribution in the
vertical requires that the horizontal schlef the disturbance must be much larger
than the ocean depth. For a walvés associated with the wavelength; for a single

pulse,L corresponds to the characteristic pulse width.

2.5 Energy transport in surface waves



25

As mentioned in Section 2.1, a local wind everth@open deep ocean generates
wind waves with many different wavelengths. Singelswaves are dispersive, the
longest waves will travel fastest. For example davavelength of 300 m, we find
that the phase speed is nearly 22 m/s. These waagpropagate faster than the low
pressure system that generated then, and hengeedsom the storm region. Such
waves are calleswell and may propagate for hundreds of kilometresutdjinahe
ocean till they finally reach the coast, gradusidnsforming to shallow-water waves.
Finally, they break in the surf zone on the beactd loose their mechanical energy.
In this way we understand that waves are carrieemergy. They get their energy
from the wind, propagate the energy over largeadists, and loose it by doing work
on the beaches in the form of beach erosion presess. If there is any rest
mechanical energy, it is transferred to heat inbiteaking process.

The total mechanical ener@yper unit area in surface waves is the sum of the

mean kinetic energ¥, and the mean potential energy . Per definition

E, =%]I%poi(u2 +vv2)dszt ~ %];(%poi(uz +vv2)dzjdt | (2.5.1)

whereT =27/« is the wave period. For periodic wave motion w&uase that the

potential energy is zero at the mean surface |&lehce

0

17 1
E, == j [pogozdszt. (2.5.2)
Inserting from (2.1.12) and (2.1.14), we obtaireaffome algebra that

Ek:E =

p

X (Bb.

NP

Hence, the mechanical energy is equally partitidmeteveen kinetic and potential
energy. The total energy per unit area, often refeto as thenergy density

becomes
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1
E=E+E, =§pogA2- (245

The mean horizontal energy fli is the work per unit time done by the dynamic

(fluctuating) pressure in displacing particles hontally. By definition

1 T/ n 1 T 0
F, :—j[ | Dudzjdt =—j( | pudZJdt. (2.5.5)
T ol Tl

Applying the horizontal velocity in (2.1.14) ancetdynamic pressure in (2.1.15)
(leaving out the static pap,gz), we find

_ PN

=——2———(sinh@kH) + 2kH ). 2.5.6
¢ 8k*sinF*kH (sinh(@kH) ) ( )
Utilizing the dispersion relation (2.1.17), and tireup velocity given by (2.2.6), we
can write the mean energy flux (2.5.6) as

F =cE. (2.5.7)

e g
In our earlier treatment of the group velocity aswdefined from a purely kinematic
point of view. We understand from (2.5.7) that ¢gneup velocity has a much deeper
significance: It is the velocity that the mean gyan the wave motion travels with.
Accordingly, to receive a signal that propagatesr@a/distancé in the form of a

wave, we must wait a time= L /c,, before the receiver picks up the signal.

2.6 The Stokes edge wave
Stokes (1846) discovered a surface wave that ausd in an ocean where the

bottom was sloping linearly; see the sketch in Eig, where the slope angles
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Fig. 2.4Sketch of the Stokes edge wave.
In the absence of viscosity and rotation, the smhutan be derived from the Laplace

equation (2.1.6). For a wave in thrirection we can write:
p=F(x2e®™™, (2.6.1)
Then Laplace’s equation reduces to

GZF_+62F
ox?  0z°

~K°F =0. (2.6.2)

We consider exponentially trapped waves in thectima normal to the coast, and

assume that the solution decays exponentially eefth, i.e.
F=Ce ™™ ab>0. (2.6.3)
Hence, from (2.6.2)
a’+b*-k*=0. (2P
The kinematic boundary condition at the sloping dootis:
w=-VI[[h, z=-h, (2p.5
or
@ =—(tanfB)g, z=-xtang. (2.6.6)

From (2.6.6) we obtain thdt=atan/ . Inserting into (2.6.4):
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a=kcosf, b=ksing. (2.6.7)
Hence, we can write the velocity potential
qo:Cexr(— kxcosp + kzsin B+ i(ky—a)t)). (2.6.8)
From the linearized kinematic boundary at the sgrf@.1.11), we find for the surface
elevation that
n = Aexp(— kxcosB + i(ky - at)). (2.6.9)
where A=iCksinf/«. The dynamic boundary condition at the surface is
p(z=n) =0. From the linearized version of (2.1.9) we obtain
@+9gn=0 z=0. (2.6.10)
By inserting into this equation, we find the dispen relation
«” = gksing. (2.5)1
This result is valid folO< S <nn /2We note that this trapped wave, called $thekes
edgewave can travel along the coast in both directiong tuthe two possible signs
in (2.6.11).

When the beach slope is smgli << , §e can analyse this problem by using
shallow water theory. We then realize that thepiag can be explained by the fact
that the local phase speg/ag_H increases with increasing distance from the cdfast.
we represent the wave by a ray which is directedgthe local direction of energy
propagation, e.g. Section 2.8, the ray will alwbgggradually refracted towards the
coast. At the coast, the wave is reflected, anddfraction process starts all over
again. The total wave system thus consists of arpapi¢ion between an incident and
a reflected wave in an area near the coast. Théwidhis area depends on the angle

of incidence with the coast for the ray in questiOntside this region, the wave

amplitude decreases exponentially.
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When we analyse this problem more thoroughly, ine that the Stokes edge
wave is the first mode in a spectrum of shelf matias contains both discrete and
continuous parts; see LeBlond and Mysak (1978)2f. If we take the earth’s
rotation into account ¢ 0), the frequencies for the edge waves in thetipesand

negativex-directions will be slightly different.

2.7 Wave kinematics
We can generalize the result in this chapter toey@epagation in three dimensions.

Let ¢ denote the velocity potential or the stream funcbba plane wave. By

introducing a wave number vect&r defined by

K =k, +K,I, +Kiy, (2.3.1
and a radius vectar, where
F=ri, +1,0, +r,05, (2.y.2
we can write a plane wave as
Y = Aexpl(K @ —at)) = Aexpﬁk[ﬁf—i)—ftj}. (2.7.3)

The vectorial phase spe&ds now defined by

|

Ol
]

K? =Kk +k:+kZ. (2.7.4)

xm‘p

Furthermore, we can write the components of théoviad group velocityC, as

¢ = 0wl ok,
c? = 0wl ok,, (2.7.5)
¥ = 0wl Ok,

In vector notation this becomes

¢, =l w, U —tL—t;—.
g K K Zakz 3ak3

- a
=i oK, (2.7.6)
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If the frequencywonly is a function of the magnitude of the wavenher vector,
i.e. &« = a k), we refer to the system m®tropic If we cannot write the dispersion
relation in this way, the systemasisotropic We now consider the surface in wave

number space given lay= a(k,k,,k;) =C, whereC is a constant; see Fig. 2.5,

where we display a two-dimensional example.

Vew = ¢,

K w = const.

> I,

Fig. 2.5Constant- frequency surface in wave number space.

The gradientlywis always perpendicular to the constant frequesacface. From
(2.7.6) we note that this means that the groupcigics always directed along the
surface normal, as depicted in Fig. 2.5. Sinceptiese velocity is directed along the
wave number vector, e.g. (2.7.4), we realize thiwel phase speed and group velocity
should become parallel, then the constant frequsadgace must be a sphere in wave

number space. Mathematically, this means thate « , i(e) we have an isotropic

system.

2.8 Application to a slowly-varying medium
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If the medium through which the waves propagatetscompletely spatially uniform
or constant in time, the wave train will vary apribpagates. If the length and time
scales over which the medium varies are large cozdpa the wavelength or wave
period, the local properties of the wave will vatgwly throughout the field. I1f
represents the displacement of a fluid elementwiinee train can be specified by
{ = Aexp(6), whereA is the local amplitude, which is a slowly varyifupction of
position and time, and 1 (t ,i9 the phase function. The wave numlgeand the
radian frequencye, which both may be slowly varying functions of spand time,
can now be defined as
K=06, w=-6. (ag.
From this it follows that
OxK = 0, 2.8.2)
Hence the distribution of the local wave numbespace is irrotational. Furthermore,
from (2.8.1)
K +0w= 0. &3B)
This can be considered as a kinematical conservatjaation for the density of
waves. In a random field of linearly superposedesay2.8.3) holds for each Fourier
component. For a steady wave fielde = . IDthe waves propagate in the
direction and the dispersion relation have the faem «(k, H (X)), we have for this
case that

dx ok dx oOH dx
For example, for shallow water waves on a gentipisig beach, we have from
(2.1.17) thatw= (gH (X))"'?k . By inserting into (2.8.4), and integrating, wadgy

find for this case that
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K(X) =ko[ Hj;)j | (2.8.5)

wherek,,H, are the wave number and the deptlx atx,. We note from (2.8.5) that

when the wave propagates into shallower water,dikeinami approaching the shore,
the wave number increases. Accordingly, the wawglehecomes smaller. Together
with increasing wave amplitude, this is steepersahve, which ultimately leads to

breaking in the surf zone.

Ray theory
The wave energy propagates in the direction ofjtbep velocity vector. We can
define the energy path, or ray, as the curve iditeensional space where the tangent

at each point is along the group velocity, i.e.

di xc, = 0. (2.8.6)
For example, in the horizontal pladé =dxi +dyj , and hence the equation for the
ray becomes

dx ¢’
g

2.8.7)

If the group velocity components are independentaridy, the rayy=F &)

becomes a straight line. However, if we for exangolesider shallow water waves in
an ocean with a slowly varying depth, the groupeiy components will vary slowly
with the horizontal coordinates. Then the ray Wélcurved, as mentioned in

connection with edge waves in Section 2.6.

