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8 CHAPTER 1. INTRODUCTION

1.1 Introduction to machine learning

What are the central problems in machine learning?

Problems in machine learning are similar to problems in science. Scientists must plan ex-
periments intelligently and collect data. The must be able to use the data to verify a different
hypothesis. More generally, they must be able to make decisions under uncertainty (Without
uncertainty, there would be no need to gather more data). Similar problems appear in more
mundane tasks, like learning to drive a car.

For that reason, science is a very natural application area for machine learning. We can model
the effects of climate change and how to mitigate it; discover structure in social networks; map the
existence of dark matter in the universe by intelligently shifting through weak gravitational lens
data, and not only study the mechanisms of protein folding, but discover methods to synthesize
new drugs.

We must be careful, however. In many cases we need to be able to interpret what our model
tells us. We also must make sure that the any results we obtain are reproducible. This is
something that we shall emphasize in this course.

While machine learning models in science are typically carefully handcrafted by scientists and
experts in machine learning and statistics, this is not typically the case in everyday applications.
Nevertheless, well-known or home-grown machine learning models are being deployed across the
application spectrum. This involve home assistants that try and get you want, web advertising,
which tries to find new things for you to want, lending, which tries to optimally lend you money
so that you buy what you didn’t need before. We also have autonomous vehicles, which take
you were you want to go, and ridesharing services, which do the same thing, but use humans
instead. Finally, there are many applications in public policy, such as crime prevention, justice,
and disease control which use machine learning. In all those cases, we have to worry about a
great many things that are outside the scope of the machine learning problems itself. These are
(a) privacy: you don’t want your data used in ways that you have not consented to (b) fairness:
you don’t want minorities to be disadvantaged and (c) safety: you don’t want your car to crash.

1.1.1 Data analysis, learning and planning

To make the above more concrete, let’s have a look at a number of problems in machine learn-
ing. These involve learning from and analysing data, including inferring decision rules, and con-
structing complex plans using the evidence gleaned from the data. Machine learning problems
are commonly separated in three different types: supervised, unsupervised and reinforcement
learning. Typical supervised learning problems include classification and regression, while unsu-
pervised problems include compression, clustering and topic modelling. Reinforcement learning,
on the other hand, is concerned with artificially intelligent agents more generally, with examples
including game playing and adaptive control. Their main differences are two. Firstly, the type of
feedback we have about learning performance. Secondly, and perhaps more importantly, whether
or not the problem involves active data collection. In this course, we will try and take a global
view of these problems in the context of decision theory.

Can machines learn from data?
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An unsupervised learning problem: topic modelling

A supervised learning problem: object recognition

You can use machine learning just to analyse, or find structure in the data. This is generally
called unsupervised learning. One such example is topic modelling, where you let the algorithm
find topics from a corpus of text. These days machines are used to learn from in many ap-
plications. These include speech recognition, facial authentication, weather prediction, etc. In
general, in these problems we are given a labelled dataset with, say, example images from each
class. Unfortunately this does not scale very well, because obtaining labels is expensive.

This is partially how science works, because what we need to do is to find a general rule
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of nature from data. Starting from some hypothesis and some data, we reach a conclusion.
However, many times we may need to actively experiment to obtain more data, perhaps because
we found that our model is wrong.

Can machines learn from their mistakes?

Reinforcement learning
Take actions a1, . . . , at, so as to maximise utility U =

∑T
t=1 rt

So, what happens when we make a mistake? Can we somehow recognise it? Humans and
other animals can actually learn from their mistakes. Consider the proverbial rat in the maze.
At some intervals, the experimenter places some cheese in there, and the rat must do a series of
actions to obtain it, such as navigating the maze and pulling some levers. It doesn’t know how
to get to the cheese easily, but it slowly learns the layout of the maze through observation, and
in the end, through trial-and-error it is able to get to the cheese very efficiently.

We can formalise this as a reinforcement learning problem, where the rat takes a series of
actions; at each step it also obtains a reward, let’s say equal to 0 when it has no cheese, and 1
when it eats cheese. Then we can declare that the rat’s utility is the sum of all rewards over
time, i.e. the total amount of cheese it can eat before it dies. The rat needs to explore the
environment in order to be able to get to the cheese.

An example in robotics is trying to teach a robot to flip pancakes. One easy thing we can
try is to show the robot how to do it, and then let it just copy the demonstrated movement.
However, this doesn’t work! The robot needs to explore variations of the movement, until it
manages to successfully flip pancakes. Again, we can formulate this as a reinforcement learning
problem, with a reward that is high whenever the pancake’s position is flipped, and on the pan;
and low everywhere else. Then the robot can learn to perform this behaviour through trial and
error. It’s important to note that in this example, merely demonstration is not enough. Neither
is reinforcement learning enough. The same thing is true for the recent success of AlphaGo in
beating a master human: apart from planning, they used both demonstration data and self-play,
so that it could learn through trial and error.
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Can machines make complex plans?

I suppose the first question is whether machines can plan ahead. Indeed, even for large
problems, such as Go, machines can now perform at least as well as top-rated humans. How is
this achieved?

Machines can make complex plans!
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The basic construction is the planning tree. This is an enumeration of all possible future
events. If a complete enumeration is impossible, a partial tree is constructed. However this
requires evaluating non-terminal game positions. In the old times, this was done with heuristics,
but now this is data-driven, both through the use of expert databases, and through self-play and
reinforcement learning.

1.1.2 Experiment design

An example that typifies trial and error learning are bandit problems. Imagine that you are in
a Casino and you wish to maximise the amount of money you make during the night. There
are a lot of machines to play. If you knew which one was the best, then you’d just play it all
night long. However, you must also spend time trying out different machines, in order to get
an estimate of how much money each one gives out. The trade off between trying out different
machines and playing the one you currently think is best is called the exploration-exploitation
trade-off and it appears in many problems of experiment design for science.

Adam, the robot scientist

Let’s say we want to build a robot scientist and tell it to discover a cure for cancer. What
does the scientist do and how can the robot replicate it??

Drug discovery
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Simplifying the problem a bit, consider that you have a large number of drug candidates for
cancer and you wish to discover those that are active against it. The ideas is that you select
some of them, then screen them, to sort them into active and inactive. However, there are too
many drugs to screen, so the process is interactive. At each cycle, we select some drugs to
screen, classify them, and then use this information to select more drugs to screen. This cycle,
consequently has two parts: 1. Selecting some drugs given our current knowledge. 2. Updating
our knowledge given new evidence.

Drawing conclusions from results

hypothesis

experiment

result

conclusion

Figure 1.1: Dependence diagram between selection of an experiment, formulation of a hypoth-
esis, and drawing of a conclusion. The result depends only on the experiment. However, the
conclusion depends on the experiment, hypothesis and the obtained result. The red lines indicate
computational dependencies, while the blue lines indicate physical dependencies.

In general, we would like to have some method which can draw conclusions from results. This
involves starting with a hypothesis, performing an experiment to verify or refute it, obtain some
experimental result; and then concluding for or against the hypothesis. Here the arrows show
dependencies between these variables. So what do we mean by ”hypothesis” in this case?

1.1.3 Bayesian inference.

Tycho Brahe’s minute eye measurements
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Figure 1.2: Tycho’s measurements of the orbit of Mars and the conclusion about the actual
orbits, under the assumption of an earth-centric universe with circular orbits.

• Hypothesis: Earth-centric, Circular orbits

• Conclusion: Specific circular orbits

Let’s take the example of planetary orbits. Here Tycho famously spent 20 years experimen-
tally measuring the location of Mars. He had a hypothesis: that planetary orbits were circular,
but he didn’t know which were the right orbits. When he tried to fit his data to this hypothesis,
he concluded a specific circular orbit for Mars . . . around Earth.

Johannes Kepler’s alternative hypothesis

• Hypothesis: Circular or elliptic orbits

• Conclusion: Specific elliptic orbits

Kepler had a more general hypothesis: that orbits could be circular or elliptic, and he actually
accepted that the planets orbited the sun. This led him to the broadly correct model of all planets
being in elliptical orbits around the sun. However, the actual verification that all things do not
revolve around earth, requires different experiments.

200 years later, Gauss formalised this statistically



1.1. INTRODUCTION TO MACHINE LEARNING 15

Later on, Gauss collected even more experimental data to calculate the orbit of Ceres. He
did this using one of the first formal statistical methods; this allowed him to avoid cheating (like
Kepler did, to accentuate his finding that orbits were elliptical).

A warning: The dead salmon mirage

It is quite easy to draw the wrong conclusions from applying machine learning / statistics to
your data. For example, it was fashionable to perform fMRI studies in humans to see whether
some neurons have a particular functional role. There were even articles saying that ”we found
the neurons encoding for Angelina Jolie”. So some scientists tried to replicate those results.
They took a dead salmon, and put it an fMRI scanner. They checked its brain activity when it
was shown images of happy or sad people. Perhaps surprisingly, they found an area of the brain
that was correlated with the pictures - so it seemed, as though the dead salmon could distinguish
photos of happy people from sad ones. However, this was all due to a misapplication of statistics.
In this course, we will try and teach you to avoid such mistakes.

A simple simulation study

Sometimes we want to use a simple simulation study to understand how well our methods
work. The following code is an example of how to do this. Here we are doing a simplified fMRI
analysis, but the general idea is not significhey, antly different from what people actually do in
the field. src/reproducibility/mri_analysis.ipynb

Planning future experiments

So far we have focused only on the problem of data analysis. However, we also need to
think about the problem of planning for experiments. This is called experiment design. Ex-
periment designs are usually fixed. In that case, we can use assumptions about the data and
how much accuracy we need to design the experiment. However, it is also possible to have an
adaptive experiment design where our future experiments depend on our current conclusions.

src/reproducibility/mri_analysis.ipynb
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hypothesis

experiment

result

conclusion

In general, optimal experiment design is indeed difficult, especially in setting such as drug
discovery where the number of experiments is huge. However, conceptually, there is a simple and
elegant solution to this problem.

Planning experiments is like Tic-Tac-Toe

The basic idea is to think of experiment design as a game between the scientist and Nature.
At every step, the scientist plays an X to denote an experiment. Then Nature responds with an
Observation. The main difference from a game is that Nature is (probably) not adversarial. We
can also generalise this idea to problems in robotics, etc.

These kinds of techniques, coming from the reinforcement learning literature have been suc-
cessfully used at the university of Manchester to create a robot, called Eve, that recently (re)-
discovered a malaria drug.
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1.1.4 Course overview

Machine learning in practice

Avoiding pitfalls

• Choosing hypotheses.

• Correctly interpreting conclusions.

• Using a good testing methodology.

Machine learning in society

• Privacy — Credit risk.

• Fairness — Job market.

• Safety — Medicine.

One of the things we want to do in this course is teach you to avoid common pitfalls.

Now I want to get into a different track. So far everything has been about pure research, but
now machine learning is pervasive: Our phones, cars, watches, bathrooms, kettles are connected
to the internet and send a continuous stream of data to companies. In addition, many companies
and government actors use machine learning algorithms to make or support decisions. This
creates a number of problems in privacy, fairness and safety.

The view from statistics

While in machine learning people generally discuss mainly supervised, unsupervised or rein-
forcement learning, these are actually three rather broad, but still limited categories of problems.
There are many other problems, such as semi-supervised learning, active learning, imitation/ap-
prenticeship learning, inverse reinforcement learning, preference elicitation, adaptive control, and
possibly many others to come. The statistical view is that there basically three types of problems:

Inference
Given what we know, what can we say about how the world works, the current state of the
world or events in the past?

Prediction.
Can we predict specific evens in the future? This frequently is done through some type of
inference.
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Decision making.
Given what we know, and what we want to achieve, what is the best decision we can make?
This typically requires some ability to predict the effect of our actions.

We will encounter many specific inference, prediction and decision making tasks during this
course.

Course structure

Module structure

• Activity-based, hands-on.

• Mini-lectures with short exercises in each class.

• Technical tutorials and labs in alternate week.

Modules
Three mini-projects.

• Simple decision problems: Credit risk.

• Sequential problems: Medical diagnostics and treatment.

Technical topics

Machine learning problems

• Unsupervised learning. Loosely speaking, this is simply the problem of estimating
some structure from data. In statistical terms, it is usually the problem of estimating
some joint distribution of random variables under some model assumptions. Problems
in unsupervised learning include clustering, anomaly detection, compression.

• Supervised learning. In this setting data can be split in two groups of variables. One
group that is always available, and another group that must be predicted. A special
case of the problem is when we wish to estimate some function f : X → Y from data.
Classical problems in this setting are classification and regression.

• Reinforcement learning. This is a very general sequential decision problem, where
an agent must learn how to behave optimally in an unknown environment only by
limited feedback and reinforcement. The standard setting involves the agent trying to
maximise its (expected) cumulative reward over time.
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Algorithms and models

• Bayesian inference and graphical models.

• Stochastic optimisation and neural networks.

• Backwards induction and Markov decision processes.

Further reading

• Bennett et al. 3 describe how the usual uncorrected analysis of fMRI data leads to the
conclusion that the dead salmon can reason about human images.

• Bennett et al. 2 discuss how to perform analyses of medical images in a principled
way. They also introduce the use of simulations in order to test how well a particular
method is going to perform.

Resources

• Online QA platform: https://piazza.com/class/jufgabrw4d57nh

• Course code and notes: https://github.com/olethrosdc/ml-society-science

• Book https://github.com/olethrosdc/ml-society-science/notes.pdf

https://piazza.com/class/jufgabrw4d57nh
https://github.com/olethrosdc/ml-society-science
https://github.com/olethrosdc/ml-society-science/notes.pdf
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Chapter 2

Simple decision problems

This chapter deals with simple decision problems, whereby a decision maker (DM) makes a
simple choice among many. In some of this problems the DM has to make a decision after first
observing some side-information. Then the DM uses a decision rule to assign a probability to
each possible decision for each possible side-information. However, designing the decision rule
is not trivial, as it relies on previously collected data. A higher-level decision includes choosing
the decision rule itself. The problems of classification and regression fall within this framework.
While most steps in the process can be automated and formalised, a lot of decisions are actual
design choices made by humans. This creates scope for errors and misinterpretation of results.

In this chapter, we shall formalise all these simple decision problems from the point of view
of statistical decision theory. The first question is, given a real world application, what type of
decision problem does it map to? Then, what kind of machine learning algorithms can we use
to solve it? What are the underlying assumptions and how valid are our conclusions?

21
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2.1 Nearest neighbours

Discriminating between diseases
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Spectral statistics VVX strain

Spectral statistics for BUT

Let’s tackle the problem of discriminating between different disease vectors. Ideally, we’d like
to have a simple test that tells us what ails us. One kind of test is mass spectrometry. This
graph shows spectrometry results for two types of bacteria. There is plenty of variation within
each type, both due to measurement error and due to changes in the bacterial strains. Here, we
plot the average and maximum energies measured for about 100 different examples from each
strain.

Nearest neighbour: the hidden secret of machine learning
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Now, is it possible to identify an unknown strain based on this data? Actually, this is
possible. Sometimes, very simple algorithms work very well. One of the simplest one involves
just measuring the distance between the decsription of a new unknown strain and known ones.
In this visualisation, I projected the 1300-dimensional data into a 2-dimensional space. Here
you can clearly see that it is possible to separate the two strains. We can use the distance to
examples VVT and BUT in order to decide the type of an unknown strain.

Comparing spectral data
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6

The choice of distance in this kind of algorithm is important, particularly for very high
dimensions. For something like a spectrogram, one idea is look at the total area of the difference
between two spectral lines.

The nearest neighbour algorithm
The nearest neighbour algorithm for classification (Alg. 1) does not include any complicated

learning. Given a training dataset D, it returns a classification decision for any new point x by
simply comparing it to its closest k neighbours in the dataset. It then estimates the probability
py of each class y by calculating the average number of times the neighbours take the class y.

Algorithm 1 k-NN Classify

1: Input Data D = {(x1, y1), . . . , (xT , yT )}, k ≥ 1, d : X × X → R+, new point x ∈ X
2: D = Sort(D, d) % Sort D so that d(x, xi) ≤ d(x, xi+1).

3: py =
∑k

i=1 I {yi = y} /k for y ∈ Y.

