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I. GOVERNING EQUATIONS FOR THE OCEAN 

1.1 Momentum and mass conservation 

We study motion in an ocean with density  . The ocean is rotating about the z-axis 

with constant angular velocity sin , where   is the latitude and  is the angular 

velocity of the earth (assumed constant here). Furthermore, (x, y) are horizontal 

coordinate axes along the undisturbed sea surface, and the z-axis is directed upwards. 

The respective unit vectors are ),,( kji


. The position of the free surface is given 

by ),,( tyxz  , where  is referred to as the surface elevation, and t is time. The 

atmospheric pressure at the surface is denoted by ),,( tyxPS . The bottom topography 

does not vary with time, and is given by ),( yxHz  ; see the sketch in Fig. 1.1. 

 

 

Fig 1.1 Definition sketch. 

 

The velocity in the fluid is ),,( wvuv 


, and the pressure is p. The momentum 

equation in a frame of reference fixed to the earth can then be written 

                      )(
1

vFkgpvkfvv
t

v

dt

vD 









,                    (1.1.1) 
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where zkyjxi  ///


is the gradient operator. Furthermore, g is the 

acceleration due to gravity, and sin2f is the Coriolis parameter. In (1.1.1) we 

have neglected the horizontal component of the Coriolis force, the tidal force, and the 

effect of the centrifugal force (due to the earth’s rotation) on the apparent gravity. If 

we let the y-axis point northwards,  f is only a function of y. We may then write 

approximately that  

                                            yfy
dy

df
ff 








 0

0

0 ,                                    (1.1.2) 

where  

                                          
  













.cos
2

sin2
1

,sin2

0

00

0








Rd

d

R

f

                         (1.1.3) 

This is called the beta-plane approximation.  

 We have denoted the friction force on a fluid particle by )(vF


 in (1.1.1). It can 

take various forms depending on the flow conditions. For laminar flow of an 

incompressible Newtonian fluid it becomes 

                                        vv
zyx

F


2

2

2

2

2

2

2























  ,                                (1.1.4) 

where  is the molecular viscosity, and 2222222 /// zyx  is the Laplace 

operator. In cases when a large scale mean motion occurs in a turbulent environment, 

we may take  

                                                           vF A


2 ,                                                    (1.1.5) 

where 
2

2
)(

2

2
)(

2

2
)(2

z
A

y
A

x
A zyx

A













 . Here A

(x)
, A

(y)
, A

(z)
 are the turbulent eddy 

viscosity coefficients in the x-, y-, and z-directions respectively (or for short; eddy 
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viscosities). The eddy viscosities A
(x)

, A
(y) 

and A
(z)

 are generally different, but they are 

all much larger than the molecular viscosity. Usually we have     

                                     )()()( ~ zyx AAA    .                    (1.1.6) 

The eddy viscosities can vary in time and space, but we here assume that they are 

constants. In some cases where it is important to introduce frictional damping without 

complicated mathematics, we may take 

                                                             vrF


 ,                                                   (1.1.7) 

where r is a constant friction coefficient. This last version is called Rayleigh friction, 

and is formally similar to frictional damping in a porous medium (Darcy friction). 

Finally, in applications where one studies the vertically integrated fluid properties, the 

horizontal friction force components are often expressed in terms of the horizontal 

frictional shear stresses )()( , yx  as 

                                         ,,
)(

)(
)(

)(


































 y
y

x
x

z
F

z
F                              (1.1.8) 

 The conservation of mass for a fluid particle can be expressed mathematically as  

                                
dt

D
v

t
v










11

















                                      (1.1.9) 

As long as we do not consider sound waves, we can neglect the small variation of 

density following a fluid particle. The conservation of mass then reduces to 

 0 v


.                      (1.1.10) 

This relation (the continuity equation) actually expresses the conservation of volume. 

It is of course exact for a fluid of constant density (homogeneous incompressible 

fluid). However, we shall use (1.1.10) throughout this text for all oceanic applications. 

 Since the free surface is a material surface, the kinematic boundary condition can 

be written as 
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                                              ,0)( z
dt

D
 ),,( tyxz  ,                                  (1.1.11)                                      

or, equivalently 

                                                      


 z
dt

D
w , .                                           (1.1.12) 

The kinematic boundary condition at the bottom becomes 

                                           ,0)(  Hz
dt

D
 ),( yxHz  ,                                  (1.1.13) 

    or                                      

                                                  Hvw 


  Hz  .                                       (1.1.14)                        

 

1.2 Equations for the Lagrangian volume transport 

By integrating the continuity equation 0 v


 in the vertical, and applying the 

boundary conditions (1.1.12) and (1.1.14), we find exactly 

                                                















HH

t dzv
y

dzu
x

,                                    (1.2.1)                                     

where a subscript denotes partial differentiation. Throughout this text we will 

alternate between writing partial derivatives in full, and (for economic reasons) as 

subscripts. The integrals in (1.2.1) are volume transports per unit length in the x- and 

y-direction, respectively. Since we here integrate between material surfaces (the 

bottom and the free surface) theses fluxes are the Lagrangian volume fluxes: 

                                                       




























H

L

H

L

dzvV

dzuU

.

,

                                               (1.2.2) 

This means that (1.2.2) captures the total flux of fluid particles through vertical 

planes. Hence, (1.2.1) becomes 

                                                          LyLxt VU  .                                            (1.2.3)                                                  
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 In the momentum equations (1.1.1) we apply the Boussinesq approximation, i.e. 

we assume that the density changes are only important in connection with the action 

of gravity. This means that we can take r  , where r is a constant reference 

density, in the horizontal components of (1.1.1). Integrating the acceleration term in 

(1.1.1), using the boundary conditions, we find exactly 

                             

.)(

,)(

2

2

































HH

Lt

H

t

HH

Lt

H

t

dzv
y

uvdz
x

Vdzvvv

dzvu
y

dzu
x

Udzuvu





.                    (1.2.4) 

 Assuming that  ztyxPp S ),,,( , we obtain from the horizontal pressure terms 

in (1.1.1)     

                                

,
11

,
11

















































yByS

HrH

y

r

xBxS

HrH

x

r

HPPpdz
y

dzp

HPPpdz
x

dzp











                     (1.2.5)                                                    

where we have defined the bottom pressure )( HpPB  . We then may write for the 

horizontal fluxes 

.
1

,
1

2)(

2)(

  

  

  

  































  

  











H H H

y

y

r

B
y

r

S

Hr

LLt

H H H

x

x

r

B
x

r

S

Hr

LLt

dzv
y

uvdz
x

dzFH
PP

pdz
y

fUV

vudz
y

dzu
x

dzFH
PP

pdz
x

fVU

 (1.2.6) 

In later applications we shall simplify these exact equations (exact under the 

Boussinesq approximation), and find them very useful.  

 

1.3 Shallow water dynamics 
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If the horizontal length scale of the motion is very much larger than the vertical length 

scale (which never can be larger than the ocean depth), the main balance in the 

vertical momentum equation (1.1.1) is hydrostatic, i.e. 

                                                           gpz  .                                                   (1.3.1) 

This is the basis for what we denote as shallow-water dynamics. It means, when we 

return to the vertical component in (1.1.1), that the vertical acceleration Dw/dt and the 

friction force must be so small that they do not noticeably alter the hydrostatic 

pressure distribution. A more quantitative discussion of this problem is found in Sec. 

2.4. In this case we can write the pressure 

                                            ),,('),',,( tyxPdztzyxgp S

z

 


 .                            (1.3.2)   

For a homogeneous ocean, the density is constant )( 0 . Then 

                                               SPzgp  )(0  .                                             (1.3.3) 

If we disregard the effect of friction for this case, the horizontal components of (1.1.1) 

can thus be written 

                                            Sxx Pgfv
dt

Du

0

1


                                             (1.3.4)                                   

                                             SyPgfu
dt

Dv
y

0

1


                                            (1.3.5)                       

We realize that the right-hand sides of (1.3.4) and (1.3.5) are independent of z. By 

utilizing that v  Dy/dt and f = f0 + y, (1.3.4) can be written 

                                         Sxx Pgyyfu
dt

D

0

2 1

2

1
0


 








                           (1.3.6) 

From (1.3.6) it follows that dtyyfuD /)2/( 2

0   is independent of z. Thus, this is 

also true for )2/( 2

0 yyfu  , and thereby also for u, if u and v were independent of 
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z at time t = 0. Similarly, from (1.3.5) we find that v is independent of z. We can 

accordingly write 

                                                           








).,,(

),,,(

tyxvv

tyxuu
                                           (1.3.7) 

Furthermore, it now follows from (1.1.10) that wz is independent of z. Hence, by 

integrating in the vertical: 

                                            ),,()( tyxCzvuw yx  .                                      (1.3.8)                      

The function C is obtained by applying the boundary condition (1.1.14) at the ocean 

bottom. The vertical velocity can thus be written 

                                        yxyx vHuHHzvuw  ))(( .                             (1.3.9)                      

Since u and v here are independent of z, (1.3.4) and (1.3.5) reduce to 

                                         Sxxyxt Pgfvvuuuu



1

 ,                            (1.3.10)                                                                                                      

                                         Syyyxt Pgfuvvuvv



1

 ,                            (1.3.11)    

From (1.2.3) we easily obtain                                    

                                              0)()(  yxt HvHu  .                           (1.3.12)   

To solve this set of equations we require three initial conditions, e.g. the distribution 

of u, v, and  in space at time t = 0. If the fluid is limited by lateral boundaries (walls), 

we must in addition ensure that the solutions satisfy the requirements of no flow 

through impermeable walls. We repeat that the validity of (1.3.10)-(1.3.12) rest on (i): 

hydrostatic balance in the vertical direction (shallow-water assumption), (ii): constant 

density, and (iii): no friction. 

   

1.4 Conservation of potential vorticity 
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We return to the inviscid, homogeneous, shallow-water ocean. For this case we may 

derive a very powerful theorem governing the potential vorticity. First, we define the 

vertical component of the relative vorticity in our coordinate system by 

                                                       yx uv  .                                                   (1.4.1)     

In addition, every particle in this coordinate system possesses a planetary vorticity f, 

arising from solid body rotation with angular velocity sin . Hence, the absolute 

vertical vorticity for a particle becomes f . We shall derive an equation for the 

absolute vorticity. It is obtained by differentiating the equations (1.3.10) and (1.3.11) 

by  y /  and x / , respectively, and then add the resulting equations. 

Mathematically, this means to operate the curl on the vector equation to eliminate the 

gradient terms. Since f is independent of time, we find that 

                                           ))(()( yx vuff
dt

D
  .                               (1.4.2)    

By using that H is independent of time (1.3.12) can be written 

                                           ))(()( yx vuHH
dt

D
  .                               (1.4.3) 

Here, H +  is the height of a vertical fluid column. We define the potential vorticity 

Q by 

                                                    









H

f
Q .                                                      (1.4.4)                         

By eliminating the horizontal divergence between (1.4.2) and (1.4.3), we find for Q 

that 

                                                         0
dt

DQ
.                                                     (1.4.5) 

This equation expresses the fact that a given material vertical fluid column always 

moves in such a way that its potential vorticity is conserved. 
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 Alternatively, we can apply Kelvin’s circulation theorem for an inviscid fluid to 

derive this important result. Kelvin’s theorem states that the circulation of the 

absolute velocity around a closed material curve (always consisting of the same fluid 

particles) is conserved. For a material curve  in the horizontal plane, Kelvin’s and 

Stokes’ theorems yield 

                                      


 .const)(


 absabs vkrv


,                             (1.4.6) 

where  is the area inside . Furthermore, in the surface integral: 

                                                  fvk abs)(


.                                            (1.4.7)                                 

When the surface area   in (1.4.6) approaches zero, we have  

                                                       const.)(  f                                          (1.4.8) 

In addition, the mass of a vertical fluid column with base  must be conserved, and 

hence   

                                                     const. )(   H                                         (1.4.9) 

This is valid for all times, since a vertical fluid column will remain vertical; see 

(1.3.7). In our case the fluid is homogeneous and incompressible, i.e.  is the same for 

all particles. Thus, by eliminating  between (1.4.8) and (1.4.9), we find as before 

that 

                                                      const.









H

f
Q ,                                       (1.4.10)                           

or, equivalently, 0/ dtDQ . 

In the ocean we usually have that || << f and || << H. For stationary flow, 

assuming that |H| >> || and |f H| >> |H |, (1.4.5) yields approximately that 

                                                   0)/(  Hfv


.                                               (1.4.11)                   

On an f-plane, this equation reduces to 
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                                                    0 Hv


.                                                (1.4.12)     

Accordingly, the flow in this case follows the lines of constant H (i.e. the bottom 

contours). This phenomenon is called topographic steering. On a beta-plane the flow 

will follow the contours of the function Hf /  (the geostrophic contours); see (1.4.11). 

 

1.5 The storm surge equations 

From experience we know that when it comes to computing the change of sea level 

due to atmospheric wind and pressure fields, we can apply the hydrostatic 

approximation (1.3.2), and neglect the density variation in the vertical. For such 

motion, referred to as storm surge, the water appears to be quasi-homogeneous, and 

we can use a constant reference density everywhere. Furthermore, the horizontal 

velocities are fairly small, which can justify the neglect of the nonlinear convective 

acceleration terms on the right-hand side of (1.2.6). This linearization is also 

consistent with the assumption that H . The volume fluxes in this linear problem 

are the Eulerian fluxes given by 

                                              
 



0 0

,
H H

EE vdzVudzU .                                        (1.5.1) 

Utilizing a friction force of the type (1.1.8), we then find for the storm surge problem: 

                         

 .

