Introduction to Databases

Leif Harald Karlsen leifhka@ifi.uio.no

Universitetet i Oslo

12.10.22

Overview of this module

- 1. Today: Introduction to databases and the relational model
- 2. Next week: Basic SQL (answer queries)

Curriculum

- The curriculum of this module are the slides from the lectures
- the weekly exercises with solutions given on the semester page
- The mandatory assignment (will be published 19. october)
- The book SQL Queries For Mere Mortals should be used as supplement to the slides for more in-depth explanations, and more examples and exercises

Why use databases?

Why use databases?

```
patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]
```

Why use databases?

Why not just use e.g. Python lists?

```
patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]
```

Persistence of data

Why use databases?

```
patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]
```

- Persistence of data
 - Python's data (e.g. lists and variables) is stored in RAM (Random Access Memory)

Why use databases?

```
patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]
```

- Persistence of data
 - Python's data (e.g. lists and variables) is stored in RAM (Random Access Memory)
 - This memory is lost on shutdown/termination

Why use databases?

```
patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]
```

- Persistence of data
 - Python's data (e.g. lists and variables) is stored in RAM (Random Access Memory)
 - This memory is lost on shutdown/termination
 - We want data to still be there after shutdown/termination

Why use databases?

```
patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]
```

- Persistence of data
 - Python's data (e.g. lists and variables) is stored in RAM (Random Access Memory)
 - This memory is lost on shutdown/termination
 - We want data to still be there after shutdown/termination
- Scalability of storage size

Why use databases?

```
patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]
```

- Persistence of data
 - Python's data (e.g. lists and variables) is stored in RAM (Random Access Memory)
 - This memory is lost on shutdown/termination
 - We want data to still be there after shutdown/termination
- Scalability of storage size
 - 1 GB of hard disk space much cheaper than 1 GB of RAM

Why use databases?

```
patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]
```

- Persistence of data
 - Python's data (e.g. lists and variables) is stored in RAM (Random Access Memory)
 - This memory is lost on shutdown/termination
 - We want data to still be there after shutdown/termination
- Scalability of storage size
 - 1 GB of hard disk space much cheaper than 1 GB of RAM
- Separate data from code

Why use databases?

```
patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]
```

- Persistence of data
 - Python's data (e.g. lists and variables) is stored in RAM (Random Access Memory)
 - This memory is lost on shutdown/termination
 - We want data to still be there after shutdown/termination
- Scalability of storage size
 - 1 GB of hard disk space much cheaper than 1 GB of RAM
- Separate data from code
 - Python's data is only available to Python's runtime

Why use databases?

```
patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]
```

- Persistence of data
 - Python's data (e.g. lists and variables) is stored in RAM (Random Access Memory)
 - This memory is lost on shutdown/termination
 - We want data to still be there after shutdown/termination
- Scalability of storage size
 - 1 GB of hard disk space much cheaper than 1 GB of RAM
- Separate data from code
 - Python's data is only available to Python's runtime
 - Want data to be usable by multiple applications

Why use databases?

```
patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]
```

- Persistence of data
 - Python's data (e.g. lists and variables) is stored in RAM (Random Access Memory)
 - This memory is lost on shutdown/termination
 - We want data to still be there after shutdown/termination
- Scalability of storage size
 - 1 GB of hard disk space much cheaper than 1 GB of RAM
- Separate data from code
 - Python's data is only available to Python's runtime
 - Want data to be usable by multiple applications

Why use databases?

Why not just use e.g. Python lists?

```
patients = ["Mary Smith", "Peter Dawson", "Carl Brown"]
```

- Persistence of data
 - Python's data (e.g. lists and variables) is stored in RAM (Random Access Memory)
 - This memory is lost on shutdown/termination
 - We want data to still be there after shutdown/termination
- Scalability of storage size
 - 1 GB of hard disk space much cheaper than 1 GB of RAM
- Separate data from code
 - Python's data is only available to Python's runtime
 - Want data to be usable by multiple applications

All of these problems are solved by the filesystem!

Why use databases?

So why not just use files, then?

So why not just use files, then?

Python + Files

```
import csv
import os
filea = "a.csv"
fileb = "b.csv"
temp = "temp.csv"
source1 = csv.reader(open(filea, "r"), delimiter=",")
source2 = csv.reader(open(fileb, "r"), delimiter=",")
source2 dict = {}
for row in source2:
   source2_dict[row[0]] = row[1]
with open(temp, "w") as fout:
   csywriter = csy.writer(fout.delimiter=delim)
   for row in source1:
        if row[1] in source2_dict:
            row[3] = source2 dict[row[1]]
        capuriter writerow(row)
os.rename(temp, filea)
```

SQL + Database

```
UPDATE a
    SET c4=b.c2
FROM b
WHERE a.c2 = b.c1;
```

Why use databases?

Why use databases?

Why not just use files?

• Convenience of data manipulation

Why use databases?

- Convenience of data manipulation
 - Easier to insert, delete and update data

Why use databases?

- Convenience of data manipulation
 - Easier to insert, delete and update data
- Query languages

Why use databases?

- Convenience of data manipulation
 - Easier to insert, delete and update data
- Query languages
 - For large and complex data, it is easier to state what to compute (i.e. what we
 want to know) rather than how to compute it

Why use databases?

- Convenience of data manipulation
 - Easier to insert, delete and update data
- Query languages
 - For large and complex data, it is easier to state what to compute (i.e. what we
 want to know) rather than how to compute it
- Efficiency

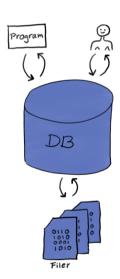
Why use databases?

- Convenience of data manipulation
 - Easier to insert, delete and update data
- Query languages
 - For large and complex data, it is easier to state what to compute (i.e. what we
 want to know) rather than how to compute it
- Efficiency
 - Database uses advanced techniques to find the most efficient way to execute queries

Why use databases?

