
1 Coding cheat sheet BIOS1100 H17

Limited to chapters 1-7 of the book. Also to be used during the exam.

1.1 Variables

Syntax Description
int() Converts the argument to integer
float() Converts the argument to float
round() Rounds a number to a certain decimal point

1.2 Lists

Syntax Description Result
L = [] Initialize an empty list []
L = [1, 4.4, "bacteria"] Initialize a list [1, 4.4, "bacteria"]
len(L) number of elements in list L 3
L.append(2) Add 2 to the end of L [1, 4.4, "bacteria", 2]
L.insert(1, "a") Insert "a" before index 1 [1, "a", 4.4, "bacteria"]
L[1] Index a list, get element 1 4.4
L[-1] Get last element in a list "bacteria"
L[1:3] Slice: copy data to sublist [4.4, "bacteria"]
del L[1] Delete an element (index 2) [1, "bacteria"]
L.index(4.4) Find index of first occurrence of 4.4 1
L + [1, 3] Merge two lists [1, 4.4, "bacteria", 1, 3]
L.count("bacteria") Count occurrences of "bacteria" 1
L.copy() Copy the list [1, 4.4, "bacteria"]

Results below shown on the list L = [4, 2, 10]:
Syntax Description Result

min(L) The smallest element in L 2
max(L) The largest element in L 10
sum(L) Add all elements in L 16
sorted(L) Return sorted version of list L [2, 4, 10]

1.3 range

Syntax Description
range(stop) From 0 up to, but not including, stop with step size 1
range(start, stop) From start up to, but not including, stop with step size 1
range(start, stop, step) From start up to, but not including, stop with step size step

1

1.4 Arrays

Syntax Description
array([5, 6, 7, 8]) Convert a list to an array
zeros(N) With N zeros
arange(stop) From 0 up to, but not including, stop with step size 1
arange(start, stop) From start up to, but not including, stop with step size 1
arange(start, stop, step) From start up to, but not including, stop with step size step

Some array operations when we have two arrays of equal length, a = array([1, 2, 3]) and b
= array([1, 2, 3]):

Syntax Description Result
len(a) Number of elements in array a 3
a[1] Index the array, get element at index one 2
a[1:3] Slice: get a view of the data array([2, 3])
a.copy() Creates a copy of an array array([1, 2, 3])
a + b Element-wise addition array([2, 4, 6])
a + 2 Add 2 to each element of a array([3, 4, 5])
a - b Element-wise subtraction array([0, 0, 0])
a - 2 Subtract 2 from each element of a array([-1, 0, 1])
a*b Element-wise multiplication array([1, 4, 9])
a*2 Multiply each element of a with 2 array([2, 4, 6])
a/b Element-wise division array([1, 1, 1])
a/2 Divide each element of a with 2 array([0.5, 1., 1.5])
a**b Element-wise power array([1, 4, 27])
a**2 Each element of a to the power of 2 array([1, 4, 9])
sqrt(a) The square root of each element in a array([1., 1.41421356, 1.73205081])

1.5 Dictionary

A Dictionary is an unordered collection of object where each value in the dictionary is associated
with a key, called a key-value pair. An example of a dictionary is:

D = {"A": 0, "G": 2, 100: 2}

Strings, floats, integers and several other object not encountered yet can be used as keys. In
the table below some important dictionary operations are shown, always using the dictionary
D = {"A":0, 100:2}.

2

Syntax Description Result
D = { } Initialize an empty dictionary D {}
D = {"A":0, 100:2} Initialize a dictionary D {"A":0, 100:2}
D["C"] = 10 Set or create a key "C" with value 10 {"A":0, 100:2, "C":10}
D["A"] Value associated with key "A" 1
D.get("A") Value of "A" if "A" is in D, else None 1
"A" in D Check if "A" is in D True
len(D) Number of key value pairs in D 3
del D["A"] Remove "A" and its value from D {"A":0, 100:2}
D.keys() Get a view of all keys in D dict_keys(["A", 100])
D.values() Get a view of all values in D dict_values([0, 2])
D.copy() Copy a dictionary D {"A": 0, 100: 2}

Looping over all elements in a dictionary:

for key in my_dict:
print("The key is", key, "and value is", my_dict[key])

1.6 Loops

For-loops. A for loop repeats a set of statements a specific number of times. It tells the com-
puter that for each element in a sequence (array, list, and others) it should “do something“

1 numbers = [1, 2, 3]
2
3 for number in numbers:
4 print(number)
5
6 print("Finished printing numbers to screen!")

