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Bandit problems
Planning: Heuristics and exact solutions

Contextual Bandits
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The reinforcement learning problem

Learning how to act optimally in an unknown world through interaction and
reinforcement.

▶ Optimal behaviour implicitly defined through rewards.
▶ Learning about an unknown world.
▶ Interactive data collection.
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Sequential problems

▶ Observation xt.
▶ Decision at.
▶ Steps t = 1, . . . ,T.

General utility function
Utility U(x1, x2, . . . , xT, a1, . . . , aT)

Linear utility function

U(x1, x2, . . . , xT, a1, . . . , aT) =
T∑

t=1
ρ(xt, at).

This is the standard reinforcement learning setting
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Sequential problems: full observation

Example 1
▶ n meteorological stations {µi | i = 1, . . . , n}
▶ The i-th station predicts rain Pµi(yt | y1, . . . , yt−1).

▶ Observation xt: the predictions of all stations.
▶ Decision at.
▶ Steps t = 1, . . . ,T.

Linear utility function
Reward function is ρ(xt, at) = I {xt = at} simply rewarding correct predictions
with utility being

U(y1, y2, . . . , yT, a1, . . . , aT) =
T∑

t=1
ρ(yt, at),

the total number of correct predictions.
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The n meteorologists problem is simple, as:
▶ You always see their predictions, as well as the weather, no matter whether

you bike or take the tram (full information)
▶ Your actions do not influence their predictions (independence events)

In the remainder, we’ll see two settings where decisions are made with either
partial information or in a dynamical system. Both of these settings can be
formalised with Markov decision processes.
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Experimental design and Markov decision processes

The following problems
▶ Shortest path problems.
▶ Optimal stopping problems.
▶ Reinforcement learning problems.
▶ Experiment design (clinical trial) problems
▶ Advertising.

can be all formalised as Markov decision processes.

Applications
▶ Robotics.
▶ Economics.
▶ Automatic control.
▶ Resource allocation



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Bandit problems
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Bandit problems

Applications
▶ Efficient optimisation.

▶ Online advertising.
▶ Clinical trials.
▶ Robot scientist.

x

f(x)

f(x) = sincx
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Bandit problems

Applications
▶ Efficient optimisation.
▶ Online advertising.

▶ Clinical trials.
▶ Robot scientist.
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Bandit problems

Applications
▶ Efficient optimisation.
▶ Online advertising.
▶ Clinical trials.

▶ Robot scientist.

Ultrasound
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Bandit problems

Applications
▶ Efficient optimisation.
▶ Online advertising.
▶ Clinical trials.
▶ Robot scientist.
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The stochastic n-armed bandit problem

Actions and rewards
▶ A set of actions A = {1, . . . , n}.
▶ Each action gives you a random reward with distribution P(rt | at = i).
▶ The expected reward of the i-th arm is ρi ≜ E(rt | at = i).

Interaction at time t
1. You choose an action at ∈ A.
2. You observe a random reward rt drawn from the i-th arm.

The utility is the sum of the rewards obtained

U ≜
∑

t
rt.

We must maximise the expected utility, without knowing the values ρi.
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Policy

Definition 2 (Policies)
A policy π is an algorithm for taking actions given the observed history
ht ≜ a1, r1, . . . , at, rt

Pπ(at+1 | ht)

is the probability of the next action at+1.

Exercise 1
Why should our action depend on the complete history?

A The next reward depends on all the actions we have taken.
B We don’t know which arm gives the highest reward.
C The next reward depends on all the previous rewards.
D The next reward depends on the complete history.
E No idea.
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Policy

Definition 2 (Policies)
A policy π is an algorithm for taking actions given the observed history
ht ≜ a1, r1, . . . , at, rt

Pπ(at+1 | ht)

is the probability of the next action at+1.

Example 3 (The expected utility of a uniformly random policy)
If Pπ(at+1 | ·) = 1/n for all t, then
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Policy

Definition 2 (Policies)
A policy π is an algorithm for taking actions given the observed history
ht ≜ a1, r1, . . . , at, rt

Pπ(at+1 | ht)

is the probability of the next action at+1.

