Privacy

Christos Dimitrakakis

September 14, 2018

Introduction

Database access models

Privacy in databases

k-anonymity

Differential privacy

Just because they're the problem, doesn't mean we aren't.

Privacy in statitical disclosure.

- Public analysis of sensitive data.
- ▶ Publication of "anonymised" data.

Not about cryptography

- Secure communication and computation.
- Authentication and verification.

An issue of trust

- Who to trust and how much.
- With what data to trust them.
- What you want out of the service.

4 / 36

C. Dimitrakakis Privacy

Introduction

Database access models

Privacy in databases

k-anonymity

Differential privacy

Databases

Example 1 (Typical relational database in a tax office)

Name	Salary	Deposits	Age	Postcode	Prof
Mike Pence	150,000	1e6	60	1001	Poli
Donald Trump	300,000	-1e9	72	1001	Ren
A. B. Student	10,000	100,000	40	1001	Tim
	Mike Pence Donald Trump	Mike Pence 150,000 Donald Trump 300,000	Mike Pence 150,000 1e6 Donald Trump 300,000 -1e9	Mike Pence 150,000 1e6 60 Donald Trump 300,000 -1e9 72	Mike Pence 150,000 1e6 60 1001

Database access

- ▶ When owning the database: Direct look-up.
- ▶ When accessing a server etc: Query model.

Databases

Example 1 (Typical relational database in a tax office)

ID	Name	Salary	Deposits	Age	Postcode	Pro
1959060783	Mike Pence	150,000	1e6	60	1001	Poli
1946061408	Donald Trump	300,000	-1e9	72	1001	Ren
2100010101	A. B. Student	10,000	100,000	40	1001	Tim

Python program

Database System

Query

Queries in SQL

The SELECT statement

- SELECT column1, column2 FROM table;
- SELECT * FROM table;

Selecting rows

```
SELECT * FROM table WHERE column = value;
```

Arithmetic queries

- ► SELECT COUNT(column) FROM table WHERE condition;
- ► SELECT AVG(column) FROM table WHERE condition;
- ▶ SELECT SUM(column) FROM table WHERE condition;

Introduction

Database access models

Privacy in databases

k-anonymity

Differential privacy

Anonymisation

Example 2 (Typical relational database in Tinder)

Birthday	Name	Height	Weight	Age	Postcode	Profession
06/07	Li Pu	190	80	60-70	1001	Politicia
06/14	Sara Lee	185	110	70+	1001	Rentier
01/01	A. B. Student	170	70	40-60	6732	Time Tr

Anonymisation

Example 2 (Typical relational database in Tinder)

Birthday	Name	Height	Weight	Age	Postcode	Profession
06/07		190	80	60-70	1001	Politician
06/14		185	110	70+	1001	Rentier
01/01		170	70	40-60	6732	Time Traveller

The simple act of hiding or using random identifiers is called anonymisation.

Record linkage

Figure: An example of two datasets, one containing sensitive and the other public information. The two datasets can be linked and individuals identified through the use of quasi-identifiers.

k-anonymity

(a) Samarati

(b) Sweeney

Definition 5 (k-anonymity)

A database provides k-anonymity if for every person in the database is indistinguishable from k-1 persons with respect to *quasi-identifiers*.

It's the analyst's job to define quasi-identifiers

Birthday	Name	Height	Weight	Age	Postcode	Pr
06/07	Li Pu	190	80	60+	1001	Ро
06/14	Sara Lee	185	110	60+	1001	Re
06/12	Nikos Papadopoulos	170	82	60+	1243	Ро
01/01	A. B. Student	170	70	40-60	6732	Tii
05/08	Li Yang	175	72	30-40	6910	Tir

Table: 1-anonymity.

12 / 36

C. Dimitrakakis Privacy September 14, 2018

Birthday	Name	Height	Weight	Age	Postcode	Profession
06/07		190	80	60+	1001	Politician
06/14		185	110	60+	1001	Rentier
06/12		170	82	60+	1243	Politician
01/01		170	70	40-60	6732	Time Traveller
05/08		175	72	30-40	6910	Policeman

1-anonymity

C. Dimitrakakis Privacy Septe

Birthday	Name	Height	Weight	Age	Postcode	Profession
06/07		180-190	80+	60+	1*	
06/14		180-190	80+	60+	1*	
06/12		170-180	60+	60+	1*	
01/01		170-180	60-80	20-60	6*	
05/08		170-180	60-80	20-60	6*	

1-anonymity

12 / 36

C. Dimitrakakis Privacy September 14, 2018

Birthday	Name	Height	Weight	Age	Postcode	Profession
		180-190	80+	60+	1*	
		180-190	80+	60+	1*	
		170-180	60-80	69+	1*	
		170-180	60-80	20-60	6*	
		170-180	60-80	20-60	6*	

Table: 2-anonymity: the database can be partitioned in sets of at least 2 records

Figure: If two people contribute their data $x = (x_1, x_2)$ to a medical database, and an algorithm π computes some public output a from x, then it should be hard infer anything about the data from the public output.

