
Introduction to Databases

Leif Harald Karlsen
leifhka@ifi.uio.no

Universitetet i Oslo

12.10.22

1 / 35



Overview of this module

1. Today: Introduction to databases and the relational model
2. Next week: Basic SQL (answer queries)

2 / 35



Curriculum

� The curriculum of this module are the slides from the lectures
� the weekly exercises with solutions given on the semester page
� The mandatory assignment (will be published 19. october)
� The book SQL Queries For Mere Mortals should be used as supplement to the
slides for more in-depth explanations, and more examples and exercises

3 / 35



Motivation
Why use databases?

Why not just use e.g. Python lists?

patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]

� Persistence of data

� Python’s data (e.g. lists and variables) is stored in RAM (Random Access
Memory)

� This memory is lost on shutdown/termination
� We want data to still be there after shutdown/termination

� Scalability of storage size

� 1 GB of hard disk space much cheaper than 1 GB of RAM

� Separate data from code

� Python’s data is only available to Python’s runtime
� Want data to be usable by multiple applications

All of these problems are solved by the filesystem!

4 / 35



Motivation
Why use databases?

Why not just use e.g. Python lists?

patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]

� Persistence of data

� Python’s data (e.g. lists and variables) is stored in RAM (Random Access
Memory)

� This memory is lost on shutdown/termination
� We want data to still be there after shutdown/termination

� Scalability of storage size

� 1 GB of hard disk space much cheaper than 1 GB of RAM

� Separate data from code

� Python’s data is only available to Python’s runtime
� Want data to be usable by multiple applications

All of these problems are solved by the filesystem!

4 / 35



Motivation
Why use databases?

Why not just use e.g. Python lists?

patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]

� Persistence of data

� Python’s data (e.g. lists and variables) is stored in RAM (Random Access
Memory)

� This memory is lost on shutdown/termination
� We want data to still be there after shutdown/termination

� Scalability of storage size

� 1 GB of hard disk space much cheaper than 1 GB of RAM

� Separate data from code

� Python’s data is only available to Python’s runtime
� Want data to be usable by multiple applications

All of these problems are solved by the filesystem!

4 / 35



Motivation
Why use databases?

Why not just use e.g. Python lists?

patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]

� Persistence of data
� Python’s data (e.g. lists and variables) is stored in RAM (Random Access
Memory)

� This memory is lost on shutdown/termination
� We want data to still be there after shutdown/termination

� Scalability of storage size

� 1 GB of hard disk space much cheaper than 1 GB of RAM

� Separate data from code

� Python’s data is only available to Python’s runtime
� Want data to be usable by multiple applications

All of these problems are solved by the filesystem!

4 / 35



Motivation
Why use databases?

Why not just use e.g. Python lists?

patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]

� Persistence of data
� Python’s data (e.g. lists and variables) is stored in RAM (Random Access
Memory)

� This memory is lost on shutdown/termination

� We want data to still be there after shutdown/termination
� Scalability of storage size

� 1 GB of hard disk space much cheaper than 1 GB of RAM

� Separate data from code

� Python’s data is only available to Python’s runtime
� Want data to be usable by multiple applications

All of these problems are solved by the filesystem!

4 / 35



Motivation
Why use databases?

Why not just use e.g. Python lists?

patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]

� Persistence of data
� Python’s data (e.g. lists and variables) is stored in RAM (Random Access
Memory)

� This memory is lost on shutdown/termination
� We want data to still be there after shutdown/termination

� Scalability of storage size

� 1 GB of hard disk space much cheaper than 1 GB of RAM

� Separate data from code

� Python’s data is only available to Python’s runtime
� Want data to be usable by multiple applications

All of these problems are solved by the filesystem!

4 / 35



Motivation
Why use databases?

Why not just use e.g. Python lists?

patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]

� Persistence of data
� Python’s data (e.g. lists and variables) is stored in RAM (Random Access
Memory)

� This memory is lost on shutdown/termination
� We want data to still be there after shutdown/termination

� Scalability of storage size

� 1 GB of hard disk space much cheaper than 1 GB of RAM
� Separate data from code

� Python’s data is only available to Python’s runtime
� Want data to be usable by multiple applications

All of these problems are solved by the filesystem!

4 / 35



Motivation
Why use databases?

Why not just use e.g. Python lists?

patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]

� Persistence of data
� Python’s data (e.g. lists and variables) is stored in RAM (Random Access
Memory)

� This memory is lost on shutdown/termination
� We want data to still be there after shutdown/termination

� Scalability of storage size
� 1 GB of hard disk space much cheaper than 1 GB of RAM

� Separate data from code

� Python’s data is only available to Python’s runtime
� Want data to be usable by multiple applications

All of these problems are solved by the filesystem!

4 / 35



Motivation
Why use databases?

Why not just use e.g. Python lists?

patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]

� Persistence of data
� Python’s data (e.g. lists and variables) is stored in RAM (Random Access
Memory)

� This memory is lost on shutdown/termination
� We want data to still be there after shutdown/termination

� Scalability of storage size
� 1 GB of hard disk space much cheaper than 1 GB of RAM

� Separate data from code

� Python’s data is only available to Python’s runtime
� Want data to be usable by multiple applications

All of these problems are solved by the filesystem!

4 / 35



Motivation
Why use databases?

Why not just use e.g. Python lists?

patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]

� Persistence of data
� Python’s data (e.g. lists and variables) is stored in RAM (Random Access
Memory)

� This memory is lost on shutdown/termination
� We want data to still be there after shutdown/termination

� Scalability of storage size
� 1 GB of hard disk space much cheaper than 1 GB of RAM

� Separate data from code
� Python’s data is only available to Python’s runtime

� Want data to be usable by multiple applications
All of these problems are solved by the filesystem!

4 / 35



Motivation
Why use databases?

Why not just use e.g. Python lists?

patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]

� Persistence of data
� Python’s data (e.g. lists and variables) is stored in RAM (Random Access
Memory)

� This memory is lost on shutdown/termination
� We want data to still be there after shutdown/termination

� Scalability of storage size
� 1 GB of hard disk space much cheaper than 1 GB of RAM

� Separate data from code
� Python’s data is only available to Python’s runtime
� Want data to be usable by multiple applications

All of these problems are solved by the filesystem!

4 / 35



Motivation
Why use databases?

Why not just use e.g. Python lists?

patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]

� Persistence of data
� Python’s data (e.g. lists and variables) is stored in RAM (Random Access
Memory)

� This memory is lost on shutdown/termination
� We want data to still be there after shutdown/termination

� Scalability of storage size
� 1 GB of hard disk space much cheaper than 1 GB of RAM

� Separate data from code
� Python’s data is only available to Python’s runtime
� Want data to be usable by multiple applications

All of these problems are solved by the filesystem!

4 / 35



Motivation
Why use databases?

Why not just use e.g. Python lists?

patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]

� Persistence of data
� Python’s data (e.g. lists and variables) is stored in RAM (Random Access
Memory)

� This memory is lost on shutdown/termination
� We want data to still be there after shutdown/termination

� Scalability of storage size
� 1 GB of hard disk space much cheaper than 1 GB of RAM

� Separate data from code
� Python’s data is only available to Python’s runtime
� Want data to be usable by multiple applications

All of these problems are solved by the filesystem!
4 / 35



Motivation
Why use databases?

So why not just use files, then?

Python + Files
import csv
import os

filea = "a.csv"
fileb = "b.csv"
temp = "temp.csv"
source1 = csv.reader(open(filea ,"r"),delimiter=",")
source2 = csv.reader(open(fileb ,"r"),delimiter=",")

source2_dict = {}
for row in source2:

source2_dict[row[0]] = row[1]

with open(temp, "w") as fout:
csvwriter = csv.writer(fout, delimiter=delim)
for row in source1:

if row[1] in source2_dict:
row[3] = source2_dict[row[1]]

csvwriter.writerow(row)
os.rename(temp, filea)

SQL + Database

UPDATE a
SET c4=b.c2

FROM b
WHERE a.c2 = b.c1;

5 / 35



Motivation
Why use databases?

So why not just use files, then?

Python + Files
import csv
import os

filea = "a.csv"
fileb = "b.csv"
temp = "temp.csv"
source1 = csv.reader(open(filea ,"r"),delimiter=",")
source2 = csv.reader(open(fileb ,"r"),delimiter=",")

source2_dict = {}
for row in source2:

source2_dict[row[0]] = row[1]

with open(temp, "w") as fout:
csvwriter = csv.writer(fout, delimiter=delim)
for row in source1:

if row[1] in source2_dict:
row[3] = source2_dict[row[1]]

csvwriter.writerow(row)
os.rename(temp, filea)

SQL + Database

UPDATE a
SET c4=b.c2

FROM b
WHERE a.c2 = b.c1;

5 / 35



Motivation
Why use databases?

