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Fairness in machine learning

Bail decisions

I His honour the machine

Prisoners released on bail*
%

Chosen by
judges
Chance s
s o o of which: re-offendt
GET OUT OF JAL y Suggested
l by algorithm

*From a representative sample of the US Department

of Justice database 1990-2009

Source: Jens Ludwig, TFailure to appear in court and
University of Chicago re-arrest before trial

Economist.com

C. Dimitrakakis Fairness September 27, 2018 2 /30



Fairness in machine learning

Whites get lower scores than blacks?

Risk Score Risk Score

Black White

Figure: Apparent bias in risk scores towards black versus white defendants.

1Pro—publica, 2016
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Fairness in machine learning

But scores equally accurately predict recidivsm?

Recidivism rates by risk score

100%

75% -

- Black
— White

50% -

Chance of recidivism

N

3

>
1

0%

1 2 3 4 5 6 7 8 9 10
Risk score

Figure: Recidivism rates by risk score.
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Fairness in machine learning

But non-offending blacks get higher scores

Black White
2,000

2]

c 1,500 -

§

3

E 1,000 . Réoffended

8 . Did not reoffend
[}

Qo

£
3 500+

Low Medium/High Low Medium/High
Risk category

Figure: Score breakdown based on recidivism rates.
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Fairness in machine learning

Graphical models and independence

» Why is it not possible to be fair in all respects?
» Different notions of conditional independence.

» Can only be satisfied rarely simultaneously.
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Graphical models

Graphical models

)
@‘@

Figure: Graphical model (directed acyclic graph) for three variables.

Joint probability
Let x = (x1,...,Xp). Thenx: 2 = X, X =]]; X and:

P(x € A) = P({w € 2 | x(w) € A}).
Factorisation

P(x) = B(xg | xc) B(xc),  B.C C [n]
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Graphical models
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Figure: Graphical model (directed acyclic graph) for three variables.

Joint probability
Let x = (x1,...,Xp). Thenx: 2 = X, X =]]; X and:

P(x € A) = P{w € 2 | x(w) € A}).

Factorisation
So we can write any joint distribution as

P(x1)P(x2 | x1) P(x3 | x1,%2) - P(xn | X1, -+ Xn—1)-
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Graphical models

Directed graphical models

Figure: Graphical model for the factorisation P(x3 | x2) P(x2 | x1) P(x1).

Conditional independence

We say x; is conditionally independent of xg given xp and write
X | XD AL XB iff

P(xi,xg | xp) = P(x; | xp) P(xp | xB).
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Graphical models

Example 1 (Smoking and lung cancer)

Figure: Smoking and lung cancer graphical model, where S: Smoking, C: cancer,
A: asbestos exposure.

Explaining away

Even though S, A are independent, they become dependent once you know
C.

C. Dimitrakakis Fairness September 27, 2018 9 /30



Graphical models

Example 2 (Time of arrival at work)

Figure: Time of arrival at work graphical model where T is a traffic jam and x; is
the time John arrives at the office and x; is the time Jane arrives at the office.

Conditional independence

Even though xi, xo are correlated, they become independent once you
know T.
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Graphical models

Example 3 (Treatment effects)

Figure: Kidney treatment model, where x: severity, y: result, a: treatment applied

‘ Treatment A ‘ Treatment B

Small stones 87 270
Large stones 263 80
Severity Treatment A | Treatment B
Small stones ) 93% 87%
Large stones 73% 69%
Average 78% 83%
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Graphical models

Example 4 (School admission)

0

Figure: School admission graphical model, where z: gender, s: school applied to,
a: whether you were admitted.

C. Dimitrakakis

School Male | Female
A 62% 82%
B 63% 68%
C 37% 34%
D 33% 35%
E 28% 24%
F 6% 7%
Average | 45% 38%

Fairness

September 27, 2018
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Graphical models

Exercise 1

Factorise the following graphical model. @
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Graphical models

Exercise 2
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Graphical models

Exercise 3
What dependencies does the following factorisation imply?

