
Introduction to SQL

Leif Harald Karlsen
leifhka@ifi.uio.no

27.09.23

1 / 29



SQL: Structured Query Language

� SQL is a query language for relational databases

� The most common query language for such databases
� Used to formulate queries, i.e. questions to a database
� SQL is also used to manipulate the database

� To create tables,
� insert data,
� delete data,
� ...

� Made in 1974, but first standard appeared in 1986

2 / 29



SQL: Structured Query Language

� SQL is a query language for relational databases
� The most common query language for such databases

� Used to formulate queries, i.e. questions to a database
� SQL is also used to manipulate the database

� To create tables,
� insert data,
� delete data,
� ...

� Made in 1974, but first standard appeared in 1986

2 / 29



SQL: Structured Query Language

� SQL is a query language for relational databases
� The most common query language for such databases
� Used to formulate queries, i.e. questions to a database

� SQL is also used to manipulate the database

� To create tables,
� insert data,
� delete data,
� ...

� Made in 1974, but first standard appeared in 1986

2 / 29



SQL: Structured Query Language

� SQL is a query language for relational databases
� The most common query language for such databases
� Used to formulate queries, i.e. questions to a database
� SQL is also used to manipulate the database

� To create tables,
� insert data,
� delete data,
� ...

� Made in 1974, but first standard appeared in 1986

2 / 29



SQL: Structured Query Language

� SQL is a query language for relational databases
� The most common query language for such databases
� Used to formulate queries, i.e. questions to a database
� SQL is also used to manipulate the database

� To create tables,

� insert data,
� delete data,
� ...

� Made in 1974, but first standard appeared in 1986

2 / 29



SQL: Structured Query Language

� SQL is a query language for relational databases
� The most common query language for such databases
� Used to formulate queries, i.e. questions to a database
� SQL is also used to manipulate the database

� To create tables,
� insert data,

� delete data,
� ...

� Made in 1974, but first standard appeared in 1986

2 / 29



SQL: Structured Query Language

� SQL is a query language for relational databases
� The most common query language for such databases
� Used to formulate queries, i.e. questions to a database
� SQL is also used to manipulate the database

� To create tables,
� insert data,
� delete data,

� ...

� Made in 1974, but first standard appeared in 1986

2 / 29



SQL: Structured Query Language

� SQL is a query language for relational databases
� The most common query language for such databases
� Used to formulate queries, i.e. questions to a database
� SQL is also used to manipulate the database

� To create tables,
� insert data,
� delete data,
� ...

� Made in 1974, but first standard appeared in 1986

2 / 29



SQL: Structured Query Language

� SQL is a query language for relational databases
� The most common query language for such databases
� Used to formulate queries, i.e. questions to a database
� SQL is also used to manipulate the database

� To create tables,
� insert data,
� delete data,
� ...

� Made in 1974, but first standard appeared in 1986

2 / 29



Python vs. SQL

� A programming language (e.g. Python) is a precise language for expressing
sequences of instructions to a computer

� Python is imperative in nature, e.g.:

� “Set the value of x to 2” (x = 2)
� “Add x and y and assign the result to z” (z = x+y)
� “For every element in the list L print the value of the element”
(for e in L: print(e))

� A query language is a precise language for expressing questions to a database
� Such questions are often called a query
� SQL is declarative in nature, e.g.:

� “Which elements have a name starting with ’P’?”
� “Let ’Parents’ be all elements having a ’hasChild’-related element”
� “How many employees have a boss which earn more than 1000000 KR?”

3 / 29



Python vs. SQL

� A programming language (e.g. Python) is a precise language for expressing
sequences of instructions to a computer

� Python is imperative in nature, e.g.:

� “Set the value of x to 2” (x = 2)
� “Add x and y and assign the result to z” (z = x+y)
� “For every element in the list L print the value of the element”
(for e in L: print(e))

� A query language is a precise language for expressing questions to a database
� Such questions are often called a query
� SQL is declarative in nature, e.g.:

� “Which elements have a name starting with ’P’?”
� “Let ’Parents’ be all elements having a ’hasChild’-related element”
� “How many employees have a boss which earn more than 1000000 KR?”

3 / 29



Python vs. SQL

� A programming language (e.g. Python) is a precise language for expressing
sequences of instructions to a computer

� Python is imperative in nature, e.g.:
� “Set the value of x to 2” (x = 2)

� “Add x and y and assign the result to z” (z = x+y)
� “For every element in the list L print the value of the element”
(for e in L: print(e))

� A query language is a precise language for expressing questions to a database
� Such questions are often called a query
� SQL is declarative in nature, e.g.:

� “Which elements have a name starting with ’P’?”
� “Let ’Parents’ be all elements having a ’hasChild’-related element”
� “How many employees have a boss which earn more than 1000000 KR?”

3 / 29



Python vs. SQL

� A programming language (e.g. Python) is a precise language for expressing
sequences of instructions to a computer

� Python is imperative in nature, e.g.:
� “Set the value of x to 2” (x = 2)
� “Add x and y and assign the result to z” (z = x+y)

� “For every element in the list L print the value of the element”
(for e in L: print(e))

� A query language is a precise language for expressing questions to a database
� Such questions are often called a query
� SQL is declarative in nature, e.g.:

� “Which elements have a name starting with ’P’?”
� “Let ’Parents’ be all elements having a ’hasChild’-related element”
� “How many employees have a boss which earn more than 1000000 KR?”

3 / 29



Python vs. SQL

� A programming language (e.g. Python) is a precise language for expressing
sequences of instructions to a computer

� Python is imperative in nature, e.g.:
� “Set the value of x to 2” (x = 2)
� “Add x and y and assign the result to z” (z = x+y)
� “For every element in the list L print the value of the element”
(for e in L: print(e))

� A query language is a precise language for expressing questions to a database
� Such questions are often called a query
� SQL is declarative in nature, e.g.:

� “Which elements have a name starting with ’P’?”
� “Let ’Parents’ be all elements having a ’hasChild’-related element”
� “How many employees have a boss which earn more than 1000000 KR?”

3 / 29



Python vs. SQL

� A programming language (e.g. Python) is a precise language for expressing
sequences of instructions to a computer

� Python is imperative in nature, e.g.:
� “Set the value of x to 2” (x = 2)
� “Add x and y and assign the result to z” (z = x+y)
� “For every element in the list L print the value of the element”
(for e in L: print(e))

� A query language is a precise language for expressing questions to a database
� Such questions are often called a query
� SQL is declarative in nature, e.g.:

� “Which elements have a name starting with ’P’?”
� “Let ’Parents’ be all elements having a ’hasChild’-related element”
� “How many employees have a boss which earn more than 1000000 KR?”

3 / 29



Python vs. SQL

� A programming language (e.g. Python) is a precise language for expressing
sequences of instructions to a computer

� Python is imperative in nature, e.g.:
� “Set the value of x to 2” (x = 2)
� “Add x and y and assign the result to z” (z = x+y)
� “For every element in the list L print the value of the element”
(for e in L: print(e))

� A query language is a precise language for expressing questions to a database

� Such questions are often called a query
� SQL is declarative in nature, e.g.:

� “Which elements have a name starting with ’P’?”
� “Let ’Parents’ be all elements having a ’hasChild’-related element”
� “How many employees have a boss which earn more than 1000000 KR?”