Doppler shift
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In this analysis the frequenay is the frequency for waves propagating in a medium

at rest. If now the fluid moves with a velocity, which can be a slowly varying
function of space and time, is the frequency that will be found by an observer
moving with the undisturbed fluid velocity. It ialeed theintrinsic frequency, and
can be obtained from the dispersion relation. H@regthe frequency measured by
an observer at rest, or thpparentfrequency, will be

n=w+k U . (BB.
When the wave and the medium move in the sametuing the last term is positive,
and the frequency appears to increase (higher fona)fixed observer, while it
decreases (lower tone) when they move in opposetins. This phenomenon is

known asDoppler shift

[Il. SHALLOW-WATER IN WAVES IN A ROTATING, NON-STRA TIFIED
OCEAN

3.1 The Klein-Gordon equation

We now consider the effect of the earth’s rotatippn wave motion in shallow

water. Linear theory still applies, and we takedlpth and the surface pressure to be

constant. Furthermore, we assume thaitconstant. Equations (1.3.10)-(1.3.12) then

reduce to
u, - fv=-g7,, (311
v, + fu=-gn,, (21
n+Hu +v,)=0. (3]

We compute the vertical vorticity and the horizdwlimergence, respectively, from

(3.1.1) and (3.1.2). By utilizing (3.1.3), we theltain
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f
(v, —u,), —ﬁnt =0, (3.1.4)

and

T 1 - u) =00+, (3.1.5)

The vorticity equation can be integrated in time, i

f f
Vy _uy _ﬁ” = Vox _UOy _ﬁnol (316)

where sub-zeroes denote initial values. We asshatdtte problem is started from

rest, which means that there are no velocitiestwoity gradients at= 0. Thus
VU, == ). 31
Inserting for the vorticity in (3.1.5), we find tha
My = Co U +11y,) + 1717 = 17175, (38)
wherec = gH, andz,is a known function ok andy (the surface elevation &t ).0

The solution to (3.1.8) can be written as a sua wénsient (free) part and a
stationary (forced) part
n=qxy.t)+a(xy), (39
where/7 and# fulfils, respectively
My = Co (T +11,y) + 777 =0, (310)
—Co G +11yy) + T77 = 1717, (31m)
Equation (3.1.10) for the transient, free solui®nalled theKlein-Gordonequation
and occurs in many branches in physics. Here sitritges long surface waves that are

modified by the earth’s rotation (Sverdrup or Parmécwaves). These waves will be

discussed in the next section. Notice that théintbnditions for the free solution are

7 (%,y0) =% Y) =7 X ¥, ) (3.1.12)
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and

=0 (3.1.13)

3.2 Geostrophic adjustment
As an example of a stationary solution of (3.1v8),return to the problem in Section

2.3, where the surface elevation initially wasepdunction:

| W2, x>0
UO(X)—{_h/Z’ <0, (3.2.1)
or, for simplicity,
_1 | L x>0,
no(X)—zhsgn(x), sgn(x)—{_l . (3.2.2)

We assume that the motion is independent oftt@ordinate. From (3.1.11) we then

obtain
foma®i = =S a hsgno). (323
Here we have defined (fdr> )0
a=c,/f, 3.2.4)
which is called the barotropic Rosstadius of deformationor simply the barotropic

Rossby radius. It sets an important length scaléh®influence of rotation in a quasi-

homogeneous ocean. The solution of (3.2.3) isyefmiind to be
. 1
il =§h(1—exp(—|xi/a))sgn(x) . (3.2.5

We have sketched this solution in Fig. 3.1
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—
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Fig. 3.1Geostrophic adjustment of a free surface

A typical value forf at mid latitudes is I0s. For a deep oceahi(= 4000 m), we
find from (3.2.4) thaa = 2000 km, while for a shallow ocead € 100 m),a= 300

km.
From (3.1.1) and (3.1.2) we find the velocity dtsition for this example, i.e.
f9=g7,, 13)
a= 0 (3.2.9
We note from (3.2.6) that we have a balance betileeCoriolis force and the

pressure-gradient force (geostrophic balance)ex-ttirection. Utilizing (3.2.5), the

corresponding geostrophic velocity in tadirection can be written

\7=Zg—hexp(—|x]/a). (3.2.8)
CO

This is a “jet™-like stationary flow in the posity-direction. Although the
geostrophic adjustment occurs within the Rossbisadve notice from (3.2.8) that
the maximum velocity in this case is independerthefearth’s rotation. By

comparison with (2.3.7), we see that our maximuftoargy it is the same as the
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velocity below a moving pulse with heigh®?, or as the velocity in the non-rotating
step-problem in Section 2.3.

Let us compute the kinetic and the potential epernghin a geometrically fixed
area— D < x< D for the stationary solutions (3.2.5)-(3.2.8), whis valid whert —

o, The kinetic energy becomes

-D\ -H

—_ 1 T 7 < — 1 2 -2D/a
E, —EpOJ'[J'\f‘dszx—gpogh a(l-e?"?), (3.2.9)
where we have used the fact thit>>77 . For the potential energy we find
D/ +h/2 1 1
E, =09 j[ I Zdszx=§,oogh2D +§pogh2a(—3+ 4e7P2 —g?P2) - (3.2.10)
-D 0
where we have taken=-h /&s the level of zero potential energy, and intoediu

Z=z+h/2. Initially, the total mechanical energy within tbensidered area equals

the potential energy, or
_e _1 >
EO - Ep0 —Epo gh D. (3211)

Let us choos® >>a. We then notice from (3.2.9)-(3.2.11) that
E +E, <E,. 432

Thus, when - oo, the total mechanical energy inside the considared idessthan
it was att = 0. The reason is that energy in the form of Bgerdrup waves (solutions
of the Klein-Gordon equation) has “leaked” outlod area during the adjustment
towards a geostrophically balanced steady statewllVeonsider these waves in
more detail in the next section.

Finally we discuss in a quantitative way when passible to neglect the

effect of earth’s rotation on the motion. For ttudbe possible, we must have that

9| >>| i xv]. 331
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Accordingly, the typical timescalefor the motion must satisfy

T <<ZTH. 3.2.14)

At mid latitudes we typically hav@n/ f =17 hr#f the characteristic horizontal
scale of the motion is and the phase speedds=(gH)"?, we find from (3.2.14)

that the effect of earth’s rotation can be negkbdte
L<<a. 3.4.55)
In the open ocean will be associated with the wavelength, while ifjoad or canal,
L will be the width. Oppositely, when the lengthleada larger than the Rossby
radius, i.e.,
L>a, (3.2.B)

the effect of the earth’s rotation on the fluid roatcannot be neglected.

3.3 Sverdrup and Poincaré waves

We consider long surface waves in a rotating océamlimited horizontal extent.
Such waves are often called Sverdrup waves (Sverd@R7). They are solutions of
the Klein-Gordon equation (3.1.10). Actually, Sveiuls name is usually related to
friction-modified, long gravity waves, but here wél use it also for the frictionless
case. In literature long waves in an inviscid ocaanoften called Poincaré waves.
However, this term will be reserved for a particldambination of Sverdrup waves

that can occur in canals with parallel walls.

Sverdrup waves
A surface wave component in a horizontally unlimiteean can be written

n=Aexp((kx+ly —at .)) (3.3.1)
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This wave component is a solution of the Klein-Goréquation (3.1.10) if
w” = f2+c2(k*+1%). (33
Herek andl are real wave numbers in tkeandy-direction, respectively. Equation
(3.3.2) is the dispersiarlation for inviscid Sverdrup waves. From thisateln we
note that the Sverdrup wave must always have admery that is larger than (or equal
to) the inertial frequencly
For simplicity we let the wave propagate alongxtais, i.el = 0. The phase

speed now becomes
w AZ 1/2
CZEZC{“TJ : (33

whereA is the wavelength aralis the Rossby radius. We note that the waves
become dispersivdue to the earth’s rotation. The group velocitydmees

_dw _ Co
Cg - dk - /12 1/2 °
4rca

We notice that the group velocity decreases withagasing wavelength. From (3.3.3)

(39

and (3.3.4) we realize that, = cZ, i.e. the product of the phase and group velaitie

is constant. From (3.3.2), with= , @ve can sketch the dispersion diagram for

positive wave numbers; see Fig. 3.2.
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Fig. 3.2The dispersion diagram for Sverdrup waves

Fork << a™ (i.e.A >>a) we have thatw= f. This means that the motion is reduced to

inertial oscillations in the horizontal plane. For>a™ gravity dominates, i.ew=

cok, and we have surface gravity waves that are filoiginced by the earth’s rotation.
Contrary to gravity waves in a nhon-rotating ocehe,Sverdrup waves discussed

here do possess vertical vorticity. For a wavetsmiu[] exp«t)), (3.1.4) yields

-t
Z_H”l 3:5)

where the relative vertical vorticity is defined by (1.4.1). If we still assume that

d0/0y =0, we obtain from (3.3.5) and (3.1.2) that

f
Ve =1
Hl (®p
u= _TVt
Considering real solutions with
n = Acoskx—at), (3.3.7)

we find from (3.3.6):
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Aw
U =——coskx—at),
kH k )
Af .
v =—-sin(kx—at), 3.3.8
A K ) ( )

w= Aa{ Z:IH jsin(kx— at).

Here the vertical velocity has been obtained from (1.3.8). Sinee> |f| for

Sverdrup waves, we must have that [V . Furthermore, from (3.3.8) we find that

u? V2

(Awi(kH))E (AT I(kH)) -1 (3.3.9

This means that the horizontal velocity vector déss an ellipsis where the ratio of

the major axis to the minor axiéds/ f|. From (3.3.8) it is easy to see that the

velocity vector turnglockwise and that one cycle is completed in ti@e/ c .

Sverdrup (1927) demonstrated that the tidal wavethe Siberian continental
shelf were of the same type as the waves discussged In addition, they were
modified by the effect of bottom friction, whichalds to a damping of the wave
amplitude as the wave progresses. Furthermorépfriacts to reduce of the phase
speed, and it causes a phase displacement betvwae@mum current and maximum
surface elevation.

In this connection it is interesting to considee tost energetic tidal constituent

in the Barents Sea region, which is.Mhis tidal component has a period
T =1242hrs, and the corresponding frequency becomes141x10*s™.
According to the results above, it can only exssadree Sverdrup wave if

« > f =2Qsing. This means that we have a critical latitutle= sin*(cw/2Q), or

¢. =75 28N, for this component. At higher latitudes th@n the M component

cannot exist as a Sverdrup wave. However, we digbver later on that this
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component indeed can exist at higher latitudesthmrt in the form of aoastal

Kelvin wave, to be discussed in Section 3.5.

Poincaré waves

We consider waves in a uniform canal alongxfaxis with deptiH and widthB.

