
1 

 

 GEF4610 – OBLIGATORY EXERCISE 1 

All symbols are defined in the GEF4610 Lecture Notes 

 

 

 

 

Problem 1 

 

The equations governing the Ekman currents are: 
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a) State the assumptions behind this set of equations. 

 

b) We apply a constant wind stress τ along the y-axis at the surface 0=z , and a no-slip 

bottom )0( == vu  at Hz −= . Solve (1.1) and show that the complex solution ivuW +=  

may be written 
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where )(2 / zAifa = .  

 

c) We now consider the angle α between the wind direction and the surface velocity. Express 

(1.2) in terms of the Ekman depth 2/1)( )/2( fAD z

E π= , and apply a numerical software, e.g. 

matlab, to plot α  for various values of the ratio HDE / . Discuss your findings.  

 

 

Problem 2 

 

a) State the assumptions leading to the equations 
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and derive the conservation equation for the potential vorticity: 
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This means that Q is constant for a given fluid column. We will use these equations on an f-

plane, and consider steady flow in this problem. 

 

b) We have constant geostrophic flow 0U in the x-direction in a layer of constant depth 0H . 

What are the surface pressure gradients in this case? 
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c) We introduce a small sub-sea ridge )(xq of width 2L which is infinitely long in the y-

direction. The fluid depth then becomes qHH −= 0 ; see Fig. 1. 

 

 

 

 

 

 
 

Figure 1. Figure sketch. 

 

The flow will now be modified. The velocities in the x- and y-directions can be written 

)(0 xuU +  and )(xv , respectively, where u and v are small compared to 0U . Assume that the 

velocity far upstream of the ridge is 0U , the depth is 0H , and the relative vorticity is zero. 

Show from (2.2) that 
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d) Show that the linearized momentum equations in (2.1) becomes 
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e) Combine (2.3) and (2.4), and show that 
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0F  and a are important fluid parameters. What is their significance?  
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f) Assume subcritical flow, and take that ±∞→→ x,0η .  Use that 2/ dxd  scales as 2/1 L  in 

order to simplify (2.5). Discuss the surface elevation over the ridge in the extreme cases 
22

aL << , and 22
aL >> . 

 

g) Sometimes the rigid lid approximation is used for flow over a ridge (the surface is 

horizontal everywhere). Now (2.3) reduces to 
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i.e. anti-cyclonic relative vorticity is generated over the entire ridge. Show from (2.7) that v 

downstream of the ridge is constant, and dependent on the cross-sectional area A of the ridge, 

given by 
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h) Use the continuity equation in (2.1), and find u in this case. 

 

i) Show that the angle between the current upstream of the ridge and the current downstream 

of the ridge in the case of a rigid lid is given by 
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