3 / 29



Python vs. SQL

� A programming language (e.g. Python) is a precise language for expressing
sequences of instructions to a computer

� Python is imperative in nature, e.g.:
� “Set the value of x to 2” (x = 2)
� “Add x and y and assign the result to z” (z = x+y)
� “For every element in the list L print the value of the element”
(for e in L: print(e))

� A query language is a precise language for expressing questions to a database
� Such questions are often called a query

� SQL is declarative in nature, e.g.:

� “Which elements have a name starting with ’P’?”
� “Let ’Parents’ be all elements having a ’hasChild’-related element”
� “How many employees have a boss which earn more than 1000000 KR?”

3 / 29



Python vs. SQL

� A programming language (e.g. Python) is a precise language for expressing
sequences of instructions to a computer

� Python is imperative in nature, e.g.:
� “Set the value of x to 2” (x = 2)
� “Add x and y and assign the result to z” (z = x+y)
� “For every element in the list L print the value of the element”
(for e in L: print(e))

� A query language is a precise language for expressing questions to a database
� Such questions are often called a query
� SQL is declarative in nature, e.g.:

� “Which elements have a name starting with ’P’?”
� “Let ’Parents’ be all elements having a ’hasChild’-related element”
� “How many employees have a boss which earn more than 1000000 KR?”

3 / 29



Python vs. SQL

� A programming language (e.g. Python) is a precise language for expressing
sequences of instructions to a computer

� Python is imperative in nature, e.g.:
� “Set the value of x to 2” (x = 2)
� “Add x and y and assign the result to z” (z = x+y)
� “For every element in the list L print the value of the element”
(for e in L: print(e))

� A query language is a precise language for expressing questions to a database
� Such questions are often called a query
� SQL is declarative in nature, e.g.:

� “Which elements have a name starting with ’P’?”

� “Let ’Parents’ be all elements having a ’hasChild’-related element”
� “How many employees have a boss which earn more than 1000000 KR?”

3 / 29



Python vs. SQL

� A programming language (e.g. Python) is a precise language for expressing
sequences of instructions to a computer

� Python is imperative in nature, e.g.:
� “Set the value of x to 2” (x = 2)
� “Add x and y and assign the result to z” (z = x+y)
� “For every element in the list L print the value of the element”
(for e in L: print(e))

� A query language is a precise language for expressing questions to a database
� Such questions are often called a query
� SQL is declarative in nature, e.g.:

� “Which elements have a name starting with ’P’?”
� “Let ’Parents’ be all elements having a ’hasChild’-related element”

� “How many employees have a boss which earn more than 1000000 KR?”

3 / 29



Python vs. SQL

� A programming language (e.g. Python) is a precise language for expressing
sequences of instructions to a computer

� Python is imperative in nature, e.g.:
� “Set the value of x to 2” (x = 2)
� “Add x and y and assign the result to z” (z = x+y)
� “For every element in the list L print the value of the element”
(for e in L: print(e))

� A query language is a precise language for expressing questions to a database
� Such questions are often called a query
� SQL is declarative in nature, e.g.:

� “Which elements have a name starting with ’P’?”
� “Let ’Parents’ be all elements having a ’hasChild’-related element”
� “How many employees have a boss which earn more than 1000000 KR?”

3 / 29



Python vs. SQL

� A Python-program tells the computer how to compute the answers you want

� An SQL-query tells the computer what to compute,
� and its up to the database to decide how to find the answers

4 / 29



Python vs. SQL

� A Python-program tells the computer how to compute the answers you want
� An SQL-query tells the computer what to compute,

� and its up to the database to decide how to find the answers

4 / 29



Python vs. SQL

� A Python-program tells the computer how to compute the answers you want
� An SQL-query tells the computer what to compute,
� and its up to the database to decide how to find the answers

4 / 29



Types of SQL-queries

The first keyword in a query states what it does:

SELECT retrieves information (answers a query)
CREATE creates something (e.g. a new table)

DROP deletes something (e.g. a table)
INSERT inserts data into a table
DELETE deletes data from a table

We will only focus on SELECT.

5 / 29



Types of SQL-queries

The first keyword in a query states what it does:
SELECT retrieves information (answers a query)

CREATE creates something (e.g. a new table)
DROP deletes something (e.g. a table)

INSERT inserts data into a table
DELETE deletes data from a table

We will only focus on SELECT.

5 / 29



Types of SQL-queries

The first keyword in a query states what it does:
SELECT retrieves information (answers a query)
CREATE creates something (e.g. a new table)

DROP deletes something (e.g. a table)
INSERT inserts data into a table
DELETE deletes data from a table

We will only focus on SELECT.

5 / 29



Types of SQL-queries

The first keyword in a query states what it does:
SELECT retrieves information (answers a query)
CREATE creates something (e.g. a new table)

DROP deletes something (e.g. a table)

INSERT inserts data into a table
DELETE deletes data from a table

We will only focus on SELECT.

5 / 29



Types of SQL-queries

The first keyword in a query states what it does:
SELECT retrieves information (answers a query)
CREATE creates something (e.g. a new table)

DROP deletes something (e.g. a table)
INSERT inserts data into a table

DELETE deletes data from a table

We will only focus on SELECT.

5 / 29



Types of SQL-queries

The first keyword in a query states what it does:
SELECT retrieves information (answers a query)
CREATE creates something (e.g. a new table)

DROP deletes something (e.g. a table)
INSERT inserts data into a table
DELETE deletes data from a table

We will only focus on SELECT.

5 / 29



Types of SQL-queries

The first keyword in a query states what it does:
SELECT retrieves information (answers a query)
CREATE creates something (e.g. a new table)

DROP deletes something (e.g. a table)
INSERT inserts data into a table
DELETE deletes data from a table

We will only focus on SELECT.

5 / 29



SELECT-queries

� (Simple) SELECT-queries have the form:

SELECT <columns>
FROM <tables>

� where <columns> is a list of column names,
� <tables> is a list of table names

The result of such a query is a new table consisting of:
� the columns listed in <columns>,
� based on the rows from the tables in <tables>

6 / 29



SELECT-queries

� (Simple) SELECT-queries have the form:

SELECT <columns>
FROM <tables>

� where <columns> is a list of column names,
� <tables> is a list of table names

The result of such a query is a new table consisting of:
� the columns listed in <columns>,
� based on the rows from the tables in <tables>

6 / 29



SELECT-queries

� (Simple) SELECT-queries have the form:

SELECT <columns>
FROM <tables>

� where <columns> is a list of column names,
� <tables> is a list of table names

The result of such a query is a new table consisting of:
� the columns listed in <columns>,
� based on the rows from the tables in <tables>

6 / 29



Select single column

Query retrieving all names in Patient-table

SELECT Name
FROM Patient;

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

7 / 29



Select single column

Query retrieving all names in Patient-table

SELECT Name
FROM Patient;

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

7 / 29



Select single column

Query retrieving all names in Patient-table

SELECT Name
FROM Patient;