Such waves must satisfy the Klein-Gordon equatsoh.{0). But now the ocean is
laterally limited. At the canal walls, the normalecity must vanish, i.e.= 0 fory =
0, B. By inspecting (3.3.8), we realize that no singlerdrup wave can satisfy these
conditions. However, if we superimpaseo Sverdrup waves, both propagating at
oblique anglesd and-a, say) with respect to theaxis, we can construct a wave
which satisfies the required boundary conditiortee Velocity component in the

direction must then be of the form
v:vosin(%)expa(kx—al)), n=123.. (3.3.10)

Since the wave numbér=n7n/B in they-direction now is discrete due to the

boundary conditions, the dispersion relation (3.Bgtomes

2

2 1/2
a):i{f2+c§(k2+n8n2ﬂ . n=123... (3.3.11)

We notice from (3.3.10) that the spatial variatiothe cross-channel direction is
trigonometric. Such trigonometric waves in a rotgtthannel are calld@oincaré
waves They can propagate in the positive as well asidgativex-direction. We shall
see that this is in contrast to coastal Kelvin vgawvehich we discuss later in this
section. In general, the derivation of the compsetieition for Poincaré waves is too
lengthy to be discussed in this text. For a dedaillerivation; see for example

LeBlond and Mysak (1978), p. 270.
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3.4 Energy flux in Sverdrup waves

We have previously, in Section 2.5, calculatednigan energy flux in surface waves
without rotation. It is interesting to do a simitzlculation for shallow-water waves
in a rotating ocean. By utilizing the solutions3(3)-(3.3.8), we can compute the
mechanical energy associated with Sverdrup wavssniean potential energy per

unit area of a fluid column can be written
1t, 7 1
E, =—[(pg| zAdt="go,A", (341
0 0
whereT =27/« . The mean kinetic energy per unit area becomes

1+ fz/“’TAZ, (3.4.2)

E :lj‘ip Jq(u2+v2+w2)dz dtzlg,o —
“ T2 4, 4770 1- 12/ of

where we have utilized th&iH << . We see that in a rotating ocg@# 0), the mean
potential and the mean kinetic energy in the waeéion are no longer equal. This is
in contrast to the non-rotating case, e.g. (3.6vBgre we have an equal partition
between the two. The dominating part of the meamnggnis now kinetic. The energy

density becomes
E=E +E, :%po gA’c®/ct. (3.4.3

Consider a Sverdrup wave that propagates ateargs. This wave induces a net
transport of energy in thedirection. The mean horizontal energy flux is Wark per
unit time by the dynamic (fluctuating) pressurealigplacing particles horizontally. In

shallow water the dynamic pressureps p,9/7 . The mean energy flux to second

order in wave amplitude can then be written
1 T 0

F.= —J',oog( j/] ujzjdt : (344
T 0 -H

Inserting from (3.3.7) and (3.3.8), it follows that
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_1 > _Co - _
Fe—EpogcA —?E—cgE. (345

As could be expected, also in Sverdrup waves thenmaergy propagates with the
groupvelocity. This is in fact a quite general resultfave motion.

In this case it is very simple to derive the conse energy density and
energy flux directly from the energy equation foe fluid. With no variation in the

y-direction, the linearized equations (3.1.1)-(3)Xe®luce to

u, - fv=-gn,,
v, + fu=0, (3.4.6)
n, =—Hu,.

By multiplying the two first equations hyandv, respectively, and then adding, we

obtain
o/1, ., 0
—|=(u” +Vv°) |=——(gun) +gu. /7 . 3.4.7
at[z( )} aX(@J ) +guy ( )

Obviously, the Coriolis force does not perform awrk since it acts perpendicular

to the displacement (or the velocity). By insertihgtu, = -7, /H into the last term,

(3.4.7) becomes

d|1 2,.2, 9 2] 0
—| = us+v +— +— u) =0. 3.4.8
at|:2po( o F™ (0,91u) ( )
We write this equation
0 0
—e, +—e;, =0, )

where the energy densigy and the energy flug per unit volume are defined,

respectively, as

1
e, :Epo[uz +V2 +%,72j , (3.4.10)

& = P97 (33)
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The mean values for a vertical fluid column beconeg,unexpectedly:

T O 2 A2
lj(J. e, dz)dt :EM =E,
T 2 G

o -H (3.4.12)

1 1 )

?j( e, dz)dt =E,oogcA =F,,
-H

0

whereF, =c E.

3.5 Coastal Kelvin waves

We consider an ocean that is limited by a stratglasst. The coast is situatedyat ;

see Fig. 3.3.

oce?”

A

<

Tk e e Ak id —H

Fig. 3.3Definition sketch.
Furthermore, we assume that the velocity compoinethiey-direction is zero
everywhere, i.ev = 0. With constant depth and constant surface pregSul.1)-

(3.1.3) become

u, =-9g7,, 33-)
fu=-gn,. 52)
1, =-Hu,. 33)

We take that the Coriolis parameter is constartd,ediminateu from the problem.

Equations (3.5.1) and (3.5.2) yield
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Ny~ =0, (3th
while (3.5.2) and (3.5.3) yield
,7t - aCO’]xy = 0' (355

wherec, is the shallow water speed aath the Rossby radius. We assume a solution

of the form
n=G(y)F &f). (3
By inserting into (3.5.5), we find
R zﬁ, 53)
cF, G

whereG'=dG/dy. The left-hand side of (3.5.7) is only a functmfrx andt, and the
right-hand side is only a function wf Thus, for (3.5.7) to be valid for arbitrary vatue
of x, y, andt, both sides must equal to the same constant, wiectienote by (y# 0

for a non-trivial solution). Hence

aG y = G=expyl/a),
e (3.5.8)
=y = F =F(X+ycy).
CoF,
By inserting from (3.5.8) into (3.5.4), we find tha
y==x1 (3.59)
Accordingly, from (3.5.8), we have solutions of foem
n=exp(y/a)F(x+cit), (3.5.10)
and
n=exptyla)F(x-ct). (351)

If we have a straight coastyat 0 and an unlimited ocean fpe 0, as depicted in

Fig. 3.3, the solution (3.5.10) must be discarddus is becausg must befinite
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everywhere in the ocean, even wlyen . The solution for the surface elevation and

the velocity distribution in this case then become

n =exptyla)F(x—cqt),

u :%exp(—y/a)F(x—cot). @8)

This type of wave is called a sindfelvinwave (double Kelvin waves will be treated
in section 3.8). It israppedat the coast within a region determined by thesRgps
radius. It is therefore also referred to amastalKelvin wave. The Kelvin wave
propagates in the positivedirection with velocitycy, like a gravity wave without
rotation. The difference from the non-rotating ¢ds®vever, is that now we do not
have the possibility of a wave in the negatiairection. This is because the Kelvin
wave solution requires geostrophic balance in trectionnormalto the coast; see
(3.5.2). This is impossible for a wave in the negat-direction in the northern
hemisphere. In general, if we look in the directidrwave propagation (along the
wave number vector), a Kelvin wave in the northieemisphere always moves with
the coast to the right, while in the southern heimése { < 0), it moves with the coast
to the left; see the sketch in Fig. 3.4 for a srigburier component in the northern

hemisphere.
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A=

Fig. 3.4Propagation of Kelvin waves along a straight coaken f > 0

Since the wave amplitude is trapped within a redjimited by the Rossby radius, the
wave energy is also trapped in this region. Thegnpropagation velocity (the group
velocity) is herec, = dw/dk =d(gk)/dk =c,, andthe energy is propagating with the
coast to the right in the northern hemisphere. \dte that for Kelvin waves the
frequency has not a lower limit (for Sverdrup wavuesf).

The oceanic tide may in certain places manifsstfiis coastal Kelvin waves of
the type studied here. We will discuss this furihezonnection with amphidromic
points (points where the tidal height is alwaysozer

From (3.5.12) we notice that the surface elevadiot velocity are in phase, i.e.
maximum high tide coincides with maximum currebhtukns out from measurements
that the maximum tidal current at a given locatiaoursbeforemaximum tidal

height. This is due to the effect of friction agtbcean bottom, which we have
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neglected so far. In order to include the effedriation in the simplest possible way,
we model the friction force as in (1.1.7). The &needx-component now becomes
U =-gn, . (a3)
Sincev= (Q (3.5.2) and (3.5.3) remain as before. By elimngati between (3.5.13)
and (3.5.3), we obtain
n,—9gHn  +rn, = 0. (3.5.14)
We now assume a solution in terms of the complaxiEbcomponent
n=G(y)expl(kx—at .)) (3.5.15)
Here « is real, while the wave numberin thex-direction is complex:
k=k+ia. (26)
We take thak > (s the real wave number, white is the spatial damping

coefficient in thex-direction. We shall assume throughout this analghﬂ'lt|a| <<k,

i.e. the wave damping is small over a distance @aige to the wavelength.

Inserting (3.5.15) into (3.5.14), we obtain the pbex dispersion relation

o +irw-gHk?=0. (3.5.17)
Utilizing that ||/ k <<1, the real part of (3.5.17) yields to lowest ortteat
w=+(gH)"?k , as before. We consider waves that propagatesipaBitivex-

direction, i.e.cw=(gH)"?k = ¢.k. From the imaginary part of (3.5.17) we then abtai
a=—-. (3.5.18)

The value of depends, among other things, on the bottom rowsghidetypical value

derived from the tidal literature could e~ 25x10°s™.

The geostrophic balance condition in (3.5.2) nosldg
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?Tc;“{i_" je -0, (3.5.19)
where | = a/(ka )is a small wave number in tyedirection induced by the combined
action of friction and rotation. This yields a ctadly trapped solution:
G = Aexp(y/a)expfly . ) (3.5.20)
If we let the real part represent the physical oty we then obtain for this case
n = Aexpax—y/a)coskx+ly — at),

3.5.21
u :COWAexp(—ax—y/a)(coskxﬂy—ax)+%Sin(kX+|y‘01)j- ( )

We note from this solution that at a given locatign= 0, y = 0) say, the current
maximum is ahead in time of the surface elevatiaximum, as known from
observations. We also note that the lines desgridinonstant phase (the co-tidal
lines) are no longer directed perpendicular tocibeest, but are slanting backwards
relative to the direction of wave propagation (Nfasén and Weber, 1981). This

situation is sketched in Fig. 3.5:

\ \

-\ x\f\\
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Fig. 3.5Coastal Kelvin waves influenced by frictidfere ¢ = ¢, is the phase speed in

the x-direction

3.6 Amphidromic systems
Wave systems, where the lines of constant phagbeoo-tidal lines, form a star-

shaped pattern, are callathphidromiesThey are wave interference phenomena, and
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in the ocean they usually originate due to interfiee between Kelvin waves. Let us

study wave motion in an ocean with widhsee the sketch in Fig. 3.6.

VA A S S S SR A P SR SR SRR S S 4

.

I e

Fig. 3.60cean with parallel boundaries (infinitely long cireel).

Since the ocean now is limited in tirelirection,both Kelvin wave solutions (3.5.10)
and (3.5.11) can be realized. Because we are wprkith linear theory, the sum of
two solutions is also a solution, i.e.
n =exp(y/a)F(x+cyt) +expFy/a)F(x—cgt) . (®.1)
In general thé--functions in (3.6.1) can be written as sums ofrileslcomponents. It
suffices here to consider two Fourier componenth equal amplitudes:
n = Alexp(y/a)sin(kx+ at) + exply/ a)sin(kx— at)), (3%.2)
wherew= cpk. Along thex-axis, i.e. fory = 0, (3.6.2) reduces to
n =2Asinkxcosat . 63)
This constitutes a standing oscillation with peribd 271/ . Zero elevation/f = 0)

occurs when

X=—, n=012... 84)
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At the locations given bynn k/' ,Q)the surface elevation is zero at all times. These
nodal points are referred to amphidromigoints.