Example 3 (The expected utility of a uniformly random policy)
If Pπ(at+1 | ·) = 1/n for all t, then

Eπ U = Eπ

( T∑
t=1

rt

)
=

T∑
t=1

Eπ rt =
T∑

t=1

n∑
i=1

1
nρi =

T
n

n∑
i=1

ρi
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Policy

Definition 2 (Policies)
A policy π is an algorithm for taking actions given the observed history
ht ≜ a1, r1, . . . , at, rt

Pπ(at+1 | ht)

is the probability of the next action at+1.

The expected utility of a general policy

Eπ U = Eπ

( T∑
t=1

rt

)

=
T∑

t=1
Eπ(rt) (1.1)

=
T∑

t=1

∑
at∈A

E(rt | at)
∑
ht−1

Pπ(at | ht−1)Pπ(ht−1)
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Policy

Definition 2 (Policies)
A policy π is an algorithm for taking actions given the observed history
ht ≜ a1, r1, . . . , at, rt

Pπ(at+1 | ht)

is the probability of the next action at+1.

The expected utility of a general policy

Eπ U = Eπ

( T∑
t=1

rt

)
=

T∑
t=1

Eπ(rt) (1.1)

=
T∑

t=1

∑
at∈A

E(rt | at)
∑
ht−1

Pπ(at | ht−1)Pπ(ht−1)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Policy

Definition 2 (Policies)
A policy π is an algorithm for taking actions given the observed history
ht ≜ a1, r1, . . . , at, rt

Pπ(at+1 | ht)

is the probability of the next action at+1.

The expected utility of a general policy

Eπ U = Eπ

( T∑
t=1

rt

)
=

T∑
t=1

Eπ(rt) (1.1)

=
T∑

t=1

∑
at∈A

E(rt | at)
∑
ht−1

Pπ(at | ht−1)Pπ(ht−1)
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Bernoulli bandits

Decision-theoretic approach
▶ Assume rt | at = i ∼ Pθi , with θi ∈ Θ.
▶ Define prior belief ξ1 on Θ.
▶ For each step t, select action at to maximise

Eξt(Ut | at) = Eξt

(T−t∑
k=1

γkrt+k

∣∣∣∣∣ at

)
▶ Obtain reward rt.
▶ Calculate the next belief

ξt+1 = ξt(· | at, rt)

How can we implement this?
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A simple heuristic for the unknown reward case

Say you keep a running average of the reward obtained by each arm

θ̂t,i = Rt,i/nt,i

▶ nt,i the number of times you played arm i
▶ Rt,i the total reward received from i.

Whenever you play at = i:

Rt+1,i = Rt,i + rt, nt+1,i = nt,i + 1.

Greedy policy:
at = arg max

i
θ̂t,i.

What should the initial values n0,i,R0,i be?
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Bayesian inference on Bernoulli bandits

▶ Likelihood: Pθ(rt = 1) = θ.
▶ Prior: ξ(θ) ∝ θα−1(1 − θ)β−1 (i.e. Beta(α, β)).

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
prior

Figure: Prior belief ξ about the mean reward θ.
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Bayesian inference on Bernoulli bandits

For a sequence r = r1, . . . , rn, ⇒ Pθ(r) ∝ θ
#1(r)
i (1 − θi)

#0(r)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10
prior

likelihood

Figure: Prior belief ξ about θ and likelihood of θ for 100 plays with 70 1s.
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Bayesian inference on Bernoulli bandits

Posterior: Beta(α+ #1(r), β + #0(r)).

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10
prior

likelihood

posterior

Figure: Prior belief ξ(θ) about θ, likelihood of θ for the data r, and posterior belief
ξ(θ | r)
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Bernoulli example.

Consider n Bernoulli distributions with unknown parameters θi (i = 1, . . . , n)
such that

rt | at = i ∼ Bernoulli(θi), E(rt | at = i) = θi. (1.2)

Our belief for each parameter θi is Beta(αi, βi), with density f(θ | αi, βi) so that

ξ(θ1, . . . , θn) =
n∏

i=1
f(θi | αi, βi). (a priori independent)

Nt,i ≜
t∑

k=1
I {ak = i} , r̂t,i ≜

1
Nt,i

t∑
k=1

rt I {ak = i}

Then, the posterior distribution for the parameter of arm i is

ξt = Beta(αt
i , β

t
i ), αt

i = αi + Nt,îrt,i , βt
i = βiNt,i(1 − r̂t,i)).

