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How much water is needed to overcome the cold content?

Hy=AT mgc,  (cold content)
Hz=m,L (heat release
while refreezing)

H, = Hy = 840 kJ

density of snow, p, = 400 kg m3
density of water, p,, = 1000 kg m3
specific heat of snow, ¢, =2100 J kg™ K-
latent heat of fusion, L =0.333 x 108 J kg"!

Solving for V,=m, p,"yields V,, =251

(faceting),

(b) Destructive
metamorphosis
(rounding),

(c) Sintering




melt rate

...after the cappilary water capacity
is filled

depends on snow density

Pug (dm) 3

U= s (E) o eff. poro!
where U/ is the volume flux of water

& is the intrinsic permeability,

P 15 the density of water,

£ is gravitational acceleration, and

My, 18 the viscosity of water.

This approach has worked fairly well (see
reviews by Colbeck [1987]. Morris [1991].
and Dozier [1992]).

4 Finney Pack
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 Warming phase: increase T until

isothermal conditions: T=0C

* Ripening phase: filling the field capacity /
retention capacity

» Output phase: outflow from the snowpack
occurs

ice lenses

“fingering”




MELT PATHWAYS
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Figure 1. The track, pulley, and radar system for scanning along the face of the snow trench

Albert et al., 1999

Albert et al., 1999
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Conway & Benedict, 1994
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FIGURE 526

{Comparison of timing of rate of melting at the surtace (the “input”) and rate of vertical unsaturated
fiow {water outpit) &t th base of a 101-cm-deep tundra snowpack. From Dunne et &, {1576), used

with permission of the American Geophysical Union,
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FIGURE 5-27

Approzimate lag between the time
of peak surface metiing and the
tima of peak flow from the botiom
of 2 snowpack as a function of
saow depth. From Anderson (1968)
used with parméssion of the
American Geoptrysical Union.




warming ripening outflow

time
->delay of runoff after onset of the melting season

Anyway, water moves slowly through snowpack
- Efficient storage mechanism

Photo: R. P

Linear reservoir
Vig=kQy

Storage constant

Qﬂm snow Qlce

—‘“thal

geseration. [a] The top of the
saturated zona in the sl (water
tabia) is at depth: percolating
meitwaler inblirates a°d percciates
o e saturated Tone 10 raisa the
wates table and therely induce
incroasad ground-water fiow 10 the
stroam. [ The water tatde s at the
5o wurface of the soil surfacs s
impeermeabie (perhigd due 10 sl
sof frost), peecolabng mettwater
sccumulates 1o form & basal
satorated zone thinugh which
watar craing 10 the straam (¢) The
lower portion of th water tabl
has tisen bove the GrOUNG sestace
o the snowpack; walet in B
woper oarl of the slope moves 28 in
{a). walur in the lowar part as in

bl Mocktied alier Dunne and
Lecgold (1578).

depending on
site conditions

Linear
reservoir

Q=k*V

Q - discharge
V — storage volume
k — storage konstant

—At, —At,
Q(nAt) = Q(nAt—l) ‘e % + I(nAt) (1-e A)

o ] 3 fatw




At At
Qnay = Quuaryy - € i’ i @—e A)

» 3 stages of snowpack hydrological evolution:
warming, ripening, outflow

» Snowpack permeability depends on density,
grain size, temperature...>highly heterogeneous

» With maturing of the snowpack, the permeability
becomes larger and more homogeneous