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

7 / 29



Select single column

Query retrieving all names in Patient-table

SELECT Name
FROM Patient;

Answers

Name
Anna Consuma
Peter Young
Carla Smith
Sam Penny
John Mill
Yvonne Potter

7 / 29



Select multiple columns

Query retrieving all names and date of birth pairs in Patient-table

SELECT Name, Birthdate
FROM Patient;

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

8 / 29



Select multiple columns

Query retrieving all names and date of birth pairs in Patient-table

SELECT Name, Birthdate
FROM Patient;

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

8 / 29



Select multiple columns

Query retrieving all names and date of birth pairs in Patient-table

SELECT Name, Birthdate
FROM Patient;

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

8 / 29



Select multiple columns

Query retrieving all names and date of birth pairs in Patient-table

SELECT Name, Birthdate
FROM Patient;

Answers

Name Birthdate
Anna Consuma 1978-10-09
Peter Young 2009-03-01
Carla Smith 1986-06-14
Sam Penny 1961-01-09
John Mill 1989-11-16
Yvonne Potter 1971-04-12

8 / 29



Selecting all columns

Query retrieving all tuples in Patient-table

SELECT *
FROM Patient;

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

9 / 29



Selecting all columns

Query retrieving all tuples in Patient-table

SELECT *
FROM Patient;

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

9 / 29



Selecting all columns

Query retrieving all tuples in Patient-table

SELECT *
FROM Patient;

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

9 / 29



DBFiddle

� We will use DBFiddle to interact with SQL

� DBFiddle is a webpage giving SQL-access to a database
� Mostly used for small examples or illustrating a point
� Database created on the fly when you access webpage
� Supports all of SQL (queries are executed over real RDBMSs)
� However, no security, no users, does not scale, etc.

10 / 29



DBFiddle

� We will use DBFiddle to interact with SQL
� DBFiddle is a webpage giving SQL-access to a database

� Mostly used for small examples or illustrating a point
� Database created on the fly when you access webpage
� Supports all of SQL (queries are executed over real RDBMSs)
� However, no security, no users, does not scale, etc.

10 / 29



DBFiddle

� We will use DBFiddle to interact with SQL
� DBFiddle is a webpage giving SQL-access to a database
� Mostly used for small examples or illustrating a point

� Database created on the fly when you access webpage
� Supports all of SQL (queries are executed over real RDBMSs)
� However, no security, no users, does not scale, etc.

10 / 29



DBFiddle

� We will use DBFiddle to interact with SQL
� DBFiddle is a webpage giving SQL-access to a database
� Mostly used for small examples or illustrating a point
� Database created on the fly when you access webpage

� Supports all of SQL (queries are executed over real RDBMSs)
� However, no security, no users, does not scale, etc.

10 / 29



DBFiddle

� We will use DBFiddle to interact with SQL
� DBFiddle is a webpage giving SQL-access to a database
� Mostly used for small examples or illustrating a point
� Database created on the fly when you access webpage
� Supports all of SQL (queries are executed over real RDBMSs)

� However, no security, no users, does not scale, etc.

10 / 29



DBFiddle

� We will use DBFiddle to interact with SQL
� DBFiddle is a webpage giving SQL-access to a database
� Mostly used for small examples or illustrating a point
� Database created on the fly when you access webpage
� Supports all of SQL (queries are executed over real RDBMSs)
� However, no security, no users, does not scale, etc.

10 / 29



Exmples
SELECT

https://dbfiddle.uk/Wu5i_q6E?hide=2

Find all observations in observation-table

SELECT *
FROM observation;

Find genus and common name for all species

SELECT genus, common_name
FROM species;

11 / 29

https://dbfiddle.uk/Wu5i_q6E?hide=2


Exmples
SELECT

https://dbfiddle.uk/Wu5i_q6E?hide=2

Find all observations in observation-table

SELECT *
FROM observation;

Find genus and common name for all species

SELECT genus, common_name
FROM species;

11 / 29

https://dbfiddle.uk/Wu5i_q6E?hide=2


Exmples
SELECT

https://dbfiddle.uk/Wu5i_q6E?hide=2

Find all observations in observation-table

SELECT *
FROM observation;

Find genus and common name for all species

SELECT genus, common_name
FROM species;

11 / 29

https://dbfiddle.uk/Wu5i_q6E?hide=2


Exmples
SELECT

https://dbfiddle.uk/Wu5i_q6E?hide=2

Find all observations in observation-table

SELECT *
FROM observation;

Find genus and common name for all species

SELECT genus, common_name
FROM species;

11 / 29

https://dbfiddle.uk/Wu5i_q6E?hide=2


Adding the WHERE-clause

� We often just want specific rows

� we can then use a WHERE-clause to pick out the rows we want
� SQL-queries then have the form

SELECT <columns>
FROM <tables>

WHERE <condition >

� <condition> is an expression than can be true or false for each row
� The result is now same as before, but contains only the rows where
<condition> holds.

12 / 29



Adding the WHERE-clause

� We often just want specific rows
� we can then use a WHERE-clause to pick out the rows we want

� SQL-queries then have the form

SELECT <columns>
FROM <tables>

WHERE <condition >

� <condition> is an expression than can be true or false for each row
� The result is now same as before, but contains only the rows where
<condition> holds.

12 / 29



Adding the WHERE-clause

� We often just want specific rows
� we can then use a WHERE-clause to pick out the rows we want
� SQL-queries then have the form

SELECT <columns>
FROM <tables>

WHERE <condition >

� <condition> is an expression than can be true or false for each row
� The result is now same as before, but contains only the rows where
<condition> holds.

12 / 29



Adding the WHERE-clause

� We often just want specific rows
� we can then use a WHERE-clause to pick out the rows we want
� SQL-queries then have the form

SELECT <columns>
FROM <tables>

WHERE <condition >

� <condition> is an expression than can be true or false for each row

� The result is now same as before, but contains only the rows where
<condition> holds.

12 / 29



Adding the WHERE-clause

� We often just want specific rows
� we can then use a WHERE-clause to pick out the rows we want
� SQL-queries then have the form

SELECT <columns>
FROM <tables>

WHERE <condition >

� <condition> is an expression than can be true or false for each row
� The result is now same as before, but contains only the rows where
<condition> holds.