,
11

/

,///

)()(

)()(

EyExt

y

B

r

y

S

r

rySyEEt

r

x

Br

x

SrxSxEEt

VU

HPgHfUV

HPgHfVU



















                    (1.5.2) 

Here ( )(x

S , )( y

S ) are the wind stresses along the mean position of the ocean 

surface 0z , and ( )(x

B , )( y

B ) are the frictional stresses at the bottom ),( yxHz  . For 

operational use, the surface pressure gradients are obtained from weather 
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analyses/prognoses, and the wind stresses are usually related to the wind speed 

( 1010,vu ) at 10 m height through 

                                                  1010 vvcDaS


  .                                                (1.5.3) 

Here a  is the density of air, and Dc is a drag coefficient which is typically in the 

range 33 103101   (higher values for stronger winds). The bottom friction is more 

difficult to model. Sometimes a linear friction in the fluxes is applied, i.e. 

                                                       ErB VK


  ,                                                    (1.5.4) 

where K is a constant bottom friction coefficient. More frequently, friction laws that 

are quadratic in the mean velocity are used at the bottom. 

 It is important to realize that (1.5.2) is a linearized set of equations for the 

Eulerian volume fluxes (1.5.1). Unlike the nonlinear Lagrangian fluxes (1.2.2), they 

do not contain any mean wave momentum. Hence the storm surge equations only 

yield the surface elevation and mean currents induced by wind stress and atmospheric 

pressure gradients along the sea surface. In Chapter V we return to the intriguing 

problem of mean currents induced by surface waves in the ocean.   

 

II. ADJUSTMENT UNDER GRAVITY IN A HOMOGENEOUS, NON-

ROTATING OCEAN 

2.1 Linear waves in an ocean of finite depth  

For a homogeneous fluid at rest, the surface is horizontal. If we initially establish a 

surface elevation which deviates from the horizontal, the subsequent motion will be in 

the form of surface gravity waves. Since the density of the ocean is about one 

thousand times larger than the density of the atmosphere, we can neglect the effect of 

the air on the oceanic wave motion. In this chapter we consider surface gravity waves 
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with short periods much shorter than the inertial period f/2 (~16 hrs at mid 

latitude). It is obvious that the earth’s rotation will have very little effect on the orbital 

motion in such waves, so we can neglect it. For the moment we also neglect the effect 

of friction on the wave motion. This is motivated by the fact that wind-generated 

waves in the open ocean (swell) may propagate for hundreds of kilometres without 

being severely damped
1
. From (1.1.1) the momentum equation now reduces to 

                                                          kgp
dt

vD 


0

1


,                                    (2.1.1) 

where 0  is the constant density. For this case we have from Kelvin’s theorem for the 

velocity circulation along a material closed curve :  

                                                         0


rdv
dt

d 
.                                               (2.1.2) 

If the velocity circulation initially is zero, which we here assume, it will remain zero 

for all times, i.e. 

                                                            


0rdv


.                                                 (2.1.3) 

Then the velocity can be derived from a potential  , i.e.                                                   

                                                                v


,                                                  (2.1.4) 

or 

                                                      zyx wvu   ,, .                                       (2.1.5) 

Accordingly, from the continuity equation 0 v


 we obtain 

                                                              02   .                                                   (2.1.6) 

In general we have that  

                                                 
1
 However, we will see later on that the effect of friction as well as the Coriolis force will be important 

for determining the nonlinear mean current (the drift) induced by surface waves.  
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                                                 )(
2

1 2 vvvvv










 .                             (2.1.7) 

Since the last term here (the vorticity) is zero from (2.1.4), we realize that (2.1.1) can 

be written 

                                             0)(
2

1 2

0









 gz

p
t 


.                                (2.1.8) 

When integrating this equation in space, the integration constant can be set equal to 

zero. Hence 

                                              zg
p

t  2

0

)(
2

1



.                                        (2.1.9) 

This is the Euler equation for the pressure. 

If the ocean bed is flat, which we assume here, and situated at Hz  , we must 

have at the ocean bottom 

                                                    .,0 Hz
z

w 






                                     (2.1.10) 

This constitutes the kinematic boundary condition at the ocean bottom.  

In this chapter we consider waves with small amplitudes. As a first 

approximation we neglect terms in the governing equations that are proportional to 

the square of the wave amplitude, i.e. we linearize our equations. In this 

approximation, the kinematic boundary condition at the surface becomes  

                                                   0, 








z

z
w

t


,                                      (2.1.11) 

We consider a wave solution in the form of a complex Fourier component 

                                                ))(exp( tkxiA   .                                          (2.1.12) 

From (2.1.6), (2.1.10), and (2.1.11) we then obtain 

                                       )(exp
)sinh(

)(cosh(
tkxi

kHk

HzkAi



 


 .                       (2.1.13) 
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Hence, the real parts of the velocities in the ocean can be written  

                               

).sin(
)sinh(

))(sinh(

),cos(
)sinh(

))(cosh(

tkx
kH

HzkA
w

tkx
kH

HzkA
u

















                              (2.1.14)  

For the real part of the pressure we find from the linearized version of (2.1.9) that 

                                gztkx
kHk

HzkAp



 )cos(

)sinh(

))(cosh(2

0





.                       (2.1.15) 

For surface waves in the ocean we can neglect the effect of the air above the water. 

This means that we can take 0p  at the surface. Hence, from the dynamic boundary 

condition 0)( p , the linearized version of (2.1.9) yields  

                         )cos(
)sinh(

))(cosh(
)cos(

2

tkx
kHgk

HkA
tkxA 


 


 .             (2.1.16) 

Utilizing that H , we obtain for the frequency 

                                                     )tanh(2 kHgk .                                          (2.1.17) 

For waves propagating in the positive x-direction, we find for the phase speed that 

                                           

2/1

2

)/2tanh(












 Hg

k
c .                                (2.1.18) 

It is readily seen that c increases monotonically with increasing wavelength. Such 

waves are called dispersive waves (positive dispersion). Hence, for an ensemble of 

waves with various wavelengths generated at a certain location, the longer waves will 

move faster, and disappear from the generation area. This is like ocean swell escaping 

from the storm centre. The extreme cases of (2.1.18) are (a): Deep-water waves 

( 1kH ). Then 

                                                       

2/1

2












 g

k
c .                                          (2.1.19) 
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(b): Waves in shallow water ( 1kH ). Then 

                                                            2/1)(gHc  .                                             (2.1.20) 

 To first order in wave amplitude we find that individual fluid particles in surface 

wave motion moves in closed paths. If the Lagrangian coordinates of a single particle 

is ),( LL zx , we can write 

                                                             w
t

z
u

t

x LL 








, ,                                (2.1.21) 

where u and w are given by (2.1.14). Defining 

                              
)sinh(

))(sinh(
,

)sinh(

))(cosh(
21

kH

HzkA
R

kH

HzkA
R





 ,                 (2.1.22) 

we find from (2.1.21) that 

                                                1
)()(

2

2

2

0

2

1

2

0 





R

zz

R

xx LL .                                  (2.1.23) 

We realize that the particle path is elliptic with centre in ),( 00 zx . The major half axis 

is 1R , and the minor half axis is 2R . They both decrease with depth. For infinitely 

deep water, 21 RR  , and the particles move in circles. We shall see in Chapter V that 

when we consider nonlinear wave motion, the particle path is not closed. Each 

particle has a forward spiralling motion which gives rise to a mean forward drift of 

particles. This means that waves do induce a current in the medium through which 

they propagate. 

 

2.2 Wave groups and group velocity 

Up to now we have considered one single wave component. If we have two wave 

components the same amplitude, but with slightly different wave numbers and 

frequencies, they can be written in complex form as 
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},)(){(exp
2

1

},)(){(exp
2

1

txkkiA

txkkiA













                                (2.2.1)                            

where 1/,1/  kk . Each of the two components above is a solution to 

our wave problem. Since we work with linear theory, also the sum    of the two 

components becomes a solution. This superposition can be written 

          

 

).(expcos

))(exp()(exp)(exp
2

1

tkxit
k

xkA

tkxitkxitkxiA




















 

          (2.2.2) 

We denote the real part of (2.2.2) by , representing the physical solution. We then 

find                                  

                                   




































 t

k
xkt

k
xkA


 coscos .                 (2.2.3)              

This shows that   is an amplitude-modulated wave train consisting of series of wave 

groups, as shown in Fig. 2.1, where we have plotted A/  as a function of x for 

 kk / 0.1. 

 

 

 

Fig. 2.1 Sketch of wave groups.  

The individual waves in the group will propagate with the ordinary phase speed 

kc / , while the group itself will propagate with the group velocity kcg  / . 
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In the limit when 0k , the group velocity becomes the derivative of the frequency 

with respect to the wave number, i.e. 

                                                             
dk

d
cg


 .                                                   (2.2.4) 

Since kc , and  /2k , we note that (2.2.4) can be written as 

                                                        



d

dc
ccg   .                                               (2.2.5) 

So, if the phase speed increases with increasing wavelength (normal dispersion), then 

ccg  . If the phase speed is independent of the wavelength (non-dispersive waves), 

we have that ccg  . 

It is a simple exercise to show from (2.1.17) and (2.2.4) that the general relation 

between the group velocity and the phase velocity for surface waves becomes 

                                         









)2sinh(

2
1

2

1

kH

kH

c

cg
.                                         (2.2.6)                         

 

2.3 The motion of a pulse in a shallow channel 

In the previous analysis we have used the concept of Fourier components to describe 

the wave form. However for shallow-water waves, which are non-dispersive, we can 

easily derive solutions for arbitrary surface displacements. We assume small 

disturbances from the state of equilibrium in the ocean, two-dimensional motion (/y 

= 0, v = 0), and constant depth. For linearized, shallow-water waves in the x-direction 

(2.1.1) reduces to                                  

                                                          








.

,

xt

xt

Hu

gu




                                                (2.3.1)        

Eliminating the horizontal velocity, we find 

                                                         0 xxtt gH .                                            (2.3.2)                             
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This equation is called the wave equation, and appears in many places in physics. 

Instead of assuming a single Fourier component as solution of this equation, we 

realize immediately that a general solution can be written 

                                                  )()( 0201 tcxFtcxF  ,                              (2.3.3)  

where 2/1

0 )(gHc  . If, at time t = 0, the surface elevation was such that  = F(x), and 

t = 0, it is easy to see that the solution becomes 

                                              )()(
2

1
00 tcxFtcxF  .                                 (2.3.4)                           

From (2.3.1) and (2.3.3) we find for the acceleration  

                                 )(')('
2

00 tcxFtcxF
g

gu xt   ,                          (2.3.5)                            

where  ddFF /)('  . Hence, the horizontal velocity is given by 

                                          )()(
2

00

0

tcxFtcxF
c

g
u  .                               (2.3.6)                   

From (2.3.4) we can display the evolution of an initially bell-shaped surface elevation 

F(x) with typical width L; see the sketch in Fig. 2.2. 
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Fig. 2.2  Evolution of a bell-shaped surface elevation. 

 

We note that the initial elevation splits into two identical pulses moving right and left 

with velocity c0 = (gH)
1/2

. In a deep ocean (H = 4000 m), the phase speed is c0  200      

m s
1

, while in a shallow ocean (H = 100 m) we have c0  30 m s
1

. If the maximum 

initial elevation in this example is h, i.e. F(0) = h, we find from (2.3.6) that the 

velocity in the ocean directly below peak of the right-hand pulse can be written 

                                                         
02c

gh
u  ,                                                       (2.3.7)                                                         

when t >> L/c0, that is after the two pulses have split. If we take h = 1 m as a typical 

value, the deep ocean example yields u  2.5 cm s
1

, while for the shallow ocean we 

find u  17 cm s
1

. 

 As a second example we consider an initial step function:  
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












.0,
2

1

,0,
2

1

)(

xh

xh
xF                                              (2.3.8)                                          

In this case, the velocity and amplitude development becomes as sketched in Fig. 2.3. 

 

Fig. 2.3 Evolution of a surface step function. 

 

It is obvious that we in an example like this (with a step in the surface at t = 0) must 

be careful when using linear theory, which requires small gradients. In a more 

realistic example where differences in height occurs, the initial elevation will have a 

final (an quite small) gradient around x = 0. Qualitatively, however, the solution 

becomes as discussed above. 

  

2.4 Validity of the hydrostatic approximation 

Let us consider the validity of the hydrostatic approximation in the case of waves in a 

non-rotating ocean. We rewrite the pressure as a hydrostatic part plus a deviation: 



 24 

                                                  ')(0 pPzgp S   ,                                    (2.4.1)                                               

where 'p is the non-hydrostatic deviation. The vertical component of (2.1.1) becomes 

to lowest order: 

                                                          zt pw 
0

1


,                                               (2.4.2)                                                    

while the horizontal component can be written 

                                                          xxt pgu 
0

1


 .                                      (2.4.3)                                             

The hydrostatic assumption implies that 

                                                          tx up 
0

1


.                                              (2.4.4)                                                 

If the typical length scales in the x- and z-directions are L and H, respectively, we 

obtain from the continuity equation that 

                                                             w
H

L
u ~ ,                                              (2.4.5)                                                     

where ~ means order of magnitude. From (2.4.2) we then find 

                                                           tu
L

Hp 2

~
'


.                                            (2.4.6)                                                   

Utilizing this result, the condition (2.4.4) reduces to 

                                                            1/ 22 LH .                                            (2.4.7)                                                    

Thus, we realize that the assumption of a hydrostatic pressure distribution in the 

vertical requires that the horizontal scale L of the disturbance must be much larger 

than the ocean depth. For a wave, L is associated with the wavelength; for a single 

pulse, L corresponds to the characteristic pulse width. 

