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Recommendation systems

The recommendation problem
At time t

1. A customer x; appears.

2. We present a choice a;.

3. The customer chooses ;.

4. We obtain a reward r; = p(a¢, yt) € R.
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Recommendation systems

The two problems in recommendation systems

» The modelling (or prediction) problem.

» The recommendation problem.
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Recommendation systems

How to predict user preferences?

Example: ltem-based CF
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Recommendation systems

Because you watched New Girl
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Figure: What to recommend?
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Recommendation systems

Predictions based on similarity

Content-based filtering.

> Users typically like similar items.

» That means we can one user's ratings and item information to predict
their ratings for other items.
Collaborative filtering

» Similar users have similar tastes.

» That means we can use similar user’s ratings to predict the ratings for
other users.
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Recommendation systems

k-NN for similarity

Exercise 1

» Define a distance d : XM x XM — R, between user ratings.

> Apply a k-NN-like algorithm to prediction of user ratings from the
dataset.
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Recommendation systems
Similarity between users

dwij=1,  wiEwiI{xm}/> wikl{xem}.
J#i k

Example 1 (k-nearest neighbours)

w;j = 1/k for the k nearest neighbours with respect to d.

Example 2 (Weighted distance)

o ewl=d(i))]
s Zk;éiexp[_d(iaj)]

Inferred ratings
Ry.m = § WLTJ'Xu,m-
J#u
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Recommendation systems

A naive distance metric

d(i,j) £ || — xj1.

Ignoring movies which are not shared.

d(i,j) = ZH{Xi,m A Xj,m} Xism = Xj,m
m

Using side-information
Social network data

Inferring a latent representation

d(’:]) £ f(xiawﬁe)
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Recommendation systems Least squares representation

Latent representation

The predictive model

> X,m rating of user u for movie m.

v

rum = I{xum > 0} indicates which movies are rated.

v

zm € R": an n-dimensional representation of a movie.

v

¢, € R": an n-dimensional representation of a user.

Given C, Z, our predicted movie rating can be written as

A A o A
Rum = chm, X2cC'z.

f(C,Z)=|(RoX-—RoX) (RoX —RoX)|
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Recommendation systems Preferences as a latent variable

A simple preference model
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Figure: Basic preference model

Example 3 (Discrete preference model)

» User type c € C.
» User ratings « with x,, € X = {0, 1} rating for movie m.

» Preference distribution

M
X 1—x,
Po(x|c) = H em":c(]' - Hmyc)( ™).
m=1
> Po(c) =0c, > . 0c.=1.
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Recommendation systems Preferences as a latent variable

A more complex preference model
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Figure: Preference model

Preference model

v

User type ¢ € C.

\4

Movie type z € Z.

v

Preference distribution

Po(x|e, z) = N(e" z,00)

v

Feature prior
P@(C) = N(()? >‘6’)
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Recommendation systems ~ The recommendation problem

What to recommend
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Figure: Preference model

The recommendation problem for a given 6
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Recommendation systems ~ The recommendation problem

What to recommend

)

Figure: Preference model

The recommendation problem for a given 6

maxEg (U | ) = mng U(a,y)P(y | a.c,z)Py(c,z | x) (11)
c,z
= mj)x; U(a,y)XZIP’(y | a,x5)Py(xa | ¢,2)Py(c, z | x)

(1.2)
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Recommendation systems ~ The recommendation problem

Two ways to model the effect of actions

Figure: Preference model

Eo(U|ax)=> Ua,y)) Ply|ax)Psx:|c,2)Pyc,z|x) (1.3)

¢,z Xa
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Recommendation systems ~ The recommendation problem

Two ways to model the effect of actions

Figure: Preference model

Eg(U | a,x) = ZUay (v |a c,z)Py(c,z| x) (1.3)
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More fun with latent variable models

More fun with latent variable models
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More fun with latent variable models

Clusters as latent variables
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Figure: Graphical model for independent data from a cluster distribution.

