

Information technology in the health sector (DIGHEL4360)

Security II – Security for the World Wide Web

Recapitulation: The Internet

- All communication (e.g., surfing on the Web) goes through different networks
- Some providers might have malicious intents
- Government agencies collect data at large network nodes

Confidential Data

Enter card details

Confidential Communication

Confidential Communication

Classical Cipher

• Caesar Cipher (50 B.C.)

6

Encryption

Key = 3

7

Symmetric Encryption

Caesar Cipher

- Which plaintext is encrypted here?
 - Ymjvznhpgwtbsktcozruxtajwymjqfeditl.
- Try each possible key:
 - 1. Xliuymgofvsarjsbnyqtwszivxlipedchsk.
 - Wkhtxlfneurzqiramxpsvryhuwkhodcbgrj.
 - 3. Vjgswkemdtqyphqzlworuqxgtvjgncbafqi.
 - 4. Uifrvjdlcspxogpykvnqtpwfsuifmbazeph.
 - 5. Thequickbrownfoxjumpsoverthelazydog.
 - 6. Sgdpthbjaqnvmenwitlornudqsgdkzyxcnf.
 - 7. Rfcosgaizpmuldmvhsknqmtcprfcjyxwbme.
 - 8. Qebnrfzhyoltkclugrjmplsboqebixwvald.
 - 9. Pdamqeygxnksjbktfqilokranpdahwvuzkc.
 - 10. ...

Testing all possible values (e.g. of a key) is called

Brute Force Attack

Enigma

- Invented 1918 by Arthur Scherbius
- Electro-mechanical rotor cipher machines
- Used by the German forces during WWII
- Implements a polyalphabetical substitution cipher
- Number of possible keys: 150,738,274,937,250

nage Source: http://www.cryptomuseum.com/, Wikipe

UiO: University of Oslo

Enigma

- Encryption was broken by Polish and British codebreakers in Bletchley Park
- Most famous member:
 - Alan Turing

History of Cryptography

 Simon Singh: The Code Book – The Secret History of Codes and Codebreaking

Modern symmetric Encryption

- Advanced Encryption Standard (AES)
 - AES (Rijndael) developed by Belgian cryptographers
 - Standardized by NIST in 2000
 - Keys, plain texts and cipher texts are binary data blocks (not letters)
 - Key length: 128, 192, 256 bit (≈ 32 letters)
- Brute force attack on 128 or 256 bit key?
 (Assumption: breaking 56 bit in 1 second
 → in reality more)

Key length	Duration
56 bit	1 s
64 bit	4 m
80 bit	194 d
112 bit	10 ⁹ a
128 bit	10 ¹⁴ a
192 bit	10 ³³ a
256 bit	10 ⁵² a

HTTPS / TLS / SSL

 Protects all communication from an adversary eavesdropping on the network.

Symmetric Encryption

• Remaining problem: key exchange

Diffie Hellman Key exchange

- Creating common (symmetric) key only known to the communication partners
- Created by Whitfield Diffie and Martin Hellman in 1976

Illustration of DH Key Exchange

Diffie Hellman Key exchange

- Alice and Bob agree on (public parameters):
 - Large prime number p
 - Generator g (i.e., g is primitive root mod p)
- Alice chooses a random number a and sends g^a mod p to Bob
- Bob chooses a random number b and send g^b mod p to Alice
- Calculation of common secret:
 - Alice: $(g^b)^a \mod p$ - Bob: $(g^a)^b \mod p$ = $g^{ab} \mod p = K$
- Mathematical property of the power/mod function:
 - an attacker can **not** calculate a or b from g^a or g^b (discrete logarithm problem)
 - K only known to Alice and Bob

Still a Problem ...

• But how can you be sure who you are talking to?

Certificates

Certificates

Certificates – more technical

- The certificate contains:
 - An identifier (host name of the Web server)
 - A cryptographic (public) key
- The CA creates a digital signature that
 - certifies that the CA has verified the identity of the "subject" (here: uio.no)
- The recipient of a digital signature:
 - must verify that the signature is valid
 - This requires the public key of the issuer

Certificates

Trusted Certificates built-in in the browser

Phishing

- Phishing = "Password Fishing"
 - Victim receives email with link to fake Web site and clicks link
 - Victim enters confidential data (e.g., passwords) assuming it is on a trusted Web site
 - Attacker misuses the entered data
- The tricks ...
 - Sending mass emails is very easy and cheap
 - Sender addresses in emails are not authenticated
 - Creating Web sites and mails impersonating a trusted source is easy
 - Hyperlinks to fake Web sites can be hidden in HTML mails

But we used HTTPS ...

And the Certificate?

HTTP overview

- HTTP: hypertext transfer protocol
- Client/server model:
 - client: browser that requests, receives,
 (using HTTP protocol) and "displays"
 Web objects
 - server: Web server sends (using HTTP protocol) objects in response to requests

Source: J.F Kurose and K.W. Ross: Computer Networking

UiO: University of Oslo

HTTP Request Message

- two types of HTTP messages: request, response
- HTTP request message:
 - ASCII (human-readable format)

```
request line (GET, POST, HEAD commands)
```

carriage return, line feed at start of line indicates end of header lines

carriage return character line-feed character

HTTP Response Message

Source: J.F Kurose and K.W. Ross: Computer Networking

UiO: University of Oslo

Maintaining user/server state: cookies

- HTTP GET/response interaction is stateless
- server maintains no information about past client requests
- no notion of multi-step exchanges of HTTP messages to complete a Web "transaction"
 - no need for client/server to track "state" of multi-step exchange
 - all HTTP requests are independent of each other
 - no need for client/server to "recover" from a partially-completed-but-never-completelycompleted transaction
- However ...
 - Some applications require a "state", e.g.
 - Shopping: Which items are in the shopping cart?
 - Banking: Is the user already logged in?

Maintaining user/server state: cookies

Session Stealing

Bob = cookie123

Cookie Stealing:

- Network eavesdropping (e.g. inside a WIFI of via ARP Spoofing)
- Redirecting (e.g. DNS Poisoning)
- Cross-site scripting

Web Tracking

- Cookies allow to identify users on consecutive "visits" (after 1 min, but also after 1 month)
 - Required for Web shops, banking etc.
 - Enables also tracking of users
- Especially dangerous: "third-party" cookies
 - Used mainly by advertisement networks
 - Can track users over different web pages
 - "Learn" user preferences
 - Show tailored advertisement

Summary

- Encryption is an ancient concept for ensuring data confidentiality
- Key exchange and origin authenticity (who am I talking to) are rather modern methods
- HTTPS ensures confidentiality and authenticity for the Web
- Attention: only ensures that the browser is communicating to the hostname/domain shown in the address bar \rightarrow check the hostname
- HTTPS does not guarantee the trustworthiness of the Web page
- Cookies are an essential part of the Web, but can also be misused for user tracking