 

2.5 Energy transport in surface waves 
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As mentioned in Section 2.1, a local wind event in the open deep ocean generates 

wind waves with many different wavelengths. Since such waves are dispersive, the 

longest waves will travel fastest. For example, for a wavelength of 300 m, we find 

that the phase speed is nearly 22 m/s. These waves may propagate faster than the low 

pressure system that generated then, and hence escape from the storm region. Such 

waves are called swell, and may propagate for hundreds of kilometres through the 

ocean till they finally reach the coast, gradually transforming to shallow-water waves. 

Finally, they break in the surf zone on the beach, and loose their mechanical energy. 

In this way we understand that waves are carriers of energy. They get their energy 

from the wind, propagate the energy over large distances, and loose it by doing work 

on the beaches in the form of beach erosion processes etc. If there is any rest 

mechanical energy, it is transferred to heat in the breaking process. 

 The total mechanical energy E per unit area in surface waves is the sum of the 

mean kinetic energy kE and the mean potential energy pE . Per definition 

                 dtdzwu
T

dtdzwu
T

E

T

H

T

H

k    













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




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


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 0

0
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0
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0 )(
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)(
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



,            (2.5.1) 

where  /2T  is the wave period. For periodic wave motion we assume that the 

potential energy is zero at the mean surface level. Hence 

                                              dtzdzg
T

E

T

p   














0 0

0

1


 .                                           (2.5.2) 

Inserting from (2.1.12) and (2.1.14), we obtain after some algebra that 

                                                  2

0
4

1
gAEE pk  .                                             (2.5.3) 

Hence, the mechanical energy is equally partitioned between kinetic and potential 

energy. The total energy per unit area, often referred to as the energy density, 

becomes 
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                                           2

0
2

1
gAEEE pk  .                                        (2.5.4)                                     

The mean horizontal energy flux eF  is the work per unit time done by the dynamic 

(fluctuating) pressure in displacing particles horizontally. By definition 

                                    




























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T
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H

e dtpudz
T

dtpudz
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F
0

0

0

11


.                        (2.5.5) 

Applying the horizontal velocity in (2.1.14) and the dynamic pressure in (2.1.15) 

(leaving out the static part gz0 ), we find 

                                        kHkH
kHk

A
Fe 2)2sinh(

sinh8 22

23

0 


.                          (2.5.6) 

Utilizing the dispersion relation (2.1.17), and the group velocity given by (2.2.6), we 

can write the mean energy flux (2.5.6) as 

                                                   EcF ge  .                                                     (2.5.7)                               

In our earlier treatment of the group velocity it was defined from a purely kinematic 

point of view. We understand from (2.5.7) that the group velocity has a much deeper 

significance: It is the velocity that the mean energy in the wave motion travels with. 

Accordingly, to receive a signal that propagates over a distance L in the form of a 

wave, we must wait a time gcLt / , before the receiver picks up the signal.  

 

2.6 The Stokes edge wave 

Stokes (1846) discovered a surface wave that could exist in an ocean where the 

bottom was sloping linearly; see the sketch in Fig. 2.4, where the slope angle is  . 
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Fig. 2.4 Sketch of the Stokes edge wave. 

In the absence of viscosity and rotation, the solution can be derived from the Laplace 

equation (2.1.6). For a wave in the y-direction we can write:  

                                                          )(),( tkyiezxF   .                                       (2.6.1) 

Then Laplace’s equation reduces to 

                                                       02

2

2

2

2










Fk

z

F

x

F
.                                    (2.6.2)   

We consider exponentially trapped waves in the direction normal to the coast, and 

assume that the solution decays exponentially with depth, i.e. 

                                                    .0,,   baCeF bzax                                       (2.6.3) 

Hence, from (2.6.2) 

                                                       0222  kba .                                              (2.6.4) 

The kinematic boundary condition at the sloping bottom is: 

                                                hzhvw  ,


,                                            (2.6.5) 

or 

                                            tan,)(tan xzxz  .                                  (2.6.6)  

From (2.6.6) we obtain that tanab  . Inserting into (2.6.4): 
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                                                   sin,cos kbka  .                                    (2.6.7) 

Hence, we can write the velocity potential 

                                  )(sincosexp tkyikzkxC   .                         (2.6.8)                      

From the linearized kinematic boundary at the surface (2.1.11), we find for the surface 

elevation that  

                                          )(cosexp tkyikxA   .                                (2.6.9)  

where  /siniCkA . The dynamic boundary condition at the surface is 

0)( zp . From the linearized version of (2.1.9) we obtain 

                                                      0,0  zgt  .                                       (2.6.10) 

By inserting into this equation, we find the dispersion relation 

                                                           sin2 gk .                                            (2.6.11) 

This result is valid for 2/0   . We note that this trapped wave, called the Stokes 

edge wave, can travel along the coast in both directions, due to the two possible signs 

in (2.6.11). 

 When the beach slope is small )1(  , we can analyse this problem by using 

shallow water theory. We then realize that the trapping can be explained by the fact 

that the local phase speed gH increases with increasing distance from the coast. If 

we represent the wave by a ray which is directed along the local direction of energy 

propagation, e.g. Section 2.8, the ray will always be gradually refracted towards the 

coast. At the coast, the wave is reflected, and the refraction process starts all over 

again. The total wave system thus consists of a superposition between an incident and 

a reflected wave in an area near the coast. The width of this area depends on the angle 

of incidence with the coast for the ray in question. Outside this region, the wave 

amplitude decreases exponentially.  
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 When we analyse this problem more thoroughly, we find that the Stokes edge 

wave is the first mode in a spectrum of shelf modes that contains both discrete and 

continuous parts; see LeBlond and Mysak (1978), p. 221. If we take the earth’s 

rotation into account (f  0), the frequencies for the edge waves in the positive and 

negative x-directions will be slightly different. 

 

2.7 Wave kinematics 

We can generalize the result in this chapter to wave propagation in three dimensions. 

Let  denote the velocity potential or the stream function of a plane wave. By 

introducing a wave number vector 


 defined by 

                                                         332211 ikikik


 ,                                    (2.7.1)                                               

and a radius vector r


, where 

                                                         332211 iririrr


 ,                                       (2.7.2)                                                 

we can write a plane wave as  
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.                  (2.7.3)                       

The vectorial phase speed c


is now defined by 
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Furthermore, we can write the components of the vectorial group velocity gc


as 
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In vector notation this becomes 
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 If the frequency  only is a function of the magnitude of the wave number vector, 

i.e. )(  , we refer to the system as isotropic. If we cannot write the dispersion 

relation in this way, the system is anisotropic. We now consider the surface in wave 

number space given by Ckkk  ),,( 321 , where C is a constant; see Fig. 2.5, 

where we display a two-dimensional example. 

 

Fig. 2.5 Constant- frequency surface in wave number space. 

 

The gradient  is always perpendicular to the constant frequency surface. From 

(2.7.6) we note that this means that the group velocity is always directed along the 

surface normal, as depicted in Fig. 2.5. Since the phase velocity is directed along the 

wave number vector, e.g. (2.7.4), we realize that if the phase speed and group velocity 

should become parallel, then the constant frequency surface must be a sphere in wave 

number space. Mathematically, this means that )(  , i.e. we have an isotropic 

system. 

 

2.8 Application to a slowly-varying medium 
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If the medium through which the waves propagate is not completely spatially uniform 

or constant in time, the wave train will vary as it propagates. If the length and time 

scales over which the medium varies are large compared to the wavelength or wave 

period, the local properties of the wave will vary slowly throughout the field. If   

represents the displacement of a fluid element, the wave train can be specified by 

)exp(  iA , where A is the local amplitude, which is a slowly varying function of 

position and time, and ),( tr


 is the phase function. The wave number 


 and the 

radian frequency  , which both may be slowly varying functions of space and time, 

can now be defined as 

                                                    t  ,


.                                             (2.8.1) 

From this it follows that  

                                                             0 


.                                                 (2.8.2) 

Hence the distribution of the local wave number in space is irrotational. Furthermore, 

from (2.8.1) 

                                                          0 t


.                                                (2.8.3) 

This can be considered as a kinematical conservation equation for the density of 

waves. In a random field of linearly superposed waves, (2.8.3) holds for each Fourier 

component. For a steady wave field, 0 . If the waves propagate in the x-

direction and the dispersion relation have the form ))(,( xHk  , we have for this 

case that 

                                                  0
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




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dx
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Hdx
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kdx

d 
.                                (2.8.4) 

For example, for shallow water waves on a gently sloping beach, we have from 

(2.1.17) that kxgH 2/1))(( . By inserting into (2.8.4), and integrating, we readily 

find for this case that 



 32 

                                                    

2/1

0
0

)(
)( 










xH

H
kxk ,                                          (2.8.5) 

where 00 , Hk are the wave number and the depth at 0xx  . We note from (2.8.5) that 

when the wave propagates into shallower water, like a tsunami approaching the shore, 

the wave number increases. Accordingly, the wavelength becomes smaller. Together 

with increasing wave amplitude, this is steepens the wave, which ultimately leads to 

breaking in the surf zone. 

 

Ray theory 

The wave energy propagates in the direction of the group velocity vector. We can 

define the energy path, or ray, as the curve in to-dimensional space where the tangent 

at each point is along the group velocity, i.e. 

                                                          0 gcrd


.                                                  (2.8.6) 

For example, in the horizontal plane jdyidxrd


 , and hence the equation for the 

ray becomes 
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x

g
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g

c

c

dx
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 .                                                 (2.8.7) 

If the group velocity components are independent of x and y, the ray )(xFy   

becomes a straight line. However, if we for example consider shallow water waves in 

an ocean with a slowly varying depth, the group velocity components will vary slowly 

with the horizontal coordinates. Then the ray will be curved, as mentioned in 

connection with edge waves in Section 2.6. 

 

Doppler shift 
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In this analysis the frequency   is the frequency for waves propagating in a medium 

at rest. If now the fluid moves with a velocity U


, which can be a slowly varying 

function of space and time,  is the frequency that will be found by an observer 

moving with the undisturbed fluid velocity. It is called the intrinsic frequency, and 

can be obtained from the dispersion relation. However, the frequency n measured by 

an observer at rest, or the apparent frequency, will be 

                                                            Un


  .                                             (2.8.8)  

 When the wave and the medium move in the same direction, the last term is positive, 

and the frequency appears to increase (higher tone) for a fixed observer, while it 

decreases (lower tone) when they move in opposite directions. This phenomenon is 

known as Doppler shift. 

 

III. SHALLOW-WATER IN WAVES IN A ROTATING, NON-STRATIFIED 

OCEAN 

3.1 The Klein-Gordon equation 

We now consider the effect of the earth’s rotation upon wave motion in shallow 

water. Linear theory still applies, and we take the depth and the surface pressure to be 

constant. Furthermore, we assume that f is constant. Equations (1.3.10)-(1.3.12) then 

reduce to 

                                                         xt gfvu  ,                                            (3.1.1)                                                    

                                                          yt gfuv  ,                                           (3.1.2)                                                    

                                                       0)(  yxt vuH .                                       (3.1.3)                                                

We compute the vertical vorticity and the horizontal divergence, respectively, from 

(3.1.1) and (3.1.2). By utilizing (3.1.3), we then obtain 
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                                                    0)(  ttyx
H

f
uv  ,                                       (3.1.4)  

and                                             

                                                )()( yyxxyx
tt guvf

H



 .                             (3.1.5)                               

The vorticity equation can be integrated in time, i.e. 

                                              000 
H

f
uv

H

f
uv yxyx  ,                            (3.1.6)                                     

where sub-zeroes denote initial values. We assume that the problem is started from 

rest, which means that there are no velocities or velocity gradients at t = 0. Thus 

                                                      )( 0  
H

f
uv yx .                                    (3.1.7)                                            

Inserting for the vorticity in (3.1.5), we find that 

                                          0

222

0 )(  ffc yyxxtt  ,                                 (3.1.8)                                    

where gHc 2

0 , and 0 is a known function of x and y (the surface elevation at 0t ). 