12 / 29



Select specific values

Query retrieving birth date of patient with name John Mill

SELECT Birthdate
FROM Patient

WHERE Name = 'John Mill'

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

13 / 29



Select specific values

Query retrieving birth date of patient with name John Mill

SELECT Birthdate
FROM Patient

WHERE Name = 'John Mill'

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

13 / 29



Select specific values

Query retrieving birth date of patient with name John Mill

SELECT Birthdate
FROM Patient

WHERE Name = 'John Mill'

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

13 / 29



Select specific values

Query retrieving birth date of patient with name John Mill

SELECT Birthdate
FROM Patient

WHERE Name = 'John Mill'

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

13 / 29



Select specific values

Query retrieving birth date of patient with name John Mill

SELECT Birthdate
FROM Patient

WHERE Name = 'John Mill'

Answers

Birthdate
1989-11-16

13 / 29



Select range of values

Query for names of patients that have more than 10 treatments

SELECT Name
FROM Patient

WHERE NrTreatments > 10

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

14 / 29



Select range of values

Query for names of patients that have more than 10 treatments

SELECT Name
FROM Patient

WHERE NrTreatments > 10

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

14 / 29



Select range of values

Query for names of patients that have more than 10 treatments

SELECT Name
FROM Patient

WHERE NrTreatments > 10

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

14 / 29



Select range of values

Query for names of patients that have more than 10 treatments

SELECT Name
FROM Patient

WHERE NrTreatments > 10

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

14 / 29



Select range of values

Query for names of patients that have more than 10 treatments

SELECT Name
FROM Patient

WHERE NrTreatments > 10

Answers

Name
Anna Consuma
Sam Penny

14 / 29



Select with multiple restrictions

Query for birth dates and names of patients which have between 4 and 10
treatments

SELECT Birthdate , Name
FROM Patient

WHERE NrTreatments > 4 AND
NrTreatments < 10

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

15 / 29



Select with multiple restrictions

Query for birth dates and names of patients which have between 4 and 10
treatments

SELECT Birthdate , Name
FROM Patient

WHERE NrTreatments > 4 AND
NrTreatments < 10

Answers
PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

15 / 29



Select with multiple restrictions

Query for birth dates and names of patients which have between 4 and 10
treatments

SELECT Birthdate , Name
FROM Patient

WHERE NrTreatments > 4 AND
NrTreatments < 10

Answers
PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

15 / 29



Select with multiple restrictions

Query for birth dates and names of patients which have between 4 and 10
treatments

SELECT Birthdate , Name
FROM Patient

WHERE NrTreatments > 4 AND
NrTreatments < 10

Answers
PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

15 / 29



Select with multiple restrictions

Query for birth dates and names of patients which have between 4 and 10
treatments

SELECT Birthdate , Name
FROM Patient

WHERE NrTreatments > 4 AND
NrTreatments < 10

Answers

Birthdate Name
1986-06-14 Carla Smith
1989-11-16 John Mill
1971-04-12 Yvonne Potter

15 / 29



Select with restrictions on multiple columns

Query for Birthdate and number of treatments for patients which have less
than or equal to 8 treatments and is born before 01.01.1988

SELECT Birthdate , NrTreatments
FROM Patient

WHERE NrTreatments <= 8 AND
Birthdate < '1988-01-01'

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

16 / 29



Select with restrictions on multiple columns

Query for Birthdate and number of treatments for patients which have less
than or equal to 8 treatments and is born before 01.01.1988

SELECT Birthdate , NrTreatments
FROM Patient

WHERE NrTreatments <= 8 AND
Birthdate < '1988-01-01'

Answers
PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

16 / 29



Select with restrictions on multiple columns

Query for Birthdate and number of treatments for patients which have less
than or equal to 8 treatments and is born before 01.01.1988

SELECT Birthdate , NrTreatments
FROM Patient

WHERE NrTreatments <= 8 AND
Birthdate < '1988-01-01'

Answers
PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

16 / 29



Select with restrictions on multiple columns

Query for Birthdate and number of treatments for patients which have less
than or equal to 8 treatments and is born before 01.01.1988

SELECT Birthdate , NrTreatments
FROM Patient

WHERE NrTreatments <= 8 AND
Birthdate < '1988-01-01'

Answers
PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

16 / 29



Select with restrictions on multiple columns

Query for Birthdate and number of treatments for patients which have less
than or equal to 8 treatments and is born before 01.01.1988

SELECT Birthdate , NrTreatments
FROM Patient

WHERE NrTreatments <= 8 AND
Birthdate < '1988-01-01'

Answers

Birthdate NrTreatments
1986-06-14 8
1971-04-12 6

16 / 29



Select with OR

Query for names of patients who have less than or equal to 5 treatments or
greater than or equal to 15 treatments

SELECT Name
FROM Patient

WHERE NrTreatments <= 5 OR
NrTreatments >= 15

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

17 / 29



Select with OR

Query for names of patients who have less than or equal to 5 treatments or
greater than or equal to 15 treatments

SELECT Name
FROM Patient

WHERE NrTreatments <= 5 OR
NrTreatments >= 15

Answers
PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

17 / 29



Select with OR

Query for names of patients who have less than or equal to 5 treatments or
greater than or equal to 15 treatments

SELECT Name
FROM Patient

WHERE NrTreatments <= 5 OR
NrTreatments >= 15

Answers
PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

17 / 29



Select with OR

Query for names of patients who have less than or equal to 5 treatments or
greater than or equal to 15 treatments

SELECT Name
FROM Patient

WHERE NrTreatments <= 5 OR
NrTreatments >= 15

Answers
PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

17 / 29



Select with OR

Query for names of patients who have less than or equal to 5 treatments or
greater than or equal to 15 treatments

SELECT Name
FROM Patient

WHERE NrTreatments <= 5 OR
NrTreatments >= 15

Answers

Name
Anna Consuma
Peter Young

17 / 29



Select with both AND and OR

Query for names of patients who have between 5 and 15 treatments and is
born after ’2000-01-01’

SELECT Name FROM Patient
WHERE (NrTreatments <= 5 OR

NrTreatments >= 15) AND
Birthdate > '2000-01-01'

Answers

PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

18 / 29



Select with both AND and OR

Query for names of patients who have between 5 and 15 treatments and is
born after ’2000-01-01’

SELECT Name FROM Patient
WHERE (NrTreatments <= 5 OR

NrTreatments >= 15) AND
Birthdate > '2000-01-01'

Answers
PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

18 / 29



Select with both AND and OR

Query for names of patients who have between 5 and 15 treatments and is
born after ’2000-01-01’

SELECT Name FROM Patient
WHERE (NrTreatments <= 5 OR

NrTreatments >= 15) AND
Birthdate > '2000-01-01'

Answers
PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

18 / 29



Select with both AND and OR

Query for names of patients who have between 5 and 15 treatments and is
born after ’2000-01-01’

SELECT Name FROM Patient
WHERE (NrTreatments <= 5 OR

NrTreatments >= 15) AND
Birthdate > '2000-01-01'

Answers
PatientID Name Birthdate NrTreatments
0 Anna Consuma 1978-10-09 19
1 Peter Young 2009-03-01 1
2 Carla Smith 1986-06-14 8
3 Sam Penny 1961-01-09 14
4 John Mill 1989-11-16 8
5 Yvonne Potter 1971-04-12 6

18 / 29



Select with both AND and OR

Query for names of patients who have between 5 and 15 treatments and is
born after ’2000-01-01’

SELECT Name FROM Patient
WHERE (NrTreatments <= 5 OR

NrTreatments >= 15) AND
Birthdate > '2000-01-01'

Answers

Name
Peter Young

18 / 29



Exmples
WHERE

https://dbfiddle.uk/Wu5i_q6E?hide=2

Find date of all observations in Oslo

SELECT observed_time
FROM observation

WHERE location = 'Oslo';

Find common name for all species that are blacklisted or have a global
conservation between 3 and 5.

