Fairness

Christos Dimitrakakis

September 27, 2018

Whites get lower scores than blacks¹

Black White

Figure: Apparent bias in risk scores towards black versus white defendants.

But scores equally accurately predict recidivsm²

Figure: Recidivism rates by risk score.

But non-offending blacks get higher scores

Figure: Score breakdown based on recidivism rates.

Graphical models and independence

- Why is it not possible to be fair in all respects?
- Different notions of conditional independence.
- Can only be satisfied rarely simultaneously.

Graphical models

Figure: Graphical model (directed acyclic graph) for three variables.

Joint probability

Let
$$\mathbf{x} = (x_1, \dots, x_n)$$
. Then $\mathbf{x} : \Omega \to X$, $X = \prod_i X_i$ and:

$$\mathbb{P}(\mathbf{x} \in A) = P(\{\omega \in \Omega \mid \mathbf{x}(\omega) \in A\}).$$

Factorisation

$$\mathbb{P}(\mathbf{x}) = \mathbb{P}(\mathbf{x}_B \mid \mathbf{x}_C) \, \mathbb{P}(\mathbf{x}_C), \qquad B, C \subset [n]$$

Graphical models

Figure: Graphical model (directed acyclic graph) for three variables.

Joint probability

Let
$$\mathbf{x} = (x_1, \dots, x_n)$$
. Then $\mathbf{x} : \Omega \to X$, $X = \prod_i X_i$ and:

$$\mathbb{P}(\mathbf{x} \in A) = P(\{\omega \in \Omega \mid \mathbf{x}(\omega) \in A\}).$$

Factorisation

So we can write any joint distribution as

$$\mathbb{P}(x_1)\,\mathbb{P}(x_2\mid x_1)\,\mathbb{P}(x_3\mid x_1,x_2)\cdots\mathbb{P}(x_n\mid x_1,\ldots,x_{n-1}).$$

September 27, 2018

Directed graphical models

Figure: Graphical model for the factorisation $\mathbb{P}(x_3 \mid x_2) \mathbb{P}(x_2 \mid x_1) \mathbb{P}(x_1)$.

Conditional independence

We say x_i is conditionally independent of \mathbf{x}_B given \mathbf{x}_D and write $x_i \mid \mathbf{x}_D \perp \!\!\! \perp \mathbf{x}_B$ iff

$$\mathbb{P}(x_i, \mathbf{x}_B \mid \mathbf{x}_D) = \mathbb{P}(x_i \mid \mathbf{x}_D) \, \mathbb{P}(\mathbf{x}_D \mid \mathbf{x}_B).$$

Example 1 (Smoking and lung cancer)

Figure: Smoking and lung cancer graphical model, where S: Smoking, C: cancer, A: asbestos exposure.

Explaining away

Even though S, A are independent, they become dependent once you know

Example 2 (Time of arrival at work)

Figure: Time of arrival at work graphical model where T is a traffic jam and x_1 is the time John arrives at the office and x_2 is the time Jane arrives at the office.

Conditional independence

Even though x_1, x_2 are correlated, they become independent once you know T.

Example 3 (Treatment effects)

Figure: Kidney treatment model, where x: severity, y: result, a: treatment applied

	Treatment A	Treatment B
Small stones	87	270
Large stones	263	80
Severity	Treatment A	Treatment B
Small stones)	93%	87%
Large stones	73%	69%
Average	78%	83%

Example 4 (School admission)

Figure: School admission graphical model, where z: gender, s: school applied to, a: whether you were admitted.

School	Male	Female
Α	62%	82%
В	63%	68%
C	37%	34%
D	33%	35%
Е	28%	24%
F	6%	7%
Average	45%	38%

Factorise the following graphical model.

Factorise the following graphical model.

$$\mathbb{P}(\mathbf{x}) = \mathbb{P}(x_1) \, \mathbb{P}(x_2 \mid x_1) \, \mathbb{P}(x_3 \mid x_1) \, \mathbb{P}(x_4)$$

Factorise the following graphical model.

