Privacy Christos Dimitrakakis September 14, 2018 #### Introduction Database access models Privacy in databases k-anonymity Differential privacy Just because they're the problem, doesn't mean we aren't. ### Privacy in statitical disclosure. - Public analysis of sensitive data. - ▶ Publication of "anonymised" data. ### Not about cryptography - Secure communication and computation. - Authentication and verification. #### An issue of trust - Who to trust and how much. - With what data to trust them. - What you want out of the service. 4 / 36 C. Dimitrakakis Privacy Introduction #### Database access models Privacy in databases k-anonymity Differential privacy ### **Databases** ### Example 1 (Typical relational database in a tax office) | Name | Salary | Deposits | Age | Postcode | Prof | |---------------|----------------------------|--|--|--|--------------------------------| | Mike Pence | 150,000 | 1e6 | 60 | 1001 | Poli | | Donald Trump | 300,000 | -1e9 | 72 | 1001 | Ren | | A. B. Student | 10,000 | 100,000 | 40 | 1001 | Tim | | | Mike Pence
Donald Trump | Mike Pence 150,000
Donald Trump 300,000 | Mike Pence 150,000 1e6 Donald Trump 300,000 -1e9 | Mike Pence 150,000 1e6 60 Donald Trump 300,000 -1e9 72 | Mike Pence 150,000 1e6 60 1001 | #### Database access - ▶ When owning the database: Direct look-up. - ▶ When accessing a server etc: Query model. ### **Databases** ### Example 1 (Typical relational database in a tax office) | ID | Name | Salary | Deposits | Age | Postcode | Pro | |------------|---------------|---------|----------|-----|----------|------| | 1959060783 | Mike Pence | 150,000 | 1e6 | 60 | 1001 | Poli | | 1946061408 | Donald Trump | 300,000 | -1e9 | 72 | 1001 | Ren | | 2100010101 | A. B. Student | 10,000 | 100,000 | 40 | 1001 | Tim | Python program Database System Query ## Queries in SQL #### The SELECT statement - SELECT column1, column2 FROM table; - SELECT * FROM table; ### Selecting rows ``` SELECT * FROM table WHERE column = value; ``` ### Arithmetic queries - ► SELECT COUNT(column) FROM table WHERE condition; - ► SELECT AVG(column) FROM table WHERE condition; - ▶ SELECT SUM(column) FROM table WHERE condition; Introduction Database access models Privacy in databases k-anonymity Differential privacy ## Anonymisation ### Example 2 (Typical relational database in Tinder) | Birthday | Name | Height | Weight | Age | Postcode | Profession | |----------|---------------|--------|--------|-------|----------|------------| | 06/07 | Li Pu | 190 | 80 | 60-70 | 1001 | Politicia | | 06/14 | Sara Lee | 185 | 110 | 70+ | 1001 | Rentier | | 01/01 | A. B. Student | 170 | 70 | 40-60 | 6732 | Time Tr | ### Anonymisation Example 2 (Typical relational database in Tinder) | Birthday | Name | Height | Weight | Age | Postcode | Profession | |----------|------|--------|--------|-------|----------|----------------| | 06/07 | | 190 | 80 | 60-70 | 1001 | Politician | | 06/14 | | 185 | 110 | 70+ | 1001 | Rentier | | 01/01 | | 170 | 70 | 40-60 | 6732 | Time Traveller | The simple act of hiding or using random identifiers is called anonymisation. # Record linkage Figure: An example of two datasets, one containing sensitive and the other