Since rt ∈ {0, 1} there are O((2n)T) possible belief states for a T-step bandit
problem.
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Belief states

▶ The state of the decision-theoretic bandit problem is the state of our belief.
▶ A sufficient statistic is the number of plays and total rewards.
▶ Our belief state ξt is described by the priors α, β and the vectors

Nt = (Nt,1, . . . ,Nt,i) (1.3)
r̂t = (̂rt,1, . . . , r̂t,i). (1.4)

▶ The next-state probabilities are defined as:

Pξt(rt = 1 | at = i) = αt
i

αt
i + βt

i

as ξt+1 is a deterministic function of ξt, rt and at

▶ Optimising this results in a Markov decision process.
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Markov process

st−1 st st+1

Definition 3 (Markov Process – or Markov Chain)
The sequence {st | t = 1, . . .} of random variables st : Θ → S is a Markov
process if

P(st+1 | st, . . . , s1) = P(st+1 | st). (1.5)

▶ st is state of the Markov process at time t.
▶ P(st+1 | st) is the transition kernel of the process.

The state of an algorithm
Observe that the R, n vectors of our greedy bandit algorithm form a Markov
process. They also summarise our belief about which arm is the best.
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at

θ

rt

Figure: The basic bandit MDP. The decision maker selects at, while the parameter θ of
the process is hidden. It then obtains reward rt. The process repeats for t = 1, . . . ,T.

ξt

at

rt

ξt+1

at+1

rt+1

Figure: The decision-theoretic bandit MDP. While θ is not known, at each time step t
we maintain a belief ξt on Θ. The reward distribution is then defined through our
belief.
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Backwards induction (Dynamic programming)
for n = 1, 2, . . . and s ∈ S do

E(Ut | ξt) = max
at∈A

E(rt | ξt, at) + γ
∑
ξt+1

P(ξt+1 | ξt, at)E(Ut+1 | ξt+1)

end for

st at rt st+1

?

0.7

1.4

1

0

1

0

?

?

0.7

0.3

0.4

0.6

Exercise 1
What is the value vt(st) of the
first state?

A 1.4
B 1.05
C 1.0
D 0.7
E 0
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Backwards induction (Dynamic programming)
for n = 1, 2, . . . and s ∈ S do

E(Ut | ξt) = max
at∈A

E(rt | ξt, at) + γ
∑
ξt+1

P(ξt+1 | ξt, at)E(Ut+1 | ξt+1)

end for

st at rt st+1
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0.6

Exercise 1
What is the value vt(st) of the
first state?

A 1.4
B 1.05
C 1.0
D 0.7
E 0
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Heuristic algorithms for the n-armed bandit problem

Algorithm 1 UCB1
Input A
θ̂0,i = 1, ∀i
for t = 1, . . . do

at = arg maxi∈A

{
θ̂t−1,i +

√
2 ln t

Nt−1,i

}
rt ∼ Pθ(r | at) // play action and get reward // update model
Nt,at = Nt−1,at + 1
θ̂t,at = [Nt−1,atθt−1,at + rt]/Nt,at
∀i ̸= at, Nt,i = Nt−1,i, θ̂t,i = θ̂t−1,i

end for

Algorithm 2 Thompson sampling
Input A, ξ0
for t = 1, . . . do

θ̂ ∼ ξt−1(θ)
at ∈ arg maxa Eθ̂[rt | at = a].
rt ∼ Pθ(r | at) // play action and get reward // update model
ξt(θ) = ξt−1(θ | at, rt).

end for
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Example 4 (Clinical trials)
Consider an example where we have some information xt about an individual
patient t, and we wish to administer a treatment at. For whichever treatment
we administer, we can observe an outcome yt. Our goal is to maximise
expected utility.
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Definition 5 (The contextual bandit problem.)
At time t,

▶ We observe xt ∈ X .
▶ We play at ∈ A.
▶ We obtain rt ∈ R with rt | at = a, xt = x ∼ Pθ(r | a, x).

Example 6 (The linear bandit problem)
▶ A = [n], X = Rk, θ = (θ1, . . . , θn), θi ∈ Rk, r ∈ R.
▶ r ∼ N (θ⊤a x), 1)

Example 7 (A clinical trial example)
▶ A = [n], X = Rk, θ = (θ1, . . . , θn), θi ∈ Rk, y ∈ {0, 1}.
▶ y ∼ Bernoulli(1/(1 + exp[−(θ⊤a x)2]).
▶ r = U(a, y).
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