Why not just use files?

� Convenience of data manipulation

� Easier to insert, delete and update data

� Query languages

� For large and complex data, it is easier to state what to compute (i.e. what we
want to know) rather than how to compute it

� Efficiency

� Database uses advanced techniques to find the most efficient way to execute
queries

� Also uses advanced data structures to store data for efficient retrieval

6 / 35



Motivation
Why use databases?

Why not just use files?
� Convenience of data manipulation

� Easier to insert, delete and update data
� Query languages

� For large and complex data, it is easier to state what to compute (i.e. what we
want to know) rather than how to compute it

� Efficiency

� Database uses advanced techniques to find the most efficient way to execute
queries

� Also uses advanced data structures to store data for efficient retrieval

6 / 35



Motivation
Why use databases?

Why not just use files?
� Convenience of data manipulation

� Easier to insert, delete and update data

� Query languages

� For large and complex data, it is easier to state what to compute (i.e. what we
want to know) rather than how to compute it

� Efficiency

� Database uses advanced techniques to find the most efficient way to execute
queries

� Also uses advanced data structures to store data for efficient retrieval

6 / 35



Motivation
Why use databases?

Why not just use files?
� Convenience of data manipulation

� Easier to insert, delete and update data
� Query languages

� For large and complex data, it is easier to state what to compute (i.e. what we
want to know) rather than how to compute it

� Efficiency

� Database uses advanced techniques to find the most efficient way to execute
queries

� Also uses advanced data structures to store data for efficient retrieval

6 / 35



Motivation
Why use databases?

Why not just use files?
� Convenience of data manipulation

� Easier to insert, delete and update data
� Query languages

� For large and complex data, it is easier to state what to compute (i.e. what we
want to know) rather than how to compute it

� Efficiency

� Database uses advanced techniques to find the most efficient way to execute
queries

� Also uses advanced data structures to store data for efficient retrieval

6 / 35



Motivation
Why use databases?

Why not just use files?
� Convenience of data manipulation

� Easier to insert, delete and update data
� Query languages

� For large and complex data, it is easier to state what to compute (i.e. what we
want to know) rather than how to compute it

� Efficiency

� Database uses advanced techniques to find the most efficient way to execute
queries

� Also uses advanced data structures to store data for efficient retrieval

6 / 35



Motivation
Why use databases?

Why not just use files?
� Convenience of data manipulation

� Easier to insert, delete and update data
� Query languages

� For large and complex data, it is easier to state what to compute (i.e. what we
want to know) rather than how to compute it

� Efficiency
� Database uses advanced techniques to find the most efficient way to execute
queries

� Also uses advanced data structures to store data for efficient retrieval

6 / 35



Motivation
Why use databases?

Why not just use files?
� Convenience of data manipulation

� Easier to insert, delete and update data
� Query languages

� For large and complex data, it is easier to state what to compute (i.e. what we
want to know) rather than how to compute it

� Efficiency
� Database uses advanced techniques to find the most efficient way to execute
queries

� Also uses advanced data structures to store data for efficient retrieval

6 / 35



Motivation
Why use databases?

So why not just files, then?

Database functions as an abstraction layer over
the filsystem

� Makes it easier to search and manipulate
data

� Easier to specify structure of the data
� More efficient and scalable

7 / 35



Motivation
Why use databases?

So why not just files, then?

Database functions as an abstraction layer over
the filsystem

� Makes it easier to search and manipulate
data

� Easier to specify structure of the data
� More efficient and scalable

7 / 35



Databases

� A database is a program providing easy and efficient access to data

� Different types of databases, focusing on storing different types of data
� Document databases: Stores documents, and can do very efficient search in
text

� Key-value stores: Stores pairs of a key and a value
� Graph databases: Stores graphs, i.e., nodes and edges
� Relational databases: Stores tables (or relations) consisting of rows and
columns

� We will focus on relational databases, the most used type of database

8 / 35



Databases

� A database is a program providing easy and efficient access to data
� Different types of databases, focusing on storing different types of data

� Document databases: Stores documents, and can do very efficient search in
text

� Key-value stores: Stores pairs of a key and a value
� Graph databases: Stores graphs, i.e., nodes and edges
� Relational databases: Stores tables (or relations) consisting of rows and
columns

� We will focus on relational databases, the most used type of database

8 / 35



Databases

� A database is a program providing easy and efficient access to data
� Different types of databases, focusing on storing different types of data
� Document databases: Stores documents, and can do very efficient search in
text

� Key-value stores: Stores pairs of a key and a value
� Graph databases: Stores graphs, i.e., nodes and edges
� Relational databases: Stores tables (or relations) consisting of rows and
columns

� We will focus on relational databases, the most used type of database

8 / 35



Databases

� A database is a program providing easy and efficient access to data
� Different types of databases, focusing on storing different types of data
� Document databases: Stores documents, and can do very efficient search in
text

� Key-value stores: Stores pairs of a key and a value

� Graph databases: Stores graphs, i.e., nodes and edges
� Relational databases: Stores tables (or relations) consisting of rows and
columns

� We will focus on relational databases, the most used type of database

8 / 35



Databases

� A database is a program providing easy and efficient access to data
� Different types of databases, focusing on storing different types of data
� Document databases: Stores documents, and can do very efficient search in
text

� Key-value stores: Stores pairs of a key and a value
� Graph databases: Stores graphs, i.e., nodes and edges

� Relational databases: Stores tables (or relations) consisting of rows and
columns

� We will focus on relational databases, the most used type of database

8 / 35



Databases

� A database is a program providing easy and efficient access to data
� Different types of databases, focusing on storing different types of data
� Document databases: Stores documents, and can do very efficient search in
text

� Key-value stores: Stores pairs of a key and a value
� Graph databases: Stores graphs, i.e., nodes and edges
� Relational databases: Stores tables (or relations) consisting of rows and
columns

� We will focus on relational databases, the most used type of database

8 / 35



Databases

� A database is a program providing easy and efficient access to data
� Different types of databases, focusing on storing different types of data
� Document databases: Stores documents, and can do very efficient search in
text

� Key-value stores: Stores pairs of a key and a value
� Graph databases: Stores graphs, i.e., nodes and edges
� Relational databases: Stores tables (or relations) consisting of rows and
columns

� We will focus on relational databases, the most used type of database

8 / 35



Relational databases

A (simplified) description of a relational database:

� A relational database is a collection of tables
� A table is also called a relation.
� A table has

� a name,
� a collection of columns
� and a collection of rows (which is the data)

� A column has

� a name,
� and a type

9 / 35



Relational databases

A (simplified) description of a relational database:
� A relational database is a collection of tables

� A table is also called a relation.
� A table has

� a name,
� a collection of columns
� and a collection of rows (which is the data)

� A column has

� a name,
� and a type

9 / 35



Relational databases

A (simplified) description of a relational database:
� A relational database is a collection of tables
� A table is also called a relation.

� A table has

� a name,
� a collection of columns
� and a collection of rows (which is the data)

� A column has

� a name,
� and a type

9 / 35



Relational databases

A (simplified) description of a relational database:
� A relational database is a collection of tables
� A table is also called a relation.
� A table has

� a name,
� a collection of columns
� and a collection of rows (which is the data)

� A column has

� a name,
� and a type

9 / 35



Relational databases

A (simplified) description of a relational database:
� A relational database is a collection of tables
� A table is also called a relation.
� A table has

� a name,

� a collection of columns
� and a collection of rows (which is the data)

� A column has

� a name,
� and a type

9 / 35



Relational databases

A (simplified) description of a relational database:
� A relational database is a collection of tables
� A table is also called a relation.
� A table has

� a name,
� a collection of columns

� and a collection of rows (which is the data)
� A column has

� a name,
� and a type

9 / 35



Relational databases

A (simplified) description of a relational database:
� A relational database is a collection of tables
� A table is also called a relation.
� A table has

� a name,
� a collection of columns
� and a collection of rows (which is the data)

� A column has

� a name,
� and a type

9 / 35



Relational databases

A (simplified) description of a relational database:
� A relational database is a collection of tables
� A table is also called a relation.
� A table has

� a name,
� a collection of columns
� and a collection of rows (which is the data)

� A column has

� a name,
� and a type

9 / 35



Relational databases

A (simplified) description of a relational database:
� A relational database is a collection of tables
� A table is also called a relation.
� A table has

� a name,
� a collection of columns
� and a collection of rows (which is the data)

� A column has
� a name,

� and a type

9 / 35



Relational databases

A (simplified) description of a relational database:
� A relational database is a collection of tables
� A table is also called a relation.
� A table has

� a name,
� a collection of columns
� and a collection of rows (which is the data)

� A column has
� a name,
� and a type

9 / 35



Tables/Relations

Example table:

Patient
PatientID (int) Name (text) Birthdate (date) BloodPressure (text)
0 Anna Consuma 1978-10-09 123/75
1 Peter Young 2009-03-01 150/81
2 Carla Smith 1986-06-14 101/53
3 Sam Penny 1961-01-09 127/82
4 John Mill 1989-11-16 147/92
5 Yvonne Potter 1971-04-12 122/74

10 / 35



Rows and Columns

Patient
PatientID (int) Name (text) Birthdate (date) BloodPressure (text)
0 Anna Consuma 1978-10-09 123/75
1 Peter Young 2009-03-01 150/81
2 Carla Smith 1986-06-14 101/53
3 Sam Penny 1961-01-09 127/82
4 John Mill 1989-11-16 147/92
5 Yvonne Potter 1971-04-12 122/74

� Every value within a column must have the same type as the column

� so the type of a column describes the allowed values in that column
� E.g. only allowed to put integers into a column having type int

� Every row must have the same number of values as there are columns

� so the columns describes the allowed rows in that table
� a patient must have PatientID, Name, Birthdate, BloodPressure

11 / 35



Rows and Columns

Patient
PatientID (int) Name (text) Birthdate (date) BloodPressure (text)
0 Anna Consuma 1978-10-09 123/75
1 Peter Young 2009-03-01 150/81
2 Carla Smith 1986-06-14 101/53
3 Sam Penny 1961-01-09 127/82
4 John Mill 1989-11-16 147/92
5 Yvonne Potter 1971-04-12 122/74

� Every value within a column must have the same type as the column
� so the type of a column describes the allowed values in that column

� E.g. only allowed to put integers into a column having type int
� Every row must have the same number of values as there are columns

� so the columns describes the allowed rows in that table
� a patient must have PatientID, Name, Birthdate, BloodPressure

11 / 35



Rows and Columns

Patient
PatientID (int) Name (text) Birthdate (date) BloodPressure (text)
0 Anna Consuma 1978-10-09 123/75
1 Peter Young 2009-03-01 150/81
2 Carla Smith 1986-06-14 101/53
3 Sam Penny 1961-01-09 127/82
4 John Mill 1989-11-16 147/92
5 Yvonne Potter 1971-04-12 122/74

� Every value within a column must have the same type as the column
� so the type of a column describes the allowed values in that column
� E.g. only allowed to put integers into a column having type int

� Every row must have the same number of values as there are columns

� so the columns describes the allowed rows in that table
� a patient must have PatientID, Name, Birthdate, BloodPressure

11 / 35



Rows and Columns

Patient
PatientID (int) Name (text) Birthdate (date) BloodPressure (text)
0 Anna Consuma 1978-10-09 123/75
1 Peter Young 2009-03-01 150/81
2 Carla Smith 1986-06-14 101/53
3 Sam Penny 1961-01-09 127/82
4 John Mill 1989-11-16 147/92
5 Yvonne Potter 1971-04-12 122/74

� Every value within a column must have the same type as the column
� so the type of a column describes the allowed values in that column
� E.g. only allowed to put integers into a column having type int

� Every row must have the same number of values as there are columns

� so the columns describes the allowed rows in that table
� a patient must have PatientID, Name, Birthdate, BloodPressure

11 / 35



Rows and Columns

Patient
PatientID (int) Name (text) Birthdate (date) BloodPressure (text)
0 Anna Consuma 1978-10-09 123/75
1 Peter Young 2009-03-01 150/81
2 Carla Smith 1986-06-14 101/53
3 Sam Penny 1961-01-09 127/82
4 John Mill 1989-11-16 147/92
5 Yvonne Potter 1971-04-12 122/74

� Every value within a column must have the same type as the column
� so the type of a column describes the allowed values in that column
� E.g. only allowed to put integers into a column having type int

� Every row must have the same number of values as there are columns
� so the columns describes the allowed rows in that table

� a patient must have PatientID, Name, Birthdate, BloodPressure

11 / 35



Rows and Columns

Patient
PatientID (int) Name (text) Birthdate (date) BloodPressure (text)
0 Anna Consuma 1978-10-09 123/75
1 Peter Young 2009-03-01 150/81
2 Carla Smith 1986-06-14 101/53
3 Sam Penny 1961-01-09 127/82
4 John Mill 1989-11-16 147/92
5 Yvonne Potter 1971-04-12 122/74

� Every value within a column must have the same type as the column
� so the type of a column describes the allowed values in that column
� E.g. only allowed to put integers into a column having type int

� Every row must have the same number of values as there are columns
� so the columns describes the allowed rows in that table
� a patient must have PatientID, Name, Birthdate, BloodPressure

11 / 35



Why relational databases?

Patient
PatientID (int) Name (text) Birthdate (date) BloodPressure (text)
0 Anna Consuma 1978-10-09 123/75
1 Peter Young 2009-03-01 150/81
2 Carla Smith 1986-06-14 101/53
3 Sam Penny 1961-01-09 127/82
4 John Mill 1989-11-16 147/92
5 Yvonne Potter 1971-04-12 122/74

� Almost all data can (naturally) be represented as tables

� Natural format to work with
� Easy to define structure of the data (meta data)
� This rigid structure allows very efficient extraction and manipulation of the
data

� Also gives many forms of security
� The most used type of database

12 / 35



Why relational databases?

Patient
PatientID (int) Name (text) Birthdate (date) BloodPressure (text)
0 Anna Consuma 1978-10-09 123/75
1 Peter Young 2009-03-01 150/81
2 Carla Smith 1986-06-14 101/53
3 Sam Penny 1961-01-09 127/82
4 John Mill 1989-11-16 147/92
5 Yvonne Potter 1971-04-12 122/74

� Almost all data can (naturally) be represented as tables
� Natural format to work with

� Easy to define structure of the data (meta data)
� This rigid structure allows very efficient extraction and manipulation of the
data

� Also gives many forms of security
� The most used type of database

12 / 35



Why relational databases?

Patient
PatientID (int) Name (text) Birthdate (date) BloodPressure (text)
0 Anna Consuma 1978-10-09 123/75
1 Peter Young 2009-03-01 150/81
2 Carla Smith 1986-06-14 101/53
3 Sam Penny 1961-01-09 127/82
4 John Mill 1989-11-16 147/92
5 Yvonne Potter 1971-04-12 122/74

� Almost all data can (naturally) be represented as tables
� Natural format to work with
� Easy to define structure of the data (meta data)

� This rigid structure allows very efficient extraction and manipulation of the
data

� Also gives many forms of security
� The most used type of database

12 / 35



Why relational databases?

Patient
PatientID (int) Name (text) Birthdate (date) BloodPressure (text)
0 Anna Consuma 1978-10-09 123/75
1 Peter Young 2009-03-01 150/81
2 Carla Smith 1986-06-14 101/53
3 Sam Penny 1961-01-09 127/82
4 John Mill 1989-11-16 147/92
5 Yvonne Potter 1971-04-12 122/74

� Almost all data can (naturally) be represented as tables
� Natural format to work with
� Easy to define structure of the data (meta data)
� This rigid structure allows very efficient extraction and manipulation of the
data

� Also gives many forms of security
� The most used type of database

12 / 35



Why relational databases?

Patient
PatientID (int) Name (text) Birthdate (date) BloodPressure (text)
0 Anna Consuma 1978-10-09 123/75
1 Peter Young 2009-03-01 150/81
2 Carla Smith 1986-06-14 101/53
3 Sam Penny 1961-01-09 127/82
4 John Mill 1989-11-16 147/92
5 Yvonne Potter 1971-04-12 122/74

� Almost all data can (naturally) be represented as tables
� Natural format to work with
� Easy to define structure of the data (meta data)
� This rigid structure allows very efficient extraction and manipulation of the
data

� Also gives many forms of security

� The most used type of database

12 / 35



Why relational databases?

Patient
PatientID (int) Name (text) Birthdate (date) BloodPressure (text)
0 Anna Consuma 1978-10-09 123/75
1 Peter Young 2009-03-01 150/81
2 Carla Smith 1986-06-14 101/53
3 Sam Penny 1961-01-09 127/82
4 John Mill 1989-11-16 147/92
5 Yvonne Potter 1971-04-12 122/74

� Almost all data can (naturally) be represented as tables
� Natural format to work with
� Easy to define structure of the data (meta data)
� This rigid structure allows very efficient extraction and manipulation of the
data

� Also gives many forms of security
� The most used type of database

12 / 35



Database schema

So
� the table’s columns describe the shape and form of the data

� that is, it is metadata (i.e. data about the data)
� The collection of table names and column names and types are part of the
database schema

� A database can have multiple such database schemas, and each schema has
a name

� Schemas are used to group related tables together (e.g. one schema for
tables related to patients, one schema for tables related to hospitals, etc.)