4: Return p ≜ (p1, . . . , pk)

Algorithm parameters

In order to use the algorithm, we must specify some parameters, namely.
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• Neighbourhood k ≥ 1. The number of neighbours to consider.

• Distance d : X × X → R+. The function we use to determine what is a neighbour.

Figure 2.1: The nearest neighbours algorithm was introduced by Fix and Hodges Jr 13 , who also
proved consistency properties.

Nearest neighbour: What type is the new bacterium?

-1.5e+08 -1e+08 -5e+07 0 5e+07 1e+08
-2e+08

-1e+08

0

1e+08

2e+08
BUT
VVJ
?

Given that the + points
represent the BUT type, and the × points the VVJ type, what type of bacterium could the circle
point be?

Separating the model from the classification policy

• The k-NN algorithm returns a model giving class probabilities for new data points.
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• It is up to us to decide how to use this model to decide upon a given class. A typical
decision making rule can be in the form of a policy π that depends on what the model says.
However, the simplest decision rule is to take the most likely class:

π(a | x) = I {pa ≥ py∀y} , p = k-NN(D, k, d, x)

Discussion: Shortcomings of k-nearest neighbour

• Choice of k The larger k is, the more data you take into account when making your decision.
This means that you expect your classes to be more spread out.

• Choice of metric d. The metric d encodes prior information you have about the structure
of the data.

• Representation of uncertainty. The predictions of kNN models are simply based on dis-
tances and counting. This might not be a very good way to represent uncertainty about
class label. In particular, label probabilities should be more uncertain when we have less
data.

• Scaling with large amounts of data. A naive implementation of kNN requires the algorithm
to shift through all the training data to find the k nearest neighbours, suggesting a super-
linear computation time. However, advanced data structures such as Cover Trees (or even
KD-trees in low dimensional spaces) can be used to find the neighbours in polylog time.

• Meaning of label probabilities. It is best to think of k-NN as a model for predicting the
class of a new example from a finite set of existing classes. The model itself might be
incorrect, but this should nevertheless be OK for our purposes. In particular, we might
later use the model in order to derive classification rules.

Learning outcomes

Understanding

• How kNN works

• The effect of hyperameters k, d for nearest neighbour.

• The use of kNN to classify new data.

Skills

• Use a standard kNN class in python

• Optimise kNN hyperparameters in an unbiased manner.

• Calculate probabilities of class labels using kNN.
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Reflection

• When is kNN a good model?

• How can we deal with large amounts of data?

• How can we best represent uncertainty?



2.2. REPRODUCIBILITY 27

2.2 Reproducibility

One of the main problems in science is reproducibility: when we are trying to draw conclusions
from one specific data set, it is easy to make a mistake. For that reason, the scientific process
requires us to use our conclusions to make testable predictions, and then test those predictions
with new experiments. These new experiments should bear out the results of the previous exper-
iments. In more detail, reproducibility can be thought of as two different aspects of answering
the question “can this research be replicated?”

Computational reproducibility: Can the study be repeated?
Can we, from the available information and data, exactly reproduce the reported methods
and results?

This is something that is useful to be able to even to the original authors of a study. The
standard method for achieving this is using version control tools so that the exact version of
algorithms, text and data used to write up the study is appropriately labelled. Ideally, any
other researcher should be able to run a single script to reproduce all of the study and its
computations. The following tools are going to be used in this course:

• jupyter notebooks for interactive note taking.

• svn, git or mercurial version control systems for tracking versions, changes and
collaborating with others.

Scientific reproducibility: Is the conclusion correct?
Can we, from the available information and a new set of data, reproduce the conclusions of
the original study?

Here followup research may involve using exactly the same methods. In AI research
would mean for example testing whether an algorithm is really performing as well as it
is claimed, by testing it in new problems. This can involve a re-implementation. In more
general scientific research, it might be the case that the methodology proposed by an original
study is flawed, and so a better method should be used to draw better conclusions. Or it
might simply be that more data is needed.

When publishing results about a new method, computational reproducibility is essential for
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scientific reproducibility.

A
simple example is the 2016 election. While we can make models about people’s opinions regard-
ing candidates in order to predict voting totals, the test of these models comes in the actual
election. Unfortunately the only way we have of tuning our models is on previous elections,
which are not that frequent, and on the results of previous polls. In addition, predicting the win-
ner of an election is slightly different from predicting how many people are prepared to vote for
them across the country. This, together with other factors such as shifting opinions, motivation
and how close the sampling distribution is to the voting distribution have a significant effect on
accuracy.

The same thing can be done in when dealing purely with data, by making sure we use some



2.2. REPRODUCIBILITY 29

of the data as input to the algorithm, and other data to measure the quality of the algorithm
itself. In the following, we assume we have some algorithm λ : D → Π, where D is the universe
of possible input data and Π the possible outputs, e.g. all possible classification policies. We
also assume the existence of some quality measure U . How should we measure the quality of our
algorithmic choices?

Take classification as an example. For a given training set, simply memorising all the labels
of each example gives us perfect performance on the training set. Intuitively, this is not a good
measure of performance, as we’d probably get poor results on a freshly sampled set. We can
think of the training data as input to an algorithm, and the resulting classifier as the algorithm
output. The evaluation function also requires some data in order to measure the performance of
the policy. This can be expressed into the following principle.

The principle of independent evaluation

Data used for estimation cannot be used for evaluation.

This applies both to computer-implemented and human-implemented algorithms.

χ

Data Collection

DT

Training

λ

Algorithm, hyperparameters

π

Classifier

DH

Holdout

U

Measurement

Figure 2.2: The decision process in classification.

One can think of the decision process in classification as follows. First, we decide to collect
some data according to some experimental protocol χ. We also decide to use some algorithm (with
associated hyperparameters) λ together with data DT we will obtain from our data collection
in order to obtain a classification policy π. Typically, we need to measure the quality of a
policy according to how well it classifies on unknown data. This is because our policy has been
generated using DT , and so any measurement of its quality is going to be biased.

For classification problems, there is a natural metric U to measure. The classification accuracy
of the classifier. If the classification decisions are stochastic, then the classifier assigns probability
π(a | x) to each possible label a, and our utility is simply the identity function U(a, y) ≜
I {a = y}.
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Classification accuracy

Eχ[U(π)] =
∑
x,y

Pχ(x, y)︸ ︷︷ ︸
Data probability

Decision probability︷ ︸︸ ︷
π(a = y | x)

The classification accuracy of policy π under χ is the expected number of times the policy
decides π chooses the correct class. However, when approximating χ with a sample DH , we
instead obtain the empirical estimate:

EDH
U(π) =

∑
(x,y)∈DH

π(a = y | x)/|DH |.

Of course, there is no reason to limit ourselves to the identity function. The utility could
very well be such that some errors are penalised more than other errors. Consider for example
an intrusion detection scenario: it is probably more important to correctly classify intrusions.

2.2.1 The human as an algorithm

The human as an algorithm.

The same way with which an algorithm creates a model from some prior assumptions and data,
so can a human select an algorithm and associated hyperparamters by executing an algorithm
herself. This involves trying different algorithms and hyperparametrs on the same training data
DT and then measuring their performance in the holdout set DH .

χ

Data Collection

DT

Training

DH

Holdout

λ1

Algorithm, hyperparameters

π1

Classifier

U1

Measurement

λ2

Algorithm, hyperparameters

π2

Classifier

U2

Measurement

Figure 2.3: Selecting algorithms and hyperparameters through holdouts

Holdout sets
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To summarise, holdout sets are used in order to be able to evaluate the performance of specific
algorithms, or hyparameter selection.

• Original data D, e.g. D = (x1, . . . , xT ).

• Training data DT ⊂ D, e.g. DT = x1, . . . , xn, n < T .

• Holdout data DH = D \DT , used to measure the quality of the result.

• Algorithm λ with hyperparametrs ϕ.

• Get algorithm output π = λ(DT , ϕ).

• Calculate quality of output U(π,DH)

We start with some original data D, e.g. D = (x1, . . . , xT ). We then split this into a training
data set DT ⊂ D, e.g. DT = x1, . . . , xn, n < T and holdout dataset DH = D \ DT . This
is used to measure the quality of selected algorithms λ and hyperparameters ϕ. We run an
algorithm/hyperparameter combination on the training data and obtain a result π = λ(DT , ϕ).
1 We then calculate the quality of the output U(π,DH) on the holdout set. Unfortunately, the
combination that appears the best due to the holdout result may look inferior in a fresh sample.
Following the principle of “data used for evaluation cannot be used for estimation”, we must
measure performance on another sample. This ensures that we are not biased in our decision
about what is the best algorithm.

Holdout and test sets for unbiased algorithm comparison
Consider the problem of comparing a number of different algorithms in Λ. Each algorithm
λ has a different set of hyperparameters Φλ. The problem is to choose the best parameters
for each algorithm, and then to test them independently. A simple meta-algorithm for doing
this is based on the use of a holdout set for choosing hyperparameters for each algorithm,
and a test set to measure algorithmic performance.

Algorithm 2 Unbiased adaptive evaluation through data partitioning

Partition data into DT , DH , D
∗.

for λ ∈ Λ do
for ϕ ∈ Φλ do

πϕ,λ = λ(DT , ϕ).
end for
Get π∗

λ maximising U(πϕ,λ, DH).
uλ = U(π∗

λ, D
∗).

end for
λ∗ = argmaxλ uλ.

1As typically algorithms are maximising the quality metric on the training data,

λ(DT ) = argmax
y

U(y,DT )

we typically obtain a biased estimate, which depends both on the algorithm itself and the training data. For
k-NN in particular, when we measure accuracy on the training data, we can nearly always obtain near-perfect
accuracy, but not always perfect. Can you explain why?
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Final performance measurement

When comparing many algorithms, where we must select a hyperparameter for each one, then
we can use one dataset as input to the algorithms, and another for selecting hyperparameters.
That means that we must use another dataset to measure performance. This is called the testing
set. Figure 2.4 illustrates this.

χ

Data Collection

DT

Training

DH

Holdout

D∗

Testing

η

human

λ1

Algorithm 1

π1

Classifier 1

U∗
1

Result 1

λ2

Algorithm 2

π2

Classifier 2

U∗
2

Result 2

Figure 2.4: Simplified dependency graph for selecting hyperparameters for different algorithms,
and comparing them on an independent test set. For the i-th algorithm, the classifier model is

2.2.2 Algorithmic sensitivity

The algorithm’s output does have a dependence on its input, obviously. So, how sensitive is the
algorithm to the input?

Independent data sets

One simple idea is to just collect independent datasets and see how the output of the algorithm
changes when the data changes. However, this is quite expensive, as it not might be easy to
collect data in the first place.
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D2

2nd Sample
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2nd Result

Figure 2.5: Multiple samples
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Bootstrap samples

A more efficient idea is to only collect one dataset, but then use it to generate more datasets.
The simplest way to do that is by sampling with replacement from the original dataset, new
datasets of the same size as the original. Then the original dataset is sufficiently large, this
is approximately the same as sampling independent datasets. As usual, we can evaluate our
algorithm on an independent data set.

χ

Experiment

DT
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Algorithm

D1

1st sample

π1

1st Result
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2nd Sample
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2nd Result

Figure 2.6: Bootstrap replicates of a single sample

Bootstrapping

Bootstrapping is a general technique that can be used to:

• Estimate the sensitivity of λ to the data x.

• Obtain a distribution of estimates π from λ and the data x.

• When estimating the performance of an algorithm on a small dataset D∗, use bootstrap
samples of D∗. This allows us to take into account the inherent uncertainty in measured
performance. It is very useful to use bootstrapping with pairwise comparisons.

Bootstrapping

1. Input Training data D, number of samples k.

2. For i = 1, . . . , k

3. D(i) = Bootstrap(D)

4. return
{
D(i)

∣∣ i = 1, . . . , k
}
.

where Bootstrap(D) samples with replacement |D| points from DT .

In more detail, remember that even though the test score is an independent measurement of
an algorithm’s performance, it is not the actual expected performance. At best, it’s an unbiased
estimate of performance. Hence, we’d like to have some way to calculate a likely performance
range from the test data. Bootstrapping can help: by taking multiple samples of the test set and
calculating performance on each one, we obtain an empirical distribution of scores.

Secondly, we can use it to tell us something about the sensitivity of our algorithm. In
particular, by taking multiple samples from the training data, we can end up with multiple
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models. If the models are only slightly different, then the algorithm is more stable and we can
be more confident in its predictions.

Finally, bagging also allows us to generate probabilistic predictions from deterministic classi-
fication algorithms, by simply averaging predictions from multiple bootstrapped predictors. This
is called bagging predictors 5.

Cross-validation

While we typically use a single training, hold-out and test set, it might be useful to do this
multiple times in order to obtain more robust performance estimates. In the simplest case, cross-
validation can be used to obtain multiple training and hold-out sets from a single dataset. This
works by simply partitioning the data in k folds and then using one of the folds as a holdout
and the remaining k − 1 as training data. This is repeated k times. When k is the same size as
the original training data, then the method is called leave-one-out cross-validation.

k-fold Cross-Validation

1. Input Training data DT , number of folds k, algorithm λ, measurement function U

2. Create the partition D(1) . . . , D(k) so that
∪k

i=1D
(k) = D.

3. Define D
(i)
T = D \D(i)

4. πi = λ(D
(i)
T )

5. For i = 1, . . . , k:

6. πi = λ(D(i))

7. ui = U(πi)

8. return {y1, . . . , yi}.

Online evaluation

We can get around this problem if we consider online evaluation of learning algorithms. This
means that the learning algorithm is always evaluated on previously unseen data. However, when
new data is seen, it can be used by the algorithm to learn.

Example 1. Online prediction accuracy

• Adaptive decision rule π

• At time t

1. π predicts at

2. The true data xt is observed and we see whether at = xt.

3. π adapts to the new data xt

For this example, you can consider the decision rule π as being conditioned on the previous data, i.e.

π(at | x1, . . . , xt)
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2.2.3 Beyond the data you have: simulation and replication

In the end, however, you are always limited by the data you actually have. The more you tweak
your models and algorithms to improve performance with your current dataset, the more you
are simply engineering a solution that is adapted to the specific data. This may not generalise
well, even if you are using cross-validation or bootstrapping every step of the way. How can you
then make sure that your methodology is robust?

The first method is simply to simulate data from an artificial process, where the ground
truth (e.g. the labels) is known, and where the dataset size and dimensionality is similar to the
one you have. You can use this to see whether the overall process is robust, and this can give
you confidence that you will get reasonable results when using real data. The second method
requires actually collecting new data, and repeating the study. If the results can be replicated,
the original study was not a fluke.

Simulation

Simulation can be extremely useful. It allows you to examine the performance of various
methods as you change aspect of the data-generating process without ever having to look at the
data in detail. Since the data is synthetically generated, you always know the ground truth, so
you know precisely how good your methods are going to be. This is useful in particular when
you want to perform a null hypothesis test, and want to see under which conditions you actually
accept or reject a null hypothesis.

A good example of the use of simulation to validate a method is in the article by Bennett
et al. 2 where they discuss the use of corrections for multiple comparison tests. This followed
their study of uncorrected methods for fMRI analysis3, where they found that commonly used
such methods would detect meaningful brain activity in a dead salmon. They use simulation
to select a correction method that would be neither too conservative (i.e. not detecting any
significant brain activity) nor too sensitive (i.e. detecting activity where there is none).

Steps for a simulation pre-study

1. Create a simulation that allows you to collect data similar to the real one.

2. Collect data from the simulation and analyse it according to your protocol.

3. If the results are not as expected, alter the protocol or the simulation. In which cases
do you get good results?

4. Finally, use the best-performing method as the protocol.

Independent replication

The gold standard for reproducibility is independent replication. Simply have another team
try and reproduce the results you obtained, using completely new data. If the replication is
successful, then you can be pretty sure there was no flaw in your original analysis. In typical
scientific publishing, the replication study is done by a different set of authors than those of the
original study.
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Replication study

1. Reinterpret the original hypothesis and experiment.

2. Collect data according to the original protocol, unless flawed. It is possible that the
original experimental protocol had flaws. Then the new study should try and address
this through an improved data collection process. For example, the original study
might not have been double-blind. The new study can replicate the results in a double-
blind regime.