SELECT common_name
FROM species

WHERE blacklisted OR
(global_conservation >= 3 AND
global_conservation <= 5);

19 / 29

https://dbfiddle.uk/Wu5i_q6E?hide=2


Exmples
WHERE

https://dbfiddle.uk/Wu5i_q6E?hide=2

Find date of all observations in Oslo
SELECT observed_time

FROM observation
WHERE location = 'Oslo';

Find common name for all species that are blacklisted or have a global
conservation between 3 and 5.

SELECT common_name
FROM species

WHERE blacklisted OR
(global_conservation >= 3 AND
global_conservation <= 5);

19 / 29

https://dbfiddle.uk/Wu5i_q6E?hide=2


Exmples
WHERE

https://dbfiddle.uk/Wu5i_q6E?hide=2

Find date of all observations in Oslo
SELECT observed_time

FROM observation
WHERE location = 'Oslo';

Find common name for all species that are blacklisted or have a global
conservation between 3 and 5.

SELECT common_name
FROM species

WHERE blacklisted OR
(global_conservation >= 3 AND
global_conservation <= 5);

19 / 29

https://dbfiddle.uk/Wu5i_q6E?hide=2


Exmples
WHERE

https://dbfiddle.uk/Wu5i_q6E?hide=2

Find date of all observations in Oslo
SELECT observed_time

FROM observation
WHERE location = 'Oslo';

Find common name for all species that are blacklisted or have a global
conservation between 3 and 5.

SELECT common_name
FROM species

WHERE blacklisted OR
(global_conservation >= 3 AND
global_conservation <= 5);

19 / 29

https://dbfiddle.uk/Wu5i_q6E?hide=2


Functions and operators

� Can also use all the normal mathematical operators on values

� I.e. +, -, *, /, etc.
� E.g. if a treatment consists of taking 4 pills, how many pills have each patient
taken?

SELECT Name, NrTreatments * 4 AS NrPills
FROM Patients;

� Note: Can use AS to give the column a name
� How old is each patient that have taken more than 10 pills?

SELECT Name, current_date - Birthdate AS Age
FROM Patients

WHERE NrTreatments * 4 > 10;

� current_date is a constant holding the current date

20 / 29



Functions and operators

� Can also use all the normal mathematical operators on values
� I.e. +, -, *, /, etc.

� E.g. if a treatment consists of taking 4 pills, how many pills have each patient
taken?

SELECT Name, NrTreatments * 4 AS NrPills
FROM Patients;

� Note: Can use AS to give the column a name
� How old is each patient that have taken more than 10 pills?

SELECT Name, current_date - Birthdate AS Age
FROM Patients

WHERE NrTreatments * 4 > 10;

� current_date is a constant holding the current date

20 / 29



Functions and operators

� Can also use all the normal mathematical operators on values
� I.e. +, -, *, /, etc.
� E.g. if a treatment consists of taking 4 pills, how many pills have each patient
taken?

SELECT Name, NrTreatments * 4 AS NrPills
FROM Patients;

� Note: Can use AS to give the column a name
� How old is each patient that have taken more than 10 pills?

SELECT Name, current_date - Birthdate AS Age
FROM Patients

WHERE NrTreatments * 4 > 10;

� current_date is a constant holding the current date

20 / 29



Functions and operators

� Can also use all the normal mathematical operators on values
� I.e. +, -, *, /, etc.
� E.g. if a treatment consists of taking 4 pills, how many pills have each patient
taken?

SELECT Name, NrTreatments * 4 AS NrPills
FROM Patients;

� Note: Can use AS to give the column a name
� How old is each patient that have taken more than 10 pills?

SELECT Name, current_date - Birthdate AS Age
FROM Patients

WHERE NrTreatments * 4 > 10;

� current_date is a constant holding the current date

20 / 29



Functions and operators

� Can also use all the normal mathematical operators on values
� I.e. +, -, *, /, etc.
� E.g. if a treatment consists of taking 4 pills, how many pills have each patient
taken?

SELECT Name, NrTreatments * 4 AS NrPills
FROM Patients;

� Note: Can use AS to give the column a name

� How old is each patient that have taken more than 10 pills?

SELECT Name, current_date - Birthdate AS Age
FROM Patients

WHERE NrTreatments * 4 > 10;

� current_date is a constant holding the current date

20 / 29



Functions and operators

� Can also use all the normal mathematical operators on values
� I.e. +, -, *, /, etc.
� E.g. if a treatment consists of taking 4 pills, how many pills have each patient
taken?

SELECT Name, NrTreatments * 4 AS NrPills
FROM Patients;

� Note: Can use AS to give the column a name
� How old is each patient that have taken more than 10 pills?

SELECT Name, current_date - Birthdate AS Age
FROM Patients

WHERE NrTreatments * 4 > 10;

� current_date is a constant holding the current date

20 / 29



Functions and operators

� Can also use all the normal mathematical operators on values
� I.e. +, -, *, /, etc.
� E.g. if a treatment consists of taking 4 pills, how many pills have each patient
taken?

SELECT Name, NrTreatments * 4 AS NrPills
FROM Patients;

� Note: Can use AS to give the column a name
� How old is each patient that have taken more than 10 pills?

SELECT Name, current_date - Birthdate AS Age
FROM Patients

WHERE NrTreatments * 4 > 10;

� current_date is a constant holding the current date
20 / 29



Aggregates: Sum, avg, min and max and count

� Sometimes we want to find the minimum, maximum, sum or average of all
values in a column

� This can be done by using the aggregate functions min, max, sum, avg
� E.g. what is the average number of treatments?

SELECT avg(NrTreatments) AS avg_nr_treatments
FROM Patients;

� Can use count(*) to count the number of rows in the result of a query
� E.g. how many patients are there born after '1990-01-01'?

SELECT count(*) AS avg_nr_treatments
FROM Patients

WHERE Birthdate > '1990-01-01';

21 / 29



Aggregates: Sum, avg, min and max and count

� Sometimes we want to find the minimum, maximum, sum or average of all
values in a column

� This can be done by using the aggregate functions min, max, sum, avg

� E.g. what is the average number of treatments?

SELECT avg(NrTreatments) AS avg_nr_treatments
FROM Patients;

� Can use count(*) to count the number of rows in the result of a query
� E.g. how many patients are there born after '1990-01-01'?

SELECT count(*) AS avg_nr_treatments
FROM Patients

WHERE Birthdate > '1990-01-01';

21 / 29



Aggregates: Sum, avg, min and max and count

� Sometimes we want to find the minimum, maximum, sum or average of all
values in a column

� This can be done by using the aggregate functions min, max, sum, avg
� E.g. what is the average number of treatments?

SELECT avg(NrTreatments) AS avg_nr_treatments
FROM Patients;

� Can use count(*) to count the number of rows in the result of a query
� E.g. how many patients are there born after '1990-01-01'?

SELECT count(*) AS avg_nr_treatments
FROM Patients

WHERE Birthdate > '1990-01-01';

21 / 29



Aggregates: Sum, avg, min and max and count

� Sometimes we want to find the minimum, maximum, sum or average of all
values in a column

� This can be done by using the aggregate functions min, max, sum, avg
� E.g. what is the average number of treatments?