13 / 35



Database schema

So
� the table’s columns describe the shape and form of the data
� that is, it is metadata (i.e. data about the data)

� The collection of table names and column names and types are part of the
database schema

� A database can have multiple such database schemas, and each schema has
a name

� Schemas are used to group related tables together (e.g. one schema for
tables related to patients, one schema for tables related to hospitals, etc.)

13 / 35



Database schema

So
� the table’s columns describe the shape and form of the data
� that is, it is metadata (i.e. data about the data)
� The collection of table names and column names and types are part of the
database schema

� A database can have multiple such database schemas, and each schema has
a name

� Schemas are used to group related tables together (e.g. one schema for
tables related to patients, one schema for tables related to hospitals, etc.)

13 / 35



Database schema

So
� the table’s columns describe the shape and form of the data
� that is, it is metadata (i.e. data about the data)
� The collection of table names and column names and types are part of the
database schema

� A database can have multiple such database schemas, and each schema has
a name

� Schemas are used to group related tables together (e.g. one schema for
tables related to patients, one schema for tables related to hospitals, etc.)

13 / 35



Database schema

So
� the table’s columns describe the shape and form of the data
� that is, it is metadata (i.e. data about the data)
� The collection of table names and column names and types are part of the
database schema

� A database can have multiple such database schemas, and each schema has
a name

� Schemas are used to group related tables together (e.g. one schema for
tables related to patients, one schema for tables related to hospitals, etc.)

13 / 35



Example Database

Employees
EmployeeID Name Startdate
0 Peter Svensen 01-03-1999
1 Kari Smith 11-04-1977
2 Petrine Lye 07-01-2002
...

...
...

Students
StudentID Name Level
0 Ove Persson Bachelor
1 Ingrid Olava Master
2 Marge Smith Bachelor
...

...
...

Courses
CourseID Name Level
0 Analytics Master
1 Maths101 Bachelor
...

...
...

Employees
EmployeeID Name Startdate
0 Stine Grønn 10-13-1992
1 Per Jacob 08-03-2011
2 Ine Ulli 02-01-1998
...

...
...

Students
StudentID Name
0 Stine Grønn
1 Per Jacob
2 Ine Ulli
...

...

Organisations
OrgID Name NrMembers
0 Studentforeningen 1287
1 FUI 74
...

...
...

BI UIO
Academia

Database nameSchema names

Tables

14 / 35



Example Database

Employees
EmployeeID Name Startdate
0 Peter Svensen 01-03-1999
1 Kari Smith 11-04-1977
2 Petrine Lye 07-01-2002
...

...
...

Students
StudentID Name Level
0 Ove Persson Bachelor
1 Ingrid Olava Master
2 Marge Smith Bachelor
...

...
...

Courses
CourseID Name Level
0 Analytics Master
1 Maths101 Bachelor
...

...
...

Employees
EmployeeID Name Startdate
0 Stine Grønn 10-13-1992
1 Per Jacob 08-03-2011
2 Ine Ulli 02-01-1998
...

...
...

Students
StudentID Name
0 Stine Grønn
1 Per Jacob
2 Ine Ulli
...

...

Organisations
OrgID Name NrMembers
0 Studentforeningen 1287
1 FUI 74
...

...
...

BI UIO
AcademiaDatabase name

Schema names

Tables

14 / 35



Example Database

Employees
EmployeeID Name Startdate
0 Peter Svensen 01-03-1999
1 Kari Smith 11-04-1977
2 Petrine Lye 07-01-2002
...

...
...

Students
StudentID Name Level
0 Ove Persson Bachelor
1 Ingrid Olava Master
2 Marge Smith Bachelor
...

...
...

Courses
CourseID Name Level
0 Analytics Master
1 Maths101 Bachelor
...

...
...

Employees
EmployeeID Name Startdate
0 Stine Grønn 10-13-1992
1 Per Jacob 08-03-2011
2 Ine Ulli 02-01-1998
...

...
...

Students
StudentID Name
0 Stine Grønn
1 Per Jacob
2 Ine Ulli
...

...

Organisations
OrgID Name NrMembers
0 Studentforeningen 1287
1 FUI 74
...

...
...

BI UIO
AcademiaDatabase nameSchema names

Tables

14 / 35



Example Database

Employees
EmployeeID Name Startdate
0 Peter Svensen 01-03-1999
1 Kari Smith 11-04-1977
2 Petrine Lye 07-01-2002
...

...
...

Students
StudentID Name Level
0 Ove Persson Bachelor
1 Ingrid Olava Master
2 Marge Smith Bachelor
...

...
...

Courses
CourseID Name Level
0 Analytics Master
1 Maths101 Bachelor
...

...
...

Employees
EmployeeID Name Startdate
0 Stine Grønn 10-13-1992
1 Per Jacob 08-03-2011
2 Ine Ulli 02-01-1998
...

...
...

Students
StudentID Name
0 Stine Grønn
1 Per Jacob
2 Ine Ulli
...

...

Organisations
OrgID Name NrMembers
0 Studentforeningen 1287
1 FUI 74
...

...
...

BI UIO
AcademiaDatabase nameSchema names

Tables

14 / 35



Relational databases = Spreadsheets?

So, are relational databases just spreadsheets?

No, relational databases has:
� a rigid structure
� query languages for extraction and manipulation of data
� easy access from programming languages (like Python)
� systems for security and control of who has access to the data
� systems that secure the integrity of the data
� support for much larger volumes of data and much more complex structure

15 / 35



Relational databases = Spreadsheets?

So, are relational databases just spreadsheets?

No, relational databases has:

� a rigid structure
� query languages for extraction and manipulation of data
� easy access from programming languages (like Python)
� systems for security and control of who has access to the data
� systems that secure the integrity of the data
� support for much larger volumes of data and much more complex structure

15 / 35



Relational databases = Spreadsheets?

So, are relational databases just spreadsheets?

No, relational databases has:
� a rigid structure

� query languages for extraction and manipulation of data
� easy access from programming languages (like Python)
� systems for security and control of who has access to the data
� systems that secure the integrity of the data
� support for much larger volumes of data and much more complex structure

15 / 35



Relational databases = Spreadsheets?

So, are relational databases just spreadsheets?

No, relational databases has:
� a rigid structure
� query languages for extraction and manipulation of data

� easy access from programming languages (like Python)
� systems for security and control of who has access to the data
� systems that secure the integrity of the data
� support for much larger volumes of data and much more complex structure

15 / 35



Relational databases = Spreadsheets?

So, are relational databases just spreadsheets?

No, relational databases has:
� a rigid structure
� query languages for extraction and manipulation of data
� easy access from programming languages (like Python)

� systems for security and control of who has access to the data
� systems that secure the integrity of the data
� support for much larger volumes of data and much more complex structure

15 / 35



Relational databases = Spreadsheets?

So, are relational databases just spreadsheets?

No, relational databases has:
� a rigid structure
� query languages for extraction and manipulation of data
� easy access from programming languages (like Python)
� systems for security and control of who has access to the data

� systems that secure the integrity of the data
� support for much larger volumes of data and much more complex structure

15 / 35



Relational databases = Spreadsheets?

So, are relational databases just spreadsheets?

No, relational databases has:
� a rigid structure
� query languages for extraction and manipulation of data
� easy access from programming languages (like Python)
� systems for security and control of who has access to the data
� systems that secure the integrity of the data

� support for much larger volumes of data and much more complex structure

15 / 35



Relational databases = Spreadsheets?

So, are relational databases just spreadsheets?

No, relational databases has:
� a rigid structure
� query languages for extraction and manipulation of data
� easy access from programming languages (like Python)
� systems for security and control of who has access to the data
� systems that secure the integrity of the data
� support for much larger volumes of data and much more complex structure

15 / 35



Database systems

� A database is really just a collection of data (not a system/program)

� A database management system (DBMS) is
a system that let users define, create, maintain and control access to data.

� A relational database manegement system (RDBMS) is
a database management system over relational databases.

� Often use the word “database” for both data, program, and the combaintion of
these

16 / 35



Database systems

� A database is really just a collection of data (not a system/program)
� A database management system (DBMS) is

a system that let users define, create, maintain and control access to data.

� A relational database manegement system (RDBMS) is
a database management system over relational databases.

� Often use the word “database” for both data, program, and the combaintion of
these

16 / 35



Database systems

� A database is really just a collection of data (not a system/program)
� A database management system (DBMS) is

a system that let users define, create, maintain and control access to data.

� A relational database manegement system (RDBMS) is
a database management system over relational databases.

� Often use the word “database” for both data, program, and the combaintion of
these

16 / 35



Database systems

� A database is really just a collection of data (not a system/program)
� A database management system (DBMS) is

a system that let users define, create, maintain and control access to data.

� A relational database manegement system (RDBMS) is
a database management system over relational databases.

� Often use the word “database” for both data, program, and the combaintion of
these

16 / 35



Schema violations

The database system will not allow you to insert values violating the database
schema.