Figure: If two people contribute their data $x = (x_1, x_2)$ to a medical database, and an algorithm π computes some public output a from x, then it should be hard infer anything about the data from the public output.

Figure: If two people contribute their data $x = (x_1, x_2)$ to a medical database, and an algorithm π computes some public output a from x, then it should be hard infer anything about the data from the public output.

Figure: If two people contribute their data $x = (x_1, x_2)$ to a medical database, and an algorithm π computes some public output a from x, then it should be hard infer anything about the data from the public output.

Figure: If two people contribute their data $x = (x_1, x_2)$ to a medical database, and an algorithm π computes some public output a from x, then it should be hard infer anything about the data from the public output.

Privacy desiderata

We wish to calculate something on some private data and publish a privacy-preserving, but useful, version of the result.

- Anonymity: Individual participation remains hidden.
- Secrecy: Individual data x_i is not revealed.
- Side-information: Linkage attacks are not possible.
- ▶ Utility: The calculation remains useful.

- n athletes
- Ask whether they have doped in the past year.
- ▶ Aim: calculate % of doping.
- ▶ How can we get truthful / accurate results?

- n athletes
- Ask whether they have doped in the past year.
- Aim: calculate % of doping.
- ▶ How can we get truthful / accurate results?

Algorithm for randomising responses about drug use

- 1. Flip a coin.
- 2. If it comes heads, respond truthfully.
- 3. Otherwise, flip another coin and respond yes if it comes heads and no otherwise.

Exercise 1

Assume that the observed rate of positive responses in a sample is p, that everybody follows the protocol, and the coin is fair. Then, what is the true rate q of drug use in the population?

- n athletes
- Ask whether they have doped in the past year.
- ▶ Aim: calculate % of doping.
- ▶ How can we get truthful / accurate results?

Solution.

Since the responses are random, we will deal with expectations first

$$\mathbb{E}\,p=\frac{1}{2}\times\frac{1}{2}+q\times\frac{1}{2}$$

15 / 36

C. Dimitrakakis Privacy

- n athletes
- Ask whether they have doped in the past year.
- ▶ Aim: calculate % of doping.
- ▶ How can we get truthful / accurate results?

Solution.

Since the responses are random, we will deal with expectations first

$$\mathbb{E} \, p = rac{1}{2} imes rac{1}{2} + q imes rac{1}{2} = rac{1}{4} + rac{q}{2}$$

C. Dimitrakakis Privacy

- n athletes
- Ask whether they have doped in the past year.
- Aim: calculate % of doping.
- ▶ How can we get truthful / accurate results?

Solution.

Since the responses are random, we will deal with expectations first

$$\mathbb{E} p = \frac{1}{2} \times \frac{1}{2} + q \times \frac{1}{2} = \frac{1}{4} + \frac{q}{2}$$
$$q = 2 \mathbb{E} p - \frac{1}{2}.$$

September 14, 2018

The randomised response mechanism

Definition 6 (Randomised response)

The i-th user, whose data is $x_i \in \{0,1\}$, responds with $a_i \in \{0,1\}$ with probability

$$\pi(a_i = j \mid x_i = k) = p, \qquad \pi(a_i = k \mid x_i = k) = 1 - p,$$

where $j \neq k$.

The randomised response mechanism

Definition 6 (Randomised response)

The *i*-th user, whose data is $x_i \in \{0,1\}$, responds with $a_i \in \{0,1\}$ with probability

$$\pi(a_i = j \mid x_i = k) = p, \qquad \pi(a_i = k \mid x_i = k) = 1 - p,$$

where $j \neq k$.

Given the complete data x, the mechanism's output is $a = (a_1, \ldots, a_n)$.