3. Run the analysis again, unless flawed. It is possible that the original analysis had
flaws. For example, possible correlations may not have been taken into account.

4. See if the conclusions are in agreement.

Learning outcomes

Understanding

• What is a hold-out set, cross-validation and bootstrapping.

• The idea of not reusing data input to an algorithm to evaluate it.

• The fact that algorithms can be implemented by both humans and machines.

Skills

• Use git and notebooks to document your work.

• Use hold-out sets or cross-validation to compare parameters/algorithms in Python.

• Use bootstrapping to get estimates of uncertainty in Python.

Reflection

• What is a good use case for cross-validation over hold-out sets?

• When is it a good idea to use bootstrapping?

• How can we use the above techniques to avoid the false discovery problem?

• Can these techniques fully replace independent replication?
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Exercise 1. Work in teams of 2-3 students.
Select an arbitrary classification dataset from https://archive.ics.uci.edu/ml/datasets.html?

task=cla.
Select any arbitrary machine learning algorithm for classification from scikitlearn that can be used

with this dataset, and identify its main hyperparameters.
Varying at least one hyperparameter, use bootstrapping and/or cross-validation to find the optimal

value for that hyperparameter, and report its performance. How close to the reported accuracy do you
expect its performance to be in reality? What are the factors that might cause it to deviate?

Write a short report summarising both your methodology and your results. Exchange this report
with another group of students. See whether you can reproduce exactly what they have done.

https://archive.ics.uci.edu/ml/datasets.html?task=cla
https://archive.ics.uci.edu/ml/datasets.html?task=cla
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2.3 Beliefs and probabilities

Probability can be used to describe purely chance events, as in for example quantum physics.
However, it is mostly used to describe uncertain events, such as the outcome of a dice roll or a
coin flip, which only appear random. In fact, one can take it even further than that, and use it to
model subjective uncertainty about any arbitrary event. Although probabilities are not the only
way in which we can quantify uncertainty, it is a simple enough model, and with a rich enough
history in mathematics, statistics, computer science and engineering that it is the most useful.

Uncertainty

Axioms of probability
Let Ω be the certain event, and Σ is an appropriate σ-algebra on Ω. A probability measure
P on (Ω,Σ) has the following properties:

1. The probability of the certain event is P (Ω) = 1

2. The probability of the impossible event is P (∅) = 0

3. The probability of any event A ∈ Σ is 0 ≤ P (A) ≤ 1.

4. If A,B are disjoint, i.e. A ∩ B = ∅, meaning that they cannot happen at the same
time, then

P (A ∪B) = P (A) + P (B)

Sometimes we would like to calculate the probability of some event A happening given that
we know that some other event B has happened. For this we need to first define the idea of
conditional probability.

Definition 2.3.1 (Conditional probability). The probability of A happening if we know that B
has happened is defined to be:

P (A | B) ≜ P (A ∩B)

P (B)
.

Conditional probabilities obey the same rules as probabilities. Here, the probability
measure of any event A given B is defined to be the probability of the intersection of of the
events divided by the second event. We can rewrite this definition as follows, by using the
definition for P (B | A)

Bayes’s theorem
For P (A1 ∪A2) = 1, A1 ∩A2 = ∅,

P (Ai | B) =
P (B | Ai)P (Ai)

P (B)
=

P (B | Ai)P (Ai)

P (B | A1)P (A1) + P (B | A2)P (A2)

Example 2 (probability of rain). What is the probability of rain given a forecast x1 or x2?
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ω1: rain P (ω1) = 80%
ω2: dry P (ω2) = 20%

Table 2.1: Prior probability of rain tomorrow

x1: rain P (x1 | ω1) = 90%
x2: dry P (x2 | ω2) = 50%

Table 2.2: Probability the forecast is correct

P (ω1 | x1) = 87.8%
P (ω1 | x2) = 44.4%

Table 2.3: Probability that it will rain given the forecast

Classification in terms of conditional probabilities

Conditional probability naturally appears in classification problems. Given a new example
vector of data xt ∈ X , we would like to calculate the probability of different classes c ∈ Y given
the data, Pµ(yt = c | xt). If we somehow obtained the distribution of data Pµ(xt | yt) for each
possible class, as well as the prior class probability Pµ(yt = c), from Bayes’s theorem, we see
that we can obtain the probability of the class:

Pµ(yt = c | xt) =
Pµ(xt | yt = c)Pµ(yt = c)∑

c′∈Y Pµ(xt | yt = c′)Pµ(yt = c′)

for any class c. This directly gives us a method for classifying new data, as long as we have a
way to obtain Pµ(xt | yt) and Pµ(yt).

yt

xt

µ

Figure 2.7: A generative classification model. µ identifies the model (paramter). xt are the
features and yt the class label of the t-th example.
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Figure 2.8: The effect of changing variance and prior on the classification decision when we
assume a normal distribution.

Example 3 (Normal distribution). A simple example is when xt is normally distributed in a matter
that depends on the class. Figure 2.8 shows the distribution of xt for two different classes, with means
of −1 and +1 respectively, for three different case. In the first case, both classes have variance of 1, and
we assume the same prior probability for both

xt | yt = 0 ∼ N (−1, 1), xt | yt = 1 ∼ N (1, 1)

xt | yt = 0 ∼ N (−1, 1), xt | yt = 1 ∼ N (1, 1)

But how can we get a probability model in the first place?

Subjective probability

While probabilities apply to truly random events, they are also useful for representing sub-
jective uncertainty. In this course, we will use a special symbol for subjective probability, ξ.

Subjective probability measure ξ

• If we think event A is more likely than B, then ξ(A) > ξ(B).

• Usual rules of probability apply:

1. ξ(A) ∈ [0, 1].

2. ξ(∅) = 0.

3. If A ∩B = ∅, then ξ(A ∪B) = ξ(A) + ξ(B).

Bayesian inference illustration

Use a subjective belief ξ(µ) on M

• Prior belief ξ(µ) represents our initial uncertainty.

• We observe history h.
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• Each possible µ assigns a probability Pµ(h) to h.

• We can use this to update our belief via Bayes’ theorem to obtain the posterior belief:

ξ(µ | h) ∝ Pµ(h)ξ(µ) (conclusion = evidence × prior)

prior evidence conclusion

2.3.1 Probability and Bayesian inference

One of the most important methods in machine learning and statistics is that of Bayesian infer-
ence. This is the most fundamental method of drawing conclusions from data and explicit prior
assumptions. In Bayesian inference, prior assumptions are represented as a probabilities on a
space of hypotheses. Each hypothesis is seen as a probabilistic model of all possible data that
we can see.

Frequently, we want to draw conclusions from data. However, the conclusions are never solely
inferred from data, but also depend on prior assumptions about reality.

Some examples

Example 4. John claims to be a medium. He throws a coin n times and predicts its value always
correctly. Should we believe that he is a medium?

• µ1: John is a medium.

• µ0: John is not a medium.

The answer depends on what we expect a medium to be able to do, and how likely we thought
he’d be a medium in the first place.

Example 5. Traces of DNA are found at a murder scene. We perform a DNA test against a database
of 104 citizens registered to be living in the area. We know that the probability of a false positive (that
is, the test finding a match by mistake) is 10−6. If there is a match in the database, does that mean
that the citizen was at the scene of the crime?

Bayesian inference

Now let us apply this idea to our specific problem. We already have the probability of the
observation for each model, but we just need to define a prior probability for each model. Since
this is usually completely subjective, we give it another symbol.

Prior probability
The prior probability ξ on a set of models M specifies our subjective belief ξ(µ) that each
model is true.2
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This allows us to calculate the probability of John being a medium, given the data:

ξ(µ1 | x) = P(x | µ1)ξ(µ1)

Pξ(x)
,

where
Pξ(x) ≜ P(x | µ1)ξ(µ1) + P(x | µ0)ξ(µ0).

The only thing left to specify is ξ(µ1), the probability that John is a medium before seeing the
data. This is our subjective prior belief that mediums exist and that John is one of them. More
generally, we can think of Bayesian inference as follows:

• We start with a set of mutually exclusive models M = {µ1, . . . , µk}.

• Each model µ is represented by a specific probabilistic model for any possible data x, that
is Pµ(x) ≡ P(x | µ).

• For each model, we have a prior probability ξ(µ) that it is correct.

• After observing the data, we can calculate a posterior probability that the model is correct:

ξ(µ | x) = P(x | µ)ξ(µ)∑
µ′∈M P(x | µ′)ξ(µ′)

=
Pµ(x)ξ(µ)∑

µ′∈M Pµ′(x)ξ(µ′)
.

Interpretation

• M: Set of all possible models that could describe the data.

• Pµ(x): Probability of x under model µ.

• Alternative notation P(x | µ): Probability of x given that model µ is correct.

• ξ(µ): Our belief, before seeing the data, that µ is correct.

• ξ(µ | x): Our belief, aftering seeing the data, that µ is correct.

It must be emphasized that Pµ(x) = P(x | µ) as they are simply two different notations for the
same thing. In words the first can be seen as the probability that model µ assigns to data x,
while the second as the probability of x if µ is the true model. Combining the prior belief with
evidence is key in this procedure. Our posterior belief can then be used as a new prior belief
when we get more evidence.

Exercise 2 (Continued example for medium). Now let us apply this idea to our specific problem. We
first make an independence assumption. In particular, we can assume that success and failure comes
from a Bernoulli distribution with a parameter depending on the model.

Pµ(x) =

n∏
t=1

Pµ(xt). (independence property)

We first need to specify how well a medium could predict. Let’s assume that a true medium would
be able to predict perfectly, and that a non-medium would only predict randomly. This leads to the
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following models:

Pµ1(xt = 1) = 1, Pµ1(xt = 0) = 0. (true medium model)

Pµ0(xt = 1) = 1/2, Pµ0(xt = 0) = 1/2. (non-medium model)

The only thing left to specify is ξ(µ1), the probability that John is a medium before seeing the data.
This is our subjective prior belief that mediums exist and that John is one of them.

ξ(µ0) = 1/2, ξ(µ1) = 1/2. (prior belief)

Combining the prior belief with evidence is key in this procedure. Our posterior belief can then be used
as a new prior belief when we get more evidence.

ξ(µ1 | x) = Pµ1(x)ξ(µ1)

Pξ(x)
(posterior belief)

Pξ(x) ≜ Pµ1(x)ξ(µ1) + Pµ0(x)ξ(µ0). (marginal distribution)

Throw a coin 4 times, and have a classmate make a prediction. What your belief that your classmate is
a medium? Is the prior you used reasonable?

Sequential update of beliefs
Assume you have n meteorologists. At each day t, each meteorologist i gives a probability

pt,µi ≜ Pµi(xt = rain) for rain. Consider the case of there being three meteorologists, and each
one making the following prediction for the coming week. Start with a uniform prior ξ(µ) = 1/3
for each model.

M T W T F S S
CNN 0.5 0.6 0.7 0.9 0.5 0.3 0.1
SMHI 0.3 0.7 0.8 0.9 0.5 0.2 0.1
YR 0.6 0.9 0.8 0.5 0.4 0.1 0.1

Rain? Y Y Y N Y N N

Table 2.4: Predictions by three different entities for the probability of rain on a particular day,
along with whether or not it actually rained.

Exercise 3. • n meteorological stations {µi | i = 1, . . . , n}
• The i-th station predicts rain Pµi(xt | x1, . . . , xt−1).

• Let ξt(µ) be our belief at time t. Derive the next-step belief ξt+1(µ) ≜ ξt(µ|yt) in terms of the
current belief ξt.

• Write a python function that computes this posterior

ξt+1(µ) ≜ ξt(µ|xt) =
Pµ(xt | x1, . . . , xt−1)ξt(µ)∑
µ′ Pµ′(xt | x1, . . . , xt−1)ξt(µ′)

Bayesian inference for Bernoulli distributions

Estimating a coin’s bias
A fair coin comes heads 50% of the time. We want to test an unknown coin, which we think
may not be completely fair.
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Figure 2.9: Prior belief ξ about the coin bias θ.

For a sequence of throws xt ∈ {0, 1},

Pθ(x) ∝
∏
t

θxt(1− θ)1−xt = θ#Heads(1− θ)#Tails

Say we throw the coin 100 times and obtain 70 heads. Then we plot the likelihood Pθ(x) of
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Figure 2.10: Prior belief ξ about the coin bias θ and likelihood of θ for the data.

different models. From these, we calculate a posterior distribution over the correct models.
This represents our conclusion given our prior and the data. If the prior distribution is described
by the so-called Beta density

f(θ | α, β) ∝ θα−1(1− θ)β−1

where α, β describe the shape of the Beta distribution.
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Figure 2.11: Prior belief ξ(θ) about the coin bias θ, likelihood of θ for the data, and posterior
belief ξ(θ | x)

Riemann and Lebesgue integrals

Since ξ is a probability measure over models Θ, it is always simple to write the posterior proba-
bility given some data x in the following terms when Θ is discrete (finite or countable):

ξ(θ | x) = Pθ(x)ξ(θ)∑
θ′ Pθ′(x)ξ(θ′).

However, in many situations Θ is uncountable, i.e. Θ ⊂ Rk. Then, as both the prior ξ and the
posterior ξ(· | x) have to be probability measures on Θ, they are defined over subsets of Θ. This
means that we can write the posterior in terms of Lebesgue integrals:

ξ(B | x) =
∫
B
Pθ(x) dξ(θ)∫

Θ
Pθ(x) dξ(θ)

.

Alternatively, we can abuse notation and use ξ(θ) to describe a density, so that the posterior
density is written in terms of a Riemann integral: posterior density

ξ(θ | x) ≜ Pθ(x)ξ(θ) dθ∫
Θ
Pθ′(x)ξ(θ′)θ′

.

However, the advantage of the Lebesgue integral notation is that it works the same no matter
whether Θ is discrete or continuous.

Learning outcomes

Understanding

• The axioms of probability, marginals and conditional distributions.
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• The philosophical underpinnings of Bayesianism.

• The simple conjugate model for Bernoulli distributions.

Skills

• Be able to calculate with probabilities using the marginal and conditional definitions
and Bayes rule.

• Being able to implement a simple Bayesian inference algorithm in Python.

Reflection

• How useful is the Bayesian representation of uncertainty?

• How restrictive is the need to select a prior distribution?

• Can you think of another way to explicitly represent uncertainty in a way that can
incorporate new evidence?
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2.4 Hierarchies of decision making problems

All machine learning problems are essentially decision problems. This essentially means replacing
some human decisions with machine decisions. One of the simplest decision problems is classifi-
cation, where you want an algorithm to decide the correct class of some data, but even within
this simple framework there is a multitude of decisions to be made. The first is how to frame
the classification problem the first place. The second is how to collect, process and annotate the
data. The third is choosing the type of classification model to use. The fourth is how to use the
collected data to find an optimal classifier within the selected type. After all this has been done,
there is the problem of classifying new data. In this course, we will take a holistic view of the
problem, and consider each problem in turn, starting from the lowest level and working our way
up.

2.4.1 Simple decision problems

Preferences
The simplest decision problem involves selecting one item from a set of choices, such as in

the following examples

Example 6. Food

A McDonald’s cheeseburger

B Surstromming

C Oatmeal

Money

A 10,000,000 SEK

B 10,000,000 USD

C 10,000,000 BTC

Entertainment

A Ticket to Liseberg

B Ticket to Rebstar

C Ticket to Nutcracker

Rewards and utilities
In the decision theoretic framework, the things we receive are called rewards, and we assign

a utility value to each one of them, showing which one we prefer.

• Each choice is called a reward r ∈ R.

• There is a utility function U : R → R, assigning values to reward.
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• We (weakly) prefer A to B iff U(A) ≥ U(B).

In each case, given U the choice between each reward is trivial. We just select the reward:

r∗ ∈ argmax
r

U(r)

The main difficult is actually selecting the appropriate utility function. In a behavioural context,
we simply assume that humans act with respect to a specific utility function. However, figuring
out this function from behavioural data is non trivial. ven when this assumption is correct,
individuals do not have a common utility function.

Exercise 4. From your individual preferences, derive a common utility function that reflects everybody’s
preferences in the class for each of the three examples. Is there a simple algorithm for deciding this?
Would you consider the outcome fair?