We consider the shape of the co-phase lines, lamolse a particular phase, e.g. a
wave crest (or trough). At a given time the spatiatribution of this phase is given

by 17, = 0; i.e. a local extreme for the surface elevaticatiBl differentiation (3.6.2)

with respect to time yields that the co-phase leresgiven by the equation
exp(y/a)coskx+ at) —exp(y/a)coskx—at) =0. (3.5)
We notice right away that the co-phase lines rmustsect at the amphidromic points
x=nn/k,y=0 for all times. As an example, we consider the admpimic point at
the origin. In a sufficiently small distance fromgin, x andy are so small that we
can make the approximatioesp(ty/a) =1+ y/a, coskx= 1,sinkx=kx . Equation
(3.6.5) then yields
y = (katanat)x. .636)
This means that the co-phase lines are straigkd ima region sufficiently close to
the amphidromic points. Sintar «t is a monotonically increasing function of time in
the intervalt = Otot = 71/(2a), we see that a co-phase line revolves around the
amphidromic point in @ounter-clockwiselirection in this exampléf > O)it turns
out that, as a main rule, the co-phase lines oathphidromic systems in the world
oceans rotate counter-clockwise in the northernisigmere and clockwise in the
southern hemisphere. We notice from (3.6.6) thaeithave high tide along a line in
the regionx > 0,y > 0 at some timé& we will have high tide along the same line in the
regionx < 0,y <0 at timet + 7/ &, or half a period later.
We now consider the numerical valuerpdélong a co-phase line. Close to an

amphidromic point, (here the origin), we can usé.@ to express the elevation as
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1 = 2A(kxcosa +§sina)t) . 87)

From (3.6.6) we find thatanat = y/(kax &long a co-phase line. By eliminating the

time dependence between this expression and (3vee/nd for the magnitude of the

surface elevation along a co-tidal line:

7| = 2A(k2x2 +y? /az)m. .638)
The lines for a given difference between high awvd tide are calledo-rangelines.

These curves are given by (3.6.8), wﬂrﬁris put equal to a constant, i.e.

k?x? + y*/a* =const . (3.6.9)
We thus see that the co-range lines close to theh@imomic points are ellipses.

In Fig. 3.7 we have depicted co-phase lines (salides) and co-range lines
(broken curves) resulting from the superpositiotwad oppositely travelling Kelvin
waves, both with periods of 12 hours and amplituafés5 m. The wavelength is 800
km, the width of the channel is 400 km, the depthi m, and the Coriolis parameter
is 10%s ™. The Rossby radius becomes 198 km in this exarkigirce the right-hand
side of the channel is dominated by the upward-ggapng Kelvin wave (the one
with minus sign in the phase), and the left-had@ $ dominated by the downward

propagating Kelvin wave.
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Fig. 3.7Amphidromic system in an infinitely long channel.

3.7 Equatorial Kelvin waves

Close to equator we have thit= . forom (1.1.2) the Coriolis parameter in this

region can then be approximated by
f=py. (3.71)

where they-axis is directed northwards; see Fig. 3.8.
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Fig. 3.8Sketch of the co-ordinate axes near the equator

We shall find that it is possible to have equatbyrimapped gravity waves, analogous
to the trapping at a straight coastline. Assumettievelocity component in the
direction is zero everywhere, i.e. we assume gepisic balance in the direction
perpendicular to equator. With constant depthetgations (3.5.1)-(3.5.3) are

unchanged, but now = Sy in (3.5.2). By assuming a solution of the form

n =G(y)F(x,t) as before, (3.5.7) becomes

F, c,G =y 12)
C0 Fx ﬁYG

Accordingly:

F =F(x+ycyt),
G= exp{y—'g yz}
2¢,

(3.7.3)

By inserting into (3.5.4), we find

y=+1 (37.4)
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From (3.7.3) we realize that to have finite solatwheny — + o, we must choose

y=-11in(3.7.4). The solution thus becomes

n=expy*laZ)F(x—cy),

(3.7.5)
u=2 exp(y?/a2)F (x-cg),
C0
where theequatorialRossby radius, is defined by
a, = (2¢,/ B)"*. (BY

We note that the solution (3.7.5), referred torasquatorialKelvin wave, is valid at
both sides of equator and that it propagates iptsgivex-direction, i.e eastwards

1/2

with phase speed) = (gH) <. The energy also propagates eastwards with the sam

velocity, since we have no dispersion. At the egugits approximately
2x10"m™s™. For a deep ocean witH =4000 mwe find from (3.7.6) that the

equatorial Rossby radius becomes about 4500 km.

Equatorial Kelvin waves are generated by tidatésr and by wind stress and
pressure distributions associated with storm ewsittshorizontal scales of thousands
of kilometres. When such waves meet the easterndauies in the ocean (the west
coast of the continents), part of the energy invthge motion will split into a
northward propagating coastal Kelvin waves in thghern hemisphere, and a
southward propagating coastal Kelvin wave in thetsern hemisphere. Some of the
energy may also be reflected in the form of lorepptary Rossby waves (in such
waves the energy propagates westward if the wagtdes much larger than the

Rossby radius).

3.8 Topographically trapped waves
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We have seen that gravity waves can be trappduekaioast or at the equator due to
the effect of the earth’s rotation. Trapping of wanergy in a rotating ocean can also
occur in places where we have changes in the bdtipography. In this case,
however, the wave motion is fundamentally differieatn that associated with Kelvin
waves. While the velocity field induced by Kelviraves is always zero in a direction
perpendicular to the coast, or equator, it is at the displacement of particles
perpendicular to the bottom contours that generate®s in a region with sloping
bottom. We call these wavescarpmenivaves, and they arise as a consequence of

the conservation of potential vorticity.

Rigid lid

The escarpment waves are essentially vorticity waVbe motion in these waves is a
result of the conservation of potential vorticijore precisely, the relative vorticity
for a vertical fluid column changes periodicallytime when the column is stretched
or squeezed in a motion back and forth acrossdttern contours. To study such
waves in their purest form, we will assume thatdhdace elevation is zero at all
times, i.e. we apply the rigid lid approximation.this way the effect of gravity is
eliminated from the problem. Let us assume thabtiteom topography is as sketched

in Fig. 3.9.
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<A

Fig. 3.9Bottom topography for escarpment waves

The linearized continuity equation (1.3.12) can rimwvritten as
(Hu), +(Hv), =0. .§31)
Accordingly, we can define a stream functigrsatisfying

Hu :_l//y’ } 8@)

Hv=y,.

When linearizing, we obtain from the theorem ofsemration of potential vorticity

o b £y _
ﬁw(ij{ij 0 &3)

We here assume thiais constant. Furthermore, we take tiht= H y .(BY inserting

(1.4.5) that

(¢ from (3.8.2), we can write (3.8.3) as

2y H'
D wt _F(l//yt + fl//x) :01 (384)

whereH'=dH/dy. We assume a wave solution of the form

W = F(y)exp(i(kx- at)). (3.8.5)

By inserting into (3.8.4), this yields
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N, 2 ]
(ij _(k__ﬁisz -0, @6)
H H wH

This equation has non-constant coefficients arnllgrefore problematic to solve for a
general form oH(y). We shall not make any attempts to do so hestedual, we

derive solutions for two extreme types of bottopamraphy. One of these cases,
where the bottom exhibits a weak exponential chamgjeey-direction, will be dealt
with in sec 3.9 in connection with topographic Rpswaves. The other extreme case,
where the slope tends towards a step function bgithnalysed here; see the sketch in
Fig. 3.10. The escarpment waves relevant for tpsdgraphy are often calletbuble

Kelvin waves.

< A
[aw]

2 H, L

77 777777 T 7 7 77T 7777

Fig. 3.10The bottom configuration for double Kelvin waves

Fortrappedwaves, the solutions of (3.8.6) in areas (1) &)d(e, respectively

F, = A exp(ky).
We note that these waves are trapped within ardistaf one wavelength on each
side of the step. At the step itselfF 0), the volume flux in thg-direction must be

continuous, i.e.
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v,H, =v,H,, y=0. .838)
This means thagy (and thereby alsg) must be continuous fogr= 10, i.e.A;= A=A
in (3.8.7). Furthermore, the pressure in the fhawgst be continuous fgr= 0. The
pressure is obtained from the linearizecbomponent of (1.1.1) in the absence of

friction, i.e.
P, = -p(u, — fv) =—£((Hu)t — fHv). (3.8.9)

Writing p = P(y)exp(i(kx—at)), and applying (3.8.2) and (3.8.5), we find that

o' fF
S S L 3.8)10
p[ o Hj (3.8)

By inserting from (3.8.7), withA = A,, into (3.8.10), continuity of the pressure

aty = 0 yields the dispersion relation

w= f{u} (3.8.11)
H,+H,

We note that we always have that<|f|, and that the wave propagates with shallow

water to the right in the northern hemisphere,a.e.0 when f > Q These two

properties are generally valid for escarpment waeesn though we have only shown
it for double Kelvin waves with a rigid lid on top.

In the case where the escarpment representsatigtion between a continental
shelf of finite width and the deep ocean, this tgpaaves are often called
continental shelivaves. This kind of bottom topography is found @éghe coast of
Western Norway. Here, numerical results show thstexce of continental shelf
waves in the area close to the shelf-break, e.gtihdan, Gjevik and Rged (1979).
The topographic trapping of long waves near théf$feak and the currents

associated with these waves, interact with the wg@derated surface waves, which
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tend to make the sea state here particularly rotigis.is a well-known fact among

fishermen and other sea travellers that frequesirdgion.

The effect of gravity
In general, we must allow the sea surface to mevecally. Let us consider a wave
solution of the form

(u,v,7) O expli(kx—at .)) (3.8)12
For such waves, the linear versions of (1.3.10)(ar®l11), with constant surface

pressure, yield

U:‘fz? (kan"'f,?y)’
ig (3.8.13)
V= 1:Z_C(JZ(kf/7+a17y).
We write the surface elevation as
n =G(y)exp((kx—at .)) (3.8014
Inserting into the linear version of (1.3.12), viredf
_f2
(HG')’{C‘]ZQf -k*H +%H’}G:O. (3.8.15)

For o’ << f?, i.e. quasi-geostrophic motion, we revert to trevigy-modified
escarpment wave. Fb= 0 andH = (tana)y, this equation yields edgeaves, as

treated in Section 2.6.

3.9 Topographic Rossby waves
Let us assume that somewhere the relative vorigirgro. From the theorem of
conservation of potential vorticity (1.4.10) witgre 0, we find that a displacement

northwards, wheréis increasing, generates negative (anti-cyclomgtive vorticity.