Thus, the following is not allowed (errors marked in red):

Patient
PatientID (int) Name (text) Birthdate (date) BloodPressure (text)
0 Anna Consuma 1978-10-09 123/75
1 Peter Young 2009-03-01 150/81
2 2 1986-06-14 101/53
3 Sam Penny long ago 127/82
four John Mill 1989-11-16 147/92
5 6 Yvonne Potter 1971-04-12 122/74

17 / 35



Database design

� So relational databases store data as tables with a rigid structure
� But how should we represent information as data in tables?
� The structure of the data, i.e. which tables and columns we make, affects how
easy it is to use and maintain the data

� Need to have a good database design

18 / 35



Complex database schemas

19 / 35



Database design: Blood pressure

Assume we want to keep track of pasient’s blood pressure over time. We could
then make a table looking like this:

Patient
PatientID Name Birthdate Telephone BloodPressure TestTime
0 Anna Consuma 1978-10-09 12345678 123/75 2022-09-23
1 Peter Young 2009-03-01 21679921 150/81 2022-09-20
2 Carla Smith 1986-06-14 98765432 101/53 2022-08-07
3 Sam Penny 1961-01-09 91827364 127/82 2022-09-28
4 John Mill 1989-11-16 56473829 147/92 2022-09-13
5 Yvonne Potter 1971-04-12 91298833 122/74 2022-09-04

20 / 35



Blood pressure: More tests

Patient
PatientID Name Birthdate Telephone BloodPressure TestTime
0 Anna Consuma 1978-10-09 12345678 123/75 2022-09-23
1 Peter Young 2009-03-01 21679921 150/81 2022-09-20
2 Carla Smith 1986-06-14 98765432 101/53 2022-08-07
3 Sam Penny 1961-01-09 91827364 127/82 2022-09-28
4 John Mill 1989-11-16 56473829 147/92 2022-09-13
5 Yvonne Potter 1971-04-12 91298833 122/74 2022-09-04
0 Anna Consuma 1978-10-09 12345678 125/73 2022-10-01
1 Peter Young 2009-03-01 21679921 143/80 2022-10-03
4 John Mill 1989-11-16 56473829 146/92 2022-10-03
5 Yvonne Potter 1971-04-12 91298833 124/75 2022-10-04
0 Anna Consuma 1978-10-09 12345678 126/74 2022-10-05
3 Sam Penny 1961-01-09 91827364 126/80 2022-10-08
1 Peter Young 2009-03-01 21679921 141/79 2022-10-11

21 / 35



Problems with bad design

� Difficult to maintain data
� If a patient changes name or phone number, need to change multiple rows

� Difficult to add data
� Cannot insert new patient without also inserting blood pressure and testtime

� Duplicate data takes up more disk space and is slower to work with

22 / 35



Blood pressure: (Failed) attempt at better structure

Patient
PatientID Name Birthdate Telephone BloodPressure
0 Anna Consuma 1978-10-09 12345678 (123/75, 2022-09-23),(125/73, 2022-10-01),...
1 Peter Young 2009-03-01 21679921 (150/81, 2022-09-20),(143/80, 2022-10-03),...
2 Carla Smith 1986-06-14 98765432 (101/53, 2022-08-07)
3 Sam Penny 1961-01-09 91827364 (127/82, 2022-09-28),(126/80, 2022-10-08)
4 John Mill 1989-11-16 56473829 (147/92, 2022-09-13),(146/92, 2022-10-03)
5 Yvonne Potter 1971-04-12 91298833 (122/74, 2022-09-04),(124/75, 2022-10-04)

� Blood pressure values now contained deep inside a single value
� Need to ”parse”/”unwrap” this complex value to get blood pressure values
� Makes working with these values very complex (both for humans and
computer)

� Generally: Columns should have simple values!

23 / 35



Blood pressure: (Failed) attempt at better structure

Patient
PatientID Name Birthdate Telephone BloodPressure
0 Anna Consuma 1978-10-09 12345678 (123/75, 2022-09-23),(125/73, 2022-10-01),...
1 Peter Young 2009-03-01 21679921 (150/81, 2022-09-20),(143/80, 2022-10-03),...
2 Carla Smith 1986-06-14 98765432 (101/53, 2022-08-07)
3 Sam Penny 1961-01-09 91827364 (127/82, 2022-09-28),(126/80, 2022-10-08)
4 John Mill 1989-11-16 56473829 (147/92, 2022-09-13),(146/92, 2022-10-03)
5 Yvonne Potter 1971-04-12 91298833 (122/74, 2022-09-04),(124/75, 2022-10-04)

� Blood pressure values now contained deep inside a single value

� Need to ”parse”/”unwrap” this complex value to get blood pressure values
� Makes working with these values very complex (both for humans and
computer)

� Generally: Columns should have simple values!

23 / 35



Blood pressure: (Failed) attempt at better structure

Patient
PatientID Name Birthdate Telephone BloodPressure
0 Anna Consuma 1978-10-09 12345678 (123/75, 2022-09-23),(125/73, 2022-10-01),...
1 Peter Young 2009-03-01 21679921 (150/81, 2022-09-20),(143/80, 2022-10-03),...
2 Carla Smith 1986-06-14 98765432 (101/53, 2022-08-07)
3 Sam Penny 1961-01-09 91827364 (127/82, 2022-09-28),(126/80, 2022-10-08)
4 John Mill 1989-11-16 56473829 (147/92, 2022-09-13),(146/92, 2022-10-03)
5 Yvonne Potter 1971-04-12 91298833 (122/74, 2022-09-04),(124/75, 2022-10-04)

� Blood pressure values now contained deep inside a single value
� Need to ”parse”/”unwrap” this complex value to get blood pressure values

� Makes working with these values very complex (both for humans and
computer)

� Generally: Columns should have simple values!

23 / 35



Blood pressure: (Failed) attempt at better structure

Patient
PatientID Name Birthdate Telephone BloodPressure
0 Anna Consuma 1978-10-09 12345678 (123/75, 2022-09-23),(125/73, 2022-10-01),...
1 Peter Young 2009-03-01 21679921 (150/81, 2022-09-20),(143/80, 2022-10-03),...
2 Carla Smith 1986-06-14 98765432 (101/53, 2022-08-07)
3 Sam Penny 1961-01-09 91827364 (127/82, 2022-09-28),(126/80, 2022-10-08)
4 John Mill 1989-11-16 56473829 (147/92, 2022-09-13),(146/92, 2022-10-03)
5 Yvonne Potter 1971-04-12 91298833 (122/74, 2022-09-04),(124/75, 2022-10-04)

� Blood pressure values now contained deep inside a single value
� Need to ”parse”/”unwrap” this complex value to get blood pressure values
� Makes working with these values very complex (both for humans and
computer)

� Generally: Columns should have simple values!

23 / 35



Blood pressure: (Failed) attempt at better structure

Patient
PatientID Name Birthdate Telephone BloodPressure
0 Anna Consuma 1978-10-09 12345678 (123/75, 2022-09-23),(125/73, 2022-10-01),...
1 Peter Young 2009-03-01 21679921 (150/81, 2022-09-20),(143/80, 2022-10-03),...
2 Carla Smith 1986-06-14 98765432 (101/53, 2022-08-07)
3 Sam Penny 1961-01-09 91827364 (127/82, 2022-09-28),(126/80, 2022-10-08)
4 John Mill 1989-11-16 56473829 (147/92, 2022-09-13),(146/92, 2022-10-03)
5 Yvonne Potter 1971-04-12 91298833 (122/74, 2022-09-04),(124/75, 2022-10-04)

� Blood pressure values now contained deep inside a single value
� Need to ”parse”/”unwrap” this complex value to get blood pressure values
� Makes working with these values very complex (both for humans and
computer)

� Generally: Columns should have simple values!

23 / 35



Blood pressure: Better structure

Patient
PatientID Name Birthdate Telephone
0 Anna Consuma 1978-10-09 12345678
1 Peter Young 2009-03-01 21679921
2 Carla Smith 1986-06-14 98765432
3 Sam Penny 1961-01-09 91827364
4 John Mill 1989-11-16 56473829
5 Yvonne Potter 1971-04-12 91298833

BloodPressure
PatientID BloodPressure TestTime
0 123/75 2022-09-23
1 150/81 2022-09-20
2 101/53 2022-08-07
3 127/82 2022-09-28
4 147/92 2022-09-13
5 122/74 2022-09-04
0 125/73 2022-10-01
1 143/80 2022-10-03
4 146/92 2022-10-03
5 124/75 2022-10-04
0 126/74 2022-10-05
3 126/80 2022-10-08
1 141/79 2022-10-11

24 / 35



Students and courses

Want to store information about students, courses and grades:

� For students: Username, name, surename, address...
� For courses: Coursecode, title, description, credits...
� Grades: Which student got which grade in which course

Naive solution: Everything in one table!