Preferences among random outcomes

Example 7. Would you rather . . .

A Have 100 EUR now?

B Flip a coin, and get 200 EUR if it comes heads?

The expected utility hypothesis
Rational decision makers prefer choice A to B if

E(U |A) ≥ E(U |B),

where the expected utility is

E(U |A) =
∑
r

U(r)P(r|A).

In the above example, r ∈ {0, 100, 200} and U(r) is increasing, and the coin is fair.

Risk and monetary rewards
When r ∈ R, as in the case of monetary rewards, we can use the shape of the utility function
determines the amount of risk aversion. In particular:

• If U is convex, we are risk-seeking. In the example above, we would prefer B to A,
as the expected utility of B would be higher than A, even though they give the same
amount of money on average.

• If U is linear, we are risk neutral. In the example above, we would be indifferent
between A and B, as the expected amount of money is the same as the amount of
money we get.

• If U is concave, we are risk-averse. Hence, in the example above, we prefer A.
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ρ(ω, a) a1 a2
ω1 dry, carrying umbrella wet
ω2 dry, carrying umbrella dry

U [ρ(ω, a)] a1 a2
ω1 0 -10
ω2 0 1

Table 2.5: Rewards and utilities.

This idea of risk can be used with any other utility function. We can simply replace the
original utility function U with a monotonic function f(U) to achieve risk-sensitive behaviour.
However, this is not the only risk-sensitive approach possible.

Uncertain rewards

However, in real life, there are many cases where we can only choose between uncertain
outcomes. The simplest example are lottery tickets, where rewards are essentially random.
However, in many cases the rewards are not really random, but simply uncertain. In those cases
it is useful to represent our uncertainty with probabilities as well, even though there is nothing
really random.

• Decisions a ∈ A

• Each choice is called a reward r ∈ R.

• There is a utility function U : R → R, assigning values to reward.

• We (weakly) prefer A to B iff U(A) ≥ U(B).

Example 8. You are going to work, and it might rain. What do you do?

• a1: Take the umbrella.

• a2: Risk it!

• ω1: rain

• ω2: dry

• maxa minω U = 0

• minω maxa U = 0

Expected utility

E(U | a) =
∑
r

U [ρ(ω, a)]P(ω | a)

Example 9. You are going to work, and it might rain. The forecast said that the probability of rain
(ω1) was 20%. What do you do?

• a1: Take the umbrella.

• a2: Risk it!
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ρ(ω, a) a1 a2
ω1 dry, carrying umbrella wet
ω2 dry, carrying umbrella dry

U [ρ(ω, a)] a1 a2
ω1 0 -10
ω2 0 1

EP (U | a) 0 -1.2

Table 2.6: Rewards, utilities, expected utility for 20% probability of rain.

2.4.2 Decision rules

We now move from simple decisions to decisions that depend on some observation. We shall
start with a simple problem in applied meteorology. Then we will discuss hypothesis testing
as a decision making problem. Finally, we will go through an exercise in Bayesian methods for
classification.

Bayes decision rules
Consider the case where outcomes are independent of decisions:

U(ξ, a) ≜
∑
µ

U(µ, a)ξ(µ)

This corresponds e.g. to the case where ξ(µ) is the belief about an unknown world.

Definition 2.4.1 (Bayes utility). The maximising decision for ξ has an expected utility equal
to:

U∗(ξ) ≜ max
a∈A

U(ξ, a). (2.4.1)

The n-meteorologists problem
Of course, we may not always just be interested in classification performance in terms of

predicting the most likely class. It strongly depends on the problem we are actually wanting
to solve. In biometric authentication, for example, we want to guard against the unlikely event
that an impostor will successfully be authenticated. Even if the decision rule that always says
’OK’ has the lowest classification error in practice, the expected cost of impostors means that the
optimal decision rule must sometimes say ’Failed’ even if this leads to false rejections sometimes.

Exercise 5. Assume you have n meteorologists. At each day t, each meteorologist i gives a probability
pt,µi ≜ Pµi(xt = rain) for rain. Consider the case of there being three meteorologists, and each one
making the following prediction for the coming week. Start with a uniform prior ξ(µ) = 1/3 for each
model.

1. What is your belief about the quality of each meteorologist after each day?

2. What is your belief about the probability of rain each day?

Pξ(xt = rain | x1, x2, . . . xt−1) =
∑
µ∈M

Pµ(xt = rain | x1, x2, . . . xt−1)ξ(µ | x1, x2, . . . xt−1)

3. Assume you can decide whether or not to go running each day. If you go running and it does not
rain, your utility is 1. If it rains, it’s -10. If you don’t go running, your utility is 0. What is the
decision maximising utility in expectation (with respect to the posterior) each day?
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M T W T F S S
CNN 0.5 0.6 0.7 0.9 0.5 0.3 0.1
SMHI 0.3 0.7 0.8 0.9 0.5 0.2 0.1
YR 0.6 0.9 0.8 0.5 0.4 0.1 0.1

Rain? Y Y Y N Y N N

Table 2.7: Predictions by three different entities for the probability of rain on a particular day,
along with whether or not it actually rained.

2.4.3 Statistical testing

A common type of decision problem is a statistical test. This arises when we have a set of
possible candidate models M and we need to be able to decide which model to select after we
see the evidence. Many times, there is only one model under consideration, µ0, the so-called null
hypothesis. Then, our only decision is whether or not to accept or reject this hypothesis.

Simple hypothesis testing

Let us start with the simple case of needing to compare two models.

The simple hypothesis test as a decision problem

• M = {µ0, µ1}

• a0: Accept model µ0

• a1: Accept model µ1

U µ0 µ1

a0 1 0
a1 0 1

Table 2.8: Example utility function for simple hypothesis tests.

There is no reason for us to be restricted to this utility function. As it is diagonal, it
effectively treats both types of errors in the same way.

Example 10 (Continuation of the medium example). • µ1: that John is a medium.

• µ0: that John is not a medium.

Let xt be 0 if John makes an incorrect prediction at time t and xt = 1 if he makes a correct prediction.
Let us once more assume a Bernoulli model, so that John’s claim that he can predict our tosses perfectly
means that for a sequence of tosses x = x1, . . . , xn,

Pµ1(x) =

{
1, xt = 1∀t ∈ [n]

0, ∃t ∈ [n] : xt = 0.

That is, the probability of perfectly correct predictions is 1, and that of one or more incorrect prediction
is 0. For the other model, we can assume that all draws are independently and identically distributed
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from a fair coin. Consequently, no matter what John’s predictions are, we have that:

Pµ0(x = 1 . . . 1) = 2−n.

So, for the given example, as stated, we have the following facts:

• If John makes one or more mistakes, then P(x | µ1) = 0 and P(x | µ0) = 2−n. Thus, we should
perhaps say that then John is not a medium

• If John makes no mistakes at all, then

P(x = 1, . . . , 1 | µ1) = 1, P(x = 1, . . . , 1 | µ0) = 2−n. (2.4.2)

Now we can calculate the posterior distribution, which is

ξ(µ1 | x = 1, . . . , 1) =
1× ξ(µ1)

1× ξ(model1) + 2−n(1− ξ(µ1))
.

Our expected utility for taking action a0 is actually

Eξ(U | a0) = 1× ξ(µ0 | x) + 0× ξ(µ1 | x), Eξ(U | a1) = 0× ξ(µ0 | x) + 1× ξ(µ1 | x)

Null hypothesis test
Many times, there is only one model under consideration, µ0, the so-called null hypothesis.

This happens when, for example, we have no simple way of defining an appropriate alternative.
Consider the example of the medium: How should we expect a medium to predict? Then, our
only decision is whether or not to accept or reject this hypothesis.

The null hypothesis test as a decision problem

• a0: Accept model µ0

• a1: Reject model µ0

Example 11. Construction of the test for the medium

• µ0 is simply the Bernoulli(1/2) model: responses are by chance.

• We need to design a policy π(a | x) that accepts or rejects depending on the data.

• Since there is no alternative model, we can only construct this policy according to its properties
when µ0 is true.

• In particular, we can fix a policy that only chooses a1 when µ0 is true a proportion δ of the time.

• This can be done by construcing a threshold test from the inverse-CDF.

Using p-values to construct statistical tests

Definition 2.4.2 (Null statistical test). A statistical test π is a decision rule for accepting or
rejecting a hypothesis on the basis of evidence. A p-value test rejects a hypothesis whenever the
value of the statistic f(x) is smaller than a threshold. The statistic f : X → [0, 1] is designed to
have the property:

Pµ0({x | f(x) ≤ δ}) = δ.

If our decision rule is:

π(a | x) =

{
a0, f(x) ≥ δ

a1, f(x) < δ,

the probability of rejecting the null hypothesis when it is true is exactly δ.
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This is because, by definition, f(x) has a uniform distribution under µ0. Hence the value of
f(x) itself is uninformative: high and low values are equally likely. In theory we should simply
choose δ before seeing the data and just accept or reject based on whether f(x) ≤ δ. However
nobody does that in practice, meaning that p-values are used incorrectly. Better not to use them
at all, if uncertain about their meaning.

Issues with p-values

• They only measure quality of fit on the data.

• Not robust to model misspecification. For example, zero-mean testing using the χ2-test
has a normality assumption.

• They ignore effect sizes. For example, a linear analysis may determine that there is a
significant deviation from zero-mean, but with only a small effect size of 0.01. Thus,
reporting only the p-value is misleading

• They do not consider prior information.

• They do not represent the probability of having made an error. In particular, a p-value of
δ does not mean that the probability that the null hypothesis is false given the data x, is
δ, i.e. δ ̸= P(¬µ0 | x).

• The null-rejection error probability is the same irrespective of the amount of data (by
design).

p-values for the medium example

Let us consider the example of the medium.

• µ0 is simply the Bernoulli(1/2) model: responses are by chance.

• CDF: Pµ0(N ≤ n | K = 100) is the probability of at most N successes if we throw the
coin 100 times. This is in fact the cumulative probability function of the binomial distri-
bution. Recall that the binomial represents the distribution for the number of successes of
independent experiments, each following a Bernoulli distribution.

• ICDF: the number of successes that will happen with probability at least δ

• e.g. we’ll get at most 50 successes a proportion δ = 1/2 of the time.

• Using the (inverse) CDF we can construct a policy π that selects a1 when µ0 is true only
a δ portion of the time, for any choice of δ.
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Building a test

The test statistic
We want the test to reflect that we don’t have a significant number of failures.

f(x) = 1− binocdf(
n∑

t=1

xt, n, 0.5)

What f(x) is and is not

• It is a statistic which is ≤ δ a δ portion of the time when µ0 is true.

• It is not the probability of observing x under µ0.

• It is not the probability of µ0 given x.

Exercise 6. • Let us throw a coin 8 times, and try and predict the outcome.

• Select a p-value threshold so that δ = 0.05. For 8 throws, this corresponds to > 6 successes or
≥ 87.5% success rate.

• Let’s calculate the p-value for each one of you

• What is the rejection performance of the test?
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Figure 2.12: Here we see how the rejection threshold, in terms of the success rate, changes with
the number of throws to achieve an error rate of δ = 0.05.

As the amount of throws goes to infinity, the threshold converges to 0.5. This means that a statis-
tically significant difference from the null hypothesis can be obtained, even when the actual model from
which the data is drawn is only slightly different from 0.5.
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Figure 2.13: Here we see the rejection rate of the null hypothesis (µ0) for two cases. Firstly, for
the case when µ0 is true. Secondly, when the data is generated from Bernoulli(0.55).

As we see, this method keeps its promise: the null is only rejected 0.05 of the time when it’s true.
We can also examine how often the null is rejected when it is false... but what should we compare
against? Here we are generating data from a Bernoulli(0.55) model, and we can see the rejection of
the null increases with the amount of data. This is called the power of the test with respect to the
Bernoulli(0.55) distribution.

Statistical power and false discovery.

Beyond not rejecting the null when it’s true, we also want:

• High power: Rejecting the null when it is false.
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• Low false discovery rate: Accepting the null when it is true.

Power
The power depends on what hypothesis we use as an alternative. This implies that we
cannot simply consider a plain null hypothesis test, but must formulate a specific alternative
hypothesis.

False discovery rate
False discovery depends on how likely it is a priori that the null is false. This implies that
we need to consider a prior probability for the null hypothesis being true.

Both of these problems suggest that a Bayesian approach might be more suitable. Firstly,
it allows us to consider an infinite number of possible alternative models as the alternative
hypothesis, through Bayesian model averaging. Secondly, it allows us to specify prior probabilities
for each alternative. This is especially important when we consider some effects unlikely.

The Bayesian version of the test

Example 12. 1. Set U(ai, µj) = I {i = j}. This choice makes sense if we care equally about either
type of error.

2. Set ξ(µi) = 1/2. Here we place an equal probability in both models.

3. µ0: Bernoulli(1/2). This is the same as the null hypothesis test.

4. µ1: Bernoulli(θ), θ ∼ Unif ([0, 1]). This is an extension of the simple hypothesis test, with an
alternative hypothesis that says “the data comes from an arbitrary Bernoulli model”.

5. Calculate ξ(µ | x).

6. Choose ai, where i = argmaxj ξ(µj | x).

Bayesian model averaging for the alternative model µ1

In this scenario, µ0 is a simple point model, e.g. corresponding to a Bernoulli(1/2). However
µ1 is a marginal distribution integrated over many models, e.g. a Beta distribution over
Bernoulli parameters.

Pµ1(x) =

∫
Θ

Bθ(x) dβ(θ) (2.4.3)

ξ(µ0 | x) = Pµ0(x)ξ(µ0)

Pµ0(x)ξ(µ0) + Pµ1(x)ξ(µ1)
(2.4.4)
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Figure 2.14: Here we see the convergence of the posterior probability.

As can be seen in the figure above, in both cases, the posterior converges to the correct value,
so it can be used to indicate our confidence that the null is true.
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Figure 2.15: Comparison of the rejection probability for the null and the Bayesian test when µ0

is true.

Now we can use this Bayesian test, with uniform prior, to see how well it performs. While
the plain null hypothesis test has a fixed rejection rate of 0.05, the Bayesian test’s rejection rate
converges to 0 as we collect more data.
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Figure 2.16: Comparison of the rejection probability for the null and the Bayesian test when µ1

is true.

However, both methods are able to reject the null hypothesis more often when it is false, as
long as we have more data.

Concentration inequalities and confidence intervals
There are a number of inequalities from probability theory that allow us to construct high-

probability confidence intervals. The most well-known of those is Hoeffding’s inequality , the
simplest version of which is the following:

Lemma 2.4.1 (Hoeffding’s inequality). Let x1, . . . , xn be a series of random variables, xi ∈ [0, 1].
Then it holds that, for the empirical mean:

µn ≜ 1

n
sumn

t=1xt

P(µn ≥ Eµn + ϵ) ≤ e−2nϵ2 . (2.4.5)

When xt are i.i.d, Eµn = Ext. This allows us to construct an interval of size ϵ around the
true mean. This can generalise to a two-sided interval:

P(|µn − Eµn| ≥ ϵ) ≤ 2e−2nϵ2 .

We can also rewrite the equation to say that, with probability at least 1− δ

|µn − Eµn| ≤
√

ln 2/δ

2n

Further reading

Points of significance (Nature Methods)

• Importance of being uncertain https://www.nature.com/articles/nmeth.2613

https://www.nature.com/articles/nmeth.2613
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• Error bars https://www.nature.com/articles/nmeth.2659

• P values and the search for significance https://www.nature.com/articles/nmeth.
4120

• Bayes’ theorem https://www.nature.com/articles/nmeth.3335

• Sampling distributions and the bootstrap https://www.nature.com/articles/

nmeth.3414

2.5 Formalising Classification problems

One of the simplest decision problems is classification. At the simplest level, this is the problem
of observing some data point xt ∈ X and making a decision about what class Y it belongs to.
Typically, a fixed classifier is defined as a decision rule π(a|x) making decisions a ∈ A, where the
decision space includes the class labels, so that if we observe some point xt and choose at = 1,
we essentially declare that yt = 1.

Typically, we wish to have a classification policy that minimises classification error.