The solution to (3.1.8) can be written as a sum of a transient (free) part and a 

stationary (forced) part 

                                                   ),(ˆ),,(~ yxtyx   ,                                       (3.1.9)                                           

where ~  and ̂  fulfils, respectively 

                                               0~)~~(~ 22

0   fc yyxxtt ,                                (3.1.10)                                     

                                              0

222

0
ˆ)ˆˆ(  ffc yyxx  .                               (3.1.11)                                      

Equation (3.1.10) for the transient, free solution is called the Klein-Gordon equation 

and occurs in many branches in physics. Here, it describes long surface waves that are 

modified by the earth’s rotation (Sverdrup or Poincaré waves). These waves will be 

discussed in the next section. Notice that the initial conditions for the free solution are              

                                               ),(ˆ),()0,,(~
0 yxyxyx   ,                              (3.1.12) 
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and 

                                                               0~ t .                                                   (3.1.13) 

  

3.2 Geostrophic adjustment 

As an example of a stationary solution of (3.1.8), we return to the problem in Section 

2.3, where the surface elevation initially was a step function: 
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or, for simplicity, 

                                  
.0

,0

,1

,1
)sgn(),sgn(

2

1
)(0












x

x
xxhx                         (3.2.2)       

We assume that the motion is independent of the y-coordinate. From (3.1.11) we then 

obtain 

                                                 )sgn(
2

1
ˆˆ 22 xhaaxx

   .                                (3.2.3)                                    

Here we have defined (for 0f ): 

                                                              fca /0 ,                                                 (3.2.4) 

which is called the barotropic Rossby radius of deformation, or simply the barotropic 

Rossby radius. It sets an important length scale for the influence of rotation in a quasi-

homogeneous ocean. The solution of (3.2.3) is easily found to be 

                                               )sgn()/exp(1
2

1
ˆ xaxh  .                                (3.2.5)                                         

We have sketched this solution in Fig. 3.1 
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Fig. 3.1 Geostrophic adjustment of a free surface. 

 

A typical value for f at mid latitudes is 10
4

s
1

. For a deep ocean (H = 4000 m), we 

find from (3.2.4) that a  2000 km, while for a shallow ocean (H = 100 m), a  300 

km. 

 From (3.1.1) and (3.1.2) we find the velocity distribution for this example, i.e.  

                                                               xgvf ̂ˆ  ,                                               (3.2.6)                                                      

                                                                  0ˆ u .                                                   (3.2.7)                                                          

We note from (3.2.6) that we have a balance between the Coriolis force and the 

pressure-gradient force (geostrophic balance) in the x-direction. Utilizing (3.2.5), the 

corresponding geostrophic velocity in the y-direction can be written  

                                                         )/exp(
2

ˆ
0

ax
c

gh
v  .                                     (3.2.8)                                                    

This is a “jet”-like stationary flow in the positive y-direction. Although the 

geostrophic adjustment occurs within the Rossby radius, we notice from (3.2.8) that 

the maximum velocity in this case is independent of the earth’s rotation. By 

comparison with (2.3.7), we see that our maximum velocity it is the same as the 
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velocity below a moving pulse with height h/2, or as the velocity in the non-rotating 

step-problem in Section 2.3. 

 Let us compute the kinetic and the potential energy within a geometrically fixed 

area DxD   for the stationary solutions (3.2.5)-(3.2.8), which is valid when t  

. The kinetic energy becomes  

                                   
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where we have used the fact that H . For the potential energy we find 
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where we have taken 2/hz   as the level of zero potential energy, and introduced 

2/' hzz  . Initially, the total mechanical energy within the considered area equals 

the potential energy, or 

                                                   DghEE p

2

00
2

1
0

 .                                      (3.2.11)       

Let us choose D >> a. We then notice from (3.2.9)-(3.2.11) that 

                                                      0EEE pk  .                                                (3.2.12)                                                   

Thus, when t  , the total mechanical energy inside the considered area is less than 

it was at t = 0. The reason is that energy in the form of free Sverdrup waves (solutions 

of the Klein-Gordon equation) has “leaked” out of the area during the adjustment 

towards a geostrophically balanced steady state. We will consider these waves in 

more detail in the next section. 

Finally we discuss in a quantitative way when it is possible to neglect the 

effect of earth’s rotation on the motion. For this to be possible, we must have that 

                                                          vkfvt


 .                                            (3.2.13)                                                 
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Accordingly, the typical timescale T for the motion must satisfy 

                                                            
f

T
2

 .                                                 (3.2.14)                                                         

At mid latitudes we typically have hrs17/2 f . If the characteristic horizontal 

scale of the motion is L and the phase speed is 2/1

0 )(gHc  , we find from (3.2.14) 

that the effect of earth’s rotation can be neglected if 

                                                               aL  .                                                 (3.2.15)                                                         

In the open ocean L will be associated with the wavelength, while in a fjord or canal, 

L will be the width. Oppositely, when the length scale is larger than the Rossby 

radius, i.e.,  

                                                            aL  ,                                                      (3.2.16)                                                         

the effect of the earth’s rotation on the fluid motion can not be neglected. 

 

3.3 Sverdrup and Poincaré waves  

We consider long surface waves in a rotating ocean of unlimited horizontal extent. 

Such waves are often called Sverdrup waves (Sverdrup, 1927). They are solutions of 

the Klein-Gordon equation (3.1.10). Actually, Sverdrup’s name is usually related to 

friction-modified, long gravity waves, but here we will use it also for the frictionless 

case. In literature long waves in an inviscid ocean are often called Poincaré waves. 

However, this term will be reserved for a particular combination of Sverdrup waves 

that can occur in canals with parallel walls. 

 

Sverdrup waves  

A surface wave component in a horizontally unlimited ocean can be written  

                                            ))(exp( tlykxiA   .                                         (3.3.1) 
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This wave component is a solution of the Klein-Gordon equation (3.1.10) if 

                                                     )( 222

0

22 lkcf  .                                    (3.3.2)                                               

Here k and l are real wave numbers in the x- and y-direction, respectively. Equation 

(3.3.2) is the dispersion relation for inviscid Sverdrup waves. From this relation we 

note that the Sverdrup wave must always have a frequency that is larger than (or equal 

to) the inertial frequency f.   

 For simplicity we let the wave propagate along the x-axis, i.e. l = 0. The phase 

speed now becomes 
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where   is the wavelength and a is the Rossby radius. We note that the waves 

become dispersive due to the earth’s rotation. The group velocity becomes 
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We notice that the group velocity decreases with increasing wavelength. From (3.3.3) 

and (3.3.4) we realize that 2

0cccg  , i.e. the product of the phase and group velocities 

is constant. From (3.3.2), with 0l , we can sketch the dispersion diagram for 

positive wave numbers; see Fig. 3.2. 
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Fig. 3.2 The dispersion diagram for Sverdrup waves. 

 

For k << a
1

 (i.e.  >> a) we have that   f. This means that the motion is reduced to 

inertial oscillations in the horizontal plane. For k >> a
1

 gravity dominates, i.e.   

c0k, and we have surface gravity waves that are not influenced by the earth’s rotation. 

 Contrary to gravity waves in a non-rotating ocean, the Sverdrup waves discussed 

here do possess vertical vorticity. For a wave solution ( )exp( ti ), (3.1.4) yields 

                                                               
H

f
 ,                                                (3.3.5)    

where the relative vertical vorticity  is defined by (1.4.1). If we still assume that  

0/  y , we obtain from (3.3.5) and (3.1.2) that 
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Considering real solutions with 

                                                         )cos( tkxA   ,                                        (3.3.7) 

we find from (3.3.6): 
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Here the vertical velocity w has been obtained from (1.3.8). Since f  for 

Sverdrup waves, we must have that vu  . Furthermore, from (3.3.8) we find that 
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.                                (3.3.9)                                          

This means that the horizontal velocity vector describes an ellipsis where the ratio of 

the major axis to the minor axis is f/ . From (3.3.8) it is easy to see that the 

velocity vector turns clockwise, and that one cycle is completed in time  /2 . 

 Sverdrup (1927) demonstrated that the tidal waves on the Siberian continental 

shelf were of the same type as the waves discussed here. In addition, they were 

modified by the effect of bottom friction, which leads to a damping of the wave 

amplitude as the wave progresses. Furthermore, friction acts to reduce of the phase 

speed, and it causes a phase displacement between maximum current and maximum 

surface elevation. 

 In this connection it is interesting to consider the most energetic tidal constituent 

in the Barents Sea region, which is M2. This tidal component has a period  

hrs42.12T , and the corresponding frequency becomes 14 s1041.1  . 

According to the results above, it can only exist as a free Sverdrup wave if 

 sin2 f . This means that we have a critical latitude    2/sin 1 c , or 

'8.275oc N, for this component. At higher latitudes than c , the M2 component 

cannot exist as a Sverdrup wave. However, we shall discover later on that this 
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component indeed can exist at higher latitudes, but then in the form of a coastal 

Kelvin wave, to be discussed in Section 3.5. 

 

Poincaré waves 

We consider waves in a uniform canal along the x-axis with depth H and width B. 

Such waves must satisfy the Klein-Gordon equation (3.1.10). But now the ocean is 

laterally limited. At the canal walls, the normal velocity must vanish, i.e. v = 0 for y = 

0, B. By inspecting (3.3.8), we realize that no single Sverdrup wave can satisfy these 

conditions. However, if we superimpose two Sverdrup waves, both propagating at 

oblique angles ( and , say) with respect to the x-axis, we can construct a wave 

which satisfies the required boundary conditions. The velocity component in the y-

direction must then be of the form  

                                  ,..3,2,1)),(exp()sin(0  ntkxi
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                    (3.3.10)                      

Since the wave number Bnl /  in the y-direction now is discrete due to the 

boundary conditions, the dispersion relation (3.3.2) becomes 
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We notice from (3.3.10) that the spatial variation in the cross-channel direction is 

trigonometric. Such trigonometric waves in a rotating channel are called Poincaré 

waves. They can propagate in the positive as well as the negative x-direction. We shall 

see that this is in contrast to coastal Kelvin waves, which we discuss later in this 

section. In general, the derivation of the complete solution for Poincaré waves is too 

lengthy to be discussed in this text. For a detailed derivation; see for example 

LeBlond and Mysak (1978), p. 270. 
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3.4 Energy flux in Sverdrup waves 

We have previously, in Section 2.5, calculated the mean energy flux in surface waves 

without rotation. It is interesting to do a similar calculation for shallow-water waves 

in a rotating ocean. By utilizing the solutions (3.3.7)-(3.3.8), we can compute the 

mechanical energy associated with Sverdrup waves. The mean potential energy per 

unit area of a fluid column can be written 
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where  /2T . The mean kinetic energy per unit area becomes 
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where we have utilized that 1kH . We see that in a rotating ocean (f  0), the mean 

potential and the mean kinetic energy in the wave motion are no longer equal. This is 

in contrast to the non-rotating case, e.g. (3.6.3), where we have an equal partition 

between the two. The dominating part of the mean energy is now kinetic. The energy 

density becomes 
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Consider a Sverdrup wave that propagates along x-axis. This wave induces a net 

transport of energy in the x-direction. The mean horizontal energy flux is the work per 

unit time by the dynamic (fluctuating) pressure in displacing particles horizontally. In 

shallow water the dynamic pressure is  gp 0 . The mean energy flux to second 

order in wave amplitude can then be written 
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Inserting from (3.3.7) and (3.3.8), it follows that  
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As could be expected, also in Sverdrup waves the mean energy propagates with the 

group velocity. This is in fact a quite general result for wave motion.  

In this case it is very simple to derive the concepts of energy density and 

energy flux directly from the energy equation for the fluid. With no variation in the 

y-direction, the linearized equations (3.1.1)-(3.1.3) reduce to  
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By multiplying the two first equations by u and v, respectively, and then adding, we 

obtain 
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Obviously, the Coriolis force does not perform any work since it acts perpendicular 

to the displacement (or the velocity). By inserting that Hu tx /  into the last term, 

(3.4.7) becomes 
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We write this equation  
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where the energy density ed and the energy flux ef  per unit volume are defined, 

respectively, as 
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The mean values for a vertical fluid column become, not unexpectedly: 

                                       

















 

 




T

H

ef

T

H

d

FgcAdtdze
T

E
c

Agc
dtdze

T

0

0

2

0

0

0

2

0

22

0

,
2

1
)(

1

,
2

1
)(

1





                             (3.4.12) 

where EcF ge  .     

 

3.5 Coastal Kelvin waves 

We consider an ocean that is limited by a straight coast. The coast is situated at 0y ; 

see Fig. 3.3. 

 

Fig. 3.3 Definition sketch. 

Furthermore, we assume that the velocity component in the y-direction is zero 

everywhere, i.e. v  0. With constant depth and constant surface pressure (3.1.1)-

(3.1.3) become 

                                                             xt gu  ,                                                (3.5.1)                                                       

                                                            ygfu  ,                                                (3.5.2)                                                        

                                                             xt Hu .                                                (3.5.3)                                                        

We take that the Coriolis parameter is constant, and eliminate u from the problem. 