The randomised response mechanism

Definition 6 (Randomised response)

The i-th user, whose data is $x_i \in \{0,1\}$, responds with $a_i \in \{0,1\}$ with probability

$$\pi(a_i = j \mid x_i = k) = p, \qquad \pi(a_i = k \mid x_i = k) = 1 - p,$$

where $j \neq k$.

Given the complete data x, the mechanism's output is $a=(a_1,\ldots,a_n)$. Since the algorithm independently calculates a new value for each data entry, the output is

$$\pi(a \mid x) = \prod_{i} \pi(a_i \mid x_i)$$

Exercise 1

Let the adversary have a prior $\xi(x=0)=1-\xi(x=1)$ over the values of the true response of an individual. we use the randomised response mechanism with p and the adversary observes the randomised data a=1 for that individual, then what is $\xi(x=1 \mid a=1)$?

The local privacy model

Figure: The local privacy model

Differential privacy.

Definition 7 (ϵ -Differential Privacy)

A stochastic algorithm $\pi: \mathcal{X} \to \mathcal{A}$, where \mathcal{X} is endowed with a neighbourhood relation N, is said to be ϵ -differentially private if

$$\left| \ln \frac{\pi(a \mid x)}{\pi(a \mid x')} \right| \le \epsilon, \qquad \forall x N x'. \tag{5.1}$$

The definition of differential privacy

- First rigorous mathematical definition of privacy.
- Relaxations and generalisations possible.
- Connection to learning theory and reproducibility.

Current uses

- Apple.
- Google.
- Uber.
- US 2020 Census.

Open problems

- Complexity of differential privacy.
- Verification of implementations and gueries.

Remark 1

The randomised response mechanism with $p \le 1/2$ is $(\ln \frac{1-p}{p})$ -DP.

Proof.

Consider
$$x=(x_1,\ldots,x_j,\ldots,x_n),\ x'=(x_1,\ldots,x_j',\ldots,x_n).$$
 Then
$$\pi(a\mid x)$$

The randomised response mechanism with $p \le 1/2$ is $(\ln \frac{1-p}{p})$ -DP.

Proof.

Consider
$$x = (x_1, ..., x_j, ..., x_n)$$
, $x' = (x_1, ..., x'_j, ..., x_n)$. Then

$$\pi(a \mid x) = \prod_{i} \pi(a_i \mid x_i)$$

The randomised response mechanism with $p \le 1/2$ is $(\ln \frac{1-p}{p})$ -DP.

Proof.

Consider
$$x = (x_1, ..., x_j, ..., x_n), x' = (x_1, ..., x'_j, ..., x_n).$$
 Then

$$\pi(a \mid x) = \prod_{i} \pi(a_i \mid x_i)$$
$$= \pi(a_i \mid x_j) \prod_{i \neq i} \pi(a_i \mid x_i)$$

The randomised response mechanism with $p \le 1/2$ is $(\ln \frac{1-p}{p})$ -DP.

Proof.

Consider
$$x = (x_1, ..., x_j, ..., x_n), x' = (x_1, ..., x'_j, ..., x_n).$$
 Then

$$\pi(a \mid x) = \prod_{i} \pi(a_{i} \mid x_{i})$$

$$= \pi(a_{j} \mid x_{j}) \prod_{i \neq j} \pi(a_{i} \mid x_{i})$$

$$\leq \frac{p}{1-p} \pi(a_{j} \mid x'_{j}) \prod_{i \neq i} \pi(a_{i} \mid x_{i})$$

$$\pi(a_j = k \mid x_j = k) = 1 - p$$
 so the ratio is $\max\{(1-p)/p, p/(1-p)\} \le (1-p)/p$ for $p \le 1/2$.

The randomised response mechanism with $p \le 1/2$ is $(\ln \frac{1-p}{p})$ -DP.

Proof.

Consider
$$x=(x_1,\ldots,x_j,\ldots,x_n)$$
, $x'=(x_1,\ldots,x_j',\ldots,x_n)$. Then

$$\pi(a \mid x) = \prod_{i} \pi(a_{i} \mid x_{i})$$

$$= \pi(a_{j} \mid x_{j}) \prod_{i \neq j} \pi(a_{i} \mid x_{i})$$

$$\leq \frac{p}{1-p} \pi(a_{j} \mid x'_{j}) \prod_{i \neq j} \pi(a_{i} \mid x_{i})$$

$$= \frac{1-p}{p} \pi(a \mid x')$$

Figure: Private database access model

Response policy

The policy defines a distribution over responses a given the data x and the query q.