62

However, we realize that the same effect can beaett by a northward
displacement if is constant and the depthdecreasesorthward. This gives rise to
the so-calledopographicRossby waves. Of course, the existence of suchs\does
not require that the bottom does slope in one 4d&r direction.

Topographic Rossby waves are only a special dasgcarpment waves when the
bottom has a very weak exponential slope. For coisgrawith the planetary case,

we let the depth decrease northwardsH.e.H,exp(-ay , wherea > Q Equation

(3.8.6) then reduces to

F”+a'F’—(k2+a;kjF:O. 3D

By assuming
F = Aexplky), (2P
insertion into (3.9.1) yields the complex dispensielation

afk _
w

—-iagk+k*>+Kk*+

0. (33

In general we may allow for a very weak change a¥evamplitude in the direction
normal to the coast, i.e. we taken (3.9.2) to be complex:

K=1+iy. (3.9.4)
By insertion into (3.9.3), the imaginary part leady = a /2 (whenl £ 0). From the

real part of (3.9.3) we then obtain

a fk
——. 3.95
kK*+1?+a?/4 ( )
We note that the phase speed compor€&ht w/k along the bottom contours is
negative. This means that the wave propagationisndirection is such that we have

shallow water to the right (in the northern hemées).



63

For a bottom that slopes gently compared to theeleagth(k >>a ) we see

from the (3.9.5) that these waves are similar tortgblanetary waves propagating in a

fluid of constant depth. On &-plane we have the familiar dispersion relation

w:——'gk

k2+12" )
We note that the expressions for the frequeseye identical in (3.9.5) and (3.9.6), if
B=af. (3.9.7)

This similarity is often used in laboratory expeemts in order to simulate planetary

effects. When = Qthe equations are satisfied fpe= , iG. constant amplitude

waves. Such waves propagate along the bottom caath shallow water to the
right, and mimic short planetary Rossby waves alatiudinal circles in an ocean of

constant depth. We should remember, however, lieagriergy in such waves

(k>>a,| =0) propagates in the opposite direction, cg=dw/dk =a f /k*> 0.

IV. SHALLOW-WATER WAVES IN A STRATIFIED ROTATING OC EAN
4.1 Two-layer model
We now proceed to study the effect of vertical dgrstratification in the ocean. In
many situations the density is approximately camtstaa layer close to the surface,
while the density in the deeper water is also arestant (and larger). The transition
zone between the two layers is calledgiienocline Thin pycoclines are typically
found in many Norwegian fjords. In extreme casexareimagine that the
pycnocline thickness approaches zero, resultiragtimo-layer model with a jump in
the density across the interface between the layers

We start out by studying such a model. For simiyligie describe the motion in

reference system as shown in Fig. 4.1, where-dnas is situated at the undisturbed
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interface between the layers. The constant deims@ggch layer iso, andp, ,

respectively, whergp, > p, .

5 z=H +n(x'y!t) P:Ps(xuylt)
1

P1
0 = .f(x,y,t)

Y

=

P2

Fig. 4.1Model sketch of the two-layer system.

We assume hydrostatic pressure distribution in é&agr. By applying that the
pressure i®s along the surface, and continuous at the intefiaegi(z= ¢) = pa(z=

&), we find that

pl:_png+plg(Hl+,7)+PS' } (4.1.1)
P, =—P,9Z+ g(pz - :01)5"' plg(H1+,7) + PS'
We average the motion in the upper and lower layer:
H 1+
(0, V) =— j (Up,Vy) dz, 12)
A
4,,v,) E { u,,v,)dz, AB)

Here,h =H,+n7-¢ andh, =+ H, are the total depths of the upper and lower

layers, respectively.
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We assume that our equations can be linearizedye @eglect the convective
accelerations. Furthermore, we will disregard tece of the horizontal eddy

viscosity, and apply a friction force of the fordn1.8). By introducing volume

transports
U,,V) =h(G,%), } (4.1.4)
U,,V,) =hy(0,,9,),
the momentum equation for the upper layer becomes:
Uy — My =-ghy, -h Ps, +iT(SX) _iri(X)’
1 1 o
V, + fU, =-ghy, -2 P, +—1 —=1¥,
Lo Y et op
Here (™ ,r) are the internal frictional stresses betweerldiers.
Equivalently, for the lower layer we find
1 w_1 «
Uy =V, = _&ghﬁx - g.hé, _iPSX + = -,
P, /;22 ) (4.1.6)
- _P 1 w_1_ v o
V, +fU,=-—=ghn, -ohé -——=>P, +—1" -——1",
T e Y e Pt
where we have defined
g E(—pz _pljg, (Y.
2

which is referred to as threducedgravity, because the fractiqp, — p,)/ o, is small

for typical ocean conditions.
By integrating the continuity equation (1.1.10k#ch layer, we find, without any

linearization of the boundary conditions, that

T t:_le _Vly'
n-¢ } )

Et :_UZX _V

2y

4.2 Barotropic response
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Assume that the mean velocities in each layer ppecaimately equal, i.el, =4, ,

Vv, =V,. This leads to
&:& i:ﬁ (4.2.1)
Hl H2, Hl H2 '

when we assume thay],|§| << H,,H, . For simplicity, we also take that the lower

layer has a constant depth. From (4.1.8) we théaob

H H
/s :_H_i(UZX +V2y):H_z<(t’ (4.2.2
or
H,
= : A
T (@

Here the integration constant must be zero whenomsider wave motion. We note
from (4.2.3) that ands are in phase, and thdt||< |7 |.

By neglecting the effect of the earth’s rotatioss@mning constant surface
pressure, neglecting frictional effects, and takmg H, in (4.1.5), equations (4.1.8)
and (4.2.3) yield

M —9(H +H)n = . 0 (4.2.4)
when d/dy = 0. The solution is
n=FRX-ct) +F(x+ct ) (4.2.5
wherec? = g(H, + H, ). The expression (4.2.5) describes long surfaceesrav
propagating in a non-rotating canal with dedth+ H,. This is the solution we would
have found if we, as a starting point, had negtethie density difference between the
layers; see the one-layer model in Section 2.3h @usolution (a free wave), which is

not influenced by the small density difference kewthe layers, is often referred to

as thebarotropicresponse.
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The original meaning of the word “barotropic” isated to the field of mass, and
expresses the fact that the pressure is constamg #he density surfaces, i.e. the
isobaric and isopycnal surfaces coincide. Matheralyi this can be expressed as
OpxOp =0. This was the case for the free waves in Chaptarhere the density
was constant everywhere, and the pressure wasacbrédng the sea surface. For the
two-layer model this would mean that the presshoeilsl be constant along the
interface between the two layers. This is only agpnately satisfied here, but
nonetheless it has become customary to denotespemse in this case as the

barotropic response.

4.3 Baroclinic response
We now assume tha| <<|&|. Then, from (4.1.8):
(U1+U2)x+(vl +V2)y = . 0 (431

For simplicity we take the bottom to be flat. A peular solution of (4.3.1) can be

written
u,=-U,,
;__VZ} (@B
1 21
i.e. the volume fluxes are equal, but oppositetgated in each layer. By taking the

surface pressure to be constant, and neglectingffibet friction, summation of

(4.1.5) and (4.1.6) yields

—_ p2H1+le2
== ===\, 4.8.3
¢ L@—mHJ” (3

where, as in the barotropic case, the integratomstant must be zero. Furthermore,

we have used that = Hy, h, = H,. The difference betweem andp; is quite small,
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which allows us to use the approximatignso = Ap, andp, ~ o>, = p. Thus,

equation (4.3.3) can be rewritten as

__ P |H +H,
&= Ap{ o }/7. (4.3.4

We note tha¥ and are oppositely directed, and thé&t $> |7 |, as initially assumed.
Assuming thatd/dy = Qand neglecting the effects of friction and theléa

rotation, we obtain from (4.1.6) with, = H,, (4.1.8), and (4.3.3) that

gtt _Cj_zfxx = Ol (@B
where
2 HlHZ
=g —. 4 8.6
Sl vy (4B

Here we have assumed thaH,/ p, = H,. The solution of (4.3.5) can be written
{=F(x-ct)+F,(x+cyt). (4.3.7)
This represents internal gravity waves propagatiiig phase speed along the

interface between the layers; see the sketch irdE2g

-

G —>

MY

Fig. 4.2Internal wave in a two-layer model

The solution to (4.3.7) is often called tharoclinic response. As for barotropic, the
term “baroclinic” is linked to the mass field. Irbaroclinic mass field the constant

pressure surfaces and the constant density suifgeesect, i.e[dpxp# 0
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Equation (4.3.4) shows that this is the case tsgmee, wheré > 0, then; < 0.
Accordingly, the pressure varies along the intexfachich is a constant density
surface.

Let us assume that the lower layer is very deepg;y >> H;. This is the most
common configuration in the ocean. From (4.1.6)iwe for thex-component in the

lower layer

Lign =-g.6 - SRyt 1ri<x>—irgx>—u2t+fv2] (4.3.8)

£, 0, h| o, £,

For the baroclinic cas&l, andV- are finite wherh, — o, and so are the frictional

stresses. Accordingly, for this limit, (4.3.8) reds to

1
an, = _P2 0.&, ——P,. (4.3.9
12} P

1

In the same way we find for tyecomponent:

__P 1
an, = —;i 9.¢, o P, . (4.3)10

1

By inserting (4.3.9) and (4.3.10) into (4.1.5) fbe upper layer, we find that

Uy - v, =22 LT S - L,
pl pll (4.3.11)
V, + fU, _Pz hgf +p 1Y - =,

! 1
For the baroclinic case, the depth of the uppegriagn be written

h =H,-¢+n=H,-¢. Furthermore, we apply that, — p, =Ap, andoi= o= p.
By linearizing the pressure term (the first termtloa right-hand side), equations

(4.1.8) and (4.3.11) yield
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1 o 1 _«
Uy - M =-g.Hh, +;Té) _;Ti( g
Vy + fU =-g.Hh, +irg> —lrim, (4.3.12)
P P
hl.t = _le _Vly'

These equations for the baroclinic response iugper layer are formally identical to
the equations describing the storm surge problema fpuasi-homogeneous ocean; see
(1.5.2), when the upper layer thickness replacestinface elevation, and the gravity
g is replaced byg. . The set of equations (4.3.12) describes whdtésn aeferred to as
areducedgravity model for the volume transport in the uplager. Even though the
numerical values for the volume fluxes in the lovesgrer are of the same order of
magnitude as in the upper layer, thean velocityn the lower layer is negligible,
sinceH; — o. Therefore, we usually say that the lower layey i@ motion in this
approximation.