SELECT avg(NrTreatments) AS avg_nr_treatments
FROM Patients;

� Can use count(*) to count the number of rows in the result of a query

� E.g. how many patients are there born after '1990-01-01'?

SELECT count(*) AS avg_nr_treatments
FROM Patients

WHERE Birthdate > '1990-01-01';

21 / 29



Aggregates: Sum, avg, min and max and count

� Sometimes we want to find the minimum, maximum, sum or average of all
values in a column

� This can be done by using the aggregate functions min, max, sum, avg
� E.g. what is the average number of treatments?

SELECT avg(NrTreatments) AS avg_nr_treatments
FROM Patients;

� Can use count(*) to count the number of rows in the result of a query
� E.g. how many patients are there born after '1990-01-01'?

SELECT count(*) AS avg_nr_treatments
FROM Patients

WHERE Birthdate > '1990-01-01';

21 / 29



Aggregates: Sum, avg, min and max and count

� Sometimes we want to find the minimum, maximum, sum or average of all
values in a column

� This can be done by using the aggregate functions min, max, sum, avg
� E.g. what is the average number of treatments?

SELECT avg(NrTreatments) AS avg_nr_treatments
FROM Patients;

� Can use count(*) to count the number of rows in the result of a query
� E.g. how many patients are there born after '1990-01-01'?

SELECT count(*) AS avg_nr_treatments
FROM Patients

WHERE Birthdate > '1990-01-01';

21 / 29



Exmples
WHERE

https://dbfiddle.uk/Wu5i_q6E?hide=2

How old are the observations in Oslo?

SELECT current_date - observed_time AS age
FROM observation

WHERE location = 'Oslo';

What is the average local conservation for non-blacklisted species?

SELECT avg(local_conservation) AS avg_local
FROM species

WHERE NOT blacklisted;

22 / 29

https://dbfiddle.uk/Wu5i_q6E?hide=2


Exmples
WHERE

https://dbfiddle.uk/Wu5i_q6E?hide=2

How old are the observations in Oslo?
SELECT current_date - observed_time AS age

FROM observation
WHERE location = 'Oslo';

What is the average local conservation for non-blacklisted species?

SELECT avg(local_conservation) AS avg_local
FROM species

WHERE NOT blacklisted;

22 / 29

https://dbfiddle.uk/Wu5i_q6E?hide=2


Exmples
WHERE

https://dbfiddle.uk/Wu5i_q6E?hide=2

How old are the observations in Oslo?
SELECT current_date - observed_time AS age

FROM observation
WHERE location = 'Oslo';

What is the average local conservation for non-blacklisted species?

SELECT avg(local_conservation) AS avg_local
FROM species

WHERE NOT blacklisted;

22 / 29

https://dbfiddle.uk/Wu5i_q6E?hide=2


Exmples
WHERE

https://dbfiddle.uk/Wu5i_q6E?hide=2

How old are the observations in Oslo?
SELECT current_date - observed_time AS age

FROM observation
WHERE location = 'Oslo';

What is the average local conservation for non-blacklisted species?

SELECT avg(local_conservation) AS avg_local
FROM species

WHERE NOT blacklisted;

22 / 29

https://dbfiddle.uk/Wu5i_q6E?hide=2


SELECT in a nutshell

� The FROM-clause states which table(s) should be used to answer the query

� Just a list of table names
� The WHERE-clause picks out which rows should be part of the answer

� Evaluates to ether true or false for each row
� Similar to an expression in a Python’s if-test
� Variables are column names denoting the row’s value in that column
� Use parenthesis to group statements

� The SELECT-clause selects which columns to be part of the answer

� Can also reorder columns
� Use * to select all columns
� Can use aggregates (min, max, avg, sum and count)

23 / 29



SELECT in a nutshell

� The FROM-clause states which table(s) should be used to answer the query
� Just a list of table names

� The WHERE-clause picks out which rows should be part of the answer

� Evaluates to ether true or false for each row
� Similar to an expression in a Python’s if-test
� Variables are column names denoting the row’s value in that column
� Use parenthesis to group statements

� The SELECT-clause selects which columns to be part of the answer

� Can also reorder columns
� Use * to select all columns
� Can use aggregates (min, max, avg, sum and count)

23 / 29



SELECT in a nutshell

� The FROM-clause states which table(s) should be used to answer the query
� Just a list of table names

� The WHERE-clause picks out which rows should be part of the answer

� Evaluates to ether true or false for each row
� Similar to an expression in a Python’s if-test
� Variables are column names denoting the row’s value in that column
� Use parenthesis to group statements

� The SELECT-clause selects which columns to be part of the answer

� Can also reorder columns
� Use * to select all columns
� Can use aggregates (min, max, avg, sum and count)

23 / 29



SELECT in a nutshell

� The FROM-clause states which table(s) should be used to answer the query
� Just a list of table names

� The WHERE-clause picks out which rows should be part of the answer
� Evaluates to ether true or false for each row

� Similar to an expression in a Python’s if-test
� Variables are column names denoting the row’s value in that column
� Use parenthesis to group statements

� The SELECT-clause selects which columns to be part of the answer

� Can also reorder columns
� Use * to select all columns
� Can use aggregates (min, max, avg, sum and count)

23 / 29



SELECT in a nutshell

� The FROM-clause states which table(s) should be used to answer the query
� Just a list of table names

� The WHERE-clause picks out which rows should be part of the answer
� Evaluates to ether true or false for each row
� Similar to an expression in a Python’s if-test

� Variables are column names denoting the row’s value in that column
� Use parenthesis to group statements

� The SELECT-clause selects which columns to be part of the answer

� Can also reorder columns
� Use * to select all columns
� Can use aggregates (min, max, avg, sum and count)

23 / 29



SELECT in a nutshell

� The FROM-clause states which table(s) should be used to answer the query
� Just a list of table names

� The WHERE-clause picks out which rows should be part of the answer
� Evaluates to ether true or false for each row
� Similar to an expression in a Python’s if-test
� Variables are column names denoting the row’s value in that column

� Use parenthesis to group statements
� The SELECT-clause selects which columns to be part of the answer

� Can also reorder columns
� Use * to select all columns
� Can use aggregates (min, max, avg, sum and count)

23 / 29



SELECT in a nutshell

� The FROM-clause states which table(s) should be used to answer the query
� Just a list of table names

� The WHERE-clause picks out which rows should be part of the answer
� Evaluates to ether true or false for each row
� Similar to an expression in a Python’s if-test
� Variables are column names denoting the row’s value in that column
� Use parenthesis to group statements

� The SELECT-clause selects which columns to be part of the answer

� Can also reorder columns
� Use * to select all columns
� Can use aggregates (min, max, avg, sum and count)

23 / 29



SELECT in a nutshell

� The FROM-clause states which table(s) should be used to answer the query
� Just a list of table names

� The WHERE-clause picks out which rows should be part of the answer
� Evaluates to ether true or false for each row
� Similar to an expression in a Python’s if-test
� Variables are column names denoting the row’s value in that column
� Use parenthesis to group statements