- Convenience of data manipulation
 - Easier to insert, delete and update data
- Query languages
 - For large and complex data, it is easier to state what to compute (i.e. what we
 want to know) rather than how to compute it
- Efficiency
 - Database uses advanced techniques to find the most efficient way to execute queries
 - Also uses advanced data structures to store data for efficient retrieval

Why use databases?


So why not just files, then?

Why use databases?

So why not just files, then?

Database functions as an abstraction layer over the filsystem

- Makes it easier to search and manipulate data
- Easier to specify structure of the data
- More efficient and scalable

• A database is a program providing easy and efficient access to data

- A database is a program providing easy and efficient access to data
- Different types of databases, focusing on storing different types of data

- A database is a program providing easy and efficient access to data
- Different types of databases, focusing on storing different types of data
- Document databases: Stores documents, and can do very efficient search in text

- A database is a program providing easy and efficient access to data
- Different types of databases, focusing on storing different types of data
- Document databases: Stores documents, and can do very efficient search in text
- Key-value stores: Stores pairs of a key and a value

- A database is a program providing easy and efficient access to data
- Different types of databases, focusing on storing different types of data
- Document databases: Stores documents, and can do very efficient search in text
- Key-value stores: Stores pairs of a key and a value
- Graph databases: Stores graphs, i.e., nodes and edges

- A database is a program providing easy and efficient access to data
- Different types of databases, focusing on storing different types of data
- Document databases: Stores documents, and can do very efficient search in text
- Key-value stores: Stores pairs of a key and a value
- Graph databases: Stores graphs, i.e., nodes and edges
- Relational databases: Stores tables (or relations) consisting of rows and columns

- A database is a program providing easy and efficient access to data
- Different types of databases, focusing on storing different types of data
- Document databases: Stores documents, and can do very efficient search in text
- Key-value stores: Stores pairs of a key and a value
- Graph databases: Stores graphs, i.e., nodes and edges
- Relational databases: Stores tables (or relations) consisting of rows and columns
- We will focus on relational databases, the most used type of database

Relational databases

A (simplified) description of a relational database:

A (simplified) description of a relational database:

A relational database is a collection of tables

- A relational database is a collection of tables
- A table is also called a relation.

- A relational database is a collection of tables
- A table is also called a relation.
- A table has

- A relational database is a collection of tables
- A table is also called a relation.
- A table has
 - a name,

- A relational database is a collection of tables
- A table is also called a relation.
- A table has
 - a name,
 - a collection of columns

- A relational database is a collection of tables
- A table is also called a relation.
- A table has
 - a name,
 - a collection of columns
 - and a collection of rows (which is the data)

- A relational database is a collection of tables
- A table is also called a relation.
- A table has
 - a name,
 - a collection of columns
 - and a collection of rows (which is the data)
- A column has

- A relational database is a collection of tables
- A table is also called a relation.
- A table has
 - a name,
 - a collection of columns
 - and a collection of rows (which is the data)
- A column has
 - a name,

- A relational database is a collection of tables
- A table is also called a relation.
- A table has
 - a name,
 - a collection of columns
 - and a collection of rows (which is the data)
- A column has
 - a name,
 - and a type

Tables/Relations

Example table:

Patient

PatientID (int)	Name (text)	Birthdate (date)	BloodPressure (text)
0	Anna Consuma	1978-10-09	123/75
1	Peter Young	2009-03-01	150/81
2	Carla Smith	1986-06-14	101/53
3	Sam Penny	1961-01-09	127/82
4	John Mill	1989-11-16	147/92
5	Yvonne Potter	1971-04-12	122/74

5

14010110			
PatientID (int)	Name (text)	Birthdate (date)	BloodPressure (text)
0	Anna Consuma	1978-10-09	123/75
1	Peter Young	2009-03-01	150/81
2	Carla Smith	1986-06-14	101/53
3	Sam Penny	1961-01-09	127/82

1989-11-16

1971-04-12

Patient

• Every value within a column must have the same type as the column

John Mill

Yvonne Potter

147/92

122/74

PatientID (int)	Name (text)	Birthdate (date)	BloodPressure (text)
0	Anna Consuma	1978-10-09	123/75
1	Peter Young	2009-03-01	150/81
2	Carla Smith	1986-06-14	101/53
3	Sam Penny	1961-01-09	127/82
4	John Mill	1989-11-16	147/92
5	Yvonne Potter	1971-04-12	122/74

- Every value within a column must have the same type as the column
 - so the type of a column describes the allowed values in that column

PatientID (int)	Name (text)	Birthdate (date)	BloodPressure (text)
0	Anna Consuma	1978-10-09	123/75
1	Peter Young	2009-03-01	150/81
2	Carla Smith	1986-06-14	101/53
3	Sam Penny	1961-01-09	127/82
4	John Mill	1989-11-16	147/92
5	Yvonne Potter	1971-04-12	122/74

- Every value within a column must have the same type as the column
 - so the type of a column describes the allowed values in that column
 - E.g. only allowed to put integers into a column having type int

Patient			
PatientID (int)	Name (text)	Birthdate (date)	BloodPressure (text)
0	Anna Consuma	1978-10-09	123/75
1	Peter Young	2009-03-01	150/81
2	Carla Smith	1986-06-14	101/53
3	Sam Penny	1961-01-09	127/82
4	John Mill	1989-11-16	147/92
5	Yvonne Potter	1971-04-12	122/74

- Every value within a column must have the same type as the column
 - so the type of a column describes the allowed values in that column
 - E.g. only allowed to put integers into a column having type int
- Every row must have the same number of values as there are columns

Patient Patient				
PatientID (int)	Name (text)	Birthdate (date)	BloodPressure (text)	
0	Anna Consuma	1978-10-09	123/75	
1	Peter Young	2009-03-01	150/81	
2	Carla Smith	1986-06-14	101/53	
3	Sam Penny	1961-01-09	127/82	
4	John Mill	1989-11-16	147/92	
5	Yvonne Potter	1971-04-12	122/74	