While loops. A while loop repeats a set of statements as long as a specific condition is
met:

a = 0
while a < 5:

do something with a
a = a + 1

Using enumerate to get the index in a for-loop. The enumerate() function gives access to
the index and the element for each item in a list.

l = ["A", "B", "C", "D"]

for index, element in enumerate(l):
print("index:", index, ", element:", element)

3

1.7 Functions

A function is given input through arguments and gives output using a return statement:

def add(a, b):
"""
Returns the sum of the inputs.
"""
return a + b

print(add(2, 3))

Default function values. A function can have default values that are given along with the
arguments:

def add(x, y=0, z=0):
print("x =", x, ", y =", y, ", z =", z)
return x+y+z

print(add(1, 3))
print(add(1, z=2))

Global and local variables. Variables defined inside a function are not available outside the
function:

def my_function():
inside = 1 # local variable
return inside

outside = my_function()
print(inside)

1.8 If tests

If-else tests

color = "red"

if color == "red":
print("The color is red!")

else:
print("The color is not red!")

Using elif

codon = "UAG"

if codon == "UAA":
print("codon is a stop codon")

elif codon == "UGA":

4

print("codon is a stop codon")
elif codon == "UAG":

print("codon is a stop codon")
else:

print("codon is not a stop codon")

Logical operators for combining boolean expressions. Boolean values (True and False) rep-
resent truth values of logic.
The keywords and and or combine multiple truth statements in the same if test.

my_number = 4

if my_number > 2 and my_number < 5:
print("my_number is between 2 and 5!")

else:
print("my_number is not between 2 and 5!")

The or-keyword allows you to test if any of the two expressions are True.

my_number = 6

if my_number < 2 or my_number > 5:
print("my_number is smaller than 2, or larger than 5!")

else:
print("my_number is something else!")

Comparison operators. Comparison operators compare expressions on both sides of the opera-
tor and return True or False.

Code Meaning
a == b a is equal to b
a != b a is not equal to b
a < b a is less than b
a > b a is greater than b
a <= b a is less than or equal to b
a >= b a is greater than or equal to b
a in b a is an element in the list b

The keyword not can be inserted in front of a boolean expression to change the value from True
to False, or from False to True.

1.9 Random choice in Python

The choice() function that picks one element at random from a list:

from pylab import *
parent_1 = ['B', 'b']
allele_1 = choice(parent_1)

5

1.10 Short-hand syntax for common operations

Code Equivalent code
n += 1 n = n + 1
n -= 1 n = n - 1
n *= 1 n = n*1
n /= 1 n = n/1

1.11 Reading and writing from files

Reading using pandas

import pandas
data = pandas.read_csv("ecoli.csv")
convert data in columns to lists
t = list(data["t"])
E = list(data["E"])

1.12 Plotting

Syntax Description
xlabel("Time, t (minutes)") Label for x-axis
ylabel("Population size, E") Label for y-axis
title("Measured bacterial population growth") Title of figure
plot(t, E, "g-", label="Population at 39 C") Plot t and E as a green line "g-" with a label
plot(t2, E2, "yo", label="Population at 29 C") Plot t2 and E2 as yellow circles "yo" with a label
legend() Show the legend in the plot
subplot(2, 1, 1) plot in 2 rows, 1 columns, first (top left) plot
yscale("log") Use logarithmic axis on the y-axis
savefig("name_of_plot.png") Save the plot as name_of_plot.png
show() Show the plot

6

	Coding cheat sheet BIOS1100 H17
	Variables
	Lists
	range
	Arrays
	Dictionary
	Loops
	Functions
	If tests
	Random choice in Python
	Short-hand syntax for common operations
	Reading and writing from files
	Plotting