public information. The two datasets can be linked and individuals identified through the use of quasi-identifiers. ## *k*-anonymity (a) Samarati (b) Sweeney ### Definition 5 (k-anonymity) A database provides k-anonymity if for every person in the database is indistinguishable from k-1 persons with respect to *quasi-identifiers*. It's the analyst's job to define quasi-identifiers | Birthday | Name | Height | Weight | Age | Postcode | Pr | |----------|--------------------|--------|--------|-------|----------|-----| | 06/07 | Li Pu | 190 | 80 | 60+ | 1001 | Ро | | 06/14 | Sara Lee | 185 | 110 | 60+ | 1001 | Re | | 06/12 | Nikos Papadopoulos | 170 | 82 | 60+ | 1243 | Ро | | 01/01 | A. B. Student | 170 | 70 | 40-60 | 6732 | Tii | | 05/08 | Li Yang | 175 | 72 | 30-40 | 6910 | Tir | Table: 1-anonymity. 12 / 36 C. Dimitrakakis Privacy September 14, 2018 | Birthday | Name | Height | Weight | Age | Postcode | Profession | |----------|------|--------|--------|-------|----------|----------------| | 06/07 | | 190 | 80 | 60+ | 1001 | Politician | | 06/14 | | 185 | 110 | 60+ | 1001 | Rentier | | 06/12 | | 170 | 82 | 60+ | 1243 | Politician | | 01/01 | | 170 | 70 | 40-60 | 6732 | Time Traveller | | 05/08 | | 175 | 72 | 30-40 | 6910 | Policeman | 1-anonymity C. Dimitrakakis Privacy Septe | Birthday | Name | Height | Weight | Age | Postcode | Profession | |----------|------|---------|--------|-------|----------|------------| | 06/07 | | 180-190 | 80+ | 60+ | 1* | | | 06/14 | | 180-190 | 80+ | 60+ | 1* | | | 06/12 | | 170-180 | 60+ | 60+ | 1* | | | 01/01 | | 170-180 | 60-80 | 20-60 | 6* | | | 05/08 | | 170-180 | 60-80 | 20-60 | 6* | | 1-anonymity 12 / 36 C. Dimitrakakis Privacy September 14, 2018 | Birthday | Name | Height | Weight | Age | Postcode | Profession | |----------|------|---------|--------|-------|----------|------------| | | | 180-190 | 80+ | 60+ | 1* | | | | | 180-190 | 80+ | 60+ | 1* | | | | | 170-180 | 60-80 | 69+ | 1* | | | | | 170-180 | 60-80 | 20-60 | 6* | | | | | 170-180 | 60-80 | 20-60 | 6* | | Table: 2-anonymity: the database can be partitioned in sets of at least 2 records Figure: If two people contribute their data $x = (x_1, x_2)$ to a medical database, and an algorithm π computes some public output a from x, then it should be hard infer anything about the data from the public output. Figure: If two people contribute their data $x = (x_1, x_2)$ to a medical database, and an algorithm π computes some public output a from x, then it should be hard infer anything about the data from the public output. Figure: If two people contribute their data $x = (x_1, x_2)$ to a medical database, and an algorithm π computes some public output a from x, then it should be hard infer anything about the data from the public output. Figure: If two people contribute their data $x = (x_1, x_2)$ to a medical database, and an algorithm π computes some public output a from x, then it should be hard infer anything about the data from the public output. Figure: If two people contribute their data $x = (x_1, x_2)$ to a medical database, and an algorithm π computes some public output a from x, then it should be hard infer anything about