The clustering distribution

» Cluster ¢;
» Observation x;

» Parameter 6.

xt|ce=c,0~Py(xlc),  ce|0~Py(c),  6~E0)

PQ(Ct | Xt) =

C. Dimitrakakis Recommendation systems October 11, 2018 17 / 28



More fun with latent variable models

Clusters as latent variables
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Figure: Graphical model for independent data from a cluster distribution.

The clustering distribution

» Cluster ¢;
» Observation x;

» Parameter 6.

xt|ce=c,0~Py(xlc),  ce|0~Py(c),  6~E0)

_ PO(Xt | Ct)Po(Ct)
Yo Po(xe | ¢t = ¢')Py(ct = )
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More fun with latent variable models

Bayesian formulation of the clustering problem

» Prior £ on parameter space 6.
» Data x” = xq,...,x7. Cluster assignments ¢’ unknown.
» Posterior £(- | xT).

Posterior distribution

Cluster Density

Po(xT)E()
0|x") = o . Py(xT) = Po(xT | T) Py(c”
0 x") f@ P@/(XT) d§(o”) o) CTZG(:;T . - ()jlu:)t(e:pr)ior

(2.1)
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More fun with latent variable models

Bayesian formulation of the clustering problem

» Prior £ on parameter space 6.
» Data x” = xq,...,x7. Cluster assignments ¢’ unknown.
» Posterior £(- | xT).

Posterior distribution

Cluster Density

™ Po(xT)(9) Ty — f_X;? T
@ x")= Jo Por(xT) dg(0")’ Po( )_cTZa::T Po(x" | ()Hpe( )
uster prior
(2.1)

Marginal posterior prediction

Pe(cr | xeoxT) = /9 Po(ce | xe)dé(8 | xT)
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More fun with latent variable models

Example 4 (Preference clustering)

c={1,...,C}, xe.m € {0,1}.
0 = (61,6).
Model family

Po,(ct = c) = 01, ¢t ~ Multinomial (61) (2.2)

Po,(xem=1]ct=¢)=bomc Xe,m | ¢t = ¢ ~ Bernoulli(6om ) (2.3)

Prior

01 ~ Dirichlet(7), 02 ~ Beta(a, ) (2.4)
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src/pymc/beta_bernoulli_clustering.py

More fun with latent variable models

Supervised learning

Figure: Graphical model for a classical supervised learning problem.
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More fun with latent variable models

Semi-supervised learning

Figure: Graphical model for a classical semi-supervised learning problem.
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More fun with latent variable models
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Figure: Generative version of the semi-supervised model
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More fun with latent variable models

Figure: Basic unsupervised learning model

Applications

» Clustering

» Compression
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Social networks

Social networks
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Social networks

Network model

Figure: Graphical model for data from a social network.
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Social networks

Network model

Figure: Graphical model for data from a social network.
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Social networks

Network model
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Figure: Graphical model for data from a social network.
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Sequential structures

Finish

100
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Sequential structures

Markov process

Figure: Graphical model for a Markov process.

Definition 5 (Markov process)

A Markov process is a sequence of variables x; : {2 — X such that
Xt4+1 | Xt A Xt—ka S 1.

Application

» Sequence compression (especially with variable order Models).
» Web-search (Page-Rank)

» Hidden Markov Models.

» MCMC.
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Sequential structures

Hidden Markov model
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Figure: Graphical model for a hidden Markov model.

Po(xt+1 | xt) (transition distribution)
Po(y: | xt) (emission distribution)

Application

» Speech recognition.
» Filtering (Kalman Filter).

a  DRIAMiL2kalis, Recommendation systems October 11, 2018 28 /28



	Recommendation systems
	Least squares representation
	Preferences as a latent variable
	The recommendation problem

	More fun with latent variable models
	Social networks
	Sequential structures