$$\pi(a \mid x, q)$$

Differentially private queries

The DP-SELECT statement

- ▶ DP-SELECT ϵ column1, column2 FROM table;
- ▶ DP-SELECT ϵ * FROM table;

Selecting rows

```
DP-SELECT \epsilon * FROM table WHERE column = value;
```

Arithmetic queries

- ightharpoonup DP-SELECT ϵ COUNT(column) FROM table WHERE condition;
- ▶ DP-SELECT ϵ AVG(column) FROM table WHERE condition;
- ▶ DP-SELECT ϵ SUM(column) FROM table WHERE condition;

Composition

If we answer T queries with an ϵ -DP mechanism, then our cumulative privacy loss is ϵT .

Exercise 2

Adversary knowledge

$$\mathbf{x}=(x_1,\ldots,x_j=0,\ldots,x_n)$$

$$\mathbf{x}'=(x_1,\ldots,x_j=1,\ldots,x_n).$$

$$\xi(\mathbf{x}) = 1 - \xi(\mathbf{x}')$$

What can we say about the posterior distribution of the adversary $\xi(\mathbf{x} \mid \mathbf{a}, \pi)$ after having seen the output, if π is ϵ -DP?

Exercise 2

Adversary knowledge

$$\mathbf{x} = (x_1, \dots, x_j = 0, \dots, x_n)$$
 $\mathbf{x}' = (x_1, \dots, x_j = 1, \dots, x_n).$
 $\xi(\mathbf{x}) = 1 - \xi(\mathbf{x}')$
 $a_t, \qquad \pi(a_t \mid \mathbf{x}_t) \Rightarrow \begin{cases} \pi(a_t \mid \mathbf{x}_t = \mathbf{x}) \\ \pi(a_t \mid \mathbf{x}_t = \mathbf{x}') \end{cases}$

What can we say about the posterior distribution of the adversary $\xi(\mathbf{x} \mid a, \pi)$ after having seen the output, if π is ϵ -DP?

Dealing with multiple attributes.

Independent release of multiple attributes.

For n users and k attributes, if the release of each attribute i is ϵ -DP then the data release is $k\epsilon$ -DP. Thus to get ϵ -DP overall, we need ϵ/k -DP per attribute.

The Laplace mechanism.

Definition 8 (The Laplace mechanism)

For any function $f: \mathcal{X} \to \mathbb{R}$,

$$\pi(a \mid x) = Laplace(f(x), \lambda), \tag{5.2}$$

where the Laplace density is defined as

$$p(\omega \mid \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|\omega - \mu|}{\lambda}\right).$$

and has mean μ and variance $2\lambda^2$.

Example 9 (Calculating the average salary)

- ▶ The *i*-th person receives salary x_i
- ▶ We wish to calculate the average salary in a private manner.

Local privacy model

- Obtain $y_i = x_i + \omega$, where $\omega \sim \text{Laplace}(\lambda)$.
- ▶ Return $a = n^{-1} \sum_{i=1}^{n} y_i$.

Centralised privacy model

Return $a = n^{-1} \sum_{i=1}^{n} x_i + \omega$, where $\omega \sim \text{Laplace}(\lambda')$.

How should we add noise in order to guarantee privacy?

The centralised privacy model

Figure: The centralised privacy model

Assumption 1

The data x is collected and the result a is published by a trusted curator

Definition 10 (Sensitivity)

The sensitivity of a function f is

$$\mathbb{L}(f) \triangleq \sup_{xNx'} |f(x) - f(x')|$$

Example 11

If
$$f: \mathcal{X} \to [0, B]$$
, e.g. $\mathcal{X} = \mathbb{R}$ and $f(x) = \min\{B, \max\{0, x\}\}\$, then

C. Dimitrakakis Privacy

Definition 10 (Sensitivity)

The sensitivity of a function f is

$$\mathbb{L}(f) \triangleq \sup_{x N x'} |f(x) - f(x')|$$

Example 11

If $f: \mathcal{X} \to [0, B]$, e.g. $\mathcal{X} = \mathbb{R}$ and $f(x) = \min\{B, \max\{0, x\}\}$, then $\mathbb{L}(f) = B$.

C. Dimitrakakis Privacy

Definition 10 (Sensitivity)

The sensitivity of a function f is

$$\mathbb{L}(f) \triangleq \sup_{xNx'} |f(x) - f(x')|$$

Example 11

If $f: \mathcal{X} \to [0, B]$, e.g. $\mathcal{X} = \mathbb{R}$ and $f(x) = \min\{B, \max\{0, x\}\}\$, then $\mathbb{L}(f) = B$.