the data from the public output. ## Privacy desiderata We wish to calculate something on some private data and publish a privacy-preserving, but useful, version of the result. - Anonymity: Individual participation remains hidden. - Secrecy: Individual data x_i is not revealed. - Side-information: Linkage attacks are not possible. - ▶ Utility: The calculation remains useful. - n athletes - Ask whether they have doped in the past year. - ▶ Aim: calculate % of doping. - ▶ How can we get truthful / accurate results? - n athletes - Ask whether they have doped in the past year. - Aim: calculate % of doping. - ▶ How can we get truthful / accurate results? ### Algorithm for randomising responses about drug use - 1. Flip a coin. - 2. If it comes heads, respond truthfully. - 3. Otherwise, flip another coin and respond yes if it comes heads and no otherwise. #### Exercise 1 Assume that the observed rate of positive responses in a sample is p, that everybody follows the protocol, and the coin is fair. Then, what is the true rate q of drug use in the population? - n athletes - Ask whether they have doped in the past year. - ▶ Aim: calculate % of doping. - ▶ How can we get truthful / accurate results? #### Solution. Since the responses are random, we will deal with expectations first $$\mathbb{E}\,p=\frac{1}{2}\times\frac{1}{2}+q\times\frac{1}{2}$$ 15 / 36 C. Dimitrakakis Privacy - n athletes - Ask whether they have doped in the past year. - ▶ Aim: calculate % of doping. - ▶ How can we get truthful / accurate results? #### Solution. Since the responses are random, we will deal with expectations first $$\mathbb{E} \, p = rac{1}{2} imes rac{1}{2} + q imes rac{1}{2} = rac{1}{4} + rac{q}{2}$$ C. Dimitrakakis Privacy - n athletes - Ask whether they have doped in the past year. - Aim: calculate % of doping. - ▶ How can we get truthful / accurate results? #### Solution. Since the responses are random, we will deal with expectations first $$\mathbb{E} p = \frac{1}{2} \times \frac{1}{2} + q \times \frac{1}{2} = \frac{1}{4} + \frac{q}{2}$$ $$q = 2 \mathbb{E} p - \frac{1}{2}.$$ September 14, 2018 # The randomised response mechanism ## Definition 6 (Randomised response) The i-th user, whose data is $x_i \in \{0,1\}$, responds with $a_i \in \{0,1\}$ with probability $$\pi(a_i = j \mid x_i = k) = p, \qquad \pi(a_i = k \mid x_i = k) = 1 - p,$$ where $j \neq k$. # The randomised response mechanism ### Definition 6 (Randomised response) The *i*-th user, whose data is $x_i \in \{0,1\}$, responds with $a_i \in \{0,1\}$ with probability $$\pi(a_i = j \mid x_i = k) = p, \qquad \pi(a_i = k \mid x_i = k) = 1 - p,$$ where $j \neq k$. Given the complete data x, the mechanism's output is $a = (a_1, \ldots, a_n)$. # The randomised response mechanism ### Definition 6 (Randomised response) The i-th user, whose data is $x_i \in \{0,1\}$, responds with $a_i \in \{0,1\}$ with probability $$\pi(a_i = j \mid x_i = k) = p, \qquad \pi(a_i = k \mid x_i = k) = 1 - p,$$ where $j \neq k$. Given the complete data x, the mechanism's output is $a=(a_1,\ldots,a_n)$. Since the algorithm independently calculates a new value for each data entry, the output is $$\pi(a \mid