Experiment design

Bandit problems and Markov decision processes

Christos Dimitrakakis

Chalmers

November 6, 2018

Bandit problems
Planning: Heuristics and exact solutions

Contextual Bandits

The reinforcement learning problem

Learning how to act optimally in an unknown world through interaction and
reinforcement.

» Optimal behaviour implicitly defined through rewards.

» Learning about an unknown world.

» Interactive data collection.

Sequential problems

» Observation x;.
» Decision a;.

» Stepst=1,..., T.

General utility function
Utility U(x1, x2, ..., xT,31,...,aT)

Linear utility function

-
U(xi, X2y ...y XT,81,...,3T) = ZP(X“ at).
=1

This is the standard reinforcement learning setting

Sequential problems: full observation

Example 1

> n meteorological stations {u; | i=1,...,n}

» The i-th station predicts rain Py, (y: | y1,. -, Y1)

» Observation x:: the predictions of all stations.
» Decision a.
> Stepst=1,..., T.

Linear utility function

Reward function is p(x, a:) = I{x: = a:} simply rewarding correct predictions
with utility being

T
U(.y17y27"'7_y7—7 317"'737—) = Zp(.yf7 at)7
t=1

the total number of correct predictions.

The n meteorologists problem is simple, as:
> You always see their predictions, as well as the weather, no matter whether
you bike or take the tram (full information)
» Your actions do not influence their predictions (independence events)
In the remainder, we'll see two settings where decisions are made with either

partial information or in a dynamical system. Both of these settings can be
formalised with Markov decision processes.

Experimental design and Markov decision processes

The following problems
» Shortest path problems.
» Optimal stopping problems.
» Reinforcement learning problems.
» Experiment design (clinical trial) problems
> Advertising.

can be all formalised as Markov decision processes.

Applications

v

Robotics.
» Economics.

Automatic control.

v

Resource allocation

v

Bandit problems

Bandit problems

fx)

Applications

» Efficient optimisation.

/\\ f{x) = sincx

Bandit problems

Applications

» Efficient optimisation. ‘ \ [
> Online advertising. 008 e

Bandit problems

Applications

» Efficient optimisation.

> Online advertising.

» Clinical trials.

o

Ultrasound

Bandit problems

Applications

» Efficient optimisation.
> Online advertising.

> Clinical trials.

» ROBOT SCIENTIST.

The stochastic n-armed bandit problem

Actions and rewards

» A set of actions A= {1,...,n}.
» Each action gives you a random reward with distribution P(r; | a; = /).

» The expected reward of the i-th arm is p; £ E(r: | a: = i).

Interaction at time t

1. You choose an action a;: € A.

2. You observe a random reward r; drawn from the i~th arm.
The utility is the sum of the rewards obtained

UéZI’t.
t

We must maximise the expected utility, without knowing the values p;.

Policy

Definition 2 (Policies)
A policy 7 is an algorithm for taking actions given the observed history
he® a1, n,...,a

P (3t+1 | ht)

is the probability of the next action a;1.

Exercise 1
Why should our action depend on the complete history?

A The next reward depends on all the actions we have taken.
B We don’t know which arm gives the highest reward.

C The next reward depends on all the previous rewards.

D The next reward depends on the complete history.

E No idea.

Policy

Definition 2 (Policies)
A policy 7 is an algorithm for taking actions given the observed history
ht’é ay, rn,...,ae I

P™(aes1 | he)

is the probability of the next action ag;1.

Example 3 (The expected utility of a uniformly random policy)
If P"(ae1 | ©) = 1/n for all t, then

Policy

Definition 2 (Policies)
A policy 7 is an algorithm for taking actions given the observed history

htéal,rl,...,at,rt
PW(BH—I | ht)

is the probability of the next action at1.

Example 3 (The expected utility of a uniformly random policy)
If P™(ae1 |) = 1/n for all t, then

E”U:E”(ZT:) ZE"& ZE “pi=— I_Zn;p,-

t=1 t=1 i=1

Policy

Definition 2 (Policies)
A policy 7 is an algorithm for taking actions given the observed history

he 2 a1, n,..., a1
P (acr | he)

is the probability of the next action a;1.

The expected utility of a general policy

Policy

Definition 2 (Policies)
A policy 7 is an algorithm for taking actions given the observed history

he 2 a1, n,..., a1
P (acr | he)

is the probability of the next action a;1.

The expected utility of a general policy

E™U=FE" (zT: rt> -y E™(r:) (1.1)

t=1 t=1

Policy

Definition 2 (Policies)
A policy 7 is an algorithm for taking actions given the observed history

he 2 a1, n,..., a1
P (acr | he)

is the probability of the next action a;1.

The expected utility of a general policy

E™U=FE" (zT: rt> -y E™(r:) (1.1)

t=1 t=1

=> " E(re|a) D> P(ar | he1) P (hes)

t=1 a;€.A he_q

Bernoulli bandits

Decision-theoretic approach

v

Assume r | a; = i ~ Py,;, with 0; € ©.

v

Define prior belief &1 on 6.

v

For each step t, select action a; to maximise

Tt
Ee, (Ut | a) = Ee, <Z Vrerk
k=1

)

» Obtain reward r;.

v

Calculate the next belief
Eer1 = &(- | ar, 1t)

How can we implement this?

A simple heuristic for the unknown reward case

Say you keep a running average of the reward obtained by each arm

~

et,i = Rt,i/nt,i

> n.; the number of times you played arm i
> R the total reward received from i.

Whenever you play a; = i:
Rit1,i= Rei+ r, Nep1,i = nei+ 1.