P(x) = P(x1) P(x2 | x1) P(x3 | x1) P(xa | x2, x3)

®
&
&
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Graphical models

Deciding conditional independence

There is an algorithm for deciding conditional independence of any two
variables in a graphical model.
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Graphical models  Testing conditional independence

Measuring independence

Theorem 5
If x; | xp 1L xg then

IP)(X,' ’ XB,XD) = ]P)(X,' | XD)

Example 6

IP(aly,z) =P(a|y)ll

which for discrete a, y, z is:

max | P(a|y =iz=)-P(aly =01 =max|| Y Pla=k|y=iz=))
i inj
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Measuring independence
Theorem 5
If x; | xp 1L xg then

P(X,' ’ XB,XD) = ]P)(X,' | XD)

This implies

IP)(X,' | Xg = b, XD) = ]P)(X,' ’ Xg = bl,XD)
so we can measure independence by seeing how the distribution of x;
changes when we vary xg, keeping xp fixed.

Example 6

IP(a |y, z) =P(a]y)l1

which for discrete a, y, z is:
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Graphical models  Testing conditional independence

Coin tossing, revisited

Example 7
The Beta-Bernoulli prior

©-ig-
Figure: Graphical model for a Beta-Bernoulli prior
0 ~ Beta(£1,&2), i.e. £ are Beta distribution parameters  (2.1)

x | 0 ~ Bernoulli(f), i.e. Pp(x) is a Bernoulli (2.2)
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Graphical models  Testing conditional independence

Example 8

An alternative model for coin-tossing This is an elaboration of Example 7?7

for hypothesis testing.

t\/l:)_y\:e:)_) @

Figure: Graphical model for a hierarchical prior

» p1: A Beta-Bernoulli model with Beta(&1, )

> uo: The coin is fair.

0| = po~ 0(0.5), ie. 0 1is always 0.5
0| p=p1 ~ Beta(&1,€2), i.e. 0 has a Beta distribution
x | 0 ~ Bernoulli(), i.e. Py(x) is Bernoulli

~ C. Dimitrakakis o . Fairness ) . September 27, 2018
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(2.4)
(2.5)
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Graphical models  Testing conditional independence

Bayesian testing of independence

(2)
& ® C—0)
(b) ©1 does not assume

(a) ©g assumes independence  independence

Example 9
Assume data D = {x{,x},x} | t =1,..., T} with x! € {0,1}.

Po(D) =[] Po(4 | x5)Po(x3 | x)Po(xi), 6 € Oy (2.6)

Po(D) = T[T PoC | X3, x0)Po(g | xf)Paf), 6 € € (27)
t
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Graphical models Testing conditional independence

Bayesian testing of independence

(b) ©1 does not assume

(a) ©g assumes independence independence
Example 9
01 = Py(x{ =1) (pos p11)
i = Po(xs =1 x{ =1) (1o, 111)
0, 2 Polxd = 1|4 = j) (110)
031 2 Poxg = 1] x§ = jix{ = i) (1)
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Graphical models  Testing conditional independence

TN .

Nl s

Figure: Hierarchical model.

pi~ ¢ (2.6)
0| p=pi~& (2.7)

Marginal likelihood
Py(D) = &(110) Ppio (D) + &(111) Py (D) (2.8)

P(D) = [ Po(D)dsi(0) (2.9)
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Graphical models  Testing conditional independence

7N RS
100

Figure: Hierarchical model.
Marginal likelihood

Py(D) = ¢(110) Py (D) + ¢(121) Py, (D) (2.6)
P,.(D) = /@ P,(D) d&i(0). (2.7)

Model posterior

01 0) = 5=k B (25)
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Graphical models Testing conditional independence

Calculating the marginal likelihood

Monte-Carlo approximation

/ D) d¢(0) ~ Z Py (D) + O(L/VN),  Onmé  (29)

Importance sampling

/@ P,(D) dg(6) (2.10)
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Graphical models Testing conditional independence

Calculating the marginal likelihood

Monte-Carlo approximation

N
/@ Po(D)d&(0) = > Py, (D) + O(1/VN), 0, ~ & (2.9)
n=1

Importance sampling

_ av(6)
[ Puoyaco) = [ puo) SHE acto)

(2.10)
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Graphical models Testing conditional independence

Calculating the marginal likelihood

Monte-Carlo approximation

/ D) dé(0) ~ ZP@H )+ O(1/VN),

Importance sampling

- d(6,)
P,(D)dE(0) =~ S Py(D ,
[, Proraso = 3 pulo) 3 S

0p~ &

September 27, 2018
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Graphical models Testing conditional independence