x) = \prod_{i} \pi(a_i \mid x_i)$$ #### Exercise 1 Let the adversary have a prior $\xi(x=0)=1-\xi(x=1)$ over the values of the true response of an individual. we use the randomised response mechanism with p and the adversary observes the randomised data a=1 for that individual, then what is $\xi(x=1 \mid a=1)$? # The local privacy model Figure: The local privacy model ## Differential privacy. Definition 7 (ϵ -Differential Privacy) A stochastic algorithm $\pi: \mathcal{X} \to \mathcal{A}$, where \mathcal{X} is endowed with a neighbourhood relation N, is said to be ϵ -differentially private if $$\left| \ln \frac{\pi(a \mid x)}{\pi(a \mid x')} \right| \le \epsilon, \qquad \forall x N x'. \tag{5.1}$$ ### The definition of differential privacy - First rigorous mathematical definition of privacy. - Relaxations and generalisations possible. - Connection to learning theory and reproducibility. #### Current uses - Apple. - Google. - Uber. - US 2020 Census. ### Open problems - Complexity of differential privacy. - Verification of implementations and gueries. #### Remark 1 The randomised response mechanism with $p \le 1/2$ is $(\ln \frac{1-p}{p})$ -DP. #### Proof. Consider $$x=(x_1,\ldots,x_j,\ldots,x_n),\ x'=(x_1,\ldots,x_j',\ldots,x_n).$$ Then $$\pi(a\mid x)$$ The randomised response mechanism with $p \le 1/2$ is $(\ln \frac{1-p}{p})$ -DP. #### Proof. Consider $$x = (x_1, ..., x_j, ..., x_n)$$, $x' = (x_1, ..., x'_j, ..., x_n)$. Then $$\pi(a \mid x) = \prod_{i} \pi(a_i \mid x_i)$$ The randomised response mechanism with $p \le 1/2$ is $(\ln \frac{1-p}{p})$ -DP. #### Proof. Consider $$x = (x_1, ..., x_j, ..., x_n), x' = (x_1, ..., x'_j, ..., x_n).$$ Then $$\pi(a \mid x) = \prod_{i} \pi(a_i \mid x_i)$$ $$= \pi(a_i \mid x_j) \prod_{i \neq i} \pi(a_i \mid x_i)$$ The randomised response mechanism with $p \le 1/2$ is $(\ln \frac{1-p}{p})$ -DP. #### Proof. Consider $$x = (x_1, ..., x_j, ..., x_n), x' = (x_1, ..., x'_j, ..., x_n).$$ Then $$\pi(a \mid x) = \prod_{i} \pi(a_{i} \mid x_{i})$$ $$= \pi(a_{j} \mid x_{j}) \prod_{i \neq j} \pi(a_{i} \mid x_{i})$$ $$\leq \frac{p}{1-p} \pi(a_{j} \mid x'_{j}) \prod_{i \neq i} \pi(a_{i} \mid x_{i})$$ $$\pi(a_j = k \mid x_j = k) = 1 - p$$ so the ratio is $\max\{(1-p)/p, p/(1-p)\} \le (1-p)/p$ for $p \le 1/2$. The randomised response mechanism with $p \le 1/2$ is $(\ln \frac{1-p}{p})$ -DP. #### Proof. Consider $$x=(x_1,\ldots,x_j,\ldots,x_n)$$, $x'=(x_1,\ldots,x_j',\ldots,x_n)$. Then $$\pi(a \mid x) = \prod_{i} \pi(a_{i} \mid x_{i})$$ $$= \pi(a_{j} \mid x_{j}) \prod_{i \neq j} \pi(a_{i} \mid x_{i})$$ $$\leq \frac{p}{1-p} \pi(a_{j} \mid x'_{j}) \prod_{i \neq j} \pi(a_{i} \mid x_{i})$$ $$= \frac{1-p}{p} \pi(a \mid x')$$ Figure: Private database access model ### Response policy The policy defines a distribution over responses a given the data x and the query q. $$\pi(a \mid x, q)$$ # Differentially private queries #### The DP-SELECT statement - ▶ DP-SELECT ϵ column1, column2 FROM table; - ▶ DP-SELECT ϵ * FROM table; #### Selecting rows ``` DP-SELECT \epsilon * FROM table WHERE column = value; ``` ### Arithmetic queries - ightharpoonup DP-SELECT ϵ COUNT(column) FROM table WHERE condition; - ▶ DP-SELECT ϵ AVG(column) FROM table WHERE condition; - ▶ DP-SELECT ϵ SUM(column) FROM table WHERE condition; ### Composition If we answer T queries with an ϵ -DP mechanism, then our cumulative privacy loss is ϵT . #### Exercise 2 #### Adversary knowledge $$\mathbf{x}=(x_1,\ldots,x_j=0,\ldots,x_n)$$ $$\mathbf{x}'=(x_1,\ldots,x_j=1,\ldots,x_n).