- Every value within a column must have the same type as the column
 - so the type of a column describes the allowed values in that column
 - E.g. only allowed to put integers into a column having type int
- Every row must have the same number of values as there are columns
 - so the columns describes the allowed rows in that table

Patient				
PatientID (int)	Name (text)	Birthdate (date)	BloodPressure (text)	
0	Anna Consuma	1978-10-09	123/75	
1	Peter Young	2009-03-01	150/81	
2	Carla Smith	1986-06-14	101/53	
3	Sam Penny	1961-01-09	127/82	
4	John Mill	1989-11-16	147/92	
5	Yvonne Potter	1971-04-12	122/74	

- Every value within a column must have the same type as the column
 - so the type of a column describes the allowed values in that column
 - E.g. only allowed to put integers into a column having type int
- Every row must have the same number of values as there are columns
 - so the columns describes the allowed rows in that table
 - ◆ a patient must have PatientID, Name, Birthdate, BloodPressure

Dotiont ID (int) N

	Patient				
ame	(text)	Birthdate (date)	BloodPre		
nna	Consuma	1978-10-09			

Name (text)	bifthdate (date)	bloodriessure (text)
Anna Consuma	1978-10-09	123/75
Peter Young	2009-03-01	150/81
Carla Smith	1986-06-14	101/53
Sam Penny	1961-01-09	127/82
John Mill	1989-11-16	147/92
Yvonne Potter	1971-04-12	122/74
	Anna Consuma Peter Young Carla Smith Sam Penny John Mill	Anna Consuma 1978-10-09 Peter Young 2009-03-01 Carla Smith 1986-06-14 Sam Penny 1961-01-09 John Mill 1989-11-16

Almost all data can (naturally) be represented as tables

Patient			
PatientID (int)	Name (text)	Birthdate (date)	BloodPressure (text)
0	Anna Consuma	1978-10-09	123/75
1	Peter Young	2009-03-01	150/81
2	Carla Smith	1986-06-14	101/53
3	Sam Penny	1961-01-09	127/82
4	John Mill	1989-11-16	147/92
5	Yvonne Potter	1971-04-12	122/74

Dationt

- Almost all data can (naturally) be represented as tables
- Natural format to work with

PatientID (int)	Name (text)	Birthdate (date)	BloodPressure (text)
0	Anna Consuma	1978-10-09	123/75
1	Peter Young	2009-03-01	150/81
2	Carla Smith	1986-06-14	101/53
3	Sam Penny	1961-01-09	127/82
4	John Mill	1989-11-16	147/92
5	Yvonne Potter	1971-04-12	122/74

- Almost all data can (naturally) be represented as tables
- Natural format to work with
- Easy to define structure of the data (meta data)

PatientID (int)	Name (text)	Birthdate (date)	BloodPressure (text)
0	Anna Consuma	1978-10-09	123/75
1	Peter Young	2009-03-01	150/81
2	Carla Smith	1986-06-14	101/53
3	Sam Penny	1961-01-09	127/82
4	John Mill	1989-11-16	147/92
5	Yvonne Potter	1971-04-12	122/74

- Almost all data can (naturally) be represented as tables
- Natural format to work with
- Easy to define structure of the data (meta data)
- This rigid structure allows very efficient extraction and manipulation of the data

PatientID (int)	Name (text)	Birthdate (date)	BloodPressure (text)
0	Anna Consuma	1978-10-09	123/75
1	Peter Young	2009-03-01	150/81
2	Carla Smith	1986-06-14	101/53
3	Sam Penny	1961-01-09	127/82
4	John Mill	1989-11-16	147/92
5	Yvonne Potter	1971-04-12	122/74

- Almost all data can (naturally) be represented as tables
- Natural format to work with
- Easy to define structure of the data (meta data)
- This rigid structure allows very efficient extraction and manipulation of the data
- Also gives many forms of security

PatientID (int)	Name (text)	Birthdate (date)	BloodPressure (text)
0	Anna Consuma	1978-10-09	123/75
1	Peter Young	2009-03-01	150/81
2	Carla Smith	1986-06-14	101/53
3	Sam Penny	1961-01-09	127/82
4	John Mill	1989-11-16	147/92
5	Yvonne Potter	1971-04-12	122/74

- Almost all data can (naturally) be represented as tables
- Natural format to work with
- Easy to define structure of the data (meta data)
- This rigid structure allows very efficient extraction and manipulation of the data
- Also gives many forms of security
- The most used type of database

So

• the table's columns describe the shape and form of the data

- the table's columns describe the shape and form of the data
- that is, it is metadata (i.e. data about the data)

- the table's columns describe the shape and form of the data
- that is, it is metadata (i.e. data about the data)
- The collection of table names and column names and types are part of the database schema

- the table's columns describe the shape and form of the data
- that is, it is metadata (i.e. data about the data)
- The collection of table names and column names and types are part of the database schema
- A database can have multiple such database schemas, and each schema has a name

- the table's columns describe the shape and form of the data
- that is, it is metadata (i.e. data about the data)
- The collection of table names and column names and types are part of the database schema
- A database can have multiple such database schemas, and each schema has a name
- Schemas are used to group related tables together (e.g. one schema for tables related to patients, one schema for tables related to hospitals, etc.)

