

Thomas V. Schuler thomas.schuler@geo.uio.no

Snow precipitation

What makes it snow?

- Saturated or oversaturated air exists due to air lift
- Nuclear seeds exist
- Collisions occur between cloud drops or ice particles

Snow precipitation

- Orographic
 - Mountain barriers
 - \rightarrow uplift
- Cyclonal
 - Mixing of warm and cold air masses
 → advection & convection

Snowcover distribution

<section-header><section-header><section-header><section-header><text><text>

Snowcover distribution

- Differences in snow accumulation between different species of conifers is usually small compared to between coniferous and deciduous stands
 coniferous stands are all relatively
 - efficient snow interceptors
 - Once intercepted, cohesion between snow particles helps keep snow in the canopy for extended time periods
 - snow is more susceptible to sublimation losses in the canopy than on the forest floor
 High surface area to mass ratio

Snow (re-)distribution

Longyearbyen, Photo: Ole Humlum

Snow drift

Shear Velocity

- Movement of snow particles occurs when the drag force exerted on the snow surface by the wind exceeds the surface shear strength.
- The total atmospheric shear stress, S, is equal to p_au^{*2}, where p_a is the air density and u^{*} is the friction (shear) velocity.

	Snow drift	
• Shear Veloci	ity - Wind	
 The friction ve from wind pro 	elocity u* is usually of ofiles, but can be est	calculated imated
	a second s	
from a single	10-m wind speed (u	10):
from a single	10-m wind speed (u	u ₁₀): _u ₁₀ = 5 m/s
from a single Antarctic Ice Sheet	10-m wind speed (u u* =u ₁₀ /26.5	$\frac{u_{10} = 5 \text{ m/s}}{u^* = 0.19}$
from a single Antarctic Ice Sheet Snow-covered Lake	10-m wind speed (u u* =u ₁₀ /26.5 u* =u ₁₀ ^{1.18} /41.7	$\frac{u_{10} = 5 \text{ m/s}}{u^* = 0.19}$ $u^* = 0.16$

- Threshold wind speed increases with increasing temperature and humidity
- It the original deposition occurs with wind, the particles will be broken into smaller pieces → higher density pack → increase threshold wind speed
- Threshold wind speed increases with time since deposition, due to snow metamorphism

Snov	v drift	
ypes of T	ransport	
MOTION	HEIGHT	WINDSPEE
Roll	< 1 cm	<< 5 m/s
Bounce	1 cm - 10 cm	5 - 10 m/s
Suspended	1 m - 100 m	> 10 m/s
	Snow Types of 1 MOTION Roll Bounce Suspended	Snow drift Types of Transport MOTION HEIGHT Roll <1 cm Bounce 1 cm - 10 cm Suspended 1 m - 100 m

Г

Snow drift

Sublimation Losses

- Snow particles are more exposed to atmosphere during wind transport
- Sublimation losses can be very high as a result
 - depends on transport rate, transport distance, temperature, humidity, wind speed, and solar radiation

Very efficient redistribution...

Picture Courtesy: SLF Davos

Snowcover distribution

- Quantifying snowfall is problematic.
- In practice, we are often just concerned with the snowcover distribution
- (e.g.,avalanche warning, meltwater runoff)

Snow at different scales

- Microscale (10-100 m)
 - Topography (slope, aspect, elevation), vegetation
- Mesoscale (0.1-1km)
- Topography (slope, aspect, elevation), vegetation (forest)
- Macroscale (>10 km)
- Latitude, macrotopography, distance to moisture source etc

Mesoscale

Simulating snow transport using a turbulence-model of airflow from: Corripio et al (in press)

Figure 5: Comparison between manually mapped areas of snow accomplation (New and green) and erosion (red and enange) and those modellied by SVTRON2 at the Col du Lae Blac experimental site. Colsura range from red (erosion) to blac (accumulation). North is right.

Bibliography

- Essery et al., 1999: A distributed model of blowing snow over complex terrain, Hydrological Processes 13, 2423 – 2438
- Sturm et al., 1995: A seasonal snow cover classification system for local to global applications, Journal of Climate 8, 1261 – 1283
- Gray & Male, 1981: Handbook of Snow, Pergamon
 Press
 - Snowfall pp 153-187
 - Snowdrift pp 338-358
 - Infiltration pp 398-406

Measuring snow precipitation

- Rain gauge
- snow depth sounding, ultrasonic ranger
- (snow pillow)
- (radar, GPR and SAR)

Pcorr = Pgauge * C C = f (w, T, gauge type) Correction factor Heliman gauge v = wind speed (m/s), T = air temperature (°C) Correction factor used for entire winter $T_{-5}^{(*C)}$ w(m/s) 1 3 6 - - -	Pcorr = Pgauge * C C = f (w, T, gauge type) Correction facto	
C = f (w, T, gauge type) Correction factor Helman gauge u wind speed (m/s), T = air temperature (°C) Usually is just one correction factor used for entire winter $\overline{T(^2C)}$ (w (m/s) 1 3 6 3.28 2.01 3.98 -5 1.28 2.32 5.56 -10 1.28 2.67 8.19 - larger correction for wind exposed stations -10 1.28 2.67 8.19 - varies from gauge type to gauge type	C = f (w, T, gauge type) Correction facto	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		or
T(°C) w (m/s) 1 3 6 0 1.28 2.01 3.98 -5 1.28 2.32 5.56 -10 1.28 2.67 8.19 -10 1.28 2.67 8.19	Heilman gauge w = wind speed (m/s), T = air temperature (°C) usually is just one correction factor is an in a speed (m/s), T = air temperature (°C)	r used fo
0 1.28 2.01 3.98 - varies from source to source -5 1.28 2.32 5.56 - depends on station wind exposure -10 1.28 2.67 8.19 - varies from gauge type to gauge type	T(°C) w (m/s) 1 3 6 entire whiter	
-5 1.28 2.32 5.56 - larger correction for wind exposed stations -10 1.28 2.67 8.19 - varies from gauge type to gauge type	0 1.28 2.01 3.98 - Valles from station to station	
-10 1.28 2.67 8.19 - varies from gauge type to gauge type	-5 1.28 2.32 5.56 – larger correction for wind exposed stat	ations
	-10 1.28 2.67 8.19 - varies from gauge type to gauge type	8