� The SELECT-clause selects which columns to be part of the answer

� Can also reorder columns
� Use * to select all columns
� Can use aggregates (min, max, avg, sum and count)

23 / 29



SELECT in a nutshell

� The FROM-clause states which table(s) should be used to answer the query
� Just a list of table names

� The WHERE-clause picks out which rows should be part of the answer
� Evaluates to ether true or false for each row
� Similar to an expression in a Python’s if-test
� Variables are column names denoting the row’s value in that column
� Use parenthesis to group statements

� The SELECT-clause selects which columns to be part of the answer
� Can also reorder columns

� Use * to select all columns
� Can use aggregates (min, max, avg, sum and count)

23 / 29



SELECT in a nutshell

� The FROM-clause states which table(s) should be used to answer the query
� Just a list of table names

� The WHERE-clause picks out which rows should be part of the answer
� Evaluates to ether true or false for each row
� Similar to an expression in a Python’s if-test
� Variables are column names denoting the row’s value in that column
� Use parenthesis to group statements

� The SELECT-clause selects which columns to be part of the answer
� Can also reorder columns
� Use * to select all columns

� Can use aggregates (min, max, avg, sum and count)

23 / 29



SELECT in a nutshell

� The FROM-clause states which table(s) should be used to answer the query
� Just a list of table names

� The WHERE-clause picks out which rows should be part of the answer
� Evaluates to ether true or false for each row
� Similar to an expression in a Python’s if-test
� Variables are column names denoting the row’s value in that column
� Use parenthesis to group statements

� The SELECT-clause selects which columns to be part of the answer
� Can also reorder columns
� Use * to select all columns
� Can use aggregates (min, max, avg, sum and count)

23 / 29



Notes on writing SQL

SQL does not care about indent and newlines like Python, so

SELECT Birthdate
FROM Patients

WHERE NrTreatments > 5;

SELECT Birthdate FROM Patients
WHERE NrTreatments > 5;

SELECT Birthdate
FROM Patients WHERE NrTreatments > 5;

SELECT Birthdate FROM Patients WHERE NrTreatments > 5;

are all allowed and represents the same query.

24 / 29



Notes on writing SQL

SQL does not care about indent and newlines like Python, so

SELECT Birthdate
FROM Patients

WHERE NrTreatments > 5;

SELECT Birthdate FROM Patients
WHERE NrTreatments > 5;

SELECT Birthdate
FROM Patients WHERE NrTreatments > 5;

SELECT Birthdate FROM Patients WHERE NrTreatments > 5;

are all allowed and represents the same query.

24 / 29



Notes on writing SQL

SQL does not care about indent and newlines like Python, so

SELECT Birthdate
FROM Patients

WHERE NrTreatments > 5;

SELECT Birthdate FROM Patients
WHERE NrTreatments > 5;

SELECT Birthdate
FROM Patients WHERE NrTreatments > 5;

SELECT Birthdate FROM Patients WHERE NrTreatments > 5;

are all allowed and represents the same query.

24 / 29



Notes on writing SQL

SQL does not care about indent and newlines like Python, so

SELECT Birthdate
FROM Patients

WHERE NrTreatments > 5;

SELECT Birthdate FROM Patients
WHERE NrTreatments > 5;

SELECT Birthdate
FROM Patients WHERE NrTreatments > 5;

SELECT Birthdate FROM Patients WHERE NrTreatments > 5;

are all allowed and represents the same query.

24 / 29



Notes on writing SQL

SQL does not care about indent and newlines like Python, so

SELECT Birthdate
FROM Patients

WHERE NrTreatments > 5;

SELECT Birthdate FROM Patients
WHERE NrTreatments > 5;

SELECT Birthdate
FROM Patients WHERE NrTreatments > 5;

SELECT Birthdate FROM Patients WHERE NrTreatments > 5;

are all allowed and represents the same query.

24 / 29



Notes on writing SQL

� For SQL-keywords and names of tables and columns, SQL is case-insensitive

� That is, it does not distinguish between upper and lower case characters
� So

� SELECT Name FROM Patients;
� select name from patients;

are equivalent queries
� However, SQL is case-sensitive for all values

� so 'Anna' and 'anna' are two different values

� Use -- (two dashes) to write a comment (ignored by the database), e.g.

SELECT Name --This is a comment
FROM Patients;

25 / 29



Notes on writing SQL

� For SQL-keywords and names of tables and columns, SQL is case-insensitive
� That is, it does not distinguish between upper and lower case characters

� So
� SELECT Name FROM Patients;
� select name from patients;

are equivalent queries
� However, SQL is case-sensitive for all values

� so 'Anna' and 'anna' are two different values

� Use -- (two dashes) to write a comment (ignored by the database), e.g.

SELECT Name --This is a comment
FROM Patients;

25 / 29



Notes on writing SQL

� For SQL-keywords and names of tables and columns, SQL is case-insensitive
� That is, it does not distinguish between upper and lower case characters
� So

� SELECT Name FROM Patients;
� select name from patients;

are equivalent queries

� However, SQL is case-sensitive for all values
� so 'Anna' and 'anna' are two different values

� Use -- (two dashes) to write a comment (ignored by the database), e.g.

SELECT Name --This is a comment
FROM Patients;

25 / 29



Notes on writing SQL

� For SQL-keywords and names of tables and columns, SQL is case-insensitive
� That is, it does not distinguish between upper and lower case characters
� So

� SELECT Name FROM Patients;
� select name from patients;

are equivalent queries
� However, SQL is case-sensitive for all values

� so 'Anna' and 'anna' are two different values

� Use -- (two dashes) to write a comment (ignored by the database), e.g.

SELECT Name --This is a comment
FROM Patients;

25 / 29



Notes on writing SQL

� For SQL-keywords and names of tables and columns, SQL is case-insensitive
� That is, it does not distinguish between upper and lower case characters
� So

� SELECT Name FROM Patients;
� select name from patients;

are equivalent queries
� However, SQL is case-sensitive for all values

� so 'Anna' and 'anna' are two different values

� Use -- (two dashes) to write a comment (ignored by the database), e.g.

SELECT Name --This is a comment
FROM Patients;

25 / 29



Translating a question into SQL

“What are the names of the patients that have more than 5 treatments?”

“Select the names of the patients that have more than 5 treatments”

“Select the Names from the Patients table where 5 < NrTreatments”

“Select the Names from the Patients table where 5 < NrTreatments”

SELECT Name FROM Patients WHERE 5 < NrTreatments;

(See SQL Queries for Mere Mortals for more examples)

26 / 29



Translating a question into SQL

“What are the names of the patients that have more than 5 treatments?”

“Select the names of the patients that have more than 5 treatments”

“Select the Names from the Patients table where 5 < NrTreatments”

“Select the Names from the Patients table where 5 < NrTreatments”

SELECT Name FROM Patients WHERE 5 < NrTreatments;

(See SQL Queries for Mere Mortals for more examples)

26 / 29



Translating a question into SQL

“What are the names of the patients that have more than 5 treatments?”