Fairness

Factorise the following graphical model.

$$Xb \mathbb{P}(\mathbf{x}) = \mathbb{P}(x_1) \mathbb{P}(x_2 \mid x_1) \mathbb{P}(x_3 \mid x_1) \mathbb{P}(x_4 \mid x_3)$$

What dependencies does the following factorisation imply?

$$\mathbb{P}(\mathbf{x}) = \mathbb{P}(x_1) \, \mathbb{P}(x_2 \mid x_1) \, \mathbb{P}(x_3 \mid x_1) \, \mathbb{P}(x_4 \mid x_2, x_3)$$

$$\begin{array}{c} x_3 \\ x_1 \\ x_2 \\ \end{array}$$

What dependencies does the following factorisation imply?

$$\mathbb{P}(\mathbf{x}) = \mathbb{P}(x_1) \, \mathbb{P}(x_2 \mid x_1) \, \mathbb{P}(x_3 \mid x_1) \, \mathbb{P}(x_4 \mid x_2, x_3)$$

Deciding conditional independence

There is an algorithm for deciding conditional independence of any two variables in a graphical model.

Measuring independence

Theorem 5 If $x_i \mid \mathbf{x}_D \perp \!\!\! \perp \mathbf{x}_B$ then

$$\mathbb{P}(x_i \mid \mathbf{x}_B, \mathbf{x}_D) = \mathbb{P}(x_i \mid \mathbf{x}_D)$$

Example 6

$$\|\mathbb{P}(a \mid y, z) - \mathbb{P}(a \mid y)\|_1$$

which for discrete a, y, z is:

$$\max_{i,j} \| \mathbb{P}(a \mid y = i, z = j) - \mathbb{P}(a \mid y = i) \|_1 = \max_{i,j} \| \sum_{k} \mathbb{P}(a = k \mid y = i, z = j) - \mathbb{P}(a \mid y = i, z$$

Measuring independence

Theorem 5

If $x_i \mid \mathbf{x}_D \perp \!\!\! \perp \mathbf{x}_B$ then

$$\mathbb{P}(x_i \mid \mathbf{x}_B, \mathbf{x}_D) = \mathbb{P}(x_i \mid \mathbf{x}_D)$$

This implies

$$\mathbb{P}(x_i \mid \mathbf{x}_B = b, \mathbf{x}_D) = \mathbb{P}(x_i \mid \mathbf{x}_B = b', \mathbf{x}_D)$$

so we can measure independence by seeing how the distribution of x_i changes when we vary \mathbf{x}_B , keeping \mathbf{x}_D fixed.

Example 6

$$\|\mathbb{P}(a \mid y, z) - \mathbb{P}(a \mid y)\|_1$$

which for discrete a, y, z is:

$$\max_{i,j} \| \mathbb{P}(a \mid y=i,z=j) - \mathbb{P}(a \mid y=i) \|_1 = \max_{i,j} \| \sum_{k} \mathbb{P}(a=k \mid y=i,z=j) - \mathbb{P}(a \mid y=i) \|_1 = \max_{i,j} \| \sum_{k} \mathbb{P}(a=k \mid y=i,z=j) - \mathbb{P}(a \mid y=i,z=j)$$

Coin tossing, revisited

Example 7

The Beta-Bernoulli prior

Figure: Graphical model for a Beta-Bernoulli prior

$$\theta \sim \mathcal{B}eta(\xi_1, \xi_2),$$
 i.e. ξ are Beta distribution parameters (2.1) $x \mid \theta \sim \mathcal{B}ernoulli(\theta),$ i.e. $P_{\theta}(x)$ is a Bernoulli (2.2)

Example 8

An alternative model for coin-tossing This is an elaboration of Example ?? for hypothesis testing.