We immediately realize from (4.3.12) that transiginénomena such as
Sverdrup-, Kelvin- and planetary Rossby wavesriotating ocean of constant
density have their internal (baroclinic) countertpan a two-layer model. The
analysis for the internal response is identicahtanalysis in Chapter Ill. It often
suffices to replacg with g. andH with H; in the solution for the barotropic
response.

Analogous to the barotropic case we can defirength scale; that

characterizes the significance of earth’s rotatitie. write
a=c/f, 4.3.13
wherec? = g.H,. The length scale is called the internal, or baroclinic, Rosshy

radius. Typical values far in the ocean are 2-3 m'sHencea;, = 20-30 km, which

is much less than the typical barotropic Rossbiyusad herefore, the effect of earth’s
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rotation will be much more important for the bamid response than for the

barotropic one with the same horizontal scale, avelength.

4.4 Continuously stratified fluid
We now turn to the more general problem of contusudensity stratification, and
start by investigating the stability of a stratifimcompressible fluid under the

influence of gravity. The equilibrium values are:

V=0,
P =Py (2), 45
P=py(2)= —gjpodz+ const

We introduce small perturbations (denoted by prinfresn the state of equilibrium,

writing the velocity, density, and pressure as

V=V'(xYy,zt),
P=p,(2+ P (Xy,Z1), (4.4.2)
P=p(2) + P (XY.2zt).

We assume that the density is conserved for a flarticle. Furthermore, we take that
the perturbations are so small that we can lineanz problem, i.e. neglect terms that
contain products of perturbation quantities. Usartgprizontal friction force of the

type (1.1.8), the equations for the conservatiomomentum, density, and mass then

reduce to
Po(2)(u, — V) =—p, +7{7, (43
Po(D)(v, + fu)=-p, +1, (4.4.4)
Po(DW, =-p, - g, (4.4.5)
p+Low=o, 1)

u,+v, +w, =0, (&5,
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Here we have for simplicity left out the primestthaark the perturbations.
Furthermore, we have neglected the effect of bictn vertical component of the

momentum equation (4.4.5).

4.5 Free internal waves in a rotating ocean
We start by disregarding completely the effectrwition on the fluid motion, i.e. we
take 7 =¥ = Qin (4.4.3) and (4.4.4). Furthermore, we introdtree Brunt-

Vaisala frequency (or the buoyancy frequerndyjlefined by

N2(z)= -9 9% (4.5.1)
P, dz

We are here going to study motion in a stably sigdtincompressible fluid. In this
case we must have thdp,/dz< , @eaning thal is real and positive. Equation
(4.4.6) can then be written
go, —N?p,w=0. (4p.2
By differentiating (4.4.5) with respect to time damtilizing (4.5.2), we find that
2, (W, +N*w)=-p,. (4.5.3)
From this equation we note that the time scalgtoe vertical motion p,, = Dis

N™. Elimination of the pressure gradient from (4.48)%.4), yields the vorticity
equation. On afplane we obtain

(v, —uy)t = fw,, (45b.

where we have applied (4.4.7). Forming the horialoditvergence from the same two

equations, we find
pL 2w, + f(v, —u)} =05 p. (4.5.5)

Elimination of the vorticity from the equations afeg yields
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oW + F2w,|= 002 p,. (4.5.6)

Finally, by eliminating the pressure between (4.2:3d (4.5.6), we obtain

|:D2HW+pi(p0Wz)z:| + N2|:JZHW+ fzpi(powz)z = O' (457)
tt

0 0
where 0? =0%/0x* +%/dy*. We simplify (4.5.7) by assuming that z ¢3dries

slowlyover the typical vertical scale far i.e.

i(IOOWz)z = sz' (458

0
This isBoussinesq approximatidor internal waves. By introducing the Brunt-

Vaisala frequency (4.5.1), we can write
2

1 N
_(pOWz)z = _?Wz TW,,. (4$

0

We realize from (4.5.8) that the Boussinesqg appnation implies that

N 2
‘—WZ <<|w,,|. (4.5.10)
g
If dis a typical vertical scale for the motion, the@ad equation yields
N?<<g/d, 4.8.11)

whered . < H . For a shallow ocean we typically have tlogtl ~ 10's72, while for
a deep ocearH(= 4000 m), the corresponding value becorgés! ~ % x 102%s2

Measurements in the ocean show th&t~ 10*- 10°s?, so (4.5.11) is usually very
well satisfied. We will therefore utilize the Boursssq approximation in the future

analysis of this problem. Equation (4.5.7) theruces to

0w, + N?(2)0Zw+ f2w,, =0. (4.5.12)
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We derive the same equation by letting(z) = p, on the left-hand sides of (4.4.3)-

(4.4.5), wherep, is a constant reference density. TH¢h=—(g/ 0,)dp,/dz. This

latter approach is probably the most common onenvapplying the Boussinesq
approximation.
We assume that the ocean is unlimited in the bot& direction, and consider a
wave solution of the form
w=W(2)exp((kx—at .)) (4.5.13)
Here thex-axis is directed along the wave propagation dimact-rom (4.5.12) we

then obtain

N? - w?

Wn+k2|:a)2 - fz

}W =0, (4.5.14)

where a prime denote differentiation with resped t

4.6 Constant Brunt-Vaisala frequency
Later on we shall allow to vary withz In this section, we simplify, and assume that
N is constant. Typical values fbrandf in the ocean (and atmosphere) ire 102
standf~10%s? i.e. N >> f . From equation (4.5.14) we then note that we have
wave solutions in the-direction if f <« <N, while for « < f or @ >N, the
solutions must be of exponential character inztdeection.
Let us assume thét<a < N. We then take

W O expimz), (4p.
wheremis a real wave number in the vertical directiog.iBsertion into (4.5.14), we
obtain the dispersion relation

, kN2 +m?f2

w
k? +m?

(4.6.2)
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From the discussion in Section 2.7 we realize wWehave anisotropic system, since
wcannot be expressed solely as a function of tigmimale of the wave number
vector.
We can nowdefine a wave number vector as

K=(k,m) (4p.3
Then the phase speed and group velocity, becosgectvely

C=wklK?, (4.6.4)
and

¢, =0,w. (4.6.5)
Whenwis constant, (4.6.2) yields that the isolinesstraight lines through the origin
in wave number space. Along theaxis (wherek = 0), we havew=f (small). Along
thek-axis (wheran= 0), we havev= N (large). Since, from (4.6.5), the group
velocity is always directed towards increasing galofa, while the phase speed

(4.6.4) is directed along the wave number vectermvay sketch the direction of the

phase speed and the group velocity as in Fig. 4.3.

m jk

Y=

Fig. 4.3Lines of constant frequency for internal waves watiation in the two-

dimensional wave number space.
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If we imagine that the wave numbraris given we can plowas a function ok,
as depicted in Fig. 4.4.

w A

N

Fig. 4.4Dispersion diagram for internal waves with rotation

We can define a Rossby radius of deformation fearival motion with vertical wave

numberm by

q =< .64)

For k << a™, the effect of rotation dominates (compare witty. Bi.2 for the

barotropic case).
In the ocean, the wave numlmeicannot be chosen arbitrarily, since the vertical
distance is limited by the depth. If we, for singily, disregard the surface elevation

and assume a constant depth, we must haventhkatfor zG= 0, H ; see Fig. 4.5.
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(=]
=
|

=

Fig. 4.5Internal waves in an ocean with horizontal surfacel horizontal bottom.

A solution of (4.5.14), which satisfies the uppeubdary condition, is

W =Csinnz, (A9
where
2 _ .2
m2 = k{%] (4.6.8)

For the solution to satisfy the boundary conditrz = —-H , we must require

m=—, n=12.. (4.6.8)

This means that vertical wave number must fornmsardte (but infinite) set. Equation

(4.6.8) then yields for the frequency

(4.6.9)

ION2+ £ 222 12
w=
|

We see that, for a disturbance witgigenwave numbek in the horizontal direction,
the system (ocean) responds with a discrete nuofle@genfrequencies (4.6.9).
The solution fomw in this case can be written
w = Csin(mz) exp{i(kx — at)}

= % (expfi(kx+mz-at)} — exp{i(kx— mz—at)}). (4.6.10)
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The latter expression can be interpreted as therpapition of waves in a horizontal
layer consisting of an incoming, obliquely upwardgagating wave, and an
obliquely downward reflected wave, whenamust attain the value (4.6.8) for the
wave system to satisfy the boundary condition atobttom.

We now consider the case where the motion is maiotizontal. This allows us
to disregard the vertical acceleration in the mamn@nequation, i.e. we apply the

hydrostatic approximation. Accordingly, in (4.5\8¢ take that

w| <<|N*w], (4.6)11
which leads to
N?w= - 1
=T Py (46)12
o

From (4.6.11) we realize that the hydrostatic apjpnation implies that

w® << N?, q43
From Fig. 4.4 we note that this requires tkat< m, i.e. the horizontal scale of
motion is much larger than the vertical scale. Sithe depthd yields the upper limit
for the vertical scale, disturbances with wavelangit>> H will satisfy the
hydrostatic condition. This requirement appliebaootropic surface waves as well as
baroclinic internal waves.

Applying the hydrostatic approximation, (4.6.20luees to

(4.6.14)

2

2 21/2
W= f2+kN .
m

This is the frequency fanternal Sverdrup waves. For an ocean with ddgtand a

horizontal surface, i.en=n7n/H as in equation (4.6.8), we can write
w=(f?+ck?*"?, (4.6.15)

Here
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¢, =HN/(nm), n=123.. (4.6.16)
which is the phase speed for long internal waveleémon-rotating case. Since
m=nsr/H =N/c,, (4.6.17)
equation (4.6.6) yields the internal (baroclini@sRby radius
a=a,=c,/f, n=123 . . (4.6.18)
We note that this is analogous to the definitiothef barotropic Rossby radius

appearing in (3.2.4). For one single internal ma@e a two-layer structure, this is

similar to (4.3.13).