$$ $$\xi(\mathbf{x}) = 1 - \xi(\mathbf{x}')$$ What can we say about the posterior distribution of the adversary $\xi(\mathbf{x} \mid \mathbf{a}, \pi)$ after having seen the output, if π is ϵ -DP? #### Exercise 2 #### Adversary knowledge $$\mathbf{x} = (x_1, \dots, x_j = 0, \dots, x_n)$$ $\mathbf{x}' = (x_1, \dots, x_j = 1, \dots, x_n).$ $\xi(\mathbf{x}) = 1 - \xi(\mathbf{x}')$ $a_t, \qquad \pi(a_t \mid \mathbf{x}_t) \Rightarrow \begin{cases} \pi(a_t \mid \mathbf{x}_t = \mathbf{x}) \\ \pi(a_t \mid \mathbf{x}_t = \mathbf{x}') \end{cases}$ What can we say about the posterior distribution of the adversary $\xi(\mathbf{x} \mid a, \pi)$ after having seen the output, if π is ϵ -DP? ## Dealing with multiple attributes. ### Independent release of multiple attributes. For n users and k attributes, if the release of each attribute i is ϵ -DP then the data release is $k\epsilon$ -DP. Thus to get ϵ -DP overall, we need ϵ/k -DP per attribute. ## The Laplace mechanism. ## Definition 8 (The Laplace mechanism) For any function $f: \mathcal{X} \to \mathbb{R}$, $$\pi(a \mid x) = Laplace(f(x), \lambda), \tag{5.2}$$ where the Laplace density is defined as $$p(\omega \mid \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|\omega - \mu|}{\lambda}\right).$$ and has mean μ and variance $2\lambda^2$. ## Example 9 (Calculating the average salary) - ▶ The *i*-th person receives salary x_i - ▶ We wish to calculate the average salary in a private manner. ### Local privacy model - Obtain $y_i = x_i + \omega$, where $\omega \sim \text{Laplace}(\lambda)$. - ▶ Return $a = n^{-1} \sum_{i=1}^{n} y_i$. ### Centralised privacy model Return $a = n^{-1} \sum_{i=1}^{n} x_i + \omega$, where $\omega \sim \text{Laplace}(\lambda')$. How should we add noise in order to guarantee privacy? ## The centralised privacy model Figure: The centralised privacy model ### Assumption 1 The data x is collected and the result a is published by a trusted curator ## Definition 10 (Sensitivity) The sensitivity of a function f is $$\mathbb{L}(f) \triangleq \sup_{xNx'} |f(x) - f(x')|$$ ### Example 11 If $$f: \mathcal{X} \to [0, B]$$, e.g. $\mathcal{X} = \mathbb{R}$ and $f(x) = \min\{B, \max\{0, x\}\}\$, then C. Dimitrakakis Privacy ## Definition 10 (Sensitivity) The sensitivity of a function f is $$\mathbb{L}(f) \triangleq \sup_{x N x'} |f(x) - f(x')|$$ ### Example 11 If $f: \mathcal{X} \to [0, B]$, e.g. $\mathcal{X} = \mathbb{R}$ and $f(x) = \min\{B, \max\{0, x\}\}$, then $\mathbb{L}(f) = B$. C. Dimitrakakis Privacy ## Definition 10 (Sensitivity) The sensitivity of a function f is $$\mathbb{L}(f) \triangleq \sup_{xNx'} |f(x) - f(x')|$$ ### Example 11 If $f: \mathcal{X} \to [0, B]$, e.g. $\mathcal{X} = \mathbb{R}$ and $f(x) = \min\{B, \max\{0, x\}\}\$, then $\mathbb{L}(f) = B$. ### Example 12 If $f:[0,B]^n \to [0,B]$ is $f=\frac{1}{n}\sum_{t=1}^n x_t$, then - **↓**ロト **↓**┛ト **↓** 目 → りへで ## Definition 10 (Sensitivity) The sensitivity of a function f is $$\mathbb{L}(f) \triangleq \sup_{xNx'} |f(x) - f(x')|$$ ### Example 11 If $f: \mathcal{X} \to [0, B]$, e.g. $\mathcal{X} = \mathbb{R}$ and $f(x) = \min\{B, \max\{0, x\}\}\$, then $\mathbb{L}(f) = B$. ### Example 12 If $$f:[0,B]^n \to [0,B]$$ is $f=\frac{1}{n}\sum_{t=1}^n x_t$, then $\mathbb{L}(f)=B/n$. - 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 釣 9 0 0 0 #### Theorem 13 The Laplace mechanism on a function f with sensitivity $\mathbb{L}(f)$, ran with *Laplace*(λ) *is* $\mathbb{L}(f)/\lambda$ -DP. Proof. $$\frac{\pi(a\mid x)}{\pi(a\mid x')} = \frac{e^{|a-f(x')|/\lambda}}{e^{|a-f(x)|/\lambda}} \leq \frac{e^{|a-f(x)|/\lambda + \mathbb{L}(f)/\lambda}}{e^{|a-f(x)|/\lambda}} = e^{\mathbb{L}(f)/\lambda}$$ So we need to use $\lambda = \mathbb{L}(f)/\epsilon$ for ϵ -DP. What is the effect of applying the Laplace mechanism in the local versus centralised model? C. Dimitrakakis ### Interactive queries - System has data x. - User asks query q. - System responds with a. - ▶ There is a common utility function $U: \mathcal{X}, \mathcal{A}, \mathcal{Q} \to \mathbb{R}$. We wish to maximisation U with our answers, but are constrained by the fact that we also want to preserve privacy. ## The Exponential Mechanism. ## Definition 14 (The Exponential mechanism) For any utility function $U: \mathcal{Q} \times \mathcal{A} \times \mathcal{X} \to \mathbb{R}$, define the policy $$\pi(a \mid x) \triangleq \frac{e^{\epsilon U(q,a,x)/\mathbb{L}(U(q))}}{\sum_{a'} e^{\epsilon U(q,a',x)/\mathbb{L}(U(q))}}$$ (5.3) What happens when $\epsilon \to \infty$? What about when $\epsilon \to 0$? (ロ) (리) (본) (본) (본) 연(C) Prior 33 / 36 C. Dimitrakakis Privacy Prior Training data Holdout C. Dimitrakakis C. Dimitrakakis ## The reusable holdout? 1 ### Algorithm parameters - Performance measure f. - ▶ Threshold τ . - ▶ Noise σ . - ▶ Budget B. ### Algorithm idea Run algorithm λ on data D_T and get e.g. classifier parameters θ . Run a DP version of the function $$f(\theta, D_H) = \mathbb{I} \{ U(\theta, D_T) \ge \tau U(\theta, D_H) \}.$$ https://ai.googleblog.com/2015/08/the-reusable-holdout-preserving.html September 14, 2018 34 / 36 C. Dimitrakakis Privacy ¹Also see # Available privacy toolboxes ### k-anonymity ► https://github.com/qiyuangong/Mondrian Mondrian k-anonymity ### Differential privacy - https://github.com/bmcmenamin/ thresholdOut-explorationsThreshold out - https://github.com/steven7woo/ Accuracy-First-Differential-PrivacyAccuracy-constrained DP - https://github.com/menisadi/pydpVarious DP algorithms - https://github.com/haiphanNJIT/PrivateDeepLearning Deep learning and DP ## Learning outcomes ### Understanding - Linkage attacks and k-anonymity. - Inferring data from summary statistics. - The local versus global differential privacy model. - False discovery rates. #### Skills - ▶ Make a dataset satisfy k-anonymity with respect to identifying attributes. - Apply the randomised response and Laplace mechanism to data. - Apply the exponential mechanism to simple decision problems. - Use differential privacy to improve reproducibility. #### Reflection