

Snow melt and melt water runoff

Significance:

- Hydropower purposes
- Flood prediction
- Avalanche protection
- Research: effects of climate change

Guidelines for Snowmelt Model Selection

- 1. Operation and calibration data availability
- 2. Expected physiographic and climatic conditions
- 3. Detail and type of results required.

Primary approaches to modeling snowmelt:

- 1. Ablation Stakes
- 2. Regression Analysis (linear or multiple)
- 3. Temperature Index Approach
- 4. Energy Balance Approach

Ablation Stakes

- Used to "model" distributed snowmelt over an area of interest.
- Stakes are placed in the snow and distance between snow surface and top of the stake is noted.
- Difference in depth between the two readings is the amount of snow depth lost over that time interval.
- \rightarrow interpolation

	Regressior	Regression analysis				
<u>Ac</u>	Ivantages:	Di	sadvantages:			
•	Provides an estimate of total discharge from basin	•	Does not provide information on factors such as peak discharge.			
•	Simple	•	Threshold effects may occur.			
•	Minimum data requirements Provide a good index for water resource managers	•	Assumes stationarity.Climate boundary conditions can't change.			

2

Based on the concept that changes in air temperature provide an index of snowmelt. T-index approach:

$$M = C * (T - T_0)$$

Air temperature

- commonly measured meteorological variable.
- secondary meteorological variable that provides an integrated measure of heat energy.

TABLE 2. Roducton and best	balance for glaciers a poet and ninks. Obse	and snow cover during the melt (W m $^{\prime\prime}$). Values in brackets are percentages of total rved period is degenoutly, year, where month 1 is Jan, etc.	6	Ohmura, 200
Sire	Coordiaates	sources		Longwave Blackbod f outgoing temperature f radiation of 2* surface (8
Upper loe Station 1, Miller Sce Cap	79741'N, 90727	longwayo incoming radiation	~ 70%	Accumulation area 11) -309 (-86) 272
Circle Station, Devia in Circle Station, Barges Ice Cap Camp A1, Barges Ice Cap	1974/N, 79/15 69/43/N, 72/13	longwave incoming radiation		$0 = -297 (-925) = 269 \\ 0 = -310 (-385) = 272 \\ 11) = -115 (-395) = 273$
Carrifour, 2010, Overshind Penny Ice Cap	691491N, 47126 661391N, 65128 461391N, 65128	absorbed global radiation	~ 20%	-283 (-84) 266 (4) -306 (-86) 271
Ewigschneefeld	46'33'N, 08'02	consible boot flux	< 10.9/	12) -315 (-87) 273
And Hunt for Shelf 87"12"N, 74"00 Init for, Meighen for Cap 79"38"N, 99"09		Sensible neat nux	< 10 %	Near equilibrium line 16) -316 (-84) 273 10) -311 (-87) 272
ETH Camp. Greenlend Blue Glacier Vernagtlener	69°35'N, 49°16' 47°48'N, 123°45 46°30'N, 10°45'	sinks		6)304 (-87) 271 29)316 (-70) 273 42)301 (-58) 270
Hamereicferteer	46'48'N, 19'45			23) -312 (-76) 272
Rhunegletscher No. 1 Glacier, Tenshan	46°37°N, 08°24 43°56°N, 87°15	longwave outgoing radiation	~ 70 %	15) = 308(=65) 271 17) = 309 (=79) 272
Res Town In Co.	PHILIP LOTT			Abletics area
Kroupriss Christian Land	79°35'N, 34°04	melt	~ 10 – 30 %	(1) -309 (~13) 2/1 (0) -315 (~60) 2/3
Lower low Station, White	79721'N, 90739			1) -317 (-66) 273
datte	ditte.	ground heat flux	< 10 %	21) -315 (-74) 273
dano Svenimp Glacier, Deren Is	6000 75'40'N, 83'15'	5		28) -316 (-68) 273 50) -316 (-77) 273
Camp IV, EGIG, Greenland Storglassilera	69°40'N, 49°38° 67°55'N, 18°55'	W 1004 272 0.56 129 (20) 25 (60) 27 (7) E 1576 149 0.79 11 (6) 252 (60) 27 (6)	-21 (-5) -11 (-3) -90 (- 12 (1) -1 (<-1) -40 (-	-21) -315 (-72) 273 -14) -304 (-86) 271
Alencheletucher	46'25'N, 08'04'I	E 2220 214 0.27 156 (31) 258 (51) 49 (12)	3 (1) -3 (-1) -110 (- 14 (3) 0 (3) -141 (-	-26) -309 (~73) 272 -36) -315 (-64) 273

The longwave incoming radiation is the largest contribution to melt (~ 70%)

About 70 % of the longwave incoming radiation originates from within the first 100m of the atmosphere

Variations of screen-level temperatures can be regarded as representative of this boundary layer

Energy Balance problems

- Energy Balance model (parameterizations of turbulent exchange)
- Spatial distribution
- Precipitation
- Snowpack model (refreezing, metamorphism, water retention)

Energy Balance Models

$$0 = Q_R + Q_H + Q_L + Q_G + Q_P + Q_M$$

- Point or spatially distributed
- Run on measured data

 contrast to empirical models, which run on only a few measured parameters and which rely on calibration parameters at the heart of the model.
- Only as good as your measured data and understanding of the system
- Includes some empirism anyway (turbulent exchange...)
- Sacrifice simplicity for complicated measurements and algorithms.