Academia

BT

Employees

	1 3			
EmployeeID	Name	Startdate		
0	Peter Svensen	01-03-1999		
1	Kari Smith	11-04-1977		
2	Petrine Lye	07-01-2002		

Students

StudentID	Name	Level
0	Ove Persson	Bachelor
1	Ingrid Olava	Master
2	Marge Smith	Bachelor
:	:	:

Courses

CourseID	Name	Level
0	Analytics	Master
1	Maths101	Bachelor
•	•	•
•	•	

UIO

Employees

EmployeeID	Name	Startdate
0	Stine Grønn	10-13-1992
1	Per Jacob	08-03-2011
2	Ine Ulli	02-01-1998
		·

Students

StudentID	Name		
0	Stine Grønn		
1	Per Jacob		
2	Ine Ulli		
	•		

Organisations

OrgID	Name	NrMembers
0	Studentforeningen	1287
1	FUI	74
;	:	

Database name — Academia

2 T

Employees

EmployeeID	Name	Startdate	
0	Peter Svensen	01-03-1999	
1	Kari Smith	11-04-1977	
2	Petrine Lye	07-01-2002	

Students

StudentID	Name	Level
0	Ove Persson	Bachelor
1	Ingrid Olava	Master
2	Marge Smith	Bachelor
:	l :	:

Courses

CourseID	Name	Level
0	Analytics	Master
1	Maths101	Bachelor
1:	:	:

_UIO

Employees		
EmployeeID	Name	Startdate
0	Stine Grønn	10-13-1992
1	Per Jacob	08-03-2011
2	Ine Ulli	02-01-1998
:	:	:
_	Ine Ulli	02-01-1998

Students

StudentID	Name	
0	Stine Grønn	
1	Per Jacob	
2	Ine Ulli	
	•	
1 •	•	

Organisations

OrgID	Name	NrMembers
0	Studentforeningen	1287
1	FUI	74
١.		
1:	:	l :

Schema names _____ Database name ____ Academia

Employees

	1 3		
	EmployeeID	Name	Startdate
ĺ	0	Peter Svensen	01-03-1999
	1	Kari Smith	11-04-1977
	2	Petrine Lye	07-01-2002

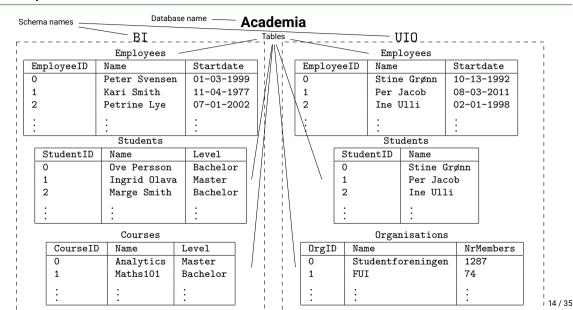
Students

StudentID	Name	Level
0	Ove Persson	Bachelor
1	Ingrid Olava	Master
2	Marge Smith	Bachelor
:	l :	:

Courses

	CourseID	Name	Level
Γ	0	Analytics	Master
	1	Maths101	Bachelor
	:	:	:

Employees


Limp 20 y 00 D		
EmployeeID	Name	Startdate
0	Stine Grønn	10-13-1992
1	Per Jacob	08-03-2011
2	Ine Ulli	02-01-1998
:	:	:

Students

	Doddonos			
ſ	StudentID	Name		
	0	Stine Grønn		
	1	Per Jacob		
	2	Ine Ulli		
		•		

Organisations

OrgID	Name	NrMembers
0	Studentforeningen	1287
1	FUI	74
:	:	

So, are relational databases just spreadsheets?

So, are relational databases just spreadsheets?

No, relational databases has:

So, are relational databases just spreadsheets?

No, relational databases has:

a rigid structure

So, are relational databases just spreadsheets?

No, relational databases has:

- a rigid structure
- query languages for extraction and manipulation of data

So, are relational databases just spreadsheets?

No, relational databases has:

- a rigid structure
- query languages for extraction and manipulation of data
- easy access from programming languages (like Python)

Relational databases = Spreadsheets?

So, are relational databases just spreadsheets?

No, relational databases has:

- a rigid structure
- query languages for extraction and manipulation of data
- easy access from programming languages (like Python)
- systems for security and control of who has access to the data

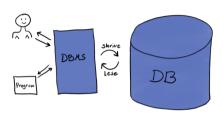
Relational databases = Spreadsheets?

So, are relational databases just spreadsheets?

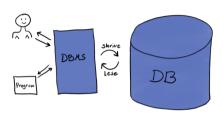
No, relational databases has:

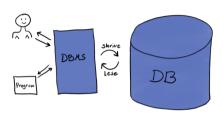
- a rigid structure
- query languages for extraction and manipulation of data
- easy access from programming languages (like Python)
- systems for security and control of who has access to the data
- systems that secure the integrity of the data

Relational databases = Spreadsheets?


So, are relational databases just spreadsheets?

No, relational databases has:


- a rigid structure
- query languages for extraction and manipulation of data
- easy access from programming languages (like Python)
- systems for security and control of who has access to the data
- systems that secure the integrity of the data
- support for much larger volumes of data and much more complex structure


A database is really just a collection of data (not a system/program)

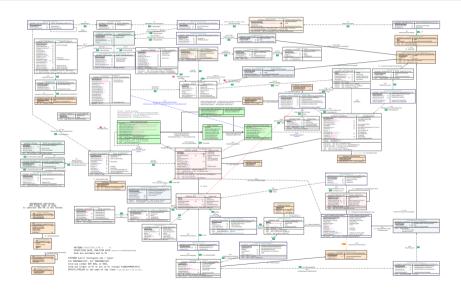
- A database is really just a collection of data (not a system/program)
- A database management system (DBMS) is
 a system that let users define, create, maintain and control access to data.

- A database is really just a collection of data (not a system/program)
- A database management system (DBMS) is
 a system that let users define, create, maintain and control access to data.
- A relational database management system (RDBMS) is a database management system over relational databases.

- A database is really just a collection of data (not a system/program)
- A database management system (DBMS) is
 a system that let users define, create, maintain and control access to data.
- A relational database management system (RDBMS) is a database management system over relational databases.
- Often use the word "database" for both data, program, and the combaintion of these

Schema violations

The database system will not allow you to insert values violating the database schema.