Deciding a class given a model
In the simplest classification problem, we observe some features xt and want to make a guess

at about the true class label yt. Assuming we have some probabilistic model Pµ(yt | xt), we want
to define a decision rule π(at | xt) that is optimal, in the sense that it maximises expected utility
for Pµ.

• Features xt ∈ X .

• Label yt ∈ Y.

• Decisions at ∈ A.

• Decision rule π(at | xt) assigns probabilities to actions.

Standard classification problem
In the simplest case, the set of decisions we make are the same as the set of classes

A = Y, U(a, y) = I {a = y}

Exercise 7. If we have a model Pµ(yt | xt), and a suitable U , what is the optimal decision to make?

Deciding the class given a model family

• Training data DT = {(xi, yi) | i = 1, . . . , T}

• Models {Pµ | µ ∈ M}.

• Prior ξ on M.

https://www.nature.com/articles/nmeth.2659
https://www.nature.com/articles/nmeth.4120
https://www.nature.com/articles/nmeth.4120
https://www.nature.com/articles/nmeth.3335
https://www.nature.com/articles/nmeth.3414
https://www.nature.com/articles/nmeth.3414
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Similarly to our example with the meteorological stations, we can define a posterior distribution
over models.

Posterior over classification models

ξ(µ | DT ) =
Pµ(y1, . . . , yT | x1, . . . , xT )ξ(µ)∑

µ′∈M Pµ′(y1, . . . , yT | x1, . . . , xT )ξ(µ′)

This posterior form can be seen as weighing each model according to how well they can
predict the class labels. It is a correct form as long as, for every pair of models µ, µ′ we
have that Pµ(x1, . . . , xT ) = Pµ′(x1, . . . , xT ). This assumption can be easily satisfied without
specifying a particular model for the x. If not dealing with time-series data, we assume
independence between xt:

Pµ(y1, . . . , yT | x1, . . . , xT ) =
T∏

i=1

Pµ(yi | xi)

The Bayes rule for maximising Eξ(U | a, xt, DT )
The decision rule simply chooses the action:

at ∈ argmax
a∈A

∑
y

∑
µ∈M

Pµ(yt = y | xt)ξ(µ | DT )U(a, y) (2.5.1)

= argmax
a∈A

∑
y

Pξ|DT
(yt | xt)U(a, y) (2.5.2)

We can rewrite this by calculating the posterior marginal marginal label probability

Pξ|DT
(yt | xt) ≜ Pξ(yt | xt, DT ) =

∑
µ∈M

Pµ(yt | xt)ξ(µ | DT ).

Approximating the model

Full Bayesian approach for infinite M
Here ξ can be a probability density function and

ξ(µ | DT ) = Pµ(DT )ξ(µ)/Pξ(DT ), Pξ(DT ) =

∫
M
Pµ(DT )ξ(µ) d,

can be hard to calculate.
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Maximum a posteriori model
We only choose a single model through the following optimisation:

µMAP(ξ,DT ) = argmax
µ∈M

Pµ(DT )ξ(µ) = argmax
µ∈M

goodness of fit︷ ︸︸ ︷
lnPµ(DT ) + ln ξ(µ)︸ ︷︷ ︸

regulariser

.

You can think of the goodness of fit as how well the model fits the training data, while the
regulariser term simply weighs models according to some criterion. Typically, lower weights
are used for more complex models.

Learning outcomes

Understanding

• Preferences, utilities and the expected utility principle.

• Hypothesis testing and classification as decision problems.

• How to interpret p-values Bayesian tests.

• The MAP approximation to full Bayesian inference.

Skills

• Being able to implement an optimal decision rule for a given utility and probability.

• Being able to construct a simple null hypothesis test.

Reflection

• When would expected utility maximisation not be a good idea?

• What does a p value represent when you see it in a paper?

• Can we prevent high false discovery rates when using p values?

• When is the MAP approximation good?
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2.6 Classification with stochastic gradient descent

Classification as an optimisation problem.

Finding the optimal policy for our belief ξ is not normally very difficult. However, it requires
that we maintain the complete distribution ξ and that we also under some probability distribution
P . In simple decision problems, e.g. where the set of actions A is finite, it is possible to do this
calculation on-the-fly. However, in some cases we might not have a model.

Recall that we wish to maximise expected utility for some policy under some distribution. In
general, this has the form

max
π

Eπ
µ(U).

We also know that any expectation can be approximated by sampling. Let Pµ(ω) be the distri-
bution on outcomes defined by our model. Then

Eπ
µ(U) =

∑
ω

U(a, ω)Pµ(ω) ≈ T−1
T∑

t=1

U(a, ωt), ωt ∼ Pµ(ω),

i.e. when we can replace the explicit summation over all possible outcomes, weighed by their
probability through averaging over T outcomes sampled from the correct distribution. In fact
this approximation is unbiased, as its expectation is equal to the expected utility.

The µ-optimal classifier
Since the performance measure is simply an expectation, it is intuitive to directly optimise
the decision rule with respect to an approximation of the expectation

max
θ∈Θ

f(πθ, µ, U), f(πθ, µ, U) ≜ Eπθ
µ (U) (2.6.1)

f(πθ, µ, U) =
∑
x,y,a

U(a, y)πθ(a | x)Pµ(y | x)Pµ(x) (2.6.2)

≈
T∑

t=1

∑
at

U(at, yt)πθ(at | xt), (xt, yt)
T
t=1 ∼ Pµ. (2.6.3)

In practice, this is the empirical expectation on the training set {(xt, yt) | t = 1, . . . , T}.
However, when the amount of data is insufficient, this expectation may be far from reality,
and so our classification rule might be far from optimal.

The Bayes-optimal classifier
An alternative idea is to use our uncertainty to create a distribution over models, and then
use this distribution to obtain a single classifier that does take the uncertainty into account.

max
Θ

f(πΘ, ξ) ≈ max
Θ

N−1
N∑

n=1

π(at = yn | xt = xn), (xn, yn) ∼ Pµn , µn ∼ ξ.

In this case, the integrals are replaced by sampling models µn from the belief, and then
sampling (xn, yn) pairs from Pµn .
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Stochastic gradient methdos
To find the maximum of a differentiable function g, we can use gradient descent

Gradient ascent

θi+1 = θi + α∇θg(θi).

When f is an expectation, we don’t need to calculate the full gradient. In fact, we only need
to take one sample from the related distribution.

Stochastic gradient ascent

g(θ) =

∫
M
f(θ, µ) dξ(µ)

θi+1 = θi + α∇θf(θi, µi), µi ∼ ξ.

Stochastic gradient methods are commonly employed in neural networks.

2.6.1 Neural network models

Two views of neural networks
In the simplest sense a neural network is simply as parametrised functions fθ. In classification,

neural networks can be used as probabilistic models, so they describes the probability Pθ(y|x),
or as classification policies so that fθ(x, a) describes the probability πθ(a | x) of selecting class
label a. Let us begin by describing the simplest type of neural network model, the perceptron.

Neural network classification model Pθ(y | xt)

xt yt

Objective: Find the best model for DT .

Neural network classification policy π(at | xt)

xt at

Objective: Find the best policy for U(a,x).

Difference between the two views

• We can use standard probabilistic methods for P .
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• Finding the optimal π is an optimisation problem. However, estimating P can also be
formulated as an optimisation.

Linear networks and the perceptron algorithm

x aθ

Figure 2.17: Abstract graphical model for a neural network

A neural network as used for modelling classification or regression problems, is simply a
parametrised mapping X → Y. If we include the network parameters, then it is instead a
mapping X ×Θ → Y, as seen in Figure 2.19.

x1

x2

a1

a2

θ11

θ12

θ211

θ22

Figure 2.18: Graphical model for a linear neural network.

If we see each possible output as a different random variable, this creates a dependence. After
all, we are really splitting one variable into many. In particular, if the network’s output is the
probability of each action, then we must make sure these sum to 1.

x1

x2

a1

h1(z) = ez1/[ez1 + ez2 ]

a2

h2(z) = ez2/[ez1 + ez2 ]

z1

gθ1
(x) = x⊤θ1

z2

gθ2
(x) = x⊤θ2

θ11

θ12
θ21

θ22

Figure 2.19: Architectural view of a linear neural network.

Definition 2.6.1 (Linear classifier). A linear classifier withN inputs and C outputs is parametrised
by

Θ =
[
θ1 · · · θC

]
=

θ1,1 · · · θ1,C
...

. . .
...

θN · · · θN,C





2.6. CLASSIFICATION WITH STOCHASTIC GRADIENT DESCENT 65

πΘ(a | x) = exp
(
θ⊤
a x
)
/
∑
a′

exp
(
θ⊤
a′x
)

Even though the classifier has a linear structure, the final non-linearity at the end is there
to ensure that it defines a proper probability distribution over decisions. For classification
problems, the observations xt are features xt = (xt,1 . . . , xt,n) so that X ⊂ RN . It is convenient

to consider the network output as a vector on the simplex y ∈ ∆A, i.e.
∑C

i=1 yt,i = 1, yt,i ≥ 0.
In the neural network model for classification, we typically ignore dependencies between the xt,i
features, as we are not very interested in the distribution of x itself.

Gradient ascent for a matrix U

max
θ

T∑
t=1

∑
at

U(at, yt)πθ(at | xt) (objective)

∇θ

T∑
t=1

∑
at

U(at, yt)πθ(at | xt) (gradient)

=

T∑
t=1

∑
at

U(at, yt)∇θπθ(at | xt) (2.6.4)

We now need to calculate the gradient of the policy.

Chain Rule of Differentiation

f(z), z = g(x),
df

dx
=
df

dg

dg

dx
(scalar version)

∇θπ = ∇gπ∇θg (vector version)

Learning outcomes

Understanding

• Classification as an optimisation problem.

• (Stochastic) gradient methods and the chain rule.

• Neural networks as probability models or classification policies.

• Linear neural netwoks.

• Nonlinear network architectures.
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Skills

• Using a standard NN class in python.

Reflection

• How useful is the ability to have multiple non-linear layers in a neural network.

• How rich is the representational power of neural networks?

• Is there anything special about neural networks other than their allusions to biology?
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2.7 Naive Bayes classifiers

One special case of this idea is in classification, when each hypothesis corresponds to a specific
class. Then, given a new example vector of data x, we would like to calculate the probability of
different classes C given the data, P(C | x). So here, the class is the hypothesis.

From Bayes’s theorem, we see that we can write this as

P(C | x) = P(x | C)P(C)∑
i P(x | Ci)P(Ci)

for any class C. This directly gives us a method for classifying new data, as long as we have a
way to obtain P(x | C) and P(C).

But should we use for the probability model P?

Naive Bayes classifier

Naive Bayes classifiers are one of the simplest classification methods. They can have a full
Bayesian interpretation under some assumptions, but otherwise they are too simplistic to be
useful.

Calculating the prior probability of classes
A simple method is to simply count the number of times each class appears in the training
data DT = ((xt, yt))

T
t=1. Then we can set

P(C) = 1/T
T∑

t=1

I {yt = C}

The Naive Bayes classifier uses the following model for observations, where observations are
independent of each other given the class. Thus, for example the result of three different tests
for lung cancer (stethoscope, radiography and biopsy) only depend on whether you have cancer,
and not on each other.

Probability model for observations

P(x | C) = P(x(1), . . . , x(n) | C) =
n∏

k=1

P(x(k) | C).

There are two different types of models we can have, one of which is mostly useful for con-
tinuous attributes and the other for discrete attributes. In the first, we just need to count the
number of times each feature takes different values in different classes.

Discrete attribute model.
Here we simply count the average number of times that the attribute k had the value i when
the label was C. This is in fact analogous to the conditional probability definition.

P(x(k) = i | C) =
∑T

t=1 I {xt(k) = i ∧ yt = C}∑T
t=1 I {yt = C}

=
Nk(i, C)

N(C)
,
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where Nk(i, C) is the numb l l .er of examples in class C whose k-th attribute has the value
i, and N(C) is the number of examples in class C.

Full Bayesian approach versus maximum likelihood

This estimation is simple maximum likelihood, as it does not maintain a distribution
over the parameters.

Sometimes we need to be able to deal with cases where there are no examples at all of one
class. In that case, that class would have probability zero. To get around this problem, we add
“fake observations” to our data. This is called Laplace smoothing.

Remark 2.7.1. In Laplace smoothing with constant λ, our probability model is

P(x(k) = i | C) =
∑T

t=1 I {xt(k) = i ∧ yt = C}+ λ∑T
t=1 I {yt = C}+ nkλ

=
Nk(i, C) + λ

N(C) + nkλ
.

where nk is the number of values that the k-th attribute can take. This is necessary, because we
want

∑nk

i=1 P(x(k) = i | C) = 1. (You can check that this is indeed the case as a simple exercise).

Remark 2.7.2. In fact, the Laplace smoothing model corresponds to a so-called Dirichelt prior
over polynomial parameters with a marginal probability of observation equal to the Laplace
smoothing. This is an extension of Beta-Bernoulli example from binary outcomes to multiple
outcomes.

Continuous attribute model.
Here we can use a Gaussian model for each continuous dimension.

P(x(k) = v | C) = 1

σ
√
2π
e

(v−µ)2

σ2 ,

where µ and σ are the mean and variance of the Gaussian, typically calculated from the
training data as:

µ =

∑T
t=1 xt(k) I {yt = C}∑T

t=1 I {yt = C}
,

i.e. µ is the mean of the k-th attribute when the label is C and

σ =

∑T
t=1[xt(k)− µ]2 I {yt = C}∑T

t=1 I {yt = C}
,

i.e. σ is the variance of the k-th attribute when the label is C. Sometimes we can just fix σ
to a constant value, i.e. σ = 1.
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Full Bayesian approach

This estimation is simple maximum likelihood, as it selects a single parameter pair µ =
(µ1, . . . , µn) and σ = (σ1, . . . , σn) for every class and does not maintain a distribution over
the parameters. It also assumes independence between the features. The full Bayesian
approach considers an arbitrary covariance matrix Σ and maintains a distribution ξ(µ,Σ).
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Chapter 3

Privacy

Participating in a study always carries a risk for individuals, namely that of data disclosure. In
this chapter, we first explain how simple database query methods, and show even a small number
of queries to a database they can compromise the privacy of individuals. We then introduce to
formal concepts of privacy protection: k-anonymity and differential privacy. The first is relatively
simple to apply and provides some limited resistance to identification of individuals through
record linkage attacks. The latter is a more general concept, and can be simple apply in some
settings, while it offers information-theoretic protection to individuals. A major problem with
any privacy definition and method, however is correct interpretation of the privacy concept used,
and correct implementation of the algorithm used.

71
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3.1 Database access models

Databases

ID Name Salary Deposits Age Postcode Profession
1959060783 Li Pu 150,000 1e6 60 1001 Politician
1946061408 Sara Lee 300,000 -1e9 72 1001 Rentier
2100010101 A. B. Student 10,000 100,000 40 1001 Time Traveller

Example 13 (Typical relational database in a tax office).

Database access

• When owning the database: Direct look-up.

• When accessing a server etc: Query model.

Python program Database System

Query

response

Figure 3.1: Database access model

SQL: A language for database access

Creating and filling tables

• CREATE TABLE table-name (column1, column2) Create a new table

• INSERT INTO table-name VALUES (’value1’, ’value2’) Add specific values into a
table

• INSERT INTO table-name VALUES (?, ?), variable Fill in values from a variable

Example 14. Database creation src/privacy/database-creation.py src/privacy/database-access.

py

src/privacy/database-creation.py
src/privacy/database-access.py
src/privacy/database-access.py
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Queries in SQL

The SELECT statement

• SELECT column1, column2 FROM table; This selects only some columns from the
table

• SELECT * FROM table; This selects all the columns from the table

Selecting rows
SELECT * FROM table WHERE column = value;

Arithmetic queries
Here are some example SQL statements

• SELECT COUNT(column) FROM table WHERE condition; This allows you to count the
number of rows matching condition

• SELECT AVG(column) FROM table WHERE condition; This lets you to count the
number of rows matching condition

• SELECT SUM(column) FROM table WHERE condition; This is used to sum up the
values in a column.
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3.2 Privacy in databases

Anonymisation

If we wish to publish a database, frequently we need to protect identities of people involved.
The simplest method for doing that is simply erasing directly identifying information. However,
this does not really work most of the time, especially since attackers can have side-information
that can reveal the identities of individuals in the original data.