25 / 35



Students and courses

Want to store information about students, courses and grades:

� For students: Username, name, surename, address...
� For courses: Coursecode, title, description, credits...
� Grades: Which student got which grade in which course

Naive solution: Everything in one table!

25 / 35



Students and courses

Want to store information about students, courses and grades:

� For students: Username, name, surename, address...
� For courses: Coursecode, title, description, credits...
� Grades: Which student got which grade in which course

Naive solution: Everything in one table!

25 / 35



Students and courses: Schema

StudentCourse

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Desc2... 5 C

26 / 35



Insert and delete

StudentCourse

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Desc2... 5 C

Data duplication makes it more difficult to insert and update data:

� Need to insert all the info about student and course, even if only want to insert
a new grade

� Impossible to insert a new student, without also inserting a course
� Updates must be performed consistently and update all duplicates

27 / 35



Insert and delete

StudentCourse

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Desc2... 5 C

Data duplication makes it more difficult to insert and update data:
� Need to insert all the info about student and course, even if only want to insert
a new grade

� Impossible to insert a new student, without also inserting a course
� Updates must be performed consistently and update all duplicates

27 / 35



Insert and delete

StudentCourse

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Desc2... 5 C

Data duplication makes it more difficult to insert and update data:
� Need to insert all the info about student and course, even if only want to insert
a new grade

� Impossible to insert a new student, without also inserting a course

� Updates must be performed consistently and update all duplicates

27 / 35



Insert and delete

StudentCourse

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Desc2... 5 C

IN9999 Quantum Beskr3 10

Data duplication makes it more difficult to insert and update data:
� Need to insert all the info about student and course, even if only want to insert
a new grade

� Impossible to insert a new student, without also inserting a course

� Updates must be performed consistently and update all duplicates

27 / 35



Insert and delete

StudentCourse

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Desc2... 5 C

IN9999 Quantum Beskr3 10
abcdef Aber C. Deflan Addr4

Data duplication makes it more difficult to insert and update data:
� Need to insert all the info about student and course, even if only want to insert
a new grade

� Impossible to insert a new student, without also inserting a course

� Updates must be performed consistently and update all duplicates

27 / 35



Insert and delete

StudentCourse

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Desc2... 5 C

IN9999 Quantum Beskr3 10
abcdef Aber C. Deflan Addr4

Data duplication makes it more difficult to insert and update data:
� Need to insert all the info about student and course, even if only want to insert
a new grade

� Impossible to insert a new student, without also inserting a course
� Updates must be performed consistently and update all duplicates

27 / 35



Anomalier: Sletting

StudentCourse

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Beskr2... 5 C

� Deleting a course may delete a student

� Deleting a student may delete a course
� Difficult to fix this with this structure

28 / 35



Anomalier: Sletting

StudentCourse

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Beskr2... 5 C

� Deleting a course may delete a student

� Deleting a student may delete a course
� Difficult to fix this with this structure

28 / 35



Anomalier: Sletting

StudentCourse

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Beskr2... 5 C

� Deleting a course may delete a student
� Deleting a student may delete a course

� Difficult to fix this with this structure

28 / 35



Anomalier: Sletting

StudentCourse

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Beskr2... 5 C

� Deleting a course may delete a student
� Deleting a student may delete a course

� Difficult to fix this with this structure

28 / 35



Anomalier: Sletting

StudentCourse

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Beskr2... 5 C

� Deleting a course may delete a student
� Deleting a student may delete a course
� Difficult to fix this with this structure

28 / 35



Fix the structure

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Beskr2... 5 C

Student
Username Name Surename Address
evgenit Evgenij Thorstensen Addr1
peternl Petter Nilsen Addr2
leifhka Leif H. Karlsen Addr3

Course
Coursecode Title Desc. Credits
IN2090 Databaser Beskr... 10
IN2080 Beregn... Descr... 10
IN3110 Program... Beskr2... 5

Grade
Username Coursecode Grade
evgenit IN2090 B
peternl IN2090 A
evgenit IN2080 B
leifhka IN2090 B
leifhka IN3110 C

� Note: Same columns and same values!
� Good structure: Separate table for students, courses and grades

29 / 35



Fix the structure

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Beskr2... 5 C

Student
Username Name Surename Address
evgenit Evgenij Thorstensen Addr1
peternl Petter Nilsen Addr2
leifhka Leif H. Karlsen Addr3

Course
Coursecode Title Desc. Credits
IN2090 Databaser Beskr... 10
IN2080 Beregn... Descr... 10
IN3110 Program... Beskr2... 5

Grade
Username Coursecode Grade
evgenit IN2090 B
peternl IN2090 A
evgenit IN2080 B
leifhka IN2090 B
leifhka IN3110 C

� Note: Same columns and same values!
� Good structure: Separate table for students, courses and grades

29 / 35



Fix the structure

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Beskr2... 5 C

Student
Username Name Surename Address
evgenit Evgenij Thorstensen Addr1
peternl Petter Nilsen Addr2
leifhka Leif H. Karlsen Addr3

Course
Coursecode Title Desc. Credits
IN2090 Databaser Beskr... 10
IN2080 Beregn... Descr... 10
IN3110 Program... Beskr2... 5

Grade
Username Coursecode Grade
evgenit IN2090 B
peternl IN2090 A
evgenit IN2080 B
leifhka IN2090 B
leifhka IN3110 C

� Note: Same columns and same values!
� Good structure: Separate table for students, courses and grades

29 / 35



Fix the structure

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Beskr2... 5 C

Student
Username Name Surename Address
evgenit Evgenij Thorstensen Addr1
peternl Petter Nilsen Addr2
leifhka Leif H. Karlsen Addr3

Course
Coursecode Title Desc. Credits
IN2090 Databaser Beskr... 10
IN2080 Beregn... Descr... 10
IN3110 Program... Beskr2... 5

Grade
Username Coursecode Grade
evgenit IN2090 B
peternl IN2090 A
evgenit IN2080 B
leifhka IN2090 B
leifhka IN3110 C

� Note: Same columns and same values!
� Good structure: Separate table for students, courses and grades

29 / 35



Fix the structure

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Beskr2... 5 C

Student
Username Name Surename Address
evgenit Evgenij Thorstensen Addr1
peternl Petter Nilsen Addr2
leifhka Leif H. Karlsen Addr3

Course
Coursecode Title Desc. Credits
IN2090 Databaser Beskr... 10
IN2080 Beregn... Descr... 10
IN3110 Program... Beskr2... 5

Grade
Username Coursecode Grade
evgenit IN2090 B
peternl IN2090 A
evgenit IN2080 B
leifhka IN2090 B
leifhka IN3110 C

� Note: Same columns and same values!
� Good structure: Separate table for students, courses and grades

29 / 35



Fix the structure

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Beskr2... 5 C

Student
Username Name Surename Address
evgenit Evgenij Thorstensen Addr1
peternl Petter Nilsen Addr2
leifhka Leif H. Karlsen Addr3

Course
Coursecode Title Desc. Credits
IN2090 Databaser Beskr... 10
IN2080 Beregn... Descr... 10
IN3110 Program... Beskr2... 5

Grade
Username Coursecode Grade
evgenit IN2090 B
peternl IN2090 A
evgenit IN2080 B
leifhka IN2090 B
leifhka IN3110 C

� Note: Same columns and same values!
� Good structure: Separate table for students, courses and grades

29 / 35



Fix the structure

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Beskr2... 5 C

Student
Username Name Surename Address
evgenit Evgenij Thorstensen Addr1
peternl Petter Nilsen Addr2
leifhka Leif H. Karlsen Addr3

Course
Coursecode Title Desc. Credits
IN2090 Databaser Beskr... 10
IN2080 Beregn... Descr... 10
IN3110 Program... Beskr2... 5

Grade
Username Coursecode Grade
evgenit IN2090 B
peternl IN2090 A
evgenit IN2080 B
leifhka IN2090 B
leifhka IN3110 C

� Note: Same columns and same values!
� Good structure: Separate table for students, courses and grades

29 / 35



Fix the structure

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Beskr2... 5 C

Student
Username Name Surename Address
evgenit Evgenij Thorstensen Addr1
peternl Petter Nilsen Addr2
leifhka Leif H. Karlsen Addr3

Course
Coursecode Title Desc. Credits
IN2090 Databaser Beskr... 10
IN2080 Beregn... Descr... 10
IN3110 Program... Beskr2... 5

Grade
Username Coursecode Grade
evgenit IN2090 B
peternl IN2090 A
evgenit IN2080 B
leifhka IN2090 B
leifhka IN3110 C

� Note: Same columns and same values!
� Good structure: Separate table for students, courses and grades

29 / 35



Fix the structure

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Beskr2... 5 C

Student
Username Name Surename Address
evgenit Evgenij Thorstensen Addr1
peternl Petter Nilsen Addr2
leifhka Leif H. Karlsen Addr3