Thus, the following is not allowed (errors marked in red):

PatientID (int)	Name (text)	Birthdate (date)	BloodPressure (text)
0	Anna Consuma	1978-10-09	123/75
1	Peter Young	2009-03-01	150/81
2	2	1986-06-14	101/53
3	Sam Penny	long ago	127/82
four	John Mill	1989-11-16	147/92
5 6	Yvonne Potter	1971-04-12	122/74

Database design

- So relational databases store data as tables with a rigid structure
- But how should we represent information as data in tables?
- The structure of the data, i.e. which tables and columns we make, affects how
 easy it is to use and maintain the data
- Need to have a good database design

Complex database schemas

Database design: Blood pressure

Assume we want to keep track of pasient's blood pressure over time. We could then make a table looking like this:

Patient

PatientID	Name	Birthdate	Telephone	BloodPressure	TestTime
0	Anna Consuma	1978-10-09	12345678	123/75	2022-09-23
1	Peter Young	2009-03-01	21679921	150/81	2022-09-20
2	Carla Smith	1986-06-14	98765432	101/53	2022-08-07
3	Sam Penny	1961-01-09	91827364	127/82	2022-09-28
4	John Mill	1989-11-16	56473829	147/92	2022-09-13
5	Yvonne Potter	1971-04-12	91298833	122/74	2022-09-04

Blood pressure: More tests

PatientID	Name	Birthdate	Telephone	BloodPressure	TestTime
0	Anna Consuma	1978-10-09	12345678	123/75	2022-09-23
1	Peter Young	2009-03-01	21679921	150/81	2022-09-20
2	Carla Smith	1986-06-14	98765432	101/53	2022-08-07
3	Sam Penny	1961-01-09	91827364	127/82	2022-09-28
4	John Mill	1989-11-16	56473829	147/92	2022-09-13
5	Yvonne Potter	1971-04-12	91298833	122/74	2022-09-04
0	Anna Consuma	1978-10-09	12345678	125/73	2022-10-01
1	Peter Young	2009-03-01	21679921	143/80	2022-10-03
4	John Mill	1989-11-16	56473829	146/92	2022-10-03
5	Yvonne Potter	1971-04-12	91298833	124/75	2022-10-04
0	Anna Consuma	1978-10-09	12345678	126/74	2022-10-05
3	Sam Penny	1961-01-09	91827364	126/80	2022-10-08
1	Peter Young	2009-03-01	21679921	141/79	2022-10-11

Problems with bad design

- Difficult to maintain data
 - If a patient changes name or phone number, need to change multiple rows
- Difficult to add data
 - Cannot insert new patient without also inserting blood pressure and testtime
- Duplicate data takes up more disk space and is slower to work with

PatientID	Name	Birthdate	Telephone	BloodPressure
0	Anna Consuma	1978-10-09	12345678	(123/75, 2022-09-23),(125/73, 2022-10-01),
1	Peter Young	2009-03-01	21679921	(150/81, 2022-09-20),(143/80, 2022-10-03),
2	Carla Smith	1986-06-14	98765432	(101/53, 2022-08-07)
3	Sam Penny	1961-01-09	91827364	(127/82, 2022-09-28),(126/80, 2022-10-08)
4	John Mill	1989-11-16	56473829	(147/92, 2022-09-13),(146/92, 2022-10-03)
5	Yvonne Potter	1971-04-12	91298833	(122/74, 2022-09-04),(124/75, 2022-10-04)

Patient

PatientID	Name	Birthdate	Telephone	BloodPressure
0	Anna Consuma	1978-10-09	12345678	(123/75, 2022-09-23),(125/73, 2022-10-01),
1	Peter Young	2009-03-01	21679921	(150/81, 2022-09-20),(143/80, 2022-10-03),
2	Carla Smith	1986-06-14	98765432	(101/53, 2022-08-07)
3	Sam Penny	1961-01-09	91827364	(127/82, 2022-09-28),(126/80, 2022-10-08)
4	John Mill	1989-11-16	56473829	(147/92, 2022-09-13),(146/92, 2022-10-03)
5	Yvonne Potter	1971-04-12	91298833	(122/74, 2022-09-04),(124/75, 2022-10-04)

Blood pressure values now contained deep inside a single value

PatientID	Name	Birthdate	Telephone	BloodPressure
0	Anna Consuma	1978-10-09	12345678	(123/75, 2022-09-23),(125/73, 2022-10-01),
1	Peter Young	2009-03-01	21679921	(150/81, 2022-09-20),(143/80, 2022-10-03),
2	Carla Smith	1986-06-14	98765432	(101/53, 2022-08-07)
3	Sam Penny	1961-01-09	91827364	(127/82, 2022-09-28),(126/80, 2022-10-08)
4	John Mill	1989-11-16	56473829	(147/92, 2022-09-13),(146/92, 2022-10-03)
5	Yvonne Potter	1971-04-12	91298833	(122/74, 2022-09-04),(124/75, 2022-10-04)

- Blood pressure values now contained deep inside a single value
- Need to "parse"/"unwrap" this complex value to get blood pressure values

PatientID	Name	Birthdate	Telephone	BloodPressure
0	Anna Consuma	1978-10-09	12345678	(123/75, 2022-09-23),(125/73, 2022-10-01),
1	Peter Young	2009-03-01	21679921	(150/81, 2022-09-20),(143/80, 2022-10-03),
2	Carla Smith	1986-06-14	98765432	(101/53, 2022-08-07)
3	Sam Penny	1961-01-09	91827364	(127/82, 2022-09-28),(126/80, 2022-10-08)
4	John Mill	1989-11-16	56473829	(147/92, 2022-09-13),(146/92, 2022-10-03)
5	Yvonne Potter	1971-04-12	91298833	(122/74, 2022-09-04),(124/75, 2022-10-04)