Equations (3.5.1) and (3.5.2) yield 
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                                                           0 xyt f ,                                              (3.5.4)                                              

while (3.5.2) and (3.5.3) yield 

                                                          00  xyt ac  ,                                            (3.5.5)                                                    

where 0c is the shallow water speed and a is the Rossby radius.  We assume a solution 

of the form 

                                                           ),()( txFyG .                                         (3.5.6)                                                   

By inserting into (3.5.5), we find 
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where dydGG /' . The left-hand side of (3.5.7) is only a function of x and t, and the 

right-hand side is only a function of y. Thus, for (3.5.7) to be valid for arbitrary values 

of x, y, and t, both sides must equal to the same constant, which we denote by   (  0 

for a non-trivial solution). Hence 
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                     (3.5.8)                   

By inserting from (3.5.8) into (3.5.4), we find that 

                                                           1 .                                                  (3.5.9)                                                           

Accordingly, from (3.5.8), we have solutions of the form 

                                                      )()/exp( 0tcxFay  ,                                (3.5.10)                    

and 

                                                     )()/exp( 0tcxFay  .                              (3.5.11)                                                

If we have a straight coast at y = 0 and an unlimited ocean for y > 0, as depicted in 

Fig. 3.3, the solution (3.5.10) must be discarded. This is because  must be finite 
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everywhere in the ocean, even when y  . The solution for the surface elevation and 

the velocity distribution in this case then become 
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                                (3.5.12)                                               

This type of wave is called a single Kelvin wave (double Kelvin waves will be treated 

in section 3.8). It is trapped at the coast within a region determined by the Rossby 

radius. It is therefore also referred to as a coastal Kelvin wave. The Kelvin wave 

propagates in the positive x-direction with velocity c0, like a gravity wave without 

rotation. The difference from the non-rotating case, however, is that now we do not 

have the possibility of a wave in the negative x-direction. This is because the Kelvin 

wave solution requires geostrophic balance in the direction normal to the coast; see 

(3.5.2). This is impossible for a wave in the negative x-direction in the northern 

hemisphere. In general, if we look in the direction of wave propagation (along the 

wave number vector), a Kelvin wave in the northern hemisphere always moves with 

the coast to the right, while in the southern hemisphere (f < 0), it moves with the coast 

to the left; see the sketch in Fig. 3.4 for a single Fourier component in the northern 

hemisphere. 
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Fig. 3.4 Propagation of Kelvin waves along a straight coast when f > 0. 

 

Since the wave amplitude is trapped within a region limited by the Rossby radius, the 

wave energy is also trapped in this region. The energy propagation velocity (the group 

velocity) is here 00 /)(/ cdkkcddkdcg   , and the energy is propagating with the 

coast to the right in the northern hemisphere. We note that for Kelvin waves the 

frequency has not a lower limit (for Sverdrup waves   f). 

 The oceanic tide may in certain places manifest itself as coastal Kelvin waves of 

the type studied here. We will discuss this further in connection with amphidromic 

points (points where the tidal height is always zero).  

 From (3.5.12) we notice that the surface elevation and velocity are in phase, i.e. 

maximum high tide coincides with maximum current. It turns out from measurements 

that the maximum tidal current at a given location occurs before maximum tidal 

height. This is due to the effect of friction at the ocean bottom, which we have 
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neglected so far. In order to include the effect of friction in the simplest possible way, 

we model the friction force as in (1.1.7). The linearized x-component now becomes  

                                                       rugu xt   .                                             (3.5.13) 

Since 0v , (3.5.2) and (3.5.3) remain as before. By eliminating u between (3.5.13) 

and (3.5.3), we obtain 

                                                       0 txxtt rgH  .                                   (3.5.14) 

We now assume a solution in terms of the complex Fourier component 

                                              ))(exp()( txiyG   .                                       (3.5.15) 

 Here   is real, while the wave number  in the x-direction is complex: 

                                                               ik  .                                             (3.5.16) 

We take that 0k  is the real wave number, while   is the spatial damping 

coefficient in the x-direction. We shall assume throughout this analysis that k , 

i.e. the wave damping is small over a distance comparable to the wavelength. 

Inserting (3.5.15) into (3.5.14), we obtain the complex dispersion relation 

                                                   022   gHir .                                       (3.5.17) 

Utilizing that 1/ k , the real part of (3.5.17) yields to lowest order that 

kgH 2/1)( , as before. We consider waves that propagate in the positive x-

direction, i.e. kckgH 0

2/1)(  . From the imaginary part of (3.5.17) we then obtain 

                                                           
02c

r
 .                                                   (3.5.18) 

The value of r depends, among other things, on the bottom roughness. A typical value 

derived from the tidal literature could be 15s105.2~ r . 

 The geostrophic balance condition in (3.5.2) now yields 
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where  )/(kal  is a small wave number in the y-direction induced by the combined 

action of friction and rotation. This yields a coastally trapped solution: 

                                              )exp()/exp( ilyayAG  .                                    (3.5.20)  

If we let the real part represent the physical solution, we then obtain for this case 
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             (3.5.21) 

We note from this solution that at a given location, ( )0,0  yx say, the current 

maximum is ahead in time of the surface elevation maximum, as known from 

observations. We also note that the lines describing a constant phase (the co-tidal 

lines) are no longer directed perpendicular to the coast, but are slanting backwards 

relative to the direction of wave propagation (Martinsen and Weber, 1981). This 

situation is sketched in Fig. 3.5: 

 

 

Fig. 3.5 Coastal Kelvin waves influenced by friction. Here 0cc   is the phase speed in 

the x-direction. 

 

3.6 Amphidromic systems 

Wave systems, where the lines of constant phase, or the co-tidal lines, form a star-

shaped pattern, are called amphidromies. They are wave interference phenomena, and 
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in the ocean they usually originate due to interference between Kelvin waves. Let us 

study wave motion in an ocean with width B; see the sketch in Fig. 3.6. 

 

Fig. 3.6 Ocean with parallel boundaries (infinitely long channel). 

 

Since the ocean now is limited in the y-direction, both Kelvin wave solutions (3.5.10) 

and (3.5.11) can be realized. Because we are working with linear theory, the sum of 

two solutions is also a solution, i.e. 

                             )()/exp()()/exp( 00 tcxFaytcxFay  .                     (3.6.1)                                  

In general the F-functions in (3.6.1) can be written as sums of Fourier components. It 

suffices here to consider two Fourier components with equal amplitudes: 

                         )sin()/exp()sin()/exp( tkxaytkxayA   ,               (3.6.2)                                 

where  = c0k. Along the x-axis, i.e. for y = 0, (3.6.2) reduces to 

                                                  tkxA  cossin2 .                                            (3.6.3)                                                 

This constitutes a standing oscillation with period  /2T . Zero elevation ( = 0) 

occurs when 

                                                     ...,2,1,0,  n
k

n
x


                                      (3.6.4)                                         
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At the locations given by )0,/( kn , the surface elevation is zero at all times. These 

nodal points are referred to as amphidromic points. 

 We consider the shape of the co-phase lines, and choose a particular phase, e.g. a 

wave crest (or trough). At a given time the spatial distribution of this phase is given 

by 0t ; i.e. a local extreme for the surface elevation. Partial differentiation (3.6.2) 

with respect to time yields that the co-phase lines are given by the equation 

                        0)cos()/exp()cos()/exp(  tkxaytkxay  .                   (3.6.5)                                

We notice right away that the co-phase lines must intersect at the amphidromic points 

0,/  yknx   for all times. As an example, we consider the amphidromic point at 

the origin. In a sufficiently small distance from origin, x and y are so small that we 

can make the approximations kxkxkxayay  sin,1cos,/1)/exp( . Equation 

(3.6.5) then yields 

                                                           xtkay )tan(  .                                         (3.6.6)                                                    

This means that the co-phase lines are straight lines in a region sufficiently close to 

the amphidromic points. Since ttan  is a monotonically increasing function of time in 

the interval 0t  to )2/( t , we see that a co-phase line revolves around the 

amphidromic point in a counter-clockwise direction in this example )0( f . It turns 

out that, as a main rule, the co-phase lines of the amphidromic systems in the world 

oceans rotate counter-clockwise in the northern hemisphere and clockwise in the 

southern hemisphere. We notice from (3.6.6) that if we have high tide along a line in 

the region x > 0, y > 0 at some time t, we will have high tide along the same line in the 

region x < 0, y < 0 at time  /t , or half a period later. 

 We now consider the numerical value of  along a co-phase line. Close to an 

amphidromic point, (here the origin), we can use (3.6.2) to express the elevation as 
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                                           )sincos(2 t
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y
tkxA   .                                     (3.6.7)                                        

From (3.6.6) we find that )/(tan kaxyt   along a co-phase line. By eliminating the 

time dependence between this expression and (3.6.7), we find for the magnitude of the 

surface elevation along a co-tidal line:  

                                              2/12222 /2 ayxkA  .                                         (3.6.8)                                              

The lines for a given difference between high and low tide are called co-range lines. 

These curves are given by (3.6.8), when   is put equal to a constant, i.e. 

                                               .const/ 2222  ayxk                                             (3.6.9)             

We thus see that the co-range lines close to the amphidromic points are ellipses. 

 In Fig. 3.7 we have depicted co-phase lines (solid curves) and co-range lines 

(broken curves) resulting from the superposition of two oppositely travelling Kelvin 

waves, both with periods of 12 hours and amplitudes of 0.5 m. The wavelength is 800 

km, the width of the channel is 400 km, the depth is 40 m, and the Coriolis parameter 

is 10
4

s
1

. The Rossby radius becomes 198 km in this example. Hence the right-hand 

side of the channel is dominated by the upward-propagating Kelvin wave (the one 

with minus sign in the phase), and the left-hand side is dominated by the downward 

propagating Kelvin wave. 
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Fig. 3.7 Amphidromic system in an infinitely long channel. 

 

3.7 Equatorial Kelvin waves 

Close to equator we have that 00 f . From (1.1.2) the Coriolis parameter in this 

region can then be approximated by 

                                                          yf  .                                                        (3.7.1)                                                          

where the y-axis is directed northwards; see Fig. 3.8. 
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Fig. 3.8 Sketch of the co-ordinate axes near the equator. 

 

We shall find that it is possible to have equatorially trapped gravity waves, analogous 

to the trapping at a straight coastline. Assume that the velocity component in the y-

direction is zero everywhere, i.e. we assume geostrophic balance in the direction 

perpendicular to equator. With constant depth, the equations (3.5.1)-(3.5.3) are 

unchanged, but now yf   in (3.5.2). By assuming a solution of the form 

),()( txFyG  as before, (3.5.7) becomes 
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Accordingly: 
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By inserting into (3.5.4), we find 

                                                              1 .                                                     (3.7.4)                                                       
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From (3.7.3) we realize that to have finite solution when y   , we must choose 

1  in (3.7.4). The solution thus becomes 
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                                  (3.7.5)                              

where the equatorial Rossby radius ea is defined by 

                                                       2/1

0 )/2( cae  .                                              (3.7.6)                         

We note that the solution (3.7.5), referred to as an equatorial Kelvin wave, is valid at 

both sides of equator and that it propagates in the positive x-direction, i.e. eastwards 

with phase speed c0 = (gH)
1/2

. The energy also propagates eastwards with the same 

velocity, since we have no dispersion. At the equator  is approximately 

210
11

m
1

s
1

. For a deep ocean with m4000H ,  we find from (3.7.6) that the 

equatorial Rossby radius becomes about 4500 km. 

 Equatorial Kelvin waves are generated by tidal forces, and by wind stress and 

pressure distributions associated with storm events with horizontal scales of thousands 

of kilometres. When such waves meet the eastern boundaries in the ocean (the west 

coast of the continents), part of the energy in the wave motion will split into a 

northward propagating coastal Kelvin waves in the northern hemisphere, and a 

southward propagating coastal Kelvin wave in the southern hemisphere. Some of the 

energy may also be reflected in the form of long planetary Rossby waves (in such 

waves the energy propagates westward if the wavelength is much larger than the 

Rossby radius).  

 

3.8 Topographically trapped waves 
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We have seen that gravity waves can be trapped at the coast or at the equator due to 

the effect of the earth’s rotation. Trapping of wave energy in a rotating ocean can also 

occur in places where we have changes in the bottom topography. In this case, 

however, the wave motion is fundamentally different from that associated with Kelvin 

waves. While the velocity field induced by Kelvin waves is always zero in a direction 

perpendicular to the coast, or equator, it is in fact the displacement of particles 

perpendicular to the bottom contours that generates waves in a region with sloping 

bottom. We call these waves escarpment waves, and they arise as a consequence of 

the conservation of potential vorticity. 

 

Rigid lid 

The escarpment waves are essentially vorticity waves. The motion in these waves is a 

result of the conservation of potential vorticity. More precisely, the relative vorticity 

for a vertical fluid column changes periodically in time when the column is stretched 

or squeezed in a motion back and forth across the bottom contours. To study such 

waves in their purest form, we will assume that the surface elevation is zero at all 

times, i.e. we apply the rigid lid approximation. In this way the effect of gravity is 

eliminated from the problem. Let us assume that the bottom topography is as sketched 

in Fig. 3.9. 
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Fig. 3.9 Bottom topography for escarpment waves. 

 

The linearized continuity equation (1.3.12) can now be written as 

                                                     0)()(  yx HvHu .                                          (3.8.1)                                                 

Accordingly, we can define a stream function  satisfying 
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When linearizing, we obtain from the theorem of conservation of potential vorticity 

(1.4.5) that 
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We here assume that f is constant. Furthermore, we take that )(yHH  . By inserting 

 from (3.8.2), we can write (3.8.3) as 
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 xytt f
H

H
 ,                                   (3.8.4)                                         

where dydHH / . We assume a wave solution of the form 

                                              ))(exp()( tkxiyF   .                                        (3.8.5)                                                

By inserting into (3.8.4), this yields 
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This equation has non-constant coefficients and is therefore problematic to solve for a 

general form of H(y). We shall not make any attempts to do so here. Instead, we 

derive solutions for two extreme types of bottom topography. One of these cases, 

where the bottom exhibits a weak exponential change in the y-direction, will be dealt 

with in sec 3.9 in connection with topographic Rossby waves. The other extreme case, 

where the slope tends towards a step function, will be analysed here; see the sketch in 

Fig. 3.10. The escarpment waves relevant for this topography are often called double 

Kelvin waves. 