Greedy policy:
ar = arg max 6 ;.

i

What should the initial values ng ;, Ro,; be?

Bayesian inference on Bernoulli bandits

» Likelihood: Pg(r: =1) = 6.
> Prior: £(0) < 62711 —0)°"1 (i.e. Beta(a, B)).

3r i
2r i
ir 4
0 L L

0 0.2 0.4 0.6 0.8 1

Figure: Prior belief £ about the mean reward 6.

Bayesian inference on Bernoulli bandits

For a sequence r=r1,...,r, = Po(r) x 0,#1(”(1 — g;)*0m

10

— prior
N\ —likelihood
8l |

0 0.2 0.4 0.6 0.8 1

Figure: Prior belief £ about € and likelihood of 6 for 100 plays with 70 1s.

Bayesian inference on Bernoulli bandits

Posterior: Beta(aw + #1(x), 8 + #0(1)).

10
— prior
— likelihood
8 — posterior ||
6 4
a4k 4
ok i
O L L
0 0.2 0.4 0.6 0.8 1

Figure: Prior belief £(6) about 6, likelihood of 6 for the data r, and posterior belief
£01r)

Bernoulli example.

Consider n Bernoulli distributions with unknown parameters 0; (i=1,...,n)
such that

re | dr = i~ Q?emou[[i(&,-),]E(rt | ar = I) = 0,’. (12)

Our belief for each parameter 6; is Beta(cv, 5i), with density {0 | a, 5i) so that

n

&(br,...,60n) = H 0 | «i, Bi)- (a priori independent)

i=1

t t
. X 1 .
N;,‘éZH{ak:I}, rt’iéNtintH{ak:I}
k=1 k=1
Then, the posterior distribution for the parameter of arm i is
& = Beta(of, Bf), ai = i+ Nyt Bi = BiNei(1 — %))

Since r; € {0,1} there are O((2n)") possible belief states for a T-step bandit
problem.

Belief states

v

The state of the decision-theoretic bandit problem is the state of our belief.

v

A sufficient statistic is the number of plays and total rewards.

v

Our belief state &; is described by the priors «, 5 and the vectors

Nt = (Nt,17...,Nt7,') (13)
/I\'t: (’i’nl,...,?t}[). (14)
» The next-state probabilities are defined as:
t
. Q;
Pe(rn=1]a=1i)= T

as &1 is a deterministic function of &, r: and a;

> Optimising this results in a Markov decision process.

Markov process

SO

Definition 3 (Markov Process — or Markov Chain)

The sequence {s; | t=1,...} of random variables s; : ©® — S is a Markov

process if
P(sts1 | sty -5 51) = P(se41 | st)- (1.5)

> s; is state of the Markov process at time t.

> P(st41 | st) is the transition kernel of the process.

The state of an algorithm

Observe that the R, n vectors of our greedy bandit algorithm form a Markov
process. They also summarise our belief about which arm is the best.

Figure: The basic bandit MDP. The decision maker selects at, while the parameter 6 of
the process is hidden. It then obtains reward r;. The process repeats for t =1,..., T.

Figure: The decision-theoretic bandit MDP. While 6 is not known, at each time step t
we maintain a belief £ on ©. The reward distribution is then defined through our
belief.

Backwards induction (Dynamic programming)

forn=1,2,...and s€ S do

E(U: | &) = QgﬁE(rt | & ar) + ’YZP(&H | &, ar) E(Uryr | Eev1)

Ee1

end for

Exercise 1
What is the value vi(s;) of the
first state?

Al4

B 1.05
Cc1.0
D 0.7
EO

St at rt St+1

Backwards induction (Dynamic programming)

forn=1,2,...and s€ S do

E(U: | &) = QgﬁE(rt | & ar) + ’YZP(&H | &, ar) E(Uryr | Eev1)

Ee1

end for

Exercise 1
What is the value vi(s;) of the
first state?

Al4

B 1.05
Cc1.0
D 0.7
EO

St at rt St+1

Heuristic algorithms for the n-armed bandit problem

Algorithm 1 UCB1

Input A
Ooi=1,Vi
fort=1,...do

21
ar = argmax;c 4 {()t it /Nr nltl}

re~ Po(r| a:) // play action and get reward // update model
/yt,at =Ne—1,5,+1
et,at = [Nt—l,atat—l,at +Art]/N£,at
Vi# ar, Nei= Ne—1,i, 0ri = 0c—1,i
end for

Algorithm 2 Thompson sampling

Input A, &
for E:l,... do
0 ~ &-1(0)

ar € argmax,Ey[r: | a: = a].
re~ Po(r| a:) // play action and get reward // update model

€t(9) = 5:-1(9 | dt, rt).

end for

Example 4 (Clinical trials)

Consider an example where we have some information x; about an individual
patient t, and we wish to administer a treatment a;. For whichever treatment
we administer, we can observe an outcome y;. Our goal is to maximise
expected utility.

Definition 5 (The contextual bandit problem.)
At time t,

> We observe x; € X.

» We play a: € A.

> We obtain r: € R with r; | ar = a,x: = x ~ Py(r| a, x).

Example 6 (The linear bandit problem)

» A=[n, X =R* 0= (01,...,0,), 0, € R, re R.
> re~ (6] x),1)

Example 7 (A clinical trial example)
» A=[n], X =R¥ 0= (b1,...,0,), 0, € R* y e {0,1}.
> y ~ Bernoulli(1/(1 + exp[—(63 x)?]).
> r=Ua,y).

	Bandit problems
	Planning: Heuristics and exact solutions

	Contextual Bandits