Birthday Name Height Weight Age Postcode Profession
06/07 Li Pu 190 80 60-70 1001 Politician
06/14 Sara Lee 185 110 70+ 1001 Rentier
01/01 A. B. Student 170 70 40-60 6732 Time Traveller

Example 15 (Typical relational database in Tinder).

The simple act of hiding or using random identifiers is called anonymisation. However this is
generally insufficient as other identifying information may be used to re-identify individuals in
the data.

Record linkage

Ethnicity
Date
Diagnosis
Procedure
Medication
Charge

Name
Address
Registration
Party
Lastvote

Postcode
Birthdate
Sex

87% of Americans identifiable

Bill Weld, R-MA
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ID Name Salary Deposits Age Postcode Profession
1959060783 Li Pu 150,000 1e6 60 1001 Politician
1946061408 Sara Lee 300,000 -1e9 72 1001 Rentier
2100010101 A. B. Student 10,000 100,000 40 6732 Time Traveller

Example 16 (Typical relational database in a tax office).

Birthday Name Height Weight Age Postcode Profession
06/07 190 80 60-70 1001 Politician
06/14 185 110 70+ 1001 Rentier
01/01 170 70 40-60 6732 Time Traveller

Example 17 (Typical relational database in a tax office).

3.3 k-anonymity

k-anonymity

(a) Samarati (b) Sweeney

The concept of k-anonymity was introduced by Samarati and Sweeney 21 and provides good
guarantees when accessing a single database

Definition 3.3.1 (k-anonymity). A database provides k-anonymity if for every person in the
database is indistinguishable from k − 1 persons with respect to quasi-identifiers.

It’s the analyst’s job to define quasi-identifiers

Birthday Name Height Weight Age Postcode Profession
06/07 Li Pu 190 80 60+ 1001 Politician
06/14 Sara Lee 185 110 60+ 1001 Rentier
06/12 Nikos Papadopoulos 180 82 60+ 1243 Politician
01/01 A. B. Student 170 70 40-60 6732 Time Traveller
05/08 Li Yang 175 72 30-40 6910 Time Traveller

Table 3.1: 1-anonymity.

Birthday Name Height Weight Age Postcode Profession
180-190 80+ 60+ 1*
180-190 80+ 60+ 1*
180-190 80+ 60+ 1*
170-180 60-80 20-60 6*
170-180 60-80 20-60 6*

Table 3.2: 2-anonymity: the database can be partitioned in sets of at least 2 records
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However, with enough information, somebody may still be able to infer something about the
individuals

3.4 Differential privacy

While k-anonymity can protect against specific re-identification attacks when used with care,
it says little about what to do when the adversary has a lot of power. For example, if the
adversary knows the data of everybody that has participated in the database, it is trivial for
them to infer what our own data is. Differential privacy offers protection against adversaries with
unlimited side-information or computational power. Informally, an algorithmic computation is
differentially-private if an adversary cannot distinguish two similar database based on the result
of the computation. While the notion of similarity is for the analyst to define, it is common to
say that two databases are similar when they are identical apart from the data of one person.

x

x1 x2

a

π

Figure 3.3: If two people contribute their data x = (x1, x2) to a medical database, and an
algorithm π computes some public output a from x, then it should be hard infer anything about
the data from the public output.

Privacy desiderata
Consider a scenario where n persons give their data x1, . . . , xn to an analyst. This analyst then

performs some calculation f(x) on the data and published the result. The following properties
are desirable from a general standpoint.

Anonymity. Individual participation in the study remains a secret. From the release of the cal-
culations results, nobody can significantly increase their probability of identifying an individual
in the database.

Secrecy. The data of individuals is not revealed. The release does not significantly increase
the probability of inferring individual’s information xi.

Side-information. Even if an adversary has arbitrary side-information, he cannot use that to
amplify the amount of knowledge he would have obtained from the release.
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Utility. The released result has, with high probability, only a small error relative to a calcula-
tion that does not attempt to safeguard privacy.

Example: The prevalence of drug use in sport
Let’s say you need to perform a statistical analysis of the drug-use habits of athletes. Obvi-

ously, even if you promise the athlete not to reveal their information, you still might not convince
them. Yet, you’d like them to be truthful. The trick is to allow them to randomly change their
answers, so that you can’t be sure if they take drugs, no matter what they answer.

Algorithm for randomising responses about drug use

1. Flip a coin.

2. If it comes heads, respond truthfully.

3. Otherwise, flip another coin and respond yes if it comes heads and no otherwise.

Exercise 8. Assume that the observed rate of positive responses in a sample is p, that everybody follows
the protocol, and the coin is fair. Then, what is the true rate q of drug use in the population?

Solution. Since the responses are random, we will deal with expectations first

E p =
1

2
× 1

2
+ q × 1

2
=

1

4
+
q

2

q = 2E p− 1

2
.

The problem with this approach, of course, is that we are effectively throwing away half of
our data. In particular, if we repeated the experiment with a coin that came heads at a rate ϵ,
then our error bounds would scale as O(1/

√
ϵn) for n data points.

The randomised response mechanism
The above idea can be generalised. Consider we have data x1, . . . , xn from n users and we

transform it randomly to y1, . . . , yn using the following mapping.

Definition 3.4.1 (Randomised response). The i-th user, whose data is xi ∈ {0, 1} , responds
with ai ∈ {0, 1} with probability

π(ai = j | xi = k) = p, π(ai = k | xi = k) = 1− p,

where j ̸= k.

Given the complete data x, the mechanism’s output is a = (a1, . . . , an). Since the algorithm
independently calculates a new value for each data entry, the output is

π(a | x) =
∏
i

π(ai | xi)

This mechanism satisfies so-called ϵ-differential privacy, which we will define later.
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Exercise 9. Let the adversary have a prior ξ(x = 0) = 1− ξ(x = 1) over the values of the true response
of an individual. we use the randomised response mechanism with p and the adversary observes the
randomised data a = 1 for that individual, then what is ξ(x = 1 | a = 1)?

The local privacy model

x1

x2

xn

a1

a2

an

Figure 3.4: The local privacy model

In the local privacy model, the i-th individual’s data xi is used to generate a private response
ai. This means that no individual will provide their true data with certainty. This model allows
us to publish a complete dataset of private responses.

Differential privacy.

Now let
us take a look at a way to characterise the the inherent privacy properties of algorithms. This is
called differential privacy, and it can be seen as a bound on the information an adversary with
arbitrary power or side-information could extract from the result of a computation π on the data.
For reasons that will be made clear later, this computation has to be stochastic.

Definition 3.4.2 (ϵ-Differential Privacy). A stochastic algorithm π : X → A, where X is
endowed with a neighbourhood relation N , is said to be ϵ-differentially private if∣∣∣∣ln π(a | x)

π(a | x′)

∣∣∣∣ ≤ ϵ, ∀xNx′. (3.4.1)

Typically, algorithms are applied to datasets x = (x1, . . . , xn) composed of the data of n
individuals. Thus, all privacy guarantees relate to the data contributed by these individuals.

In this context, two datasets are usually called neighbouring if x = (x1, . . . , xi−1, xi, xi+1xn)
and x′ = (x1, . . . , xi−1, xi+1xn), i.e. if one dataset is missing an element.

A slightly weaker definition of neighbourhood is to say that xNx′ if x′ = (x1, . . . , xi−1, x
′
i, xi+1xn),

i.e. if one dataset has an altered element. We will usually employ this latter definition, especially
for the local privacy model.
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Defining neighbourhoods

Birthday Name Height Weight
06/07 Li Pu 190 80
06/14 Sara Lee 185 110
06/12 Nikos Papadopoulos 170 82
01/01 A. B. Student 170 70
05/08 Li Yang 175 72

Table 3.3: Data x

Birthday Name Height Weight
06/07 Li Pu 190 80
06/14 Sara Lee 185 110
01/01 A. B. Student 170 70
05/08 Li Yang 175 72

Table 3.4: 1-Neighbour x′

Birthday Name Height Weight
06/07 Li Pu 190 80
06/14 Sara Lee 185 110
06/13 Nikos Papadopoulos 180 80
01/01 A. B. Student 170 70
05/08 Li Yang 175 72

Table 3.5: 2-Neighbour x′

The definition of differential privacy

• First rigorous mathematical definition of privacy.

• Relaxations and generalisations possible.

• Connection to learning theory and reproducibility.

Current uses

• Apple. DP is used internally in the company to “protect user privacy”. It is not clear
exactly what they are doing but their efforts seem to be going in the right direction.

• Google. The company has a DP API available based on randomised response, RAP-
POR.
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• Uber. Elastic sensitivity for SQL queries, which is available as open source. This is a
good thing, because it is easy to get things wrong with privacy.

• US 2020 Census. It uses differential privacy to protect the condidentiality of respon-
ders’ information while maintaining data that are suitable for their intended uses.

Open problems

• Complexity of differential privacy.

• Verification of implementations and queries.

Remark 3.4.1. Any differentially private algorithm must be stochastic.

To prove that this is necessary, consider the example of counting how many people take drugs
in a competition. If the adversary only doesn’t know whether you in particular take drugs, but
knows whether everybody else takes drugs, it’s trivial to discover your own drug habits by looking
at the total. This is because in this case, f(x) =

∑
i xi and the adversary knows xi for all i ̸= j.

Then, by observing f(x), he can recover xj = f(x) −
∑

i ̸=j xi. Consequently, it is not possible
to protect against adversaries with arbitrary side information without stochasticity.

Remark 3.4.2. The randomised response mechanism with p ≤ 1/2 is (ln 1−p
p )-DP.

Proof. Consider x = (x1, . . . , xj , . . . , xn), x
′ = (x1, . . . , x

′
j , . . . , xn). Then

π(a | x) =
∏
i

π(ai | xi)

= π(aj | xj)
∏
i ̸=j

π(ai | xi)

≤ 1− p

p
π(aj | x′j)

∏
i̸=j

π(ai | xi)

=
1− p

p
π(a | x′)

π(aj = k | xj = k) = 1− p so the ratio is max{(1− p)/p, p/(1− p)} ≤ (1− p)/p for p ≤ 1/2.

Python program Database System

Query q

Private response a

Figure 3.5: Private database access model
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Response policy
The policy defines a distribution over responses a given the data x and the query q.

π(a | x, q)

Differentially private queries

There is no actual DP-SELECT statement, but we can imagine it.

The DP-SELECT statement

• DP-SELECT ϵ column1, column2 FROM table; This selects only some columns from
the table

• DP-SELECT ϵ * FROM table; This selects all the columns from the table

Selecting rows
DP-SELECT ϵ * FROM table WHERE column = value;

Arithmetic queries
Here are some example SQL statements

• DP-SELECT ϵ COUNT(column) FROM table WHERE condition; This allows you to
count the number of rows matching condition

• DP-SELECT ϵ AVG(column) FROM table WHERE condition; This lets you to count
the number of rows matching condition

• DP-SELECT ϵ SUM(column) FROM table WHERE condition; This is used to sum up
the values in a column.

Depending on the DP scheme, each query answered may leak privacy. In particular, if we
always respond with an ϵ-DP mechanism, after T queries our privacy guarantee is Tϵ. There
exist mechanisms that do not respond to each query independently, which can bound the total
privacy loss.

Definition 3.4.3 (T -fold adaptive composition). In this privacy model, an adversary is allowed
to compose T queries. The composition is adaptive, in the sense that the next query is allowed
to depend on the previous queries and their results.

Theorem 3.4.1. For any ϵ > 0, the class of ϵ-differentially private mechanism satisfy Tϵ-
differential privacy under T -fold adaptive composition.
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Theorem 3.4.2 (Post-processing). Let mechanism π(a | x) be ϵ-DP. Applying any transforma-
tion f : A → Y to the output of the mechanism to obtain y = f(a), results in another ϵ-DP
mechanism.

Exercise 10. Adversary knowledge Assume that the adversary knows that the data is either x or x′.
For concreteness, assume the data is either

x = (x1, . . . , xj = 0, . . . , xn)

where xi indicates whether or not the i-th person takes drugs, or

x′ = (x1, . . . , xj = 1, . . . , xn).

In other words, the adversary knows the data of all people apart from one, the j-th person. We can
assume that the adversary has some prior belief

ξ(x) = 1− ξ(x′)

for the two cases. Assume the adversary knows the output a of a mechanism π What can we say about
the posterior distribution of the adversary ξ(x | a, π) after having seen the output, if π is ϵ-DP?

Solution. We can write the adversary posterior as follows.

ξ(x | a, π) = π(a | x)ξ(x)
π(a | x)ξ(x) + π(a | x′)ξ(x′)

(3.4.2)

≥ π(a | x)ξ(x)
π(a | x)ξ(x) + π(a | x)eϵξ(x′)

(from DP definition)

=
ξ(x)

ξ(x) + eϵξ(x′)
(3.4.3)

But this is not very informative. We can also write

ξ(x | a, π)
ξ(x′ | a, π)

=
π(a | x)ξ(x)
π(a | x′)ξ(x′)

≥ π(a | x)ξ(x)
π(a | x)e−ϵξ(x′)

=
ξ(x)

ξ(x′)
eϵ (3.4.4)

Dealing with multiple attributes.

Up to now we have been discussing the case where each individual only has one attribute.
However, in general each individual t contributes multiple data xt.i, which can be considered as
a row xt in a database. Then the mechanism can release each at,i independently.

Independent release of multiple attributes.
For n users and k attributes, if the release of each attribute i is ϵ-DP then the data release
is kϵ-DP. Thus to get ϵ-DP overall, we need ϵ/k-DP per attribute.

The result follows immediately from the composition theorem. We can see each attribute
release as the result of an individual query.
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3.4.1 Other differentially private mechanisms

The Laplace mechanism.
A simple method to obtain a differentially private algorithm from a deterministic function

f : X → R, is to use additive noise, so that the output of the algorithm is simply

a = f(x) + ω, ω ∼ Laplace .

The amount of noise added, together with the smoothness of the function f , determine the
amount of privacy we have.

Definition 3.4.4 (The Laplace mechanism). For any function f : X → R,

π(a | x) = Laplace(f(x), λ), (3.4.5)

where the Laplace density is defined as

p(ω | µ, λ) = 1

2λ
exp

(
−|ω − µ|

λ

)
.

and has mean µ and variance 2λ2.

Here, Laplace(µ, λ) is the density f(x) = λ
2 exp(−λ|x− µ|).

Example 18 (Calculating the average salary). • The i-th person receives salary xi

• We wish to calculate the average salary in a private manner.

Local privacy model

• Obtain yi = xi + ω, where ω ∼ Laplace(λ).

• Return a = n−1
∑n

i=1 yi.

Centralised privacy model
Return a = n−1

∑n
i=1 xi + ω, where ω ∼ Laplace(λ′).

How should we add noise in order to guarantee privacy?

The centralised privacy model

x1

x2

xn

a

π

Figure 3.6: The centralised privacy model
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Assumption 3.4.1. The data x is collected and the result a is published by a trusted curator

DP properties of the Laplace mechanism

Definition 3.4.5 (Sensitivity). The sensitivity of a function f is

L (f) ≜ sup
xNx′

|f(x)− f(x′)|

If we define a metric d, so that d(x, x′) = 1 for xNx′, then:

|f(x)− f(x′)| ≤ L (f) d(x, x′),

i.e. f is L (f)-Lipschitz with respect to d.

Example 19. If f : X → [0, B], e.g. X = R and f(x) = min{B,max{0, x}}, then L (f) = B.

Example 20. If f : [0, B]n → [0, B] is f = 1
n

∑n
t=1 xt, then L (f) = B/n.

Proof. Consider two neighbouring datasets x, x′ differing in example j. Then

f(x)− f(x′) =
1

n

[
f(xj)− f(x′j)

]
≤ 1

n
[B − 0]

Theorem 3.4.3. The Laplace mechanism on a function f with sensitivity L (f), ran with
Laplace(λ) is L (f) /λ-DP.

Proof.

