Different models to calculate snow melt
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Temperature-index approach:

M =C *(T-T,)
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R — net radiation

H — sensible heat flux

—k*
L — latent heat flux (evaporation) Q=k*V

G — ground heat flux Q- discharge

P —rain heat flux V — storage volume

M — latent heat flux (melt) k - storage konstant

» Hydropower purposes

Flood prediction

Avalanche protection

* Research: effects of climate change

2. Expected physiographic and climatic
conditions
3. Detail and type of results required.




2. Regression Analysis (linear or multiple)
3. Temperature Index Approach

surface and top of the stake is
noted.

4. Energy Balance Approach - Difference in depth between
the two readings is the amount
of snow depth lost over that
time interval.

-> interpolation

Q=b + (SWE) x B30
K] « Simple « Threshold effects may occur.

SWE : measured at snow course sites <%20
Q : annual or seasonal discharge at a gaging site . . . .

o * Minimum data requirements - Assumes stationarity.

— Climate boundary conditions
0 i i ).
DS S e « Provide a good index for water can’t change.

. resource managers
Requirements: SWE 9

* Representative sites (to get a high r2)

« Often only one SWE measurement station in a basin
« If more than one station, can run multiple regression
« Need long-term record, usually at least 10 years




M=C*(T-Ty)

Air temperature
— commonly measured meteorological variable.

— secondary meteorological variable that provides an
integrated measure of heat energy.

M=C*(T-T

Why does the T-index approach perform
that well ??
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Temperature-index models:
+ low data demand

+ applicable in all scales

- trouble with quality control

(parameterizations of turbulent exchange)
» Spatial distribution
* Precipitation

* Snowpack model
(refreezing, metamorphism, water retention)

Point or spatially distributed

Run on measured data

— contrast to empirical models, which run on only a few measured
parameters and which rely on calibration parameters at the heart of the
model.

Only as good as your measured data and understanding of the system
Includes some empirism anyway (turbulent exchange...)

Sacrifice simplicity for complicated measurements and algorithms.

Energy balance models:
+ physical basis: good quality control
- huge data demand :

- scaling problem: point to catchment =
{
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Validation of model results
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How to deal with this problem ??
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Variability on spati’él and temporal scales
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sattelite image

(satellite, automat. camera)

+ Spatial distribution of SWE
(a harder problem)

+ Spatial distribution of meteorological variables
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Spatial variability:
Apply the model to different
elevation bands, aspect

Use different formulations:
T-index:

M=C*(T-To) classes etc.
T+wind-index: melt-factor variable in space and time
M = (C1 + C2*u) (T-T,) Hock 1999: /
Combination method: M= (C1 + CZ*I * (T'TO)
fnorain:  T-index Temporal variability: radiation term
if rain: ...some complex equation Temporal variable melt- Pellicciotti et al. (in press):
factor (e.g. sinusoidal M =|C, * (T-Ty) H C,*(1-a)*l
annual variation) ™

| — potential clear-sky solar radiation
a - albedo temperature term

M= (C1 + Csnow/ice * I) * (T'TO)
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- complexity, data demand, distrib!

Interpolation
Regression models

T-index model

Enhanced T-index

Energy balance models