- Blood pressure values now contained deep inside a single value
- Need to "parse"/"unwrap" this complex value to get blood pressure values
- Makes working with these values very complex (both for humans and computer)

PatientID	Name	Birthdate	Telephone	BloodPressure
0	Anna Consuma	1978-10-09	12345678	(123/75, 2022-09-23),(125/73, 2022-10-01),
1	Peter Young	2009-03-01	21679921	(150/81, 2022-09-20),(143/80, 2022-10-03),
2	Carla Smith	1986-06-14	98765432	(101/53, 2022-08-07)
3	Sam Penny	1961-01-09	91827364	(127/82, 2022-09-28),(126/80, 2022-10-08)
4	John Mill	1989-11-16	56473829	(147/92, 2022-09-13),(146/92, 2022-10-03)
5	Yvonne Potter	1971-04-12	91298833	(122/74, 2022-09-04),(124/75, 2022-10-04)

- Blood pressure values now contained deep inside a single value
- Need to "parse"/"unwrap" this complex value to get blood pressure values
- Makes working with these values very complex (both for humans and computer)
- Generally: Columns should have simple values!

Blood pressure: Better structure

Patient

PatientID	Name	Birthdate	Telephone
0	Anna Consuma	1978-10-09	12345678
1	Peter Young	2009-03-01	21679921
2	Carla Smith	1986-06-14	98765432
3	Sam Penny	1961-01-09	91827364
4	John Mill	1989-11-16	56473829
5	Yvonne Potter	1971-04-12	91298833

BloodPressure

PatientID	BloodPressure	TestTime
0	123/75	2022-09-23
1	150/81	2022-09-20
2	101/53	2022-08-07
3	127/82	2022-09-28
4	147/92	2022-09-13
5	122/74	2022-09-04
0	125/73	2022-10-01
1	143/80	2022-10-03
4	146/92	2022-10-03
5	124/75	2022-10-04
0	126/74	2022-10-05
3	126/80	2022-10-08
1	141/79	2022-10-11

Students and courses

Want to store information about students, courses and grades:

Students and courses

Want to store information about students, courses and grades:

- For students: Username, name, surename, address...
- For courses: Coursecode, title, description, credits...
- Grades: Which student got which grade in which course

Students and courses

Want to store information about students, courses and grades:

- For students: Username, name, surename, address...
- For courses: Coursecode, title, description, credits...
- Grades: Which student got which grade in which course

Naive solution: Everything in one table!

Students and courses: Schema

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Desc2	5	С

StudentCourse

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Desc2	5	C

StudentCourse

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Desc2	5	C

Data duplication makes it more difficult to insert and update data:

 Need to insert all the info about student and course, even if only want to insert a new grade

StudentCourse

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Desc2	5	C

- Need to insert all the info about student and course, even if only want to insert a new grade
- Impossible to insert a new student, without also inserting a course

StudentCourse

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Desc2	5	C
				IN9999	Quantum	Beskr3	10	

- Need to insert all the info about student and course, even if only want to insert a new grade
- Impossible to insert a new student, without also inserting a course

StudentCourse

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Desc2	5	C
				IN9999	Quantum	Beskr3	10	
abcdef	Aber C.	Deflan	Addr4					

- Need to insert all the info about student and course, even if only want to insert a new grade
- Impossible to insert a new student, without also inserting a course

StudentCourse

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Desc2	5	C
				IN9999	Quantum	Beskr3	10	
abcdef	Aber C.	Deflan	Addr4					

- Need to insert all the info about student and course, even if only want to insert a new grade
- Impossible to insert a new student, without also inserting a course
- Updates must be performed consistently and update all duplicates

StudentCourse

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Beskr2	5	C

• Deleting a course may delete a student

StudentCourse

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Beskr2	5	C

Deleting a course may delete a student

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Beskr2	5	C

- Deleting a course may delete a student
- Deleting a student may delete a course

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Beskr2	5	C

- Deleting a course may delete a student
- Deleting a student may delete a course

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Beskr2	5	C

- Deleting a course may delete a student
- Deleting a student may delete a course
- Difficult to fix this with this structure

Fix the structure

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Beskr2	5	С

Fix the structure

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Beskr2	5	С

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Beskr2	5	С

Student

Username	Name	Surename	Address
evgenit	Evgenij	Thorstensen	Addr1
peternl	Petter	Nilsen	Addr2
leifhka	Leif H.	Karlsen	Addr3

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Beskr2	5	С

Student

Username	Name	Surename	Address
evgenit	Evgenij	Thorstensen	Addr1
peternl	Petter	Nilsen	Addr2
leifhka	Leif H.	Karlsen	Addr3

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Beskr2	5	С

Student

Username	Name	Surename	Address
evgenit	Evgenij	Thorstensen	Addr1
peternl	Petter	Nilsen	Addr2
leifhka	Leif H.	Karlsen	Addr3

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Beskr2	5	С

Student

	Username	Name	Surename	Address
ı	evgenit	Evgenij	Thorstensen	Addr1
	peternl	Petter	Nilsen	Addr2
	leifhka	Leif H.	Karlsen	Addr3

Coursecode	Title	Desc.	Credits				
IN2090	Databaser	Beskr	10				
IN2080	Beregn	Descr	10				
IN3110	Program	Beskr2	5				

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Beskr2	5	С

Student

Username	Name	Surename	Address
evgenit	Evgenij	Thorstensen	Addr1
peternl	Petter	Nilsen	Addr2
leifhka	Leif H.	Karlsen	Addr3

Coursecode	Title	Desc.	Credits
IN2090	Databaser	Beskr	10
IN2080	Beregn	Descr	10
IN3110	Program	Beskr2	5

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	Α
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Beskr2	5	C

Student

	Username	Name	Surename	Address		
ı	evgenit	Evgenij	Thorstensen	Addr1		
	peternl	Petter	Nilsen	Addr2		
	leifhka	Leif H.	Karlsen	Addr3		