Sequential updating of the marginal likelihood

Pe(D)

Example 10 (Beta-Bernoulli)
Qi
Pe(xe =1 x1,...,x¢— = —
5( t ’ 1, s At 1) Qe + /Bt,
. t—1 t—1
with ar = ap + Zn:1 Xn, Br= 0o+ anl(l - Xn)
C. Dimitrakakis Fairness September 27, 2018
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Graphical models Testing conditional independence

Sequential updating of the marginal likelihood

Ps(D) = Pg(xl, ce 7X-r)

Example 10 (Beta-Bernoulli)
Qi
Pe(xe =1 x1,...,%X-1) = ———
5( t ’ 1, s At 1) Qe + /Bt,
. t—1 t—1
with oy = ap + Zn:1 Xn, Bt = Bo+ anl(l - Xn)
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Graphical models Testing conditional independence

Sequential updating of the marginal likelihood

Pe(D) = Pe(xa, ..., x7)
= Pg(X2, e XT ‘ Xl) Pg(Xl)
Example 10 (Beta-Bernoulli)

Qi
Pe(xe =1 | x1,.00,X-1) = ——,
e(xe=1]x t-1) ot B

with a; = ap + Z,, 1%, Be=PBo+ Zf;ll(l — Xn)
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Graphical models Testing conditional independence

Sequential updating of the marginal likelihood

Pe(D) = Pe(xa, ..., xT)
=Pe(xo, ..., x7 | x1) Pe(x)
-
=[] Pe(xe |3, xe1)
t=1
Example 10 (Beta-Bernoulli)
Qi
Pe(xe =1 | x1,.00,X-1) = ——,
e(xe=1]x t-1) ot B
with a; = ap + Z,, 1%, Be=PBo+ Zf;ll(l — Xn)
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Graphical models  Testing conditional independence

Sequential updating of the marginal likelihood

Pg(D) :Pg(xl,...,XT) (211)
:Pg(XL...,XT ‘ Xl)Pg(Xl) (212)
=[] Pe(xe |3, xe1) (2.13)

t=1

_H/ Py, (x¢)d & 9|X1,.- y Xt— 12 (2.14)

posterlor at time t

Example 10 (Beta-Bernoulli)

_ %
ot + Bt
with a; = ap + Z,, 1%, Be=PBo+ Zf;ll(l — Xn)
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Graphical models  Testing conditional independence

Further reading

Python sources

» A simple python measure of conditional independence
src/fairness/ci_test.py

» A simple test for discrete Bayesian network
src/fairness/DirichletTest.py

» Using the PyMC package
https://docs.pymc.io/notebooks/Bayes_factor.html

C. Dimitrakakis Fairness September 27, 2018
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Concepts of fairness

Bail decisions, revisited

m(a| x) (policy)
P(y | a, x) (outcome)
U(a,y) (utility)
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Chance of recidivism

Concepts of fairness

Fairness as independence

Recidivism rates by risk score

100%
75% -
50% - — Black
— White
25% -
0% . ! T T T T T
1 2 3 4 5 6 8 8§
Risk score
Result.
Assigned score. P™(y|a,z)=P"(y|a) (calibration)
Race. P(aly,z)=P"(a|y) (balance)
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Concepts of fairness Fairness as independence

Black White
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Concepts of fairness Fairness as meritocracy.

Meritocratic decision

at(G,xt) € argmang(U ’ a:Xt) = / U(ata)’) EG(U ’ at;Xt) (3-1)
a Yy
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Concepts of fairness Fairness as similarity.

Dln(a | x),w(a | )] < p(x, X). (3:2)
m(a| x)

) x
p(x; x')
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Concepts of fairness Bayesian fairness

The Bayesian approach to fairness

The value of a policy

Let X represent the trade-off between utility and fairness.

utility

—N—
VM0, 1) = MU0, 7) — (1 — N\)F(8,7) (3.3)
fairness violation
VA€ ) = /@ V(A 0, ) dE(6). (3.4)
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Concepts of fairness Further reading

Online resources

» COMPAS analysis by propublica
https://github.com/propublica/compas-analysis

» Open policing database https://openpolicing.stanford.edu/
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