4.7 Internal response to wind forcing; upwelling ata straight coast
We apply the set of equations (4.4.3)-(4.4.7), atilcze the Boussinesq

approximation and the hydrostatic approximatiaa, i.

ut - fV:—i px +iT(X)

Z 1

qr plr (4.7.1)
v+ fu=-——p, +—1,
e e
P, =-A9. [C)

Furthermore, we introduce the vertical displacemg& vy, z,t) of a material surface,

so thatw= D¢ /dtin the fluid. Linearly, this becomes
W= {t ) 4.7.3)

The conservation of density (4.4.6) then yieldstfar density perturbation
p= % NZE (y

where we have assumed tpat £ = atX = 0. Inserting into (4.7.2), we obtain

p, =-p,N?&, (4y.5
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while the continuity equation can be written
$p =-U, -V, (oY

In general, we take tht=N z(, and we write the solutions to our problem as
infinite series. For simplicity, we assume that de@th is constant, and that the
surface is horizontal at all times. Accordingly:

=0, z=-H,O. 4.7)
In principle, it is also possible to allow the gasi of the surface to vary in time and
space. However, the solution shows thatitiernal response can be achieved, to a
good approximation, by assuming a horizontal serftice rigid lid approximation);

see Gill and Clark (1974). According to our adopeg@roach, we write the solutions

as

u :iun xy.1) 4 (2),

V=3V, (0.0 D),
= (4.7.8)
P=2 2 P (Y1) 4(2),

=2 &y 42,
n=1
where the primes denote differentiation with respee. By inserting the solutions
into (4.7.5), we find

> (% y,t){wg(z) v Nzwn(z)} =0, 4.79)

n

For the variables to separate, we must require

Sn =const= 1 : (4.9
p c,

Furthermore, for (4.7.9) to be satisfied foraly andt, we must have that
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2

, . N
#+—¢=0. A1)
C

n

The boundary conditions (4.7.7) yield
@ =0, z=-H,0. (4.7.12)
Equation (4.7.11) and the boundary conditions {£2)/define areigenvalueroblem,

i.e. for givenN =N ¢ we can, in principle, determine the constigenvalues,,
and theeigenfunctionsg, (z) , which appear in the series (4.7.8).
It is easy to demonstrate that the differentiaigergunctions¢g, constitute an

orthogonal set. Since (4.7.11) is valid for arbitraumberah andm, we can write

i+ NG =0 } (413)

Chgh + N, =0,
wherem# n. We multiply the upper and lower equationsdpyand ¢, , respectively.

By subtracting and integrating from=—H to z= 0, utilizing (4.7.12), we find
0
(2 -c) [dghdz=0. (4.7.14)
-H
Accordingly, forn#m, i.e. ¢, # c,,, we must have that

qunqdndzzo, nzm, (41B)

which proves the orthogonality. Since the eigenfioms are known, apart from
multiplying constants (as for all homogeneous peotd), we can normalize them by

assuming, for example, that

Mzdz:%. 14.6)
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This procedure is generally valid fo&f =N z ( Jo exemplify, and discuss explicit

solutions in a simple way, we assume tHas constant. Then the eigenfunctions

become

@ = A]sin(cﬁzj, (4.7.17)

n

which satisfies equation (4.7.11) and the uppentaty condition. The requirement

@,(—H) =0yields the eigenvalues:

— =nr1, (418)

or ¢, = HN/(n), which is identical to (4.6.16). Finally, the nalzation condition
(4.7.15) give\, =H /(nmT )

We now insert the series (4.7.8) into (4.7.1) @hd.6), and multiply each
equation withg{, @, ¢, etc. By integrating fronz = —H to z= 0, and applying the

orthogonality condition (4.7.15), we finally obtain

X
a(;’“ + fu, =—c? ‘Z‘(“ +1, (4.7.19)
0¢, __0u, _0v,
ot ox oy
where
™ -2 T or™ @ dz,
" pH, oz 490
» 2 297 4 ( )
) =——
" pH _L 0z %

We notice from (4.7.19) that this set of equatis®rmally identical to the equations

for the barotropic volume transports driven by aoefwinds, e.g. (1.5.2).
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The horizontal shear stress gradierit$ andr”’ appear in (4.7.20). In principle,

these are unknown, and depend on the fluid mokiomvever, we shall simplify the
problem by assuming that we can assess these giadighe fluid.

Assume that a constant wind is blowing along aigit coast, so that the surface

wind stresses becon®” z , BY = 0; see the sketch in Fig. 4.6. The model is

situated in the northern hemisphere,i.e. . 0

(
~

Fig. 4.6Model sketch of upwelling/downwelling at a straigbast

We assume that the shear stresses are only geltelatively thin layer close to the

surface, i.e. the mixed layer, with a thicknelss< H . Here the stresses vary linearly

with depth:

) — Téx) ﬂ, _dSZSO,

= d (4.7.21)

0, -H<z<-d, o

™ =0, -H<z<0.

With this variation ing, (4.7.20) yields
. 2r»
1)) = -2 g (=),
p.Hd (4.7.22)

¥ =0.
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We assume that the solutions are independent @fltimg-shore coordinatei.e.,

from (4.7.19):

Uy _ fy, =70,
ot
Mo 4 fy, = -2 %%, (4.7.23)
ot ay
0sh _ _OVa
ot ay

These equations have a particular solution wiergindependent of time. By
assuming thadv, /ot = Qand eliminatingu,, £, from the equations above, we find

- v, =, («29)

n n

wherea, =c,/ f is the Rossby radius for internal waves. By raggithat

v,=0, y=0 @9)
v, finite, y — oo,
the solution of (4.7.25) becomes
__1
v, ==--(L-expty/a). (428)
From (4.7.23) we then obtain
u, =7t expty/a,),
™t (427)
=—"—expFy/a,).
$n fa, pCy/a,)

Thus, u, and &, increasdinearly in time during the action of the wind. From the
derived solution we see that a wind parallel todbast results in upwelling or
downwelling within an area limited by the coast déinel baroclinic Rossby radius.

Within this area we also notice the presence ef-tije flow u, parallel to the coast.
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This flow is geostrophically balanced; see the sdaeguation in (4.7.23) with
ov. /ot =0.
We now discuss our solution in some more detds this purpose the first term

in the series (4.7.8) farand ¢ suffices:

v=vg(2)+ } (4728

E=Ep(D)+ ...

To simplify, we again take that is constant. Then, from (4.7.17), (4.7.18) and

:Esin[ﬂj
4 T H )

¢, =HN/r, (4.7.29)

v 21y (ndj

r,Y =——sin — |
p. H

By inserting into (4.7.28), we find

(x)

27 .(ﬂdj (nz]
w=¢ = sin — |exp(y/a,)sin — |+.....
'3 B Nd H pCy/a) H

(4.7.22):

(4.7.30)

Here —H <z< Oand f > Q For wind in the negative-direction (7% < 0), we find

that w= 0in the region limited by baroclinic Rossby radiascordingly, the Ekman
surface-layer transport away from the coast leadsdompensating flow from below
(upwelling). This is consistent with the signwah (4.7.30), since is positive close

to the surface and negative near the bottom; seskiéich in Fig. 4.7.
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A<

Fig. 4.7Sketch of an upwelling situation

We finally mention that since thecomponent and the vertical displaceme#t

increase linearly in time, the theory developechgmonly valid as long as the

nonlinear terms in the equations remain small.

We return for a moment to the two-layer reduceaigy model to find out what

this would yield under similar conditions. By assognz® = 1= r{’=Vy=0in

(4.3.12), we find, analogous to (4.7.24):

1 fr
Vlyy_g l= IOC-IS-Z ’

when we take tha@/dx= 0OThe solution becomes

(x)
V,=- :jf (L-expCy/a)),

rl
U, = P texpCy/a),

= Tg) texp
hy a

(4.7.31)

(4.7.32)

wherec, =(g.H,)"* anda, =¢ / f . We may define an upwelling velocity, when

r¥ <0, as
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(x)
w =—h, =- ;Scl exply/a,). (A33)

We can now compare with the case of continuousifatedion. First, we assume that
the layer of frictional influence is thin, i.el. << H . Furthermore, we insert for
z=-H /2 to obtain the maximum vertical velocity. From (8J) we then obtain

()

w(z=-H/2) :—IZ)SCl expty/a). (4.7.34)

r

Herec, = HN/mrfrom (4.7.29). By comparing with (4.7.33), we skeattthe
upwelling velocities are remarkably similar, evaough (4.7.34) is obtained from the
first term in a series expansion.

We will not go into further details of this proldle However, it is appropriate to
emphasize that this phenomenon is important formadife. The water that upwells
is coming from depths below the mixed layer, andcis in nutrients. Hence, the
upwelling process brings colder, nutrient-rich watethe euphotic zone, where there
is sufficient light to support growth and reprodantof plant algae (phytoplankton).
This means that upwelling areas are rich in bia@agitivity. Some of the world’s

largest catches of fish are made in such areasp# ftpe coasts of Peru and Chile.

V. WAVE-INDUCED MASS TRANSPORT

5.1 The Stokes drift

The result in Section 2.1 that the particles iapdeater waves move in closed circles
is correct in the present linear approach (rememieenave linearized our equations).
In reality, if we do our calculations without limezation, we find that that the
individual fluid particles have a slow net drifttine wave propagation direction. This
is because the velocity of the fluid particle igtée larger when it is closest to the

surface, than when it is farthest away from it. e&nt moves a little more forward
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than it moves backward. The resulting motion wdldbforward spiral; see the sketch

below.

zJ\

[N /N
N\
RN

Fig. 5.1Sketch of nonlinear motion of a fluid particle doavaves

y =

The net particle motion in this case can be obthimeconsidering theagrangian

velocity, which is the velocity of an individuaufd particle. We denote it by, .
Thenv, ( t)is the velocity of a fluid particle whose positiantimet =t is
I, = (% Yor %) - At @ later time, the particle has moved to a new position

[ =7, +Dr. (5.1.1)

where

Vi (I, t)dt". (5.1.2)

O
=l
I

& —

In our former Eulerian specification the fluid veity at timet is V(r ,t) . Hence
v (R, t)=v(i t.) 5.1.3)
By inserting forr, from (5.1.1), we obtain
v, (F,t) =V(F, +DF,t). (5.1.4)
We assume that the distanb& =1, -, travelled by the particle in the time interval

t —t, is small. Hence, from the two first terms of a [bayeries expansion we obtain
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9, 1) =V (0, t) +- 2 Dx+ YV py + Y by =v(r, ) + DF 0,0, (5.1.5)
0%, Yo 07,

where [, =id/0x, + jd/dy, + Ra/azo. If we use (5.1.2), we can write (5.1.5) as

V, (F,,t) =V (Tt Uv (F, t' )dt]l]]] V().

to

(5.1.6)

The last part of the velocity on the right-handesid (5.1.6) is called th&tokes

velocityvg, while the first termv 1 t, s the traditional Eulerian velocity. Hence, in

general

—

v, =V +V,.

(5.1.7)
For waves with small wave steepness the differ&eteeenv, and V. is small, so to

second order in wave steepness we can replaceatrangian velocity by the

Eulerian velocity in the integral of (5.1.6), i.e.

Vi =U\7(F0,t')dt'JDDL\7 Rt (5.1.8)

For waves with period, the averaged Stokes velocity (denoted by an baer
becomes

1.
Vo= [t

The averaged Stokes velocity (5.1.9) is often tertheStokes driftand constitutes a

1)

mean current induced by the waves. The Stokesariftponents can be written
. %ﬂ j'udt) ('[vdt) (J.Wdt)—}dt

%H judt) (jvdt) (jwdt)—Jdt

ﬂ[ judt)—+(j dt)—+(J. dt')a—WJdt.