“Select the names of the patients that have more than 5 treatments”

“Select the Names from the Patients table where 5 < NrTreatments”

“Select the Names from the Patients table where 5 < NrTreatments”

SELECT Name FROM Patients WHERE 5 < NrTreatments;

(See SQL Queries for Mere Mortals for more examples)

26 / 29



Translating a question into SQL

“What are the names of the patients that have more than 5 treatments?”

“Select the names of the patients that have more than 5 treatments”

“Select the Names from the Patients table where 5 < NrTreatments”

“Select the Names from the Patients table where 5 < NrTreatments”

SELECT Name FROM Patients WHERE 5 < NrTreatments;

(See SQL Queries for Mere Mortals for more examples)

26 / 29



Translating a question into SQL

“What are the names of the patients that have more than 5 treatments?”

“Select the names of the patients that have more than 5 treatments”

“Select the Names from the Patients table where 5 < NrTreatments”

“Select the Names from the Patients table where 5 < NrTreatments”

SELECT Name FROM Patients WHERE 5 < NrTreatments;

(See SQL Queries for Mere Mortals for more examples)

26 / 29



Programs generating SQL

If one goes to http://finn.no’s ”Bolig til
salgs” and put:

� Sted: Oslo eller Akershus
� Makspris: 5,000,000,-
� Minste pris: 3,000,000,-
� Antall rom: 3

and click on ”Søk”

It will generate an SQL-query looking
something like this:

SELECT *
FROM boliger

WHERE (sted = 'Oslo'
OR sted = 'Akershus ')

AND pris <= 5000000
AND pris >= 3000000
AND ant_rom >= 3;

27 / 29

http://finn.no


Programs generating SQL

If one goes to http://finn.no’s ”Bolig til
salgs” and put:

� Sted: Oslo eller Akershus

� Makspris: 5,000,000,-
� Minste pris: 3,000,000,-
� Antall rom: 3

and click on ”Søk”

It will generate an SQL-query looking
something like this:

SELECT *
FROM boliger

WHERE (sted = 'Oslo'
OR sted = 'Akershus ')

AND pris <= 5000000
AND pris >= 3000000
AND ant_rom >= 3;

27 / 29

http://finn.no


Programs generating SQL

If one goes to http://finn.no’s ”Bolig til
salgs” and put:

� Sted: Oslo eller Akershus
� Makspris: 5,000,000,-

� Minste pris: 3,000,000,-
� Antall rom: 3

and click on ”Søk”

It will generate an SQL-query looking
something like this:

SELECT *
FROM boliger

WHERE (sted = 'Oslo'
OR sted = 'Akershus ')

AND pris <= 5000000

AND pris >= 3000000
AND ant_rom >= 3;

27 / 29

http://finn.no


Programs generating SQL

If one goes to http://finn.no’s ”Bolig til
salgs” and put:

� Sted: Oslo eller Akershus
� Makspris: 5,000,000,-
� Minste pris: 3,000,000,-

� Antall rom: 3

and click on ”Søk”

It will generate an SQL-query looking
something like this:

SELECT *
FROM boliger

WHERE (sted = 'Oslo'
OR sted = 'Akershus ')

AND pris <= 5000000
AND pris >= 3000000

AND ant_rom >= 3;

27 / 29

http://finn.no


Programs generating SQL

If one goes to http://finn.no’s ”Bolig til
salgs” and put:

� Sted: Oslo eller Akershus
� Makspris: 5,000,000,-
� Minste pris: 3,000,000,-
� Antall rom: 3

and click on ”Søk”

It will generate an SQL-query looking
something like this:

SELECT *
FROM boliger

WHERE (sted = 'Oslo'
OR sted = 'Akershus ')

AND pris <= 5000000
AND pris >= 3000000
AND ant_rom >= 3;

27 / 29

http://finn.no


CREATE and INSERT (not part of curriculum)

� SQL is used for all interaction with the database
� To create a table, we use the CREATE-command
� E.g. to create the Patient-table, we can write:

CREATE TABLE Patients(
PatientID int, Name text, Birthdate date, NrTreatments int

);

� Similarly we can use INSERT to insert data into a table
� E.g. to add the data into the Patients-table, we can write:

INSERT INTO Patients VALUES
(0, 'Anna Consuma', '1978-10-09', 19),
(1, 'Peter Young', '2009-03-01', 1),
(2, 'Carla Smith', '1986-06-14', 8),
(3, 'Sam Penny', '1961-01-09', 14),
(4, 'John Mill', '1989-11-16', 8),
(5, 'Yvonne Potter', '1971-04-12', 6);

28 / 29



CREATE and INSERT (not part of curriculum)

� SQL is used for all interaction with the database
� To create a table, we use the CREATE-command
� E.g. to create the Patient-table, we can write:

CREATE TABLE Patients(
PatientID int, Name text, Birthdate date, NrTreatments int

);

� Similarly we can use INSERT to insert data into a table
� E.g. to add the data into the Patients-table, we can write:

INSERT INTO Patients VALUES
(0, 'Anna Consuma', '1978-10-09', 19),
(1, 'Peter Young', '2009-03-01', 1),
(2, 'Carla Smith', '1986-06-14', 8),
(3, 'Sam Penny', '1961-01-09', 14),
(4, 'John Mill', '1989-11-16', 8),
(5, 'Yvonne Potter', '1971-04-12', 6);

28 / 29



CREATE and INSERT (not part of curriculum)

� SQL is used for all interaction with the database
� To create a table, we use the CREATE-command
� E.g. to create the Patient-table, we can write:

CREATE TABLE Patients(
PatientID int, Name text, Birthdate date, NrTreatments int

);

� Similarly we can use INSERT to insert data into a table
� E.g. to add the data into the Patients-table, we can write:

INSERT INTO Patients VALUES
(0, 'Anna Consuma', '1978-10-09', 19),
(1, 'Peter Young', '2009-03-01', 1),
(2, 'Carla Smith', '1986-06-14', 8),
(3, 'Sam Penny', '1961-01-09', 14),
(4, 'John Mill', '1989-11-16', 8),
(5, 'Yvonne Potter', '1971-04-12', 6);

28 / 29



Joins (not part of curriculum)

� Remember that be often use many tables (e.g. to avoid data duplicatin)
� Often want information that come from multiple tables
� E.g.: When and where was blacklisted species observed?
� Can use JOIN to combine two tables into one
� To answer the above question, we can write the following query:

SELECT observed_time , observed_lat , observed_lon , location
FROM species JOIN observation ON sid = species

WHERE blacklisted;

-- OR, equivalently:

SELECT observed_time , observed_lat , observed_lon , location
FROM species , observation

WHERE sid = species AND blacklisted;

29 / 29



Joins (not part of curriculum)

� Remember that be often use many tables (e.g. to avoid data duplicatin)
� Often want information that come from multiple tables
� E.g.: When and where was blacklisted species observed?
� Can use JOIN to combine two tables into one
� To answer the above question, we can write the following query:

SELECT observed_time , observed_lat , observed_lon , location
FROM species JOIN observation ON sid = species

WHERE blacklisted;

-- OR, equivalently:

SELECT observed_time , observed_lat , observed_lon , location
FROM species , observation

WHERE sid = species AND blacklisted;

29 / 29