Figure: Graphical model for a hierarchical prior

- μ_1 : A Beta-Bernoulli model with $\mathcal{B}eta(\xi_1, \xi_2)$
- μ_0 : The coin is fair.

$$\theta \mid \mu = \mu_0 \sim \mathcal{D}(0.5),$$
 i.e. θ is always 0.5 (2.3) $\theta \mid \mu = \mu_1 \sim \mathcal{B}eta(\xi_1, \xi_2),$ i.e. θ has a Beta distribution (2.4)

$$x \mid \theta \sim \mathcal{B}ernoulli(\theta),$$
 i.e. $P_{\theta}(x)$ is Bernoulli (2.5)

Bayesian testing of independence

(a) Θ_0 assumes independence

(b) Θ_1 does not assume independence

Example 9

Assume data $D = \{x_1^t, x_2^t, x_3^t \mid t = 1, ..., T\}$ with $x_i^t \in \{0, 1\}$.

$$P_{\theta}(D) = \prod P_{\theta}(x_3^t \mid x_2^t) P_{\theta}(x_2^t \mid x_1^t) P_{\theta}(x_1^t), \qquad \theta \in \Theta_0$$
 (2.6)

$$P_{\theta}(D) = \prod_{t} P_{\theta}(x_3^t \mid x_2^t, x_1^t) P_{\theta}(x_2^t \mid x_1^t) P_{\theta}(x_1^t), \qquad \theta \in \Theta_1$$
 (2.7)

20 / 30

C. Dimitrakakis Fairness September 27, 2018

Bayesian testing of independence

(a) Θ_0 assumes independence

(b) Θ_1 does not assume independence

Example 9

$$\theta_{1} \triangleq P_{\theta}(x_{1}^{t} = 1) \qquad (\mu_{0}, \mu_{1})
\theta_{2|1}^{j} \triangleq P_{\theta}(x_{2}^{t} = 1 \mid x_{1}^{t} = i) \qquad (\mu_{0}, \mu_{1})
\theta_{3|2}^{j} \triangleq P_{\theta}(x_{3}^{t} = 1 \mid x_{2}^{t} = j) \qquad (\mu_{0})
\theta_{3|2,1}^{j} \triangleq P_{\theta}(x_{3}^{t} = 1 \mid x_{2}^{t} = j, x_{1}^{t} = i) \qquad (\mu_{1})$$

Figure: Hierarchical model.

$$\mu_i \sim \phi$$
 (2.6)

$$\mu_{i} \sim \phi \tag{2.6}$$

$$\theta \mid \mu = \mu_{i} \sim \xi_{i} \tag{2.7}$$

Marginal likelihood

$$\mathbb{P}_{\phi}(D) = \phi(\mu_0) \, \mathbb{P}_{\mu_0}(D) + \phi(\mu_1) \, \mathbb{P}_{\mu_1}(D) \tag{2.8}$$

$$\mathbb{P}_{\mu_i}(D) = \int_{\Theta_i} P_{\theta}(D) \, \mathrm{d}\xi_i(\theta). \tag{2.9}$$

Figure: Hierarchical model.

Marginal likelihood

$$\mathbb{P}_{\phi}(D) = \phi(\mu_0) \, \mathbb{P}_{\mu_0}(D) + \phi(\mu_1) \, \mathbb{P}_{\mu_1}(D) \tag{2.6}$$

$$\mathbb{P}_{\mu_i}(D) = \int_{\Theta_i} P_{\theta}(D) \, \mathrm{d}\xi_i(\theta). \tag{2.7}$$

Model posterior

$$\phi(\mu \mid D) = \frac{\mathbb{P}_{\mu}(D)\phi(\mu)}{\sum_{i} \mathbb{P}_{\mu_{i}}(D)\phi(\mu_{i})}$$
(2.8)

C. Dimitrakakis Fairness September 27, 2018 21 / 30

Calculating the marginal likelihood

Monte-Carlo approximation

$$\int_{\Theta} P_{\theta}(D) \, \mathrm{d}\xi(\theta) \approx \sum_{n=1}^{N} P_{\theta_n}(D) + O(1/\sqrt{N}), \qquad \theta_n \sim \xi$$
 (2.9)

Importance sampling

$$\int_{\Omega} P_{\theta}(D) \, \mathrm{d}\xi(\theta) \tag{2.10}$$

(ロ) (団) (目) (目) (目) (O)