 

 

Fig. 3.10 The bottom configuration for double Kelvin waves. 

 

For trapped waves, the solutions of (3.8.6) in areas (1) and (2) are, respectively 
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We note that these waves are trapped within a distance of one wavelength on each 

side of the step. At the step itself (y = 0), the volume flux in the y-direction must be 

continuous, i.e. 
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                                                    0,2211  yHvHv .                                        (3.8.8)                                        

This means that x (and thereby also ) must be continuous for y = 0, i.e. A1 = A2 = A 

in (3.8.7). Furthermore, the pressure in the fluid must be continuous for y = 0. The 

pressure is obtained from the linearized x-component of (1.1.1) in the absence of 

friction, i.e. 
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Writing ))(exp()( tkxiyPp  , and applying (3.8.2) and (3.8.5), we find that  
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By inserting from (3.8.7), with 21 AA  , into (3.8.10), continuity of the pressure 

at 0y  yields the dispersion relation 
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We note that we always have that f , and that the wave propagates with shallow 

water to the right in the northern hemisphere, i.e. 0  when 0f . These two 

properties are generally valid for escarpment waves, even though we have only shown 

it for double Kelvin waves with a rigid lid on top. 

 In the case where the escarpment represents the transition between a continental 

shelf of finite width and the deep ocean, this type of waves are often called 

continental shelf waves. This kind of bottom topography is found outside the coast of 

Western Norway. Here, numerical results show the existence of continental shelf 

waves in the area close to the shelf-break, e.g. Martinsen, Gjevik and Røed (1979). 

The topographic trapping of long waves near the shelf-break and the currents 

associated with these waves, interact with the wind-generated surface waves, which 
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tend to make the sea state here particularly rough. This is a well-known fact among 

fishermen and other sea travellers that frequent this region. 

 

The effect of gravity 

In general, we must allow the sea surface to move vertically. Let us consider a wave 

solution of the form 

                                               ))(exp(),,( tkxivu   .                                    (3.8.12)                                               

For such waves, the linear versions of (1.3.10) and (1.3.11), with constant surface 

pressure, yield 
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We write the surface elevation as 

                                                 ))(exp()( tkxiyG   .                                    (3.8.14)                                               

Inserting into the linear version of (1.3.12), we find 

                                     0)( 2
22












 GH

kf
Hk

g

f
GH




.                     (3.8.15)                            

For 22 f , i.e. quasi-geostrophic motion, we revert to the gravity-modified 

escarpment wave. For f = 0 and yH )(tan , this equation yields edge waves, as 

treated in Section 2.6. 

 

3.9 Topographic Rossby waves 

Let us assume that somewhere the relative vorticity is zero. From the theorem of 

conservation of potential vorticity (1.4.10) with   0, we find that a displacement 

northwards, where f is increasing, generates negative (anti-cyclonic) relative vorticity. 
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However, we realize that the same effect can be achieved by a northward 

displacement if f is constant and the depth H decreases northward. This gives rise to 

the so-called topographic Rossby waves. Of course, the existence of such waves does 

not require that the bottom does slope in one particular direction. 

 Topographic Rossby waves are only a special case of escarpment waves when the 

bottom has a very weak exponential slope. For comparison with the planetary case, 

we let the depth decrease northwards, i.e. )exp(0 yHH  , where 0 . Equation 

(3.8.6) then reduces to 
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By assuming 

                                                      )exp( yiAF  ,                                             (3.9.2)                                                    

insertion into (3.9.1) yields the complex dispersion relation 

                                                  022 





kf
ki .                                 (3.9.3)                                        

In general we may allow for a very weak change of wave amplitude in the direction 

normal to the coast, i.e. we take  in (3.9.2) to be complex: 

                                                                  il  .                                           (3.9.4) 

By insertion into (3.9.3), the imaginary part leads to 2/   (when l  0). From the 

real part of (3.9.3) we then obtain 
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We note that the phase speed component kc x /)(   along the bottom contours is 

negative. This means that the wave propagation in this direction is such that we have 

shallow water to the right (in the northern hemisphere). 
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 For a bottom that slopes gently compared to the wavelength )( k , we see 

from the (3.9.5) that these waves are similar to short planetary waves propagating in a 

fluid of constant depth. On a  -plane we have the familiar dispersion relation 

                                                         
22 lk

k
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
 .                                               (3.9.6) 

We note that the expressions for the frequency  are identical in (3.9.5) and (3.9.6), if 

                                                               f  .                                                  (3.9.7)                                                       

This similarity is often used in laboratory experiments in order to simulate planetary 

effects. When 0l , the equations are satisfied for 0 , i.e. constant amplitude 

waves. Such waves propagate along the bottom contours with shallow water to the 

right, and mimic short planetary Rossby waves along latitudinal circles in an ocean of 

constant depth. We should remember, however, that the energy in such waves 

)0,(  lk   propagates in the opposite direction, i.e. .0// 2  kfdkdcg   

 

IV. SHALLOW-WATER WAVES IN A STRATIFIED ROTATING OCEAN 

4.1 Two-layer model 

We now proceed to study the effect of vertical density stratification in the ocean. In 

many situations the density is approximately constant in a layer close to the surface, 

while the density in the deeper water is also are constant (and larger). The transition 

zone between the two layers is called the pycnocline. Thin pycoclines are typically 

found in many Norwegian fjords. In extreme cases we can imagine that the 

pycnocline thickness approaches zero, resulting in a two-layer model with a jump in 

the density across the interface between the layers. 

We start out by studying such a model. For simplicity we describe the motion in 

reference system as shown in Fig. 4.1, where the x-axis is situated at the undisturbed 
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interface between the layers. The constant density in each layer is 1  and 2 , 

respectively, where 12   . 

 

Fig. 4.1 Model sketch of the two-layer system. 

 

We assume hydrostatic pressure distribution in each layer. By applying that the 

pressure is PS along the surface, and continuous at the interface, i.e. p1(z = ) =  p2(z = 

), we find that 
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We average the motion in the upper and lower layer: 
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Here,   11 Hh  and 22 Hh   are the total depths of the upper and lower 

layers, respectively. 
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We assume that our equations can be linearized, i.e. we neglect the convective 

accelerations. Furthermore, we will disregard the effect of the horizontal eddy 

viscosity, and apply a friction force of the form (1.1.8).  By introducing volume 

transports 
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the momentum  equation for the upper layer becomes: 
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Here ( )(x

i , )( y

i ) are the internal frictional stresses between the layers. 

Equivalently, for the lower layer we find  
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where we have defined 
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which is referred to as the reduced gravity,  because the fraction 212 /)(    is small 

for typical ocean conditions. 

By integrating the continuity equation (1.1.10) in each layer, we find, without any 

linearization of the boundary conditions, that 
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4.2 Barotropic response 
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Assume that the mean velocities in each layer are approximately equal, i.e. 21
ˆˆ uu  , 

21
ˆˆ vv  . This leads to 
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when we assume that  21,, HH . For simplicity, we also take that the lower 

layer has a constant depth. From (4.1.8) we then obtain 
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or 
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Here the integration constant must be zero when we consider wave motion. We note 

from (4.2.3) that  and  are in phase, and that | | < | |. 

By neglecting the effect of the earth’s rotation, assuming constant surface 

pressure, neglecting frictional effects, and taking 11 Hh   in (4.1.5), equations (4.1.8) 

and (4.2.3) yield 

                                                  0)( 21  xxtt HHg  ,                                      (4.2.4)    

when 0/  y . The solution is  

                                            )()( 0201 tcxFtcxF  ,                                      (4.2.5)                                     

where )( 21

2

0 HHgc  . The expression (4.2.5) describes long surface waves 

propagating in a non-rotating canal with depth H1 + H2. This is the solution we would 

have found if we, as a starting point, had neglected the density difference between the 

layers; see the one-layer model in Section 2.3. Such a solution (a free wave), which is 

not influenced by the small density difference between the layers, is often referred to 

as the barotropic response.  
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The original meaning of the word “barotropic” is related to the field of mass, and 

expresses the fact that the pressure is constant along the density surfaces, i.e. the 

isobaric and isopycnal surfaces coincide. Mathematically this can be expressed as 

0 p . This was the case for the free waves in Chapter II, where the density 

was constant everywhere, and the pressure was constant along the sea surface. For the 

two-layer model this would mean that the pressure should be constant along the 

interface between the two layers. This is only approximately satisfied here, but 

nonetheless it has become customary to denote the response in this case as the 

barotropic response.  

 

4.3 Baroclinic response 

We now assume that tt   . Then, from (4.1.8): 

                                               0)()( 2121  yx VVUU .                                  (4.3.1)                                      

For simplicity we take the bottom to be flat. A particular solution of (4.3.1) can be 

written 
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i.e. the volume fluxes are equal, but oppositely directed in each layer. By taking the 

surface pressure to be constant, and neglecting the effect friction, summation of 

(4.1.5) and (4.1.6) yields  
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where, as in the barotropic case, the integration constant must be zero. Furthermore, 

we have used that h1  H1, h2  H2. The difference between 1 and 2 is quite small, 
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which allows us to use the approximations 2 1 = , and 1 ~ 2  . Thus, 

equation (4.3.3) can be rewritten as 
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We note that  and  are oppositely directed, and that | | >> | |, as initially assumed. 

Assuming that 0/  y , and neglecting the effects of friction and the earth’s 

rotation, we obtain from (4.1.6) with 22 Hh  , (4.1.8), and (4.3.3) that 
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Here we have assumed that 2221 / HH  . The solution of (4.3.5) can be written 

                                                )()( 1211 tcxFtcxF  .                                 (4.3.7)        

This represents internal gravity waves propagating with phase speed c1 along the 

interface between the layers; see the sketch in Fig. 4.2. 

 

Fig. 4.2 Internal wave in a two-layer model. 

 

The solution to (4.3.7) is often called the baroclinic response. As for barotropic, the 

term “baroclinic” is linked to the mass field. In a baroclinic mass field the constant 

pressure surfaces and the constant density surfaces intersect, i.e. 0 p . 



 69 

Equation (4.3.4) shows that this is the case here, since, when  > 0, then  < 0. 

Accordingly, the pressure varies along the interface, which is a constant density 

surface. 

 Let us assume that the lower layer is very deep, i.e. H2 >> H1. This is the most 

common configuration in the ocean. From (4.1.6) we find for the x-component in the 

lower layer 
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For the baroclinic case, U2 and V2 are finite when h2  , and so are the frictional 

stresses. Accordingly, for this limit, (4.3.8) reduces to  
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In the same way we find for the y-component: 
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By inserting (4.3.9) and (4.3.10) into (4.1.5) for the upper layer, we find that 
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For the baroclinic case, the depth of the upper layer can be written 

  111 HHh . Furthermore, we apply that   12 , and 1  2 = . 

By linearizing the pressure term (the first term on the right-hand side), equations 

(4.1.8) and (4.3.11) yield 
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These equations for the baroclinic response in the upper layer are formally identical to 

the equations describing the storm surge problem for a quasi-homogeneous ocean; see 

(1.5.2), when the upper layer thickness replaces the surface elevation, and the gravity 

g is replaced by *g . The set of equations (4.3.12) describes what is often referred to as 

a reduced gravity model for the volume transport in the upper layer. Even though the 

numerical values for the volume fluxes in the lower layer are of the same order of 

magnitude as in the upper layer, the mean velocity in the lower layer is negligible, 

since H2  . Therefore, we usually say that the lower layer has no motion in this 

approximation. 

We immediately realize from (4.3.12) that transient phenomena such as 

Sverdrup-, Kelvin- and planetary Rossby waves in a rotating ocean of constant 

density have their internal (baroclinic) counter-parts in a two-layer model. The 

analysis for the internal response is identical to the analysis in Chapter III. It often 

suffices to replace g with *g  and H with H1 in the solution for the barotropic 

response.  

 Analogous to the barotropic case we can define a length scale a1 that 

characterizes the significance of earth’s rotation. We write 

                                                          fca /11  ,                                                 (4.3.13)                                                   

where 1*

2

1 Hgc  . The length scale a1 is called the internal, or baroclinic, Rossby 

radius. Typical values for c1 in the ocean are 2-3 m s
1

. Hence, a1  20-30 km, which 

is much less than the typical barotropic Rossby radius. Therefore, the effect of earth’s 
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rotation will be much more important for the baroclinic response than for the 

barotropic one with the same horizontal scale, or wavelength. 

 

4.4 Continuously stratified fluid 

We now turn to the more general problem of continuous density stratification, and 

start by investigating the stability of a stratified incompressible fluid under the 

influence of gravity. The equilibrium values are: 
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We introduce small perturbations (denoted by primes) from the state of equilibrium, 

writing the velocity, density, and pressure as 
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                                   (4.4.2)                  

We assume that the density is conserved for a fluid particle. Furthermore, we take that 

the perturbations are so small that we can linearize our problem, i.e. neglect terms that 

contain products of perturbation quantities. Using a horizontal friction force of the 

type (1.1.8), the equations for the conservation of momentum, density, and mass then 

reduce to 
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                                                      0 zyx wvu .                                             (4.4.7) 
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Here we have for simplicity left out the primes that mark the perturbations. 