π(a | x)
π(a | x′)

=
e|a−f(x′)|/λ

e|a−f(x)|/λ ≤ e|a−f(x)|/λ+L(f)/λ

e|a−f(x)|/λ = eL(f)/λ

So we need to use λ = L (f) /ϵ for ϵ-DP. What is the effect of applying the Laplace mechanism
in the local versus centralised model? Here let us assume xi ∈ [0, B] for all i and consider the
problem of calculating the average.

Laplace in the local privacy model
The sensitivity of the individual data is B, so to obtain ϵ-DP we need to use λ = B/ϵ. The
variance of each component is 2(M/ϵ)2, so the total variance is 2M2/ϵ2n.

Laplace in the centralised privacy model
The sensitivity of f is M/n, so we only need to use λ = M

nϵ . The variance of a is 2(M/ϵn)2.

Thus the two models have a significant difference in the variance of the estimates obtained,
for the same amount of privacy. While the central mechanism has variance O(n−2), the local one
is O(n−1) and so our estimates will need much more data to be accurate under this mechanism.
In particular, we need square the amount of data in the local model as we need in the central
model. Nevertheless, the local model may be the only possible route if we have no specific use
for the data.



3.4. DIFFERENTIAL PRIVACY 85

3.4.2 Utility of queries

Rather than saying that we wish to calculate a private version of some specific function f ,
sometimes it is more useful to consider the problem from the perspective of the utility of different
answers to queries. More precisely, imagine the interaction between a database system and a
user:

Interactive queries

• System has data x.

• User asks query q.

• System responds with a.

• There is a common utility function U : X ,A,Q → R.

We wish to maximisation U with our answers, but are constrained by the fact that we also
want to preserve privacy.

The utility U(x, a, q) describes how appropriate each response a given by the system for a
query r is given the data x. It can be seen as how useful the response is 1 It allows us to
quantify exactly how much we would gain by replying correctly. The exponential mechanism,
described below is a simple differentially private mechanism for responding to queries while trying
to maximise utility for any possible utility function.

The Exponential Mechanism.

Here we assume that we can answer queries q, whereby each possible answer a to the query
has a different utility to the DM: U(q, a, x). Let L (U(q)) ≜ supxNx′ |U(q, a, x) − U(q, a, x)|
denote the sensitivity of a query. Then the following mechanism is ϵ-differentially private.

Definition 3.4.6 (The Exponential mechanism). For any utility function U : Q×A×X → R,
define the policy

π(a | x) ≜ eϵU(q,a,x)/L(U(q))∑
a′ eϵU(q,a′,x)/L(U(q))

(3.4.6)

Clearly, when ϵ → 0, this mechanism is uniformly random. When ϵ → ∞ the action max-
imising U(q, a, x) is always chosen.

Although the exponential mechanism can be used to describe most known DP mechanisms,
its best use is in settings where there is a natural utility function.

3.4.3 Privacy and reproducibility

The unfortunate practice of adaptive analysis

1This is essentially the utility to the user that asks the query, but it could be the utility to the person that
answers. In either case, the motivation does not matter the action should maximise it, but is constrained by
privacy.
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Prior

Training data

Posterior Posterior’

Holdout

Result Result’

In the ideal data analysis,
we start from some prior hypothesis, then obtain some data, which we split into training and
holdout. We then examine the training data and obtain a posterior that corresponds to our
conclusions. We can then measure the quality of these conclusions in the independent holdout
set.

However, this is not what happens in general. Analysts typically use the same holdout
repeatedly, in order to improve the performance of their algorithms. This can be seen as indirectly
using the holdout data to obtain a new posterior, and so it is possible that you can overfit on
the holdout data, even if you never directly see it. It turns out we can solve this problem if we
use differential privacy, so that the analyst only sees a differentially private version of queries.

The reusable holdout112

One idea to solve this problem is to only allow the analyst to see a private version of the
result. In particular, the analyst will only see whether or not the holdout result is τ -close to the
training result.

Algorithm parameters

• Performance measure f .

• Threshold τ . How close do we want f to be on the training versus holdout set?

• Noise σ. How much noise should we add?

• Budget B. How much are we allowed to learn about the holdout set?

Algorithm idea

Run algorithm λ on data DT and get e.g. classifier parameters θ.
Run a DP version of the function f(θ,DH) = I {U(θ,DT ) ≥ τU(θ,DH)}.

So instead of reporting the holdout performance at all, you just see if you are much worse
than the training performance, i.e. if you’re overfitting. The fact that the mechanism is DP also
makes it difficult to learn the holdout set. See the thresholdout link for more details.

2Also see https://ai.googleblog.com/2015/08/the-reusable-holdout-preserving.html

https://ai.googleblog.com/2015/08/the-reusable-holdout-preserving.html
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Available privacy toolboxes

k-anonymity

• https://github.com/qiyuangong/Mondrian Mondrian k-anonymity

Differential privacy

• https://github.com/bmcmenamin/thresholdOut-explorationsThreshold out

• https://github.com/steven7woo/Accuracy-First-Differential-PrivacyAccuracy-
constrained DP

• https://github.com/menisadi/pydpVarious DP algorithms

• https://github.com/haiphanNJIT/PrivateDeepLearning Deep learning and DP

Learning outcomes

Understanding

• Linkage attacks and k-anonymity.

• Inferring data from summary statistics.

• The local versus global differential privacy model.

• False discovery rates.

Skills

• Make a dataset satisfy k-anonymity with respect to identifying attributes.

• Apply the randomised response and Laplace mechanism to data.

• Apply the exponential mechanism to simple decision problems.

• Use differential privacy to improve reproducibility.

https://github.com/qiyuangong/Mondrian
https://github.com/bmcmenamin/thresholdOut-explorations
https://github.com/steven7woo/Accuracy-First-Differential-Privacy
https://github.com/menisadi/pydp
https://github.com/haiphanNJIT/PrivateDeepLearning


88 CHAPTER 3. PRIVACY

Reflection

• How can potentially identifying attributes be chosen to achieve k-anonymity?

• How should the parameters of the two ideas, ϵ-DP and k-anonymity be chosen?

• Does having more data available make it easier to achieve privacy?



Chapter 4

Fairness

When machine learning algorithms are applied at scale, it can be difficult to imagine what their
effects might be. In this part of the course, we consider notions of fairness as seen through the
prism of conditional independence and meritocracy. The first notion requires that we look deeper
into directed graphical models.

89
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4.1 Graphical models

Graphical models are a very useful tool for modelling the relationship between multiple vari-
ables. The simplest such models, probabilistic graphical models (otherwise known as Bayesian
networks) involve directed acyclic graphs between random variables. There are two other types
of probabilistic models, factor graph and undirected graphical models, which are equivalent to
each other, though not to directed models.

Graphical models

x3x1

x2

Figure 4.1: Graphical model (directed acyclic graph) for three variables.

Consider for example the model in Figure ??. It involves three variables, x1, x2, x3 and there
are three arrows, which show how one variable depends on another. Simply put, if you think of
each xk as a stochastic function, then xk’s value only depends on the values of its parents, i.e.
the nodes that are point to it. In this example, x1 does not depend on any other variable, but
the value of x2 depends on the value of x1. Such models are useful when we want to describe
the joint probability distribution of all the variables in the collection.

The graphical model allows us to factorise the joint probability distribution of these random
variables in a simplified manner. First, we define what we mean by a joint probability with
respect to some probability measure P .

Joint probability
Let P is a probability measure on (Ω,Σ). Then let the random variable x = (x1, . . . , xn)
so that x : Ω → X, X =

∏
iXi. The joint probability of x can be written in terms of the

underlying probability measure P :

P(x ∈ A) = P ({ω ∈ Ω | x(ω) ∈ A}).

When Xi are finite, we can typically write

P(x = a) = P ({ω ∈ Ω | x(ω) = a}),

for the probability that xi = ai for all i ∈ [n]. Through the definition of conditional probability,
we can always factorise the joint distribution of random variables as follows:

Factorisation
For any subsets B ⊂ [n] and its complement C so that xB = (xi)i∈B , xC = (xi)i/∈B

P(x) = P(xB | xC)P(xC)

So we can write any joint distribution as

P(x1)P(x2 | x1)P(x3 | x1, x2) · · ·P(xn | x1, . . . , xn−1).
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Although the above factorisation is always possible to do, sometimes our graphical model
has a structure that makes the factors much simpler. In fact, the main reason for introducing
graphical models is to represent dependencies between variables. For a given model, we can infer
whether some variables are in fact dependent, independent, or conditionally independent.

Directed graphical models and conditional independence

x3x1

x2

Figure 4.2: Graphical model for the factorisation P(x3 | x2)P(x2 | x1)P(x1).

Conditional independence
We say xi is conditionally independent of xB given xD and write xi | xD ⊥⊥ xB iff

P(xi,xB | xD) = P(xi | xD)P(xB | xD).

Directed graphical models

A graphical model is a convenient way to represent conditional independence between vari-
ables. There are many variants of graphical models, whose name is context dependent. Other
names used in the literature are probabilistic graphical models, Bayesian networks, causal graphs,
or decision diagrams. In this set of notes we focus on directed graphical models that depict de-
pendencies between ranom variables.

Definition 4.1.1 (Directed graphical model). A collection of n random variables xi : Ω → Xi,
and let X ≜

∏
iXi, with underlying probability measure P on Ω. Let x = (xi)

n
i=1 and for any

subset B ⊂ [n] let

xB ≜ (xi)i∈B (4.1.1)

x−j ≜ (xi)i ̸=i (4.1.2)

In a graphical model, conditional independence is represented through directed edges.

Example 21 (Specifying a probability model). A graphical model does not specify the complete dis-
tribution, only an allowed factorisation. If we want to specify a complete distribution for the above
graphical model of x1, x2, x3, we can use the following notation:

x1 ∼ f (4.1.3)

x2 | x1 = a ∼ g(a) (4.1.4)

x3 | x2 = b ∼ h(b), (4.1.5)

where f, g, h are three different distributions, with g and h being specified through a single parameter.
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S

C

A

Figure 4.3: Smoking and lung cancer graphical model, where S: Smoking, C: cancer, A: asbestos
exposure.

Example 22 (Smoking and lung cancer). It has been found by Lee 20 that lung incidence not only
increases with both asbestos exposure and smoking. This is in agreement with the graphical model
shown. The study actually found that there is an amplification effect, whereby smoking and asbestos
exposure increases cancer risk by 28 times compared to non-smokers. This implies that the risk is not
simply additive. The graphical model only tells us that there is a dependency, and does not describe the
nature of this dependency precisely.

Explaining away
Even though S,A are independent, they become dependent once you know C. For example,
let us say we know that you have cancer and that our model says that it’s very unlikely
to have cancer unless you either smoke or are exposed to asbestos. When we also learn
that you do not have asbestos exposure, smoking becomes more likely. In either words, if
cancer is caused by either smoking or asbestos, and we rule out asbestos, the only remaining
explanation is smoking. This is what is generally called explaining away.

x1

T

x2

Figure 4.4: Time of arrival at work graphical model where T is a traffic jam and x1 is the time
John arrives at the office and x2 is the time Jane arrives at the office.

Example 23 (Time of arrival at work). In this model, the arrival times of John and Jane may seem
correlated. However, there is a common cause: The existence of a traffic jam. Whenever there is a traffic
jam, both John and Jane are usually late. Whenever there is not a traffic jam, they are both mostly on
time.

Conditional independence
Even though x1, x2 are correlated, they become independent once you know T .

x

y

a

Figure 4.5: Kidney treatment model, where x: severity, y: result, a: treatment applied
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Treatment A Treatment B
Small stones 87 270
Large stones 263 80

Severity Treatment A Treatment B
Small stones ) 93% 87%
Large stones 73% 69%
Average 78% 83%

Example 24 (Treatment effects). A curious example is that of applying one of two treatments for
kidneys. In the data, it is clear that one treatment is best for both large and small stones. However,
when the data is aggregated it appears as though treatment B is best. This is because treatment A is
chosen much more frequently when the stones are large, and that’s when both treatments perform worse.
This apparent discrepancy is called Simpson’s paradox

z

s

a z

s

a

Figure 4.6: School admission graphical model, where z: gender, s: school applied to, a: whether
you were admitted.

School Male Female
A 62% 82%
B 63% 68%
C 37% 34%
D 33% 35%
E 28% 24%
F 6% 7%
Average 45% 38%

Example 25 (School admission). In this example, it appears as though female candidates have a lower
acceptance rate than males. However what is missing is the fact that many more males are applying
to easier schools. Thus, it is possible that the data is explainable by the fact that admission only
reflects the difficulty of each school, and the overall gender imbalance is due to the choices made by the
applicants. However, an alternative model is that the admissions process also explicitly takes gender
into account. However, both of these models may be inadequate, as we do not have data about each
individual applicant, such as their grades. We shall discuss this issue further when we talk about
causality, confounding variables and counterfactuals.

Exercise 11. Factorise the following graphical model.

x1

x2

x3

x4

P(x) = P(x1)P(x2 | x1)P(x3 | x1)P(x4)
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Exercise 12. Factorise the following graphical model.

x1

x2

x3

x4

P(x) = P(x1)P(x2 | x1)P(x3 | x1)P(x4 | x3)

Exercise 13. What dependencies does the following factorisation imply?

P(x) = P(x1)P(x2 | x1)P(x3 | x1)P(x4 | x2, x3)

x1

x2

x3

x4

Deciding conditional independence

There is an algorithm for deciding conditional independence of any two variables in a
graphical model. However, this is beyond the scope of these notes. Here, we shall just use
these models as a way to encode dependencies that we assume exist.

4.1.1 Inference and prediction in graphical models

Inference and prediction in graphical models

θ

x1 · · · xt xt+1

Figure 4.7: Inference and prediction in a graphical model
.

In this example, x1, . . . , xt are all i.i.d, drawn from the distribution Pθ(xt) = P(xt | θ).

Inference of latent variables

P(θ | x1, . . . , xt)
Inference in graphical models typically refers to the problem of estimating the distribution
of some hiddeen or latent variable from data. These variables are generally thought of as
two types:
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• Model parameters. These generally do not change over time. One example is estimat-
ing the mean of a Gaussian distribution from data.

• System states. These typically are time-indexed. We will see further examples of such
variables when we discuss latent variable models. On example is inferring location
from GPS measurements.

Prediction

P(xt+1 | x1, . . . , xt) =
∫
Θ

P(xt+1 | θ) dP(θ | x1, . . . , xt)

Prediction is a type of inference, but differs in that the variable whose distribution we wish
to estimate is only temporarily not observed: we can actually obtain its value in the future.
Thus, a prediction is always testable!

Coin tossing, revisited

Example 26. The Beta-Bernoulli prior

ξ θ x

Figure 4.8: Graphical model for a Beta-Bernoulli prior

θ ∼ Beta(ξ1, ξ2), i.e. ξ are Beta distribution parameters (4.1.6)

x | θ ∼ Bernoulli(θ), i.e. Pθ(x) is a Bernoulli (4.1.7)

In this example, it is obvious why we use the notation above for describing hierarchical models. We
simply state what is the distribution on one variable conditioned on the other variables. Here, ξ is fixed,
and it is something we can choose arbitrarily. The data x is observed, while the parameter θ remains
latent . Using Bayes theorem, we can derive the distribution for ξ(θ | x). In this particular case, we elide latent
referring to a sample x1. . . . , xt as they are all i.i.d.

Example 27. The n-meteorologists problem (continuation of Exercise 5)

ξ

µ

x1 · · · xt xt+1

a U

Figure 4.9: Inference, prediction and decisions in a graphical model.
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In this problem, we allow each model’s predictions to have arbitrary dependences with the past i.e.

Pµ(xt+1 | xt, xt−1, . . . , x1).

For inference, the details of how each model works are not important: just the probability of the next
observation given the previous ones.

4.1.2 Testing conditional independence

Measuring independence
The simplest way to measure independence is by looking at whether or not the distribution

of the possibly dependent variable changes when we change the value of the other variables.

Theorem 4.1.1. If xi | xD ⊥⊥ xB then

P(xi | xB ,xD) = P(xi | xD)

This implies
P(xi | xB = b,xD) = P(xi | xB = b′,xD)

so we can measure independence by seeing how the distribution of xi changes when we vary xB,
keeping xD fixed. For any given model, there is either a dependence or there is not. However,
sometimes we might be able to tolerate some amount of dependence. Thus, we can simply
measure the deviation from independence through a metric or divergence on distributions.