C. Dimitrakakis

Calculating the marginal likelihood

Monte-Carlo approximation

$$\int_{\Theta} P_{\theta}(D) \, \mathrm{d}\xi(\theta) \approx \sum_{n=1}^{N} P_{\theta_n}(D) + O(1/\sqrt{N}), \qquad \theta_n \sim \xi$$
 (2.9)

Importance sampling

$$\int_{\Theta} P_{\theta}(D) \, \mathrm{d}\xi(\theta) = \int_{\Theta} P_{\theta}(D) \frac{\mathrm{d}\psi(\theta)}{\mathrm{d}\psi(\theta)} \, \mathrm{d}\xi(\theta)$$

(2.10)

Calculating the marginal likelihood

Monte-Carlo approximation

$$\int_{\Theta} P_{\theta}(D) \, \mathrm{d}\xi(\theta) \approx \sum_{n=1}^{N} P_{\theta_n}(D) + O(1/\sqrt{N}), \qquad \theta_n \sim \xi$$
 (2.9)

Importance sampling

$$\int_{\Theta} P_{\theta}(D) \, \mathrm{d} \xi(\theta) = \int_{\Theta} P_{\theta}(D) \frac{\, \mathrm{d} \xi(\theta)}{\, \mathrm{d} \psi(\theta)} \, \mathrm{d} \psi(\theta)$$

(2.10)

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆○

Calculating the marginal likelihood

Monte-Carlo approximation

$$\int_{\Theta} P_{\theta}(D) \, \mathrm{d}\xi(\theta) \approx \sum_{n=1}^{N} P_{\theta_n}(D) + O(1/\sqrt{N}), \qquad \theta_n \sim \xi$$
 (2.9)

Importance sampling

$$\int_{\Theta} P_{\theta}(D) \, \mathrm{d}\xi(\theta) \approx \sum_{n=1}^{N} P_{\theta}(D) \frac{\, \mathrm{d}\xi(\theta_n)}{\, \mathrm{d}\psi(\theta_n)}, \qquad \theta_n \sim \psi$$
 (2.10)

4□ > 4□ > 4 = > 4 = > = 90

C. Dimitrakakis

$$\mathbb{P}_{\xi}(D)$$

(2.14)

Example 10 (Beta-Bernoulli)

$$\mathbb{P}_{\xi}(x_t = 1 \mid x_1, \dots, x_{t-1}) = \frac{\alpha_t}{\alpha_t + \beta_t},$$

$$\mathbb{P}_{\xi}(D) = \mathbb{P}_{\xi}(x_1, \dots, x_T)$$

(2.14)

Example 10 (Beta-Bernoulli)

$$\mathbb{P}_{\xi}(x_t = 1 \mid x_1, \dots, x_{t-1}) = \frac{\alpha_t}{\alpha_t + \beta_t},$$

$$\mathbb{P}_{\xi}(D) = \mathbb{P}_{\xi}(x_1, \dots, x_T)
= \mathbb{P}_{\xi}(x_2, \dots, x_T \mid x_1) \mathbb{P}_{\xi}(x_1)$$
(2.11)

(2.14)

Example 10 (Beta-Bernoulli)

$$\mathbb{P}_{\xi}(x_t = 1 \mid x_1, \dots, x_{t-1}) = \frac{\alpha_t}{\alpha_t + \beta_t},$$

$$\mathbb{P}_{\xi}(D) = \mathbb{P}_{\xi}(x_{1}, \dots, x_{T})$$

$$= \mathbb{P}_{\xi}(x_{2}, \dots, x_{T} \mid x_{1}) \, \mathbb{P}_{\xi}(x_{1})$$

$$= \prod_{t=1}^{T} \mathbb{P}_{\xi}(x_{t} \mid x_{1}, \dots, x_{t-1})$$
(2.11)

Example 10 (Beta-Bernoulli)

$$\mathbb{P}_{\xi}(x_t = 1 \mid x_1, \dots, x_{t-1}) = \frac{\alpha_t}{\alpha_t + \beta_t},$$

with $\alpha_t = \alpha_0 + \sum_{n=1}^{t-1} x_n$, $\beta_t = \beta_0 + \sum_{n=1}^{t-1} (1-x_n)$ September 27, 2018 23 / 30