Furthermore, we have neglected the effect of friction in vertical component of the 

momentum equation (4.4.5). 

 

4.5 Free internal waves in a rotating ocean 

We start by disregarding completely the effect of friction on the fluid motion, i.e. we 

take 0)()(  yx   in (4.4.3) and (4.4.4). Furthermore, we introduce the Brunt-

Väisälä frequency (or the buoyancy frequency) N, defined by 

                                                    
dz

dg
zN 0

0

2 )(



 .                                             (4.5.1)                                              

We are here going to study motion in a stably stratified incompressible fluid. In this 

case we must have that 0/0 dzd , meaning that N is real and positive. Equation 

(4.4.6) can then be written 
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By differentiating (4.4.5) with respect to time, and utilizing (4.5.2), we find that 
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From this equation we note that the time scale for pure vertical motion ( 0ztp ) is 

1N . Elimination of the pressure gradient from (4.4.3)-(4.4.4), yields the vorticity 

equation. On an f-plane we obtain 
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where we have applied (4.4.7). Forming the horizontal divergence from the same two 

equations, we find 
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Elimination of the vorticity from the equations above, yields 
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Finally, by eliminating the pressure between (4.5.3) and (4.5.6), we obtain 
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where 22222 // yxH  . We simplify (4.5.7) by assuming that )(0 z varies 

slowly over the typical vertical scale for w, i.e. 
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This is Boussinesq approximation for internal waves. By introducing the Brunt-

Väisälä frequency (4.5.1), we can write 

                                             zzzzz ww
g

N
w 

2

0

0

)(
1




.                                  (4.5.9)                                       

We realize from (4.5.8) that the Boussinesq approximation implies that 

                                                        zzz ww
g

N


2

.                                          (4.5.10)  

If d is a typical vertical scale for the motion, the above equation yields 

                                                        dgN /2  ,                                                 (4.5.11)  

where Hd max . For a shallow ocean we typically have that  g/H ~ 10
1

s
2

, while for 

a deep ocean (H = 4000 m), the corresponding value becomes 
4
1~/ Hg 10

2 
s
2

. 

Measurements in the ocean show that 2N ~ 10
4 
 10

6 
s
2

, so (4.5.11) is usually very 

well satisfied. We will therefore utilize the Boussinesq approximation in the future 

analysis of this problem. Equation (4.5.7) then reduces to  

                                            0)( 2222  zzHtt wfwzNw .                           (4.5.12)      
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We derive the same equation by letting rz  )(0 on the left-hand sides of (4.4.3)-

(4.4.5), where r is a constant reference density. Then, dzdgN r /)/( 0

2  . This 

latter approach is probably the most common one when applying the Boussinesq 

approximation.  

 We assume that the ocean is unlimited in the horizontal direction, and consider a 

wave solution of the form 

                                                 ))(exp()( tkxizWw  .                                   (4.5.13) 

Here the x-axis is directed along the wave propagation direction. From (4.5.12) we 

then obtain 

                                              0
22

22
2 












 W

f

N
kW




,                                   (4.5.14)                           

where a prime denote differentiation with respect to z.  

 

4.6 Constant Brunt-Väisälä frequency 

Later on we shall allow N to vary with z. In this section, we simplify, and assume that 

N is constant. Typical values for N and f in the ocean (and atmosphere) are N ~ 10
2 

s
1

 and f ~ 10
4 

s
1

, i.e. fN  . From equation (4.5.14) we then note that we have 

wave solutions in the z-direction if Nf  , while for f or N , the 

solutions must be of exponential character in the z-direction. 

 Let us assume that Nf  . We then take 

                                                          )exp( zimW  ,                                             (4.6.1) 

where m is a real wave number in the vertical direction. By insertion into (4.5.14), we 

obtain the dispersion relation  

                                                        
22

2222
2

mk

fmNk




 .                                     (4.6.2)  
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From the discussion in Section 2.7 we realize that we have anisotropic system, since 

 cannot be expressed solely as a function of the magnitude of the wave number 

vector. 

 We can nowdefine a wave number vector as 

                                                                 ),( mk


.                                            (4.6.3)                                                   

Then the phase speed and group velocity, become, respectively 

                                                                 2/


c ,                                          (4.6.4) 

and 

                                                                  gc


.                                           (4.6.5) 

When  is constant, (4.6.2) yields that the isolines are straight lines through the origin 

in wave number space. Along the m-axis (where k = 0), we have  = f (small). Along 

the k-axis (where m = 0), we have  = N (large).  Since, from (4.6.5), the group 

velocity is always directed towards increasing values of , while the phase speed 

(4.6.4) is directed along the wave number vector, we may sketch the direction of the 

phase speed and the group velocity as in Fig. 4.3. 

 

Fig. 4.3 Lines of constant frequency for internal waves with rotation in the two-

dimensional wave number space. 
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 If we imagine that the wave number m is given, we can plot  as a function of k, 

as depicted in Fig. 4.4. 

 

Fig. 4.4 Dispersion diagram for internal waves with rotation. 

 

We can define a Rossby radius of deformation for internal motion with vertical wave 

number m by 

                                                                
mf

N
ai  .                                                (4.6.6) 

For 1 iak , the effect of rotation dominates (compare with Fig. 3.2 for the 

barotropic case).  

In the ocean, the wave number m cannot be chosen arbitrarily, since the vertical 

distance is limited by the depth. If we, for simplicity, disregard the surface elevation 

and assume a constant depth, we must have that 0w for Hz ,0 ; see Fig. 4.5. 
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Fig. 4.5 Internal waves in an ocean with horizontal surface and horizontal bottom. 

 

A solution of (4.5.14), which satisfies the upper boundary condition, is 

                                                          zmCW sin ,                                              (4.6.7)                                                 

where 
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

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N
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.                                        (4.6.8) 

For the solution to satisfy the boundary condition at Hz  , we must require 

                                                       ...,2,1,  n
H

n
m


                                (4.6.8)                        

This means that vertical wave number must form a discrete (but infinite) set. Equation 

(4.6.8) then yields for the frequency 
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 .                              (4.6.9) 

We see that, for a disturbance with a given wave number k in the horizontal direction, 

the system (ocean) responds with a discrete number of eigenfrequencies (4.6.9). 

 The solution for w in this case can be written  

                              
 .)}(exp{)}(exp{

2

)}(exp{)sin(

tmzkxitmzkxi
i

C

tkxizmCw




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

               (4.6.10) 
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The latter expression can be interpreted as the superposition of waves in a horizontal 

layer consisting of an incoming, obliquely upward propagating wave, and an 

obliquely downward reflected wave, where m must attain the value (4.6.8) for the 

wave system to satisfy the boundary condition at the bottom. 

 We now consider the case where the motion is mainly horizontal. This allows us 

to disregard the vertical acceleration in the momentum equation, i.e. we apply the 

hydrostatic approximation. Accordingly, in (4.5.3) we take that 

                                                          wNw tt

2 ,                                           (4.6.11)      

which leads to 

                                                        tzpwN
0

2 1


 .                                           (4.6.12)     

From (4.6.11) we realize that the hydrostatic approximation implies that 

                                                            22 N .                                               (4.6.13)                                                   

From Fig. 4.4 we note that this requires that mk  , i.e. the horizontal scale of 

motion is much larger than the vertical scale. Since the depth H yields the upper limit 

for the vertical scale, disturbances with wavelength H will satisfy the 

hydrostatic condition. This requirement applies to barotropic surface waves as well as 

baroclinic internal waves.  

 Applying the hydrostatic approximation, (4.6.2) reduces to 

                                                     

2/1

2

22
2











m

Nk
f .                                     (4.6.14) 

This is the frequency for internal Sverdrup waves. For an ocean with depth H and a 

horizontal surface, i.e. Hnm / as in equation (4.6.8), we can write 

                                                      2/1222 )( kcf n .                                       (4.6.15)    

Here  
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                                                   ...,3,2,1),/(  nnHNcn                            (4.6.16)                   

which is the phase speed for long internal waves in the non-rotating case. Since  

                                                     ncNHnm //   ,                                       (4.6.17) 

equation (4.6.6) yields the internal (baroclinic) Rossby radius  

                                                 ...,3,2,1,/  nfcaa nni                           (4.6.18) 

We note that this is analogous to the definition of the barotropic Rossby radius 

appearing in (3.2.4). For one single internal mode, i.e. a two-layer structure, this is 

similar to (4.3.13). 

 

4.7 Internal response to wind forcing; upwelling at a straight coast 

We apply the set of equations (4.4.3)-(4.4.7), and utilize the Boussinesq 

approximation and the hydrostatic approximation, i.e. 
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                                 (4.7.1)                             

                                                              gpz  .                                               (4.7.2)                                                      

Furthermore, we introduce the vertical displacement ),,,( tzyx of a material surface, 

so that dtDw / in the fluid. Linearly, this becomes 

                                                                  tw  .                                                 (4.7.3)   

The conservation of density (4.4.6) then yields for the density perturbation  

                                                             


 2N
g

r .                                            (4.7.4)                                                    

where we have assumed that 0  at 0t . Inserting into (4.7.2), we obtain 

                                                             2Np rz  ,                                            (4.7.5)   
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while the continuity equation can be written 

                                                            yxtz vu  .                                           (4.7.6)                                                  

In general, we take that )(zNN  , and we write the solutions to our problem as 

infinite series. For simplicity, we assume that the depth is constant, and that the 

surface is horizontal at all times. Accordingly: 

                                                          .0,,0 Hz                              (4.7.7)                               

In principle, it is also possible to allow the position of the surface to vary in time and 

space. However, the solution shows that the internal response can be achieved, to a 

good approximation, by assuming a horizontal surface (the rigid lid approximation); 

see Gill and Clark (1974). According to our adopted approach, we write the solutions 

as 
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where the primes denote differentiation with respect to z. By inserting the solutions 

into (4.7.5), we find 
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For the variables to separate, we must require 

                                                  
2

1
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cp



.                                              (4.7.10)                                              

Furthermore, for (4.7.9) to be satisfied for all x, y and t, we must have that 
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                                                     0
2

2

 n

n

n
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N
 .                                               (4.7.11)                                              

The boundary conditions (4.7.7) yield 

                                                   0,,0 Hzn  .                                          (4.7.12) 

Equation (4.7.11) and the boundary conditions (4.7.12) define an eigenvalue problem, 

i.e. for given )(zNN  we can, in principle, determine the constant eigenvalues cn, 

and the eigenfunctions )(zn , which appear in the series (4.7.8). 

It is easy to demonstrate that the differentiated eigenfunctions n  constitute an 

orthogonal set. Since (4.7.11) is valid for arbitrary numbers n and m, we can write 
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where nm  . We multiply the upper and lower equations by m and n , respectively. 

By subtracting and integrating from Hz  to 0z , utilizing (4.7.12), we find 
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Accordingly, for mn  , i.e. mn cc  , we must have that 
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 ,                                      (4.7.15)                                          

which proves the orthogonality. Since the eigenfunctions are known, apart from 

multiplying constants (as for all homogeneous problems), we can normalize them by 

assuming, for example, that 
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This procedure is generally valid for )(zNN  . To exemplify, and discuss explicit 

solutions in a simple way, we assume that N is constant. Then the eigenfunctions 

become 

                                                        







 z
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N
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n

nn sin ,                                        (4.7.17) 

which satisfies equation (4.7.11) and the upper boundary condition. The requirement 

0)( Hn yields the eigenvalues: 

                                                             ,n
c
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                                    (4.7.18)                                  

or )/( nHNcn  , which is identical to (4.6.16). Finally, the normalization condition 

(4.7.15) gives )/( nHAn  . 

 We now insert the series (4.7.8) into (4.7.1) and (4.7.6), and multiply each 

equation with 1  , 2 , 3  , etc. By integrating from Hz  to 0z , and applying the 

orthogonality condition (4.7.15), we finally obtain 
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where 
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                                   (4.7.20)                               

We notice from (4.7.19) that this set of equations is formally identical to the equations 

for the barotropic volume transports driven by surface winds, e.g. (1.5.2).  
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The horizontal shear stress gradients )( x

z  and )( y

z appear in (4.7.20). In principle, 

these are unknown, and depend on the fluid motion. However, we shall simplify the 

problem by assuming that we can assess these gradients in the fluid. 

 Assume that a constant wind is blowing along a straight coast, so that the surface 

wind stresses become 0)( x

S , 0)( y

S ; see the sketch in Fig. 4.6. The model is 

situated in the northern hemisphere, i.e. 0f . 

 

 

Fig. 4.6 Model sketch of upwelling/downwelling at a straight coast. 

 

We assume that the shear stresses are only felt in a relatively thin layer close to the 

surface, i.e. the mixed layer, with a thickness Hd  . Here the stresses vary linearly 

with depth: 
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With this variation in z, (4.7.20) yields 
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We assume that the solutions are independent of the along-shore coordinate x, i.e., 

from (4.7.19): 
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                                     (4.7.23)                           

These equations have a particular solution where nv is independent of time. By 

assuming that 0/  tvn , and eliminating nnu , from the equations above, we find 
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where fca nn /  is the Rossby radius for internal waves. By requiring that  
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the solution of (4.7.25) becomes 
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From (4.7.23) we then obtain 
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Thus, nu and n increase linearly in time during the action of the wind. From the 

derived solution we see that a wind parallel to the coast results in upwelling or 

downwelling within an area limited by the coast and the baroclinic Rossby radius. 