Course
Coursecode Title Desc. Credits
IN2090 Databaser Beskr... 10
IN2080 Beregn... Descr... 10
IN3110 Program... Beskr2... 5

Grade
Username Coursecode Grade
evgenit IN2090 B
peternl IN2090 A
evgenit IN2080 B
leifhka IN2090 B
leifhka IN3110 C

� Note: Same columns and same values!
� Good structure: Separate table for students, courses and grades

29 / 35



Fix the structure

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Beskr2... 5 C

Student
Username Name Surename Address
evgenit Evgenij Thorstensen Addr1
peternl Petter Nilsen Addr2
leifhka Leif H. Karlsen Addr3

Course
Coursecode Title Desc. Credits
IN2090 Databaser Beskr... 10
IN2080 Beregn... Descr... 10
IN3110 Program... Beskr2... 5

Grade
Username Coursecode Grade
evgenit IN2090 B
peternl IN2090 A
evgenit IN2080 B
leifhka IN2090 B
leifhka IN3110 C

� Note: Same columns and same values!
� Good structure: Separate table for students, courses and grades

29 / 35



Fix the structure

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Beskr2... 5 C

Student
Username Name Surename Address
evgenit Evgenij Thorstensen Addr1
peternl Petter Nilsen Addr2
leifhka Leif H. Karlsen Addr3

Course
Coursecode Title Desc. Credits
IN2090 Databaser Beskr... 10
IN2080 Beregn... Descr... 10
IN3110 Program... Beskr2... 5

Grade
Username Coursecode Grade
evgenit IN2090 B
peternl IN2090 A
evgenit IN2080 B
leifhka IN2090 B
leifhka IN3110 C

� Note: Same columns and same values!

� Good structure: Separate table for students, courses and grades

29 / 35



Fix the structure

Username Name Surename Address Coursecode Title Desc. Credits Grade
evgenit Evgenij Thorstensen Addr1 IN2090 Databaser Beskr... 10 B
peternl Petter Nilsen Addr2 IN2090 Databaser Beskr... 10 A
evgenit Evgenij Thorstensen Addr1 IN2080 Beregn... Descr... 10 A
leifhka Leif H. Karlsen Addr3 IN2090 Databaser Beskr... 10 B
leifhka Leif H. Karlsen Addr3 IN3110 Program... Beskr2... 5 C

Student
Username Name Surename Address
evgenit Evgenij Thorstensen Addr1
peternl Petter Nilsen Addr2
leifhka Leif H. Karlsen Addr3

Course
Coursecode Title Desc. Credits
IN2090 Databaser Beskr... 10
IN2080 Beregn... Descr... 10
IN3110 Program... Beskr2... 5

Grade
Username Coursecode Grade
evgenit IN2090 B
peternl IN2090 A
evgenit IN2080 B
leifhka IN2090 B
leifhka IN3110 C

� Note: Same columns and same values!
� Good structure: Separate table for students, courses and grades

29 / 35



Design Principles

Rules of thumb for database design:
� One table per type of thing (patient, student, course)

� One column per attribute/property (name, telephone, title, etc.)

� One table per relationship (grade)
� One table per multi-valued property (blood pressure)

30 / 35



Design Principles

Rules of thumb for database design:
� One table per type of thing (patient, student, course)

� One column per attribute/property (name, telephone, title, etc.)

� One table per relationship (grade)
� One table per multi-valued property (blood pressure)

30 / 35



Design Principles

Rules of thumb for database design:
� One table per type of thing (patient, student, course)

� One column per attribute/property (name, telephone, title, etc.)

� One table per relationship (grade)

� One table per multi-valued property (blood pressure)

30 / 35



Design Principles

Rules of thumb for database design:
� One table per type of thing (patient, student, course)

� One column per attribute/property (name, telephone, title, etc.)

� One table per relationship (grade)
� One table per multi-valued property (blood pressure)

30 / 35



Not only one good structure!

� There can be many good ways of structuring the same information into tables.
� The following two tables on life expectency in Norway contain the same
information without data duplication, but is structured differently:

Year Men Women
2017 80.9 84.3
2018 81.0 84.5
2019 81.2 84.7
2020 81.5 84.9

Gender Year LE
men 2017 80.9
men 2018 81.0
men 2019 81.2
men 2020 81.5
women 2017 84.3
women 2018 84.5
women 2019 84.7
women 2020 84.9

31 / 35



Keys: Managing identity

� To describe something, we need to have a unique way of referencing it

� E.g. if I say ”Peter has blood pressure 120/80” and there are two patients with
name ”Peter”, we do not know which ”Peter” we talk about

� Luckily, most things in the real world have this

� People: Personnummer (combination of fødselsnummer and birthdate)
� Buildings: Address
� Cars: License plates
� Products: Barcode
� Students: Username
� ...

� In a database, every type of thing (students, courses, patients) needs to have
a column (or combination of columns) that is unique for that type of thing
(Brukernavn, Coursecode, PatientID)

� These columns are called keys or primary keys

32 / 35



Keys: Managing identity

� To describe something, we need to have a unique way of referencing it
� E.g. if I say ”Peter has blood pressure 120/80” and there are two patients with
name ”Peter”, we do not know which ”Peter” we talk about

� Luckily, most things in the real world have this

� People: Personnummer (combination of fødselsnummer and birthdate)
� Buildings: Address
� Cars: License plates
� Products: Barcode
� Students: Username
� ...

� In a database, every type of thing (students, courses, patients) needs to have
a column (or combination of columns) that is unique for that type of thing
(Brukernavn, Coursecode, PatientID)

� These columns are called keys or primary keys

32 / 35



Keys: Managing identity

� To describe something, we need to have a unique way of referencing it
� E.g. if I say ”Peter has blood pressure 120/80” and there are two patients with
name ”Peter”, we do not know which ”Peter” we talk about

� Luckily, most things in the real world have this

� People: Personnummer (combination of fødselsnummer and birthdate)
� Buildings: Address
� Cars: License plates
� Products: Barcode
� Students: Username
� ...

� In a database, every type of thing (students, courses, patients) needs to have
a column (or combination of columns) that is unique for that type of thing
(Brukernavn, Coursecode, PatientID)

� These columns are called keys or primary keys

32 / 35



Keys: Managing identity

� To describe something, we need to have a unique way of referencing it
� E.g. if I say ”Peter has blood pressure 120/80” and there are two patients with
name ”Peter”, we do not know which ”Peter” we talk about

� Luckily, most things in the real world have this
� People: Personnummer (combination of fødselsnummer and birthdate)

� Buildings: Address
� Cars: License plates
� Products: Barcode
� Students: Username
� ...

� In a database, every type of thing (students, courses, patients) needs to have
a column (or combination of columns) that is unique for that type of thing
(Brukernavn, Coursecode, PatientID)

� These columns are called keys or primary keys

32 / 35



Keys: Managing identity

� To describe something, we need to have a unique way of referencing it
� E.g. if I say ”Peter has blood pressure 120/80” and there are two patients with
name ”Peter”, we do not know which ”Peter” we talk about

� Luckily, most things in the real world have this
� People: Personnummer (combination of fødselsnummer and birthdate)
� Buildings: Address

� Cars: License plates
� Products: Barcode
� Students: Username
� ...

� In a database, every type of thing (students, courses, patients) needs to have
a column (or combination of columns) that is unique for that type of thing
(Brukernavn, Coursecode, PatientID)

� These columns are called keys or primary keys

32 / 35



Keys: Managing identity

� To describe something, we need to have a unique way of referencing it
� E.g. if I say ”Peter has blood pressure 120/80” and there are two patients with
name ”Peter”, we do not know which ”Peter” we talk about

� Luckily, most things in the real world have this
� People: Personnummer (combination of fødselsnummer and birthdate)
� Buildings: Address
� Cars: License plates

� Products: Barcode
� Students: Username
� ...

� In a database, every type of thing (students, courses, patients) needs to have
a column (or combination of columns) that is unique for that type of thing
(Brukernavn, Coursecode, PatientID)

� These columns are called keys or primary keys

32 / 35



Keys: Managing identity

� To describe something, we need to have a unique way of referencing it
� E.g. if I say ”Peter has blood pressure 120/80” and there are two patients with
name ”Peter”, we do not know which ”Peter” we talk about

� Luckily, most things in the real world have this
� People: Personnummer (combination of fødselsnummer and birthdate)
� Buildings: Address
� Cars: License plates
� Products: Barcode

� Students: Username
� ...

� In a database, every type of thing (students, courses, patients) needs to have
a column (or combination of columns) that is unique for that type of thing
(Brukernavn, Coursecode, PatientID)

� These columns are called keys or primary keys

32 / 35



Keys: Managing identity

� To describe something, we need to have a unique way of referencing it
� E.g. if I say ”Peter has blood pressure 120/80” and there are two patients with
name ”Peter”, we do not know which ”Peter” we talk about

� Luckily, most things in the real world have this
� People: Personnummer (combination of fødselsnummer and birthdate)
� Buildings: Address
� Cars: License plates
� Products: Barcode
� Students: Username

� ...