(2.14)

$$\mathbb{P}_{\xi}(D) = \mathbb{P}_{\xi}(x_{1}, \dots, x_{T}) \tag{2.11}$$

$$= \mathbb{P}_{\xi}(x_{2}, \dots, x_{T} \mid x_{1}) \, \mathbb{P}_{\xi}(x_{1}) \tag{2.12}$$

$$= \prod_{t=1}^{T} \mathbb{P}_{\xi}(x_{t} \mid x_{1}, \dots, x_{t-1}) \tag{2.13}$$

$$= \prod_{t=1}^{T} \int_{\Theta} P_{\theta_{n}}(x_{t}) \, \mathrm{d} \, \underline{\xi}(\theta \mid x_{1}, \dots, x_{t-1}) \tag{2.14}$$

Example 10 (Beta-Bernoulli)

$$\mathbb{P}_{\xi}(x_t = 1 \mid x_1, \dots, x_{t-1}) = \frac{\alpha_t}{\alpha_t + \beta_t},$$

Further reading

Python sources

- ▶ A simple python measure of conditional independence src/fairness/ci_test.py
- A simple test for discrete Bayesian network src/fairness/DirichletTest.py
- Using the PyMC package https://docs.pymc.io/notebooks/Bayes_factor.html

 $\pi(a \mid x)$ (policy)

$$\pi(a \mid x)$$
 (policy)

 $\pi(a \mid x)$ (policy)

 $\mathbb{P}(y \mid a, x)$ (outcome)

$$\pi(a \mid x)$$
 (policy)

$$\mathbb{P}(y \mid a, x) \qquad \text{(outcome)}$$

$$\pi(a \mid x)$$
 (policy)

$$\mathbb{P}(y \mid a, x) \qquad \text{(outcome)}$$

$$\pi(a \mid x)$$
 (policy)

$$\mathbb{P}(y \mid a, x)$$
 (outcome)

$$U(a, y)$$
 (utility)

- y Result.
- a Assigned score.
- z Race.

$$\mathbb{P}^{\pi}(y \mid a, z) = \mathbb{P}^{\pi}(y \mid a)$$
 (calibration)
 $\mathbb{P}^{\pi}(a \mid y, z) = \mathbb{P}^{\pi}(a \mid y)$ (balance)

C. Dimitrakakis

- v Result.
- a Assigned score.
- z Race.

$$\mathbb{P}^{\pi}(y \mid a, z) = \mathbb{P}^{\pi}(y \mid a)$$

$$\mathbb{P}^{\pi}(a \mid y, z) = \mathbb{P}^{\pi}(a \mid y)$$

(calibration)
(balance)

49,43,43, 3,000

Meritocratic decision

$$a_t(\theta, x_t) \in \arg\max_{a} \mathbb{E}_{\theta}(U \mid a, x_t) = \int_{\mathcal{V}} U(a_t, y) \mathbb{E}_{\theta}(U \mid a_t, x_t)$$
 (3.1)

ロト 4億ト 4 差ト 4 差ト 差 の900

27 / 30

C. Dimitrakakis Fairness September 27, 2018

C. Dimitrakakis Fairness September 27, 2018 28 / 30

The Bayesian approach to fairness

The value of a policy

Let λ represent the trade-off between utility and fairness.

$$V(\lambda, \theta, \pi) = \lambda \underbrace{U(\theta, \pi)}_{\text{tairness violation}} - \underbrace{(1 - \lambda)F(\theta, \pi)}_{\text{fairness violation}}$$
(3.3)

$$V(\lambda, \xi, \pi) = \int_{\Theta} V(\lambda, \theta, \pi) \, \mathrm{d}\xi(\theta). \tag{3.4}$$

29 / 30

C. Dimitrakakis Fairness September 27, 2018

Online resources

- COMPAS analysis by propublica https://github.com/propublica/compas-analysis
- ▶ Open policing database https://openpolicing.stanford.edu/

30 / 30

C. Dimitrakakis Fairness September 27, 2018