Within this area we also notice the presence of a jet-like flow nu parallel to the coast. 
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This flow is geostrophically balanced; see the second equation in (4.7.23) with 

0/  tvn . 

 We now discuss our solution in some more details. For this purpose the first term 

in the series (4.7.8) for v and  suffices: 
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To simplify, we again take that N is constant. Then, from (4.7.17), (4.7.18) and 

(4.7.22): 
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By inserting into (4.7.28), we find 
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                (4.7.30) 

Here  0 zH  and 0f . For wind in the negative x-direction ( 0)( x

S ), we find 

that 0w  in the region limited by baroclinic Rossby radius. Accordingly, the Ekman 

surface-layer transport away from the coast leads to a compensating flow from below 

(upwelling). This is consistent with the sign of v in (4.7.30), since v is positive close 

to the surface and negative near the bottom; see the sketch in Fig. 4.7. 
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Fig. 4.7 Sketch of an upwelling situation. 

 

We finally mention that since the x-component u and the vertical displacement  

increase linearly in time, the theory developed here is only valid as long as the 

nonlinear terms in the equations remain small. 

 We return for a moment to the two-layer reduced gravity model to find out what 

this would yield under similar conditions. By assuming )(x

i = )( y

i = )( y

S = V1t = 0 in 

(4.3.12), we find, analogous to (4.7.24): 
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when we take that 0/  x . The solution becomes 
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where 2/1

1*1 )( Hgc   and fca /11  . We may define an upwelling velocity, when 

0)( x

S , as 
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We can now compare with the case of continuous stratification. First, we assume that 

the layer of frictional influence is thin, i.e. Hd  . Furthermore, we insert for 

2/Hz   to obtain the maximum vertical velocity. From (4.7.30) we then obtain 
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Here /1 HNc  from (4.7.29). By comparing with (4.7.33), we see that the 

upwelling velocities are remarkably similar, even though (4.7.34) is obtained from the 

first term in a series expansion. 

 We will not go into further details of this problem. However, it is appropriate to 

emphasize that this phenomenon is important for marine life. The water that upwells 

is coming from depths below the mixed layer, and is rich in nutrients. Hence, the 

upwelling process brings colder, nutrient-rich water to the euphotic zone, where there 

is sufficient light to support growth and reproduction of plant algae (phytoplankton). 

This means that upwelling areas are rich in biologic activity. Some of the world’s 

largest catches of fish are made in such areas, e.g. off the coasts of Peru and Chile.  

 

V. WAVE-INDUCED MASS TRANSPORT 

5.1 The Stokes drift 

The result in Section 2.1  that the particles in deep water waves move in closed circles 

is correct in the present linear approach (remember we have linearized our equations). 

In reality, if we do our calculations without linearization, we find that that the 

individual fluid particles have a slow net drift in the wave propagation direction. This 

is because the velocity of the fluid particle is a little larger when it is closest to the 

surface, than when it is farthest away from it. Hence, it moves a little more forward 
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than it moves backward. The resulting motion will be a forward spiral; see the sketch 

below.  

 

Fig. 5.1 Sketch of nonlinear motion of a fluid particle due to waves. 

 

The net particle motion in this case can be obtained by considering the Lagrangian 

velocity, which is the velocity of an individual fluid particle. We denote it by Lv


. 

Then ),( 0 trvL


is the velocity of a fluid particle whose position at time 0tt   is 

),,( 0000 zyxr 


. At a later time t, the particle has moved to a new position 

                                                     rDrrL


 0 .                                                    (5.1.1) 

where 

                                            
t

t

L dttrvrD

0
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.                                                    (5.1.2) 

In our former Eulerian specification the fluid velocity at time t is ),( trv L


. Hence 

                                                 ),(),( 0 trvtrv LL


 .                                                 (5.1.3) 

By inserting for Lr


from (5.1.1), we obtain 

                                                trDrvtrvL ,),( 00


 .                                           (5.1.4) 

We assume that the distance 0rrrD L


  travelled by the particle in the time interval 

0tt   is small. Hence, from the two first terms of a Taylor series expansion we obtain 
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where ./// 000 zkyjxiL 


 If we use (5.1.2), we can write (5.1.5) as              
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The last part of the velocity on the right-hand side of (5.1.6) is called the Stokes 

velocity Sv


, while the first term ),( 0 trv


is the traditional Eulerian velocity. Hence, in 

general 
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For waves with small wave steepness the difference between Lv


and Ev


is small, so to 

second order in wave steepness we can replace the Lagrangian velocity by the 

Eulerian velocity in the integral of (5.1.6), i.e. 
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For waves with period T, the averaged Stokes velocity (denoted by an over-bar) 

becomes 
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The averaged Stokes velocity (5.1.9) is often termed the Stokes drift, and constitutes a 

mean current induced by the waves. The Stokes drift components can be written 
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5.2 Application to drift in non-rotating surface waves and in Sverdrup waves 

We return to the two-dimensional Eulerian wave field for high-frequency surface 

waves (2.1.14), where we have neglected the effect of the earth’s rotation. For 

calculating the Stokes drift, we have 
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In this problem 0t is arbitrary, so we take 00 t . When we average the Stokes velocity 

in time, we only get non-zero contributions from )(sin),(cos 0

2

0

2 tkxtkx    in 

(5.1.10). It is then easily seen that the Stokes drift components become 0 SS wv , 

and       
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We note that the non-zero component of the Stokes drift is in the wave propagation  

direction. Furthermore, Su  has a maximum at the surface, where 00 z , and it decays 

exponentially with depth. In this approximation we can replace 0z  with the Eulerian  

vertical coordinate z. 

 For Sverdrup waves in the x-direction, e.g. (3.3.8), we can write 
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From (5.1.10) we readily obtain that 0 SS wv , and 



 91 

                                                         
2

2

2H

cA
uS  ,                                                    (5.2.4) 

where the phase speed c is given by (3.3.3). For Sverdrup waves the Stokes drift is 

independent of the depth, i.e. it does not vary with the z-coordinate. 

 

5.3 Relation between the mean wave momentum and the energy density 

When we integrate the Stokes velocity (5.1.8) from the bottom to the material surface, 

and then average, we obtain the total horizontal mean wave momentum ( SS VU , ) per 

unit density of the problem in question. To second order in wave amplitude we have 
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 where ),( SS vu are the Stokes drift components. SS VU ,  are also called the Stokes 

fluxes. 

 For surface waves, we obtain from (5.2.2): 
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where we have utilized the dispersion relation (2.1.17). Similarly, for the Stokes flux 

in Sverdrup waves, (5.2.4) yields that 
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The energy densities for the two cases are given by (2.5.4) and (3.4.3), i.e. 

2

0
2

1
gAE   and 

H

Ac
E

2

2

0

2
 , where we have utilized that gHc 2

0  for Sverdrup 

waves. We then see right away from (5.3.2) and (5.3.3) that for both cases we have 

the relation 

                                                    SUcE 0 ,                                                    (5.3.4) 
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where kc / . Although we have here only demonstrated this relation for two types 

of waves, the fact that the energy density is equal to the total mean wave momentum 

times the phase speed is valid for a wide class of waves (Starr, 1959). 

 

5.4 The mean Eulerian volume flux in shallow-water waves 

By integrating (5.1.7) between the bottom and the free surface, and then average, we 

find that                                                                             
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The Stokes drift (5.1.9) is a feature that is inherent in the periodic wave motion, and is 

basically independent of friction. The mean Eulerian current, on the other hand, is 

very much dependent on friction. As we have shown, it is fairly easy to compute the 

Stokes drift, while it is more difficult to determine the mean Eulerian current due to 

waves. We shall here be content by computing the mean Eulerian volume fluxes.  

 We have already derived exact expression for the Lagrangian volume fluxes, e.g. 

(1.2.3) and (1.2.6). For the discussion of the Eulerian fluxes we simplify, and take that 

we can apply the hydrostatic approximation in an ocean of constant depth. 

Furthermore, we apply a friction force of the type (1.1.8), and assume that there is no 

forcing from the wind or the air pressure at the surface. To second order in wave 

amplitude (1.2.6) then reduces to 
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Here we have utilized (5.4.1), and assumed that the Stokes flux is independent of 

time. The main problem here is to determine the bottom drag on the Eulerian flow. To 

simplify, we use a drag that is linear in the Eulerian fluxes, e.g. (1.5.4): 
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B VKUK 0
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)( ,   .                                       (5.4.3) 

Here K is a constant bottom friction coefficient. It is in general different from the 

friction coefficient r in (3.5.13) that acts to dampen the linear waves, but we take that 

they are of the same order of magnitude. 

 We consider steady mean flow. In this case (5.4.2), (5.4.3) and (1.2.3) reduce to 
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The accuracy in this calculation of the mean fluxes is )( 2AO . To this order all the 

quantities on the right-hand side of (5.4.4) are completely determined from linear 

wave theory. Hence, (5.4.4) constitutes three inhomogeneous equations for 

determining the three unknowns ,, EE VU . Appropriate boundary conditions must be 

added for the specific problem in question. 

 

5.5 Application to transport in coastal Kelvin waves 

Radiation stress 

Since we already have considered the effect of friction on coastal Kelvin waves, e.g., 

Section 3.5, we have all the information we need to proceed, and calculate the mean 

Eulerian volume fluxes to )( 2AO associated with this type of wave. For coastal Kelvin 

waves u is independent of z, 0v , and 0SV . Hence, from (5.4.4): 
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From (3.5.21) we easily obtain (use that )22 k  for the non-linear terms on the 

right-hand side of (5.5.1):  
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Here 1R  and 2R  are referred to as wave-forcing terms since they arise from the 

periodic wave motion, and act on the mean flow. The Stokes flux (5.3.1) for this 

problem is easily computed. We obtain 
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We then realize that the wave-forcing terms 1R  and 2R  can be written: 
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The terms 2/3 0 SUc  and 2/0 SUc in (5.5.5) and (5.5.6) are known as the radiation 

stress components per unit density in shallow-water waves (Longuet-Higgins and 

Stewart, 1962). Actually, Longuet-Higgins and Stewart defined the radiation stress 

components in terms of the wave energy density E. It can be shown here, as in (5.3.4), 

that SUcE 00/  . In vector form, the radiation stresses (5.5.5) and (5.5.6) in the x-

and y-direction are given as the (negative) divergence of the radiation stress tensor. It 
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is important to note that the concept of radiation stresses here is related to spatially 

varying waves, and tends to accelerate the mean flow. 

 

Mean Eulerian fluxes 

By inserting for 1R  and 2R , using that we also can write SUfR 2 , we obtain for the 

mean Eulerian fluxes that 
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From the curl of (5.5.7)-(5.5.8) we obtain, by using (5.5.9): 

                                                  SEyEx U
K

f
UV

4
 .                                          (5.5.10) 

From the divergence of (5.5.7)-(5.5.8), using (5.5.10), we find for the mean surface 

elevation 
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We introduce the damping scale L of the waves by /1L . Furthermore we 

introduce the wave friction coefficient 02cr  from (3.5.18). A particular solution of 

(5.5.11) can then be written 
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We must have that the surface elevation and the elevation gradients are finite at 

infinity. Then, apart from an insignificant constant, (5.5.12) represents our full 

solution. 
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 In this problem we assume that the frictional effect on the waves and on the mean 

flow is of the same order of magnitude, i.e. )(~)( KOrO . Furthermore, we assume 

that the wave-damping distance L in the x-direction is much larger than the Rossby 

radius, or 

                                                             22 La  .                                                 (5.5.13) 

Alternatively, these conditions can be written 222 ~ fKr  . Under these 

circumstances the mean surface elevation (5.5.12) simplifies to 
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From (5.5.7) and (5.5.8) we then obtain in this approximation: 
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We note that due to friction, we have an induced mean Eulerian flux which is of the 

same order as the Stokes flux. Accordingly, the total mean Lagrangian flux in this 

case becomes 

                                                       SL UKrU )/1(  .                                        (5.5.16) 

The mean wave-induced particle velocity along the coast then becomes 
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 Since we have a Lagrangian flux that decays along the coast, the flow field must 

be divergent, i.e. we must have that .0 EyLy VV  More precisely, from (5.5.9) and 

(5.5.16) we obtain 
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By integrating, and assuming that 0)0( yVE  (no flux normal to the coast), we 

obtain 
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where 0SU  is the value of the Stokes flux at the coast, and /1L . This means that 

we have a small flux EV which is directed in the positive y-direction. It has its 

maximum value outside the wave-trapped region (mathematically for y , but in 

practice for ay  ). By returning to (5.5.8), we note that with our adopted assumptions                                                               
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This means that the along-shore Eulerian flux EU in this case is approximately 

geostrophic. 

 We recall that our simplifications in this section rest on the assumption that the 

typical wave damping scale along the coast must be much larger than the Rossby 

radius. This could be fulfilled for tidally generated Kelvin waves on the wide and 

shallow Siberian shelf in the Polar Sea. It should also be noted this assumption is 

more easily fulfilled for internal Kelvin waves, since the internal Rossby radius is 

much smaller than the barotropic one. However, in this connection it must be pointed 

out that the damping scale for internal waves may be different from that of surface 

waves. 
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