Example 12

If $f:[0,B]^n \to [0,B]$ is $f=\frac{1}{n}\sum_{t=1}^n x_t$, then

- **↓**ロト **↓**┛ト **↓** 目 → りへで

Definition 10 (Sensitivity)

The sensitivity of a function f is

$$\mathbb{L}(f) \triangleq \sup_{xNx'} |f(x) - f(x')|$$

Example 11

If $f: \mathcal{X} \to [0, B]$, e.g. $\mathcal{X} = \mathbb{R}$ and $f(x) = \min\{B, \max\{0, x\}\}\$, then $\mathbb{L}(f) = B$.

Example 12

If
$$f:[0,B]^n \to [0,B]$$
 is $f=\frac{1}{n}\sum_{t=1}^n x_t$, then $\mathbb{L}(f)=B/n$.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 釣 9 0 0 0

Theorem 13

The Laplace mechanism on a function f with sensitivity $\mathbb{L}(f)$, ran with *Laplace*(λ) *is* $\mathbb{L}(f)/\lambda$ -DP.

Proof.

$$\frac{\pi(a\mid x)}{\pi(a\mid x')} = \frac{e^{|a-f(x')|/\lambda}}{e^{|a-f(x)|/\lambda}} \leq \frac{e^{|a-f(x)|/\lambda + \mathbb{L}(f)/\lambda}}{e^{|a-f(x)|/\lambda}} = e^{\mathbb{L}(f)/\lambda}$$

So we need to use $\lambda = \mathbb{L}(f)/\epsilon$ for ϵ -DP. What is the effect of applying the Laplace mechanism in the local versus centralised model?

C. Dimitrakakis

Interactive queries

- System has data x.
- User asks query q.
- System responds with a.
- ▶ There is a common utility function $U: \mathcal{X}, \mathcal{A}, \mathcal{Q} \to \mathbb{R}$.

We wish to maximisation U with our answers, but are constrained by the fact that we also want to preserve privacy.

The Exponential Mechanism.

Definition 14 (The Exponential mechanism)

For any utility function $U: \mathcal{Q} \times \mathcal{A} \times \mathcal{X} \to \mathbb{R}$, define the policy

$$\pi(a \mid x) \triangleq \frac{e^{\epsilon U(q,a,x)/\mathbb{L}(U(q))}}{\sum_{a'} e^{\epsilon U(q,a',x)/\mathbb{L}(U(q))}}$$
(5.3)

What happens when $\epsilon \to \infty$? What about when $\epsilon \to 0$?

(ロ) (리) (본) (본) (본) 연(C)

Prior

33 / 36

C. Dimitrakakis Privacy

Prior

Training data

Holdout

C. Dimitrakakis

C. Dimitrakakis

The reusable holdout? 1

Algorithm parameters

- Performance measure f.
- ▶ Threshold τ .
- ▶ Noise σ .
- ▶ Budget B.

Algorithm idea

Run algorithm λ on data D_T and get e.g. classifier parameters θ .

Run a DP version of the function

$$f(\theta, D_H) = \mathbb{I} \{ U(\theta, D_T) \ge \tau U(\theta, D_H) \}.$$

https://ai.googleblog.com/2015/08/the-reusable-holdout-preserving.html

September 14, 2018

34 / 36

C. Dimitrakakis Privacy

¹Also see

Available privacy toolboxes

k-anonymity

► https://github.com/qiyuangong/Mondrian Mondrian k-anonymity

Differential privacy

- https://github.com/bmcmenamin/ thresholdOut-explorationsThreshold out
- https://github.com/steven7woo/ Accuracy-First-Differential-PrivacyAccuracy-constrained DP
- https://github.com/menisadi/pydpVarious DP algorithms
- https://github.com/haiphanNJIT/PrivateDeepLearning Deep learning and DP

Learning outcomes

Understanding

- Linkage attacks and k-anonymity.
- Inferring data from summary statistics.
- The local versus global differential privacy model.
- False discovery rates.

Skills

- ▶ Make a dataset satisfy k-anonymity with respect to identifying attributes.
- Apply the randomised response and Laplace mechanism to data.
- Apply the exponential mechanism to simple decision problems.
- Use differential privacy to improve reproducibility.

Reflection