0z,

(5.1.10)
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5.2 Application to drift in non-rotating surface waves and in Sverdrup waves
We return to the two-dimensional Eulerian wavedfif@r high-frequency surface
waves (2.1.14), where we have neglected the effettte earth’s rotation. For

calculating the Stokes drift, we have

U=u(X,, z,t) = aAcosT::((l((ﬁ; H)) coskx,—at),
_ (5.2.1)
WE Wk, 20) = aASI;:(hk(E:; H)) sin(ox, - at).

In this problem, is arbitrary, so we takg= .0Nhen we average the Stokes velocity
in time, we only get non-zero contributions fraros (kx, — at), sin®(kx, — at) in
(5.1.10). It is then easily seen that the Stokésabymponents become, =Wwg =0,

and

2

kA
U. =—————cosh@k(z,+H)). 522
s = SeintZ kN @k(z, +H)) ( )

We note that the non-zero component of the Stokiéisglin the wave propagation

direction. Furthermorels has a maximum at the surface, whege= , afd it decays
exponentially with depth. In this approximation ean replacez, with the Eulerian

vertical coordinate.

For Sverdrup waves in thedirection, e.g. (3.3.8), we can write

Aw
u=——cCcos —ah),
< kx, —at)

A
kH

w= Aa{z‘); H jsin(kx)—wt).

v =——sin(kx, — at), (5.2.3)

From (5.1.10) we readily obtain that=wg =0, and
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cA?

US :W’ (524)

where the phase speeds given by (3.3.3). For Sverdrup waves the Stakédsis

independent of the depth, i.e. it does not varywhez-coordinate.

5.3 Relation between the mean wave momentum and tleeergy density

When we integrate the Stokes velocity (5.1.8) ftbmbottom to the material surface,
and then average, we obtain the total horizont@imveave momentum,V;) per

unit density of the problem in question. To secordkr in wave amplitude we have

Ug = }usdzz JQUSdz, Ve = }\gdzz Jngdz, (5.3.1)
-H -H -H -H

where (U, V,) are the Stokes drift components,,V, are also called th&tokes

fluxes.

For surface waves, we obtain from (5.2.2):

— W\ gA

Us = 2tanhkH) 2c '’ (=23

where we have utilized the dispersion relation.@}. Similarly, for the Stokes flux

in Sverdrup waves, (5.2.4) yields that

. cA?
U.=——. 5.3.3
s~ o ( )

The energy densities for the two cases are give2by4) and (3.4.3), i.e.

c? 0, A? .
0"~ where we have utilized thaf = gH for Sverdrup

E :%,oogA2 andE =

waves. We then see right away from (5.3.2) and 3ptBat for both cases we have

the relation

E=coUs, (5.3.4)
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wherec =« /k. Although we have here only demonstrated thigigeidor two types
of waves, the fact that the energy density is etpuiie total mean wave momentum

times the phase speed is valid for a wide clasgavks (Starr, 1959).

5.4 The mean Eulerian volume flux in shallow-watewaves
By integrating (5.1.7) between the bottom and tke Eurface, and then average, we

find that

| C

=U, +U,,
LR TS (5.4.1)
V.

L:VE+

<

The Stokes drift (5.1.9) is a feature that is imé¢in the periodic wave motion, and is
basically independent of friction. The mean Eulewarrent, on the other hand, is
very much dependent on friction. As we have shatis,fairly easy to compute the
Stokes drift, while it is more difficult to deterne the mean Eulerian current due to
waves. We shall here be content by computing thennigilerian volume fluxes.

We have already derived exact expression for Hgrdngian volume fluxes, e.g.
(1.2.3) and (1.2.6). For the discussion of the Eartefluxes we simplify, and take that
we can apply the hydrostatic approximation in amaocof constant depth.
Furthermore, we apply a friction force of the t\f€l.8), and assume that there is no
forcing from the wind or the air pressure at thdaze. To second order in wave

amplitude (1.2.6) then reduces to

0___
Ug — Ve = NS—gHm—gqqx—(qudzj _[
" (5.4.2)

H
— E— —_— — 0_
Ve + fU =-fUg—gHp, _gﬂﬂy_(.[u‘dzj _(
—H x
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Here we have utilized (5.4.1), and assumed thaStbkes flux is independent of
time. The main problem here is to determine thédnoidrag on the Eulerian flow. To
simplify, we use a drag that is linear in the Ewalerfluxes, e.g. (1.5.4):

¥ = pKU., T =p,KV,. (5.4.3)
HereK is a constant bottom friction coefficient. It isgeneral different from the
friction coefficientr in (3.5.13) that acts to dampen the linear waveswe take that
they are of the same order of magnitude.

We consider steady mean flow. In this case (5.4524.3) and (1.2.3) reduce to

0__ 0o
—f\7E+KUE+gH/7X: f\TS—g/mX—(J‘uzdzj —(Ivudzj ,
-H X -H y

(o 0__
fUg + KVg + gH77, = - U - gnn, —( Iuvdzj —[ J’ \fdzj , (5.4.4)
-H x \-H y

Ug, +\7Ey =-Ug =V,

X

The accuracy in this calculation of the mean fluis&{( A*). To this order all the

guantities on the right-hand side of (5.4.4) amnpletely determined from linear

wave theory. Hence, (5.4.4) constitutes three inbgeneous equations for
determining the three unknowhk.,V.,77 . Appropriate boundary conditions must be

added for the specific problem in question.

5.5 Application to transport in coastal Kelvin waves
Radiation stress
Since we already have considered the effect didnoon coastal Kelvin waves, e.g.,

Section 3.5, we have all the information we neegrozeed, and calculate the mean

Eulerian volume fluxes t®(A® gssociated with this type of wave. For coastal Kelv

wavesu is independent of, v= 0, andV, =0. Hence, from (5.4.4):
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~ Ve + KU, +gH77, = ~gnn, —2Huu,,
fUg + KV +gH77, =—fUg —gnn,, (5.5.1)
LTE>< +\7Ey = _USX'

From (3.5.21) we easily obtain (use thgt<< k® fo) the non-linear terms on the

right-hand side of (5.5.1):

R =-g/71, - 2Huu, :gang2 exp2ax-2y/a), (5.5.2)
_ gAZ
R, =-9nn, = 4 expt-2ax-2y/a). (5.5.3)

Here R and R, are referred to as wave-forcing terms since thisg drom the
periodic wave motion, and act on the mean flow. $takes flux (5.3.1) for this
problem is easily computed. We obtain

— G A’
Ug= o exp(2ax-2yla). (5.5.4)

We then realize that the wave-forcing terRsand R, can be written:

R = —%Gcﬂ j (5.
R, = _aiy(%cogsj- (Bp

The terms3c,U /2 andc U, /2in (5.5.5) and (5.5.6) are known as thdiation

stresscomponents per unit density in shallow-water wak@snguet-Higgins and
Stewart, 1962). Actually, Longuet-Higgins and Stevdgfined the radiation stress

components in terms of the wave energy density can be shown here, as in (5.3.4),
that E/ o, =c,U. In vector form, the radiation stresses (5.5.%) @n5.6) in thex-

andy-direction are given as the (negative) divergerfdberadiation stress tensor. It
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is important to note that the concept of radiastmesses here is related to spatially

varying waves, and tends to accelerate the mean flo

Mean Eulerian fluxes
By inserting forR andR,, using that we also can wri, = fU, we obtain for the

mean Eulerian fluxes that

- V. +KU¢ + gH77, =—%GCOLTSJ, (5.5.7)
fUg + KV +gH77, =0. (5.5.8)
Ue, +Vey = U, 5.4.9)
From the curl of (5.5.7)-(5.5.8) we obtain, by us(5.5.9):
Ve, —Uy, :%US. (5.5.10)

From the divergence of (5.5.7)-(5.5.8), using (B0, we find for the mean surface

elevation

oW

4a (. 3caK K2\
== [1— S —Zfzjus. (5.5.11)

We introduce the damping scalef the waves by =1/a . Furthermore we

introduce the wave friction coefficiemt= 2c,a from (3.5.18). A particular solution of

(5.5.11) can then be written

r IK  K? -
7= -3 E . 5.5.12
7 ZCOK(1+a2/L2)[ e 2f2j s (5.5.12)

We must have that the surface elevation and thatta gradients are finite at
infinity. Then, apart from an insignificant constafb.5.12) represents our full

solution.
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In this problem we assume that the frictional effien the waves and on the mean
flow is of the same order of magnitude, i@&(r) ~ O(K . Furthermore, we assume
that the wave-damping distankcen thex-direction is much larger than the Rossby
radius, or

a?<< 2. 5.8.13)
Alternatively, these conditions can be writteh~ K? << f 2. Under these
circumstances the mean surface elevation (5.5id®)lifes to

|’ J—
U.. 55.14
7oK 0 (5.5.14)

/7:

From (5.5.7) and (5.5.8) we then obtain in thisragpnation:

U.=—U.. FAL5)

r
K
We note that due to friction, we have an inducedmteulerian flux which is of the

same order as the Stokes flux. Accordingly, thaltotean Lagrangian flux in this

case becomes
U, =@1+r/K)Us. (5.5.16)

The mean wave-induced particle velocity along th&st then becomes

2

__U, r g, A?
U =—L-=|1+— | > —exp(2ax-2y/a). 5.5.17
L [ KJZH p¢ y/a) ( )

Since we have a Lagrangian flux that decays albegoast, the flow field must

be divergent, i.e. we must have th@ :\7Ey # 0. More precisely, from (5.5.9) and

(5.5.16) we obtain
Ve, = 2a(1+%)l7 .. (5.5.18)

By integrating, and assuming thét(y = 0) =0 (no flux normal to the coast), we

obtain
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VA =3(1+Lj(l730 -U,), (5.5.19)
L K
whereUy, is the value of the Stokes flux at the coast, rll/ a . This means that

we have a small flu)/. which is directed in the positivedirection. It has its
maximum valueoutsidethe wave-trapped region (mathematicallyyos o, but in

practice fory = a). By returning to (5.5.8), we note that with odioated assumptions

— ~—<<1. (5520)

This means that the along-shore Eulerian fllpin this case is approximately
geostrophic.

We recall that our simplifications in this sectiest on the assumption that the
typical wave damping scale along the coast mustibeh larger than the Rossby
radius. This could be fulfilled for tidally geneealt Kelvin waves on the wide and
shallow Siberian shelf in the Polar Sea. It shalsb be noted this assumption is
more easily fulfilled for internal Kelvin wavessie the internal Rossby radius is
much smaller than the barotropic one. Howeveri ¢onnection it must be pointed
out that the damping scale for internal waves nmeadifferent from that of surface

waves.
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