Coursecode	Title	Desc.	Credits
IN2090	Databaser	Beskr	10
IN2080	Beregn	Descr	10
IN3110	Program	Beskr2	5

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Beskr2	5	C

Studen

Username	Name	Surename	Address			
evgenit	Evgenij	Thorstensen	Addr1			
peternl	Petter	Nilsen	Addr2			
leifhka	Leif H.	Karlsen	Addr3			

\mathcal{C}	01	,	r	0	c

	Grade	
Username	Coursecode	Grade
evgenit	IN2090	В
peternl	IN2090	A
evgenit	IN2080	В
leifhka	IN2090	В
leifhka	IN3110	C

Coursecode	Title	Desc.	Credits
IN2090	Databaser	Beskr	10
IN2080	Beregn	Descr	10
IN3110	Program	Beskr2	5

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Beskr2	5	С

Course

	Student	;	
Username	Name	Surename	Address
evgenit	Evgenij	Thorstensen	Addr1
peternl	Petter	Nilsen	Addr2
leifhka	Leif H.	Karlsen	Addr3

		Username	Coursecode	Grade
		evgenit	IN2090	В
		peternl	IN2090	A
		evgenit	IN2080	В
		leifhka	IN2090	В
е		leifhka	IN3110	C
e		Tellika	11/3110	L C

Grade

Coursecode	Title	Desc.	Credits		
IN2090	Databaser	Beskr	10		
IN2080	Beregn	Descr	10		
IN3110	Program	Beskr2	5		

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Beskr2	5	С

	Student		
Username	Name	Surename	Address
evgenit	Evgenij	Thorstensen	Addr1
peternl	Petter	Nilsen	Addr2
leifhka	Leif H.	Karlsen	Addr3

	Grade	
Username	Coursecode	Grade
evgenit	IN2090	В
peternl	IN2090	A
evgenit	IN2080	В
leifhka	IN2090	В
leifhka	IN3110	C

Coursecode	Title	Desc.	Credits
IN2090	Databaser	Beskr	10
IN2080	Beregn	Descr	10
IN3110	Program	Beskr2	5

Course

Note: Same columns and same values!

Username	Name	Surename	Address	Coursecode	Title	Desc.	Credits	Grade
evgenit	Evgenij	Thorstensen	Addr1	IN2090	Databaser	Beskr	10	В
peternl	Petter	Nilsen	Addr2	IN2090	Databaser	Beskr	10	A
evgenit	Evgenij	Thorstensen	Addr1	IN2080	Beregn	Descr	10	A
leifhka	Leif H.	Karlsen	Addr3	IN2090	Databaser	Beskr	10	В
leifhka	Leif H.	Karlsen	Addr3	IN3110	Program	Beskr2	5	С

Username	Name	Surename	Address
evgenit	Evgenij	Thorstensen	Addr1
peternl	Petter	Nilsen	Addr2
leifhka	Leif H.	Karlsen	Addr3

	Grade	
Username	Coursecode	Grade
evgenit	IN2090	В
peternl	IN2090	A
evgenit	IN2080	В
leifhka	IN2090	В
leifhka	IN3110	C

Coursecode	Title	Desc.	Credits
IN2090	Databaser	Beskr	10
IN2080	Beregn	Descr	10
IN3110	Program	Beskr2	5

- Note: Same columns and same values!
- Good structure: Separate table for students, courses and grades

Rules of thumb for database design:

One table per type of thing (patient, student, course)

Rules of thumb for database design:

- One table per type of thing (patient, student, course)
 - One column per attribute/property (name, telephone, title, etc.)

Rules of thumb for database design:

- One table per type of thing (patient, student, course)
 - One column per attribute/property (name, telephone, title, etc.)
- One table per relationship (grade)

Rules of thumb for database design:

- One table per type of thing (patient, student, course)
 - One column per attribute/property (name, telephone, title, etc.)
- One table per relationship (grade)
- One table per multi-valued property (blood pressure)

Not only one good structure!

- There can be many good ways of structuring the same information into tables.
- The following two tables on life expectency in Norway contain the same information without data duplication, but is structured differently:

Year	Men	Women
2017	80.9	84.3
2018	81.0	84.5
2019	81.2	84.7
2020	81.5	84.9

Gender	Year	LE
Gender	rear	LE
men	2017	80.9
men	2018	81.0
men	2019	81.2
men	2020	81.5
women	2017	84.3
women	2018	84.5
women	2019	84.7
women	2020	84.9

• To describe something, we need to have a unique way of referencing it

- To describe something, we need to have a unique way of referencing it
 - ◆ E.g. if I say "Peter has blood pressure 120/80" and there are two patients with name "Peter", we do not know which "Peter" we talk about

- To describe something, we need to have a unique way of referencing it
 - ◆ E.g. if I say "Peter has blood pressure 120/80" and there are two patients with name "Peter", we do not know which "Peter" we talk about
- Luckily, most things in the real world have this

- To describe something, we need to have a unique way of referencing it
 - ◆ E.g. if I say "Peter has blood pressure 120/80" and there are two patients with name "Peter", we do not know which "Peter" we talk about
- Luckily, most things in the real world have this
 - People: Personnummer (combination of fødselsnummer and birthdate)

- To describe something, we need to have a unique way of referencing it
 - ◆ E.g. if I say "Peter has blood pressure 120/80" and there are two patients with name "Peter", we do not know which "Peter" we talk about
- Luckily, most things in the real world have this
 - People: Personnummer (combination of fødselsnummer and birthdate)
 - Buildings: Address

- To describe something, we need to have a unique way of referencing it
 - E.g. if I say "Peter has blood pressure 120/80" and there are two patients with name "Peter", we do not know which "Peter" we talk about
- Luckily, most things in the real world have this
 - People: Personnummer (combination of fødselsnummer and birthdate)
 - Buildings: Address
 - Cars: License plates