� In a database, every type of thing (students, courses, patients) needs to have
a column (or combination of columns) that is unique for that type of thing
(Brukernavn, Coursecode, PatientID)

� These columns are called keys or primary keys

32 / 35



Keys: Managing identity

� To describe something, we need to have a unique way of referencing it
� E.g. if I say ”Peter has blood pressure 120/80” and there are two patients with
name ”Peter”, we do not know which ”Peter” we talk about

� Luckily, most things in the real world have this
� People: Personnummer (combination of fødselsnummer and birthdate)
� Buildings: Address
� Cars: License plates
� Products: Barcode
� Students: Username
� ...

� In a database, every type of thing (students, courses, patients) needs to have
a column (or combination of columns) that is unique for that type of thing
(Brukernavn, Coursecode, PatientID)

� These columns are called keys or primary keys

32 / 35



Keys: Managing identity

� To describe something, we need to have a unique way of referencing it
� E.g. if I say ”Peter has blood pressure 120/80” and there are two patients with
name ”Peter”, we do not know which ”Peter” we talk about

� Luckily, most things in the real world have this
� People: Personnummer (combination of fødselsnummer and birthdate)
� Buildings: Address
� Cars: License plates
� Products: Barcode
� Students: Username
� ...

� In a database, every type of thing (students, courses, patients) needs to have
a column (or combination of columns) that is unique for that type of thing
(Brukernavn, Coursecode, PatientID)

� These columns are called keys or primary keys

32 / 35



Keys: Managing identity

� To describe something, we need to have a unique way of referencing it
� E.g. if I say ”Peter has blood pressure 120/80” and there are two patients with
name ”Peter”, we do not know which ”Peter” we talk about

� Luckily, most things in the real world have this
� People: Personnummer (combination of fødselsnummer and birthdate)
� Buildings: Address
� Cars: License plates
� Products: Barcode
� Students: Username
� ...

� In a database, every type of thing (students, courses, patients) needs to have
a column (or combination of columns) that is unique for that type of thing
(Brukernavn, Coursecode, PatientID)

� These columns are called keys or primary keys

32 / 35



Foreign keys

� When one table references another, we do this via such keys

� E.g. in BloodPressure we used PatientID to reference a patient and in Grade
we used Username to reference students and Coursecode to reference courses

� Such references are known as foreign keys

33 / 35



Foreign keys

� When one table references another, we do this via such keys
� E.g. in BloodPressure we used PatientID to reference a patient and in Grade
we used Username to reference students and Coursecode to reference courses

� Such references are known as foreign keys

33 / 35



Foreign keys

� When one table references another, we do this via such keys
� E.g. in BloodPressure we used PatientID to reference a patient and in Grade
we used Username to reference students and Coursecode to reference courses

� Such references are known as foreign keys

33 / 35



Example of common problem: Data integration and communication

� When organizations/companies merge, they need to merge their data

� Similarly when communicating data between organizations
� Data needs to be of the same format/same structure
� Values must denote the same thing
� Merging data into a common format/structure known as data integration

34 / 35



Example of common problem: Data integration and communication

� When organizations/companies merge, they need to merge their data
� Similarly when communicating data between organizations

� Data needs to be of the same format/same structure
� Values must denote the same thing
� Merging data into a common format/structure known as data integration

34 / 35



Example of common problem: Data integration and communication

� When organizations/companies merge, they need to merge their data
� Similarly when communicating data between organizations
� Data needs to be of the same format/same structure

� Values must denote the same thing
� Merging data into a common format/structure known as data integration

34 / 35



Example of common problem: Data integration and communication

� When organizations/companies merge, they need to merge their data
� Similarly when communicating data between organizations
� Data needs to be of the same format/same structure
� Values must denote the same thing

� Merging data into a common format/structure known as data integration

34 / 35



Example of common problem: Data integration and communication

� When organizations/companies merge, they need to merge their data
� Similarly when communicating data between organizations
� Data needs to be of the same format/same structure
� Values must denote the same thing
� Merging data into a common format/structure known as data integration

34 / 35



Example of common problem: Data integration and communication
� Data integration is a very difficult problem, as the different organizations
typically:

� Have large and complex database schemas
� Use different keys for the same type of things
� Use different structure for same type of information
� Have lots of applications and systems using their data the way it is stored
� Use different database management systems that are not compatible

� Standardization helps solving these problems

Year Men Women
2017 80.9 84.3
2018 81.0 84.5
2019 81.2 84.7
2020 81.5 84.9

Gender Year LE
men 2017 80.9
men 2018 81.0
men 2019 81.2
men 2020 81.5
women 2017 84.3
women 2018 84.5
women 2019 84.7
women 2020 84.9

35 / 35



Example of common problem: Data integration and communication
� Data integration is a very difficult problem, as the different organizations
typically:

� Have large and complex database schemas

� Use different keys for the same type of things
� Use different structure for same type of information
� Have lots of applications and systems using their data the way it is stored
� Use different database management systems that are not compatible

� Standardization helps solving these problems

Year Men Women
2017 80.9 84.3
2018 81.0 84.5
2019 81.2 84.7
2020 81.5 84.9

Gender Year LE
men 2017 80.9
men 2018 81.0
men 2019 81.2
men 2020 81.5
women 2017 84.3
women 2018 84.5
women 2019 84.7
women 2020 84.9

35 / 35



Example of common problem: Data integration and communication
� Data integration is a very difficult problem, as the different organizations
typically:

� Have large and complex database schemas
� Use different keys for the same type of things

� Use different structure for same type of information
� Have lots of applications and systems using their data the way it is stored
� Use different database management systems that are not compatible

� Standardization helps solving these problems

Year Men Women
2017 80.9 84.3
2018 81.0 84.5
2019 81.2 84.7
2020 81.5 84.9

Gender Year LE
men 2017 80.9
men 2018 81.0
men 2019 81.2
men 2020 81.5
women 2017 84.3
women 2018 84.5
women 2019 84.7
women 2020 84.9

35 / 35



Example of common problem: Data integration and communication
� Data integration is a very difficult problem, as the different organizations
typically:

� Have large and complex database schemas
� Use different keys for the same type of things
� Use different structure for same type of information

� Have lots of applications and systems using their data the way it is stored
� Use different database management systems that are not compatible

� Standardization helps solving these problems

Year Men Women
2017 80.9 84.3
2018 81.0 84.5
2019 81.2 84.7
2020 81.5 84.9

Gender Year LE
men 2017 80.9
men 2018 81.0
men 2019 81.2
men 2020 81.5
women 2017 84.3
women 2018 84.5
women 2019 84.7
women 2020 84.9

35 / 35



Example of common problem: Data integration and communication
� Data integration is a very difficult problem, as the different organizations
typically:

� Have large and complex database schemas
� Use different keys for the same type of things
� Use different structure for same type of information
� Have lots of applications and systems using their data the way it is stored

� Use different database management systems that are not compatible
� Standardization helps solving these problems

Year Men Women
2017 80.9 84.3
2018 81.0 84.5
2019 81.2 84.7
2020 81.5 84.9

Gender Year LE
men 2017 80.9
men 2018 81.0
men 2019 81.2
men 2020 81.5
women 2017 84.3
women 2018 84.5
women 2019 84.7
women 2020 84.9

35 / 35



Example of common problem: Data integration and communication
� Data integration is a very difficult problem, as the different organizations
typically:

� Have large and complex database schemas
� Use different keys for the same type of things
� Use different structure for same type of information
� Have lots of applications and systems using their data the way it is stored
� Use different database management systems that are not compatible

� Standardization helps solving these problems

Year Men Women
2017 80.9 84.3
2018 81.0 84.5
2019 81.2 84.7
2020 81.5 84.9

Gender Year LE
men 2017 80.9
men 2018 81.0
men 2019 81.2
men 2020 81.5
women 2017 84.3
women 2018 84.5
women 2019 84.7
women 2020 84.9

35 / 35



Example of common problem: Data integration and communication
� Data integration is a very difficult problem, as the different organizations
typically:

� Have large and complex database schemas
� Use different keys for the same type of things
� Use different structure for same type of information
� Have lots of applications and systems using their data the way it is stored
� Use different database management systems that are not compatible

� Standardization helps solving these problems

Year Men Women
2017 80.9 84.3
2018 81.0 84.5
2019 81.2 84.7
2020 81.5 84.9

Gender Year LE
men 2017 80.9
men 2018 81.0
men 2019 81.2
men 2020 81.5
women 2017 84.3
women 2018 84.5
women 2019 84.7
women 2020 84.9

35 / 35


