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Polygons — ice-wedges
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Digital version based on USGS Circum-Pacific Map Series Map CP-45;
compiled and edited by Jerry Brown, Oscar J. Ferrians, Jr.,

J. Alan Heginbottom, and Evgeny S. Melnikov.

Original digital version prepared by UNEP/GRID-Arendal, Norway
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Colorado at Boulder.
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Danish ice-wedge cast and sand-wedge







Very active pingo in
Adventdalen, Svalbard




Cyclic pingo formation ,
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Figure 5.15 Occurrence of groundwater in permafrost areas

Permafrost hydrology
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(a)
Open system pingos

This pingo type Is
usually found in high
relief permafrost areas

Growth rate newer measured directly
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Fig. 2. Vertical profile of the permafrost layer
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| Pingo distribution on Svalbard
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Fig. 4. Outline map of the more detailed maps showing the site of the different pingos and springs describec Fig.8. Map of the area between Isfjorden, Agardhbukta and Van Mijenfjorden.



Rock glaciers

Rock glacier: A thick lobate or tongue-shaped body of frozen
debris that moves slowly downslope through deformation of
Internal ice or ice-rich sediment. Moves due to permafrost
creep. PF temp. and the amount of ice regulates the speed.

Two types:

Talus rock glaciers (talus-derived or protalus RGS)
Glacigenic rock glaciers /glacier derived rock glaciers (debris
or morainic RGs)

Activity status:

Active (mobile) 0.005-2 m/yr.

Inactive (immobile; contains internal ice)
Relict (immobile: no perennial internal ice)
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Rock glacier characteristics

Steep margins 10-70 m high

Surface microrelief:
closed depressions
longitudinal ridges & furrows
transverse ridges & depressions.

Surface layer of unfrozen coarse debris 1-5 m thick overlies
Ice-rich sediment and pure ice.

Internal ice: 50-90% of RG volume.
Glacigenic RGs: glacier ice. Talus RGs: ice segregation,
burial of surface snow and ice.
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Displacement of active layer and permafrost caused by debris accumulation
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Slow and rapid mass movements
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Solifluction lobes
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Solifluction sheets

segregated ice lenses providing excess water —
reducing internal friction and cohesion in the soil

Solifluction/gelifluction in PF areas occur because of PF +



Taubane towers as solifluction monitoring instruments







Creep and gelifluction = solifluction
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P1— P2 Path of target during frost N
heaving of ground
P1—> P2 — P5 Theoretical path of target

assuming maximum possible
frost creep (vertical settlement)

Path of target during
gelifluction

P2 — P3

P3 — P4 Path of target during

settling of ground

Figure 9.7. The components of solifluction. (A) Theoretical displacements of a soil particle due to
potential frost creep (PFC), gelifluction (G), and retrograde movement (R). (B) Interpretation of
ubserved surface movement vector in a controlled large-scale laboratory simulation of gelifluction

movement at CNRS, Caen, France. Data from Harris and Davies (2000).

Creep =
Heave*tan(slope®)

Al=h tan(c)



Figure 9.8. Summary of frost heave types and associated velocity-depth profiles of solifluction
movement. From Matsuoka (2001c). Reprinted from Earth Science Reviews, with permission from

Elsevier.

A. Diurnal freezing: Ice needles

Bottom of diurnal frost

Needle ice creep (NIC)
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Schematic velocity profiles
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Debris flows




Debris flow June 2003 Longyearbyen
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Rockfalls
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Thawing of ice or formation of new permafrost .
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Traffic and snow avalanches




Avalanches fromm 01.01.08 to 05.06.08 observed by

the CRYOSLOPE SVALBARD PROJECT
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Building the first systematic
database with all slope

activity to access meteorological
control on snow avalanches

Nov more than 600 avalanches
since 1 January 2007









High Arctic Nivation Process-Form-Sediment Model
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Resedimented nival cylinders

Supranival
sediment
flows

Ennival channel
Supranival channel

Basal ice layer

Stone pavement

Pronival braided

Trimline meltwater streams

Diamict

Solifluction Solifluction

Pronival sediments



Free rock face / rockwall




~ Wind - a very important geomorphological factor in Svalbard !
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riglacial landscapes - Svalbard
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Wind transport and deposition in periglacial landscapes - Svalbard




sion in periglacial landscapes - Svalbard
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High geomorphic
activity in
permafrost regions
at altitudes near
the ELA

rock falls,
avalanches,
glaciers,

rock glaciers,
snowpatches,
streams,
solifluction,
etc.

Site:

Northern side of Hiorthfjellet,
near Longyearbyen,
Svalbard. North is towards
bottom of figure

Figure measures 3000 x 2400 m




Paulabreen surge

2NNLC

Nl

NS AN K enenas

SH A arde SREHR

/(& I u v’)‘-‘-,

g ISnnen 7, Z
\,\ i I‘ 7 %17 (-

=k =) 5 ’\ &\’/\\’j@%&/ ¢

(S L T i) e
\ A o /..4 T

T

N\

| .
(f :'.:
(A
- a { 3 Skl A

> w/ \
57 i )\
,‘r/’_, v ,/tl ’"lrf—v//‘:“ — - =y

v y

il Y4 :



=
S
. S
- N

—r
o # 7
S
s




Physical Geography at




Readings
-) H.M. French The Periglacial Environment, Third edition, 2007. Wiley, 458 p.

-) Humlum, O, Christiansen, H.H. & Juliussen, H. 2008. (2007) Avalanche Derived
Rock Glaciers in Svalbard. Permafrost and Periglacial Processes, 18, 75-88.

-) Christiansen, H.H. (1998) Periglacial sediments in an Eemian - Weichselian
succession at Emmerlev Klev, southwestern Jutland, Denmark.
Palaeogeography, Palaeoclimatology, Palaeoecology, 138, 245-258.

-) Liestgl, O., 1976: Pingos, springs, and permafrost in Spitsbergen.
Norsk Polarinstitut Arbok 1975, pp. 7-29.