- To describe something, we need to have a unique way of referencing it
 - E.g. if I say "Peter has blood pressure 120/80" and there are two patients with name "Peter", we do not know which "Peter" we talk about
- Luckily, most things in the real world have this
 - People: Personnummer (combination of fødselsnummer and birthdate)
 - Buildings: Address
 - Cars: License plates
 - Products: Barcode

- To describe something, we need to have a unique way of referencing it
 - E.g. if I say "Peter has blood pressure 120/80" and there are two patients with name "Peter", we do not know which "Peter" we talk about
- Luckily, most things in the real world have this
 - People: Personnummer (combination of fødselsnummer and birthdate)
 - Buildings: Address
 - Cars: License plates
 - Products: Barcode
 - Students: Username

- To describe something, we need to have a unique way of referencing it
 - E.g. if I say "Peter has blood pressure 120/80" and there are two patients with name "Peter", we do not know which "Peter" we talk about
- Luckily, most things in the real world have this
 - People: Personnummer (combination of fødselsnummer and birthdate)
 - Buildings: Address
 - Cars: License plates
 - Products: Barcode
 - Students: Username
 - **•** ..

- To describe something, we need to have a unique way of referencing it
 - E.g. if I say "Peter has blood pressure 120/80" and there are two patients with name "Peter", we do not know which "Peter" we talk about
- Luckily, most things in the real world have this
 - People: Personnummer (combination of fødselsnummer and birthdate)
 - Buildings: Address
 - Cars: License plates
 - Products: Barcode
 - Students: Username
 - **•** ...
- In a database, every type of thing (students, courses, patients) needs to have a column (or combination of columns) that is unique for that type of thing (Brukernavn, Coursecode, PatientID)

- To describe something, we need to have a unique way of referencing it
 - ◆ E.g. if I say "Peter has blood pressure 120/80" and there are two patients with name "Peter", we do not know which "Peter" we talk about
- Luckily, most things in the real world have this
 - People: Personnummer (combination of fødselsnummer and birthdate)
 - Buildings: Address
 - Cars: License plates
 - Products: Barcode
 - Students: Username
 - **•** ..
- In a database, every type of thing (students, courses, patients) needs to have a column (or combination of columns) that is unique for that type of thing (Brukernavn, Coursecode, PatientID)
- These columns are called keys or primary keys

Foreign keys

• When one table references another, we do this via such keys

Foreign keys

- When one table references another, we do this via such keys
- E.g. in BloodPressure we used PatientID to reference a patient and in Grade we used Username to reference students and Coursecode to reference courses

Foreign keys

- When one table references another, we do this via such keys
- ◆ E.g. in BloodPressure we used PatientID to reference a patient and in Grade we used Username to reference students and Coursecode to reference courses
- Such references are known as foreign keys

When organizations/companies merge, they need to merge their data

- When organizations/companies merge, they need to merge their data
- Similarly when communicating data between organizations

- When organizations/companies merge, they need to merge their data
- Similarly when communicating data between organizations
- Data needs to be of the same format/same structure

- When organizations/companies merge, they need to merge their data
- Similarly when communicating data between organizations
- Data needs to be of the same format/same structure
- Values must denote the same thing

- When organizations/companies merge, they need to merge their data
- Similarly when communicating data between organizations
- Data needs to be of the same format/same structure
- Values must denote the same thing
- Merging data into a common format/structure known as data integration

 Data integration is a very difficult problem, as the different organizations typically:

- Data integration is a very difficult problem, as the different organizations typically:
 - Have large and complex database schemas

- Data integration is a very difficult problem, as the different organizations typically:
 - Have large and complex database schemas
 - Use different keys for the same type of things

- Data integration is a very difficult problem, as the different organizations typically:
 - Have large and complex database schemas
 - Use different keys for the same type of things
 - Use different structure for same type of information

Year	Men	Women
2017	80.9	84.3
2018	81.0	84.5
2019	81.2	84.7
2020	81.5	84.9

Gender	Year	LE
men	2017	80.9
men	2018	81.0
men	2019	81.2
men	2020	81.5
women	2017	84.3
women	2018	84.5
women	2019	84.7
women	2020	84.9

- Data integration is a very difficult problem, as the different organizations typically:
 - Have large and complex database schemas
 - Use different keys for the same type of things
 - Use different structure for same type of information
 - Have lots of applications and systems using their data the way it is stored

Year	Men	Women
2017	80.9	84.3
2018	81.0	84.5
2019	81.2	84.7
2020	81.5	84.9

Gender	Year	LE
men	2017	80.9
men	2018	81.0
men	2019	81.2
men	2020	81.5
women	2017	84.3
women	2018	84.5
women	2019	84.7
women	2020	84.9

- Data integration is a very difficult problem, as the different organizations typically:
 - Have large and complex database schemas
 - Use different keys for the same type of things
 - Use different structure for same type of information
 - Have lots of applications and systems using their data the way it is stored
 - Use different database management systems that are not compatible

Year	Men	Women
2017	80.9	84.3
2018	81.0	84.5
2019	81.2	84.7
2020	81.5	84.9

Gender	Year	LE
men	2017	80.9
men	2018	81.0
men	2019	81.2
men	2020	81.5
women	2017	84.3
women	2018	84.5
women	2019	84.7
women	2020	84.9

- Data integration is a very difficult problem, as the different organizations typically:
 - Have large and complex database schemas
 - Use different keys for the same type of things
 - Use different structure for same type of information
 - Have lots of applications and systems using their data the way it is stored
 - Use different database management systems that are not compatible
- Standardization helps solving these problems

Year	Men	Women
2017	80.9	84.3
2018	81.0	84.5
2019	81.2	84.7
2020	81.5	84.9

Gender	Year	LE
men	2017	80.9
men	2018	81.0
men	2019	81.2
men	2020	81.5
women	2017	84.3
women	2018	84.5
women	2019	84.7
women	2020	84.9