Example 28.
∥P(a | y, z)− P(a | y)∥1

which for discrete a, y, z is:

max
i,j

∥P(a | y = i, z = j)− P(a | y = i)∥1 = max
i,j

∥
∑
k

P(a = k | y = i, z = j)− P(a = k | y = i)∥1.

See also src/fairness/ci_test.py

Example 29. An alternative model for coin-tossing This is an elaboration of Example 12 for hypothesis
testing.

ϕ

ξ

µ θ x

Figure 4.10: Graphical model for a hierarchical prior

• µ1: A Beta-Bernoulli model with Beta(ξ1, ξ2)

• µ0: The coin is fair.

θ | µ = µ0 ∼ D(0.5), i.e. θ is always 0.5 (4.1.8)

θ | µ = µ1 ∼ Beta(ξ1, ξ2), i.e. θ has a Beta distribution (4.1.9)

x | θ ∼ Bernoulli(θ), i.e. Pθ(x) is Bernoulli (4.1.10)

Here the posterior over the two models is simply

ϕ(µ0 | x) = P0.5(x)ϕ(µ0)

P0.5(x)ϕ(µ0) + Pµ1(x)ϕ(µ1)
, Pµ1(x) =

∫ 1

0

Pθ(x) dξ(θ).

src/fairness/ci_test.py
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Bayesian testing of independence
For a given distributional model Pθ, conditional independence either holds or does not. Con-

sider the set of model parameters Θ0 where, for each parameter θ ∈ Θ0, we have a conditional
independence condition, while Θ1 may corresponds to models where there may not be indepen-
dence. To make this more concrete, let’s give an example.

x1

x2

x3

(a) Θ0 assumes independence

x1

x2

x3

(b) Θ1 does not assume independence

Figure 4.11: The two alternative models

Example 30. Assume data D =
{
xt1, x

t
2, x

t
3

∣∣ t = 1, . . . , T
}
with xti ∈ {0, 1}. First consider model Θ0

where the following conditional independence holds

Pθ(x3 | x2, x1) = Pθ(x2 | x1), ∀θ ∈ Θ0.

In the alternative model Θ1 there is no independence assumption. So the likelihood for either a model
in either set is

Pθ(D) =
∏
t

Pθ(x
t
3 | xt2)Pθ(x

t
2 | xt1)Pθ(x

t
1), θ ∈ Θ0 (4.1.11)

Pθ(D) =
∏
t

Pθ(x
t
3 | xt2, xt1)Pθ(x

t
2 | xt1)Pθ(x

t
1), θ ∈ Θ1 (4.1.12)

The parameters for this example can be defined as follows

θ1 ≜ Pθ(x
t
1 = 1) (µ0, µ1)

θi2|1 ≜ Pθ(x
t
2 = 1 | xt1 = i) (µ0, µ1)

θj3|2 ≜ Pθ(x
t
3 = 1 | xt2 = j) (µ0)

θi,j3|2,1 ≜ Pθ(x
t
3 = 1 | xt2 = j, xt1 = i) (µ1)

We model each one of these parameters with a separate Beta-Bernoulli distribution.

4.1.3 Hierarchical Bayesian models

Given some data D, the Bayesian approach would involve specifying a hierarchical prior ξ so
that ϕ(µ1) = 1 − ϕ(µ0) specifies a probability on the two model structures, while for the i-th
model we define a prior ξi(θ) over Θi, so that we obtain the following hierarchical model

µ θ D

Figure 4.12: Hierarchical model.

Here the specific model µ is unobserved, as well as its parameters θ. Only the data D is
observed. Our prior distribution is omitted from the graph.

µi ∼ ϕ (4.1.13)

θ | µ = µi ∼ ξi (4.1.14)
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Marginal likelihood
This gives the the following marginal likelihood for the combined models and each of the
models respectively.

Pϕ(D) = ϕ(µ0)Pµ0(D) + ϕ(µ1)Pµ1(D) (4.1.15)

Pµi(D) =

∫
Θi

Pθ(D) dξi(θ). (4.1.16)

Model posterior

ϕ(µ | D) =
Pµ(D)ϕ(µ)∑
i Pµi

(D)ϕ(µi)
(4.1.17)

Calculating the marginal likelihood
Generally speaking, calculating the marginal likelihood for a model with an uncountable

parameter set is hard. However, conjugate models admit closed form solutions and efficient
calculations. Firstly, let’s rewrite the marginal likelihood in terms of an integral Monte-Carlo
approximation.

Monte-Carlo approximation

∫
Θ

Pθ(D) dξ(θ) ≈
N∑

n=1

Pθn(D) +O(1/
√
N), θn ∼ ξ (4.1.18)

Even though this approximation is reasonable at first glance, the problem is that the leading
constant of the error scales approximately proportionally to the maximum likelihood maxθ Pθ(D).
This is a consequence of Hoeffding’s inequality (??). Thus, the more data we have the more
samples we need to get a good approximation with this simple Monte Carlo approach. For that
reason, one typically uses a sample from a proposal distribution ψ which is different from ξ.
Then it holds

Importance sampling
For any two measures ξ, ψ on Θ, we can write:∫
Θ

Pθ(D) dξ(θ) =

∫
Θ

Pθ(D)
dψ(θ)

dψ(θ)
dξ(θ) =

∫
Θ

Pθ(D)
dξ(θ)

dψ(θ)
dψ(θ) ≈

N∑
n=1

Pθ(D)
dξ(θn)

dψ(θn)
, θn ∼ ψ

(4.1.19)

This allows us to estimate the marginal likelihood with respect to a belief ξ by sampling
from an alternative belief ψ.
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Sequential updating of the marginal likelihood

Pξ(D) = Pξ(x1, . . . , xT ) (4.1.20)

= Pξ(x2, . . . , xT | x1)Pξ(x1) (4.1.21)

=
T∏

t=1

Pξ(xt | x1, . . . , xt−1) (4.1.22)

=
T∏

t=1

∫
Θ

Pθn(xt) d ξ(θ | x1, . . . , xt−1)︸ ︷︷ ︸
posterior at time t

(4.1.23)

The nice thing about this break down is that for a simple model such as Beta-Bernoulli, the
individual datapoint marginal likelihoods are easy to compute

Example 31 (Beta-Bernoulli). The marginal predictive distribution for a Beta-Bernoulli prior is

Pξ(xt = 1 | x1, . . . , xt−1) =
αt

αt + βt
,

with αt = α0 +
∑t−1

n=1 xn, βt = β0 +
∑t−1

n=1(1− xn)

Further reading

Python sources

• A simple python measure of conditional independence src/fairness/ci_test.py

• A simple test for discrete Bayesian network src/fairness/DirichletTest.py

• Using the PyMC package https://docs.pymc.io/notebooks/Bayes_factor.html

src/fairness/ci_test.py
src/fairness/DirichletTest.py
https://docs.pymc.io/notebooks/Bayes_factor.html
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Figure 4.13: In some cases, it appears as though automating this procedure might lead to better
outcomes. But is that generally true?

4.2 Fairness in machine learning

The problem of fairness in machine learning and artificial intelligence has only recently been
widely recognised. When any algorithm is implemented at scale, no matter the original objective
and whether it is satisfied, it has significant societal effects. In particular, even when considering
the narrow objective of the algorithm, even if it improves it overall, it may increase inequality.

In this course we will look at two aspects of fairness. The first has to do with disadvantaged
populations that form distinct social classes due to a shared income stratum, race or gender.
The second has to do with meritocratic notions of fairness.

Bail decisions

For our example regarding disadvantaged populations, consider the example of bail decisions
in the US court system. When a defendant is charged, the judge has the option to either place
them in jail pending trial, or set them free, under the condition that the defendant pays some
amount of bail. The amount of bail (if any) is set to an amount that would be expected to deter
flight or a relapse.

Whites get lower scores than blacks1

In a different study, it was shown that a commonly used software tool for determining ’risk
scores’ in the US was biased towards white defendants, who seemed to be always getting lower
scores than blacks.

1Pro-publica, 2016
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Figure 4.14: Apparent bias in risk scores towards black versus white defendants.

But scores equally accurately predict recidivsm2

On the other hand, the scores generated by the software seemed to be very predictive on
whether or not defendants would re-offend, independently of their race.

2Washington Post, 2016
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Figure 4.15: Recidivism rates by risk score.

But non-offending blacks get higher scores

On the third hand, we see that the system seemed to give higher risk scores to non-offending
blacks. So, is there a way to fix that or not?

Figure 4.16: Score breakdown based on recidivism rates.

How can we explain this discrepancy? We can show that in fact, each one of these different
measures of bias in our decision rules can be seen as a notion of conditional independence.
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4.3 Concepts of fairness

Bail decisions, revisited

Let us think of this problem in terms of bail decisions made by a judge using some policy π
with π(a | x) being the probability that the judge decides a when she observes x. Let y be the
outcome, which may or may not depend on a. In this particular case, a is either release or jail.
And y is appears for trial or not. If we accept the tenets of decision theory, there is also a utility
function U(a, y) defined on which the judge bases her decision.

x

π

a1
a2

y1
y2

Figure 4.17: The bail decision process, simplified.

4.3.1 Group fairness and conditional independence

Independence
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Figure 4.18: Apparent bias in risk scores towards black versus white defendants.

Pπ
θ (a | z) = Pπ

θ (a) (non-discrimination)

So how can we reframe the above fairness notions in a more precise way? Both of them
involve conditional independence between y, a and a sensitive attribute z, such as race. The
first notion says that the actions of the judge (or equivalently, the scores of the algorithm) are
calibrated with respect to the outcomes. The second says that they are balanced, so that were the
outcome known to the judge, she would be making a decision independently of the defendant’s
race. Both of these conditions were discussed in a more restricted setting by
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Definition 4.3.1 (Calibration). A policy π is calibrated for parameter θ with respect to z if

Pπ
θ (y | a, z) = Pπ

θ (y | a), ∀a, z. (4.3.1)

You will observe that calibration here means that

y ⊥⊥ z | a, θ, π

i.e. that y is independent of z given the judge’s action a, so the distribution of outcomes is the
same for every one of our actions no matter what the value of z is.

Example 32. Figure 4.15 shows how actual recidivism (y) relates to risk scores (a) for different races
(z). In that case, it is apparent that, at least approximately, P (y | a, z) = P (y | a, z′), so the COMPAS
method satisfies calibration.

Definition 4.3.2 (Balance). A policy π is balanced for parameter θ with respect to z if:

Pπ
θ (a | y, z) = Pπ

θ (a | y), ∀y, z. (4.3.2)

On the other hand, balance means that

a ⊥⊥ z | y,

i.e. that a is independent of z given the true outcome y.3

Example 33. Figure 4.16 shows how risk scores (a) relate to actual recidivism (y) for different races
(z). In that case, it is apparent that, at least approximately, P (a | y, z) ̸= P (a | y, z′), so the COMPAS
method does not satisfy balance.

4.3.2 Individual fairness and meritocracy.

A different concept of fairness is meritocracy. For example, if one candidate for a job is better
than another candidate, perhaps that candidate should be taken for the job.

Let us consider merit from the point of view of the decision maker, who can either hire
(at = 1) or not hire (at = 0) the t-th applicant. If the applicant has characteristics xt and
merit yt, the DM’s decision has utility U(at, yt). In order to model meritocracy, we assign an
inherent quality to y, expressed as an ordering, so that U(1, y) ≥ U(1, y′) if y ≥ y′. Assuming
Pθ(xt, yt) is known to the DM then clearly she should make the decision by solving the following
maximisation problem:

Meritocratic decision

at(θ, xt) ∈ argmax
a

Eθ(U | a, xt) =
∫
Y
U(at, y)Pθ(y | at, xt) (4.3.3)

Here, the notion of meritocracy is defined through our utility function. Although it would be
better to consider the candidate’s utility instead, this is in practice difficult, because we’d have
to somehow estimate each individual’s utility function. Finally, we are taking the expectation
here is because we may not know for certain what the quality attribute of a given person might
be.

3This definition only really makes sense when y does not depend on a at all. When this is not the case, it’s
easy to construct a random variable y′ that does not depend on a so that y can be written as a function y(y′, a).
Then we can achieve balance with respect to y′.
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Smooth fairness
It makes sense to combine the idea of meritocracy with that of similarity. That is, similar

people should be treated similarly. This means that we should find a policy π that maximises
utility U and makes similar decisions for similar people.

Let X be equipped with a metric ρ, and let D be a divergence between distributions, such as
the KL-divergence. We can then formalise the above intuition as follows:

D[π(a | x), π(a | x′)] ≤ ρ(x, x′). (4.3.4)

This is a so-called Lipschitz condition on the policy, and is illustrated in the figure below.

x

π(a | x)

ρ(x, x′)

Figure 4.19: A Lipschitz function

If we wish to find the optimal policy that satisfies this constraint, then it is naturally to think
about this as a constrained optimisation problem

The constrained maximisation problem

max
π

{U(π) | ρ(x, x′) ≤ ϵ} (4.3.5)

The practical problem in this framework is how to define the metric ρ in the first place.
A natural idea is to simply use the probability of y as a metric. Then it doesn’t matter how
different x, x′ appear: the only important thing is how what is the distribution of y implied by
the different attributes.

The metric ρ in terms of the distribution y | x
Firstly, assume you somehow have some probability law P over the variables of interest. To
fix ideas, let us consider the total variation norm and assume y ∈ Y takes a finite number of
values. Then we can define the metric as

ρ(x, x′) ≜ ∥P(y | x)− P(y | x′)∥1 =
∑
i∈Y

∥P(y = i | x)− P(y = i | x′)∥1 (4.3.6)

4.3.3 A unifying view of fairness

In both cases, we defined conditional independence for a fixed probability distribution Pθ(x, y, z)
on the various variables. We also considered meritocratic fairness with respect to θ. First of
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all, we can simply define a function F that measures the amount of fairness violation for a
given parameter value. As an example, the deviation from calibration of a policy π for a given
parameter value θ can be written as:

Fcalibration(θ, π) ≜ max
a,z

∑
i

|Pπ
θ (y = i | a, z)− Pπ

θ (y = i | a, z′)| (4.3.7)

Similarly, the deviation from calibration can be written as:

Fbalance(θ, π) ≜ max
a,z

∑
i

|Pπ
θ (a = i | y, z)− Pπ

θ (a = i | y, z′)| (4.3.8)

Finally, we can also create a deviation for the constrains in the maximisation problem of (4.3.5),
so that

Fmerit(θ, π) ≜ exp (ρ(x, x′)− ϵ) . (4.3.9)

If we the decision maker did not care about fairness, she could just maximise some utility
function U of interest. In order to take fairness into account, we define the value of the policy
to be a linear combination between the original utility and the fairness violation.

The value of a policy

¡
1-¿Fairness metrics: balance

Fbalance(θ, π) ≜
∑
y,z,a

|Pπ
θ (a | y, z)− Pπ

θ (a | y)|2 (4.3.10)

¡
2-¿Utility: Classification accuracy

U(θ, π) = Pπ
θ (yt = at)

¡
3-¿Use λ to trade-off utility and fairness

V (λ, θ, π) = (1− λ)

utility︷ ︸︸ ︷
U(θ, π)−λ F (θ, π)︸ ︷︷ ︸

unfairness

(4.3.11)

Model uncertainty

θ is unknown
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Theorem 4.3.1. A decision rule in the form of a lottery, i.e.

π(a | x) = pa

can be the only way to satisfy balance for all possible θ.

Possible solutions

• Marginalize over θ (”expected” model)

• Use Bayesian reasoning

The value of a policy
Let λ represent the trade-off between utility and fairness. The combined value for a given
parameter θ is

V (λ, θ, π) = λ

utility︷ ︸︸ ︷
U(θ, π)− (1− λ)F (θ, π)︸ ︷︷ ︸

fairness violation

(4.3.12)

Remark 4.3.1. It is also possible to define the above problem in terms of a constrained optimi-
sation

max {U(θ, π) | F (θ, π) ≤ ϵ} .
The advantage of specifying just a single value function to maximise is that unconstrained prob-
lems are usually simpler to handle.

4.3.4 Bayesian fairness

The previous section defined a simple universal framework for trading off utility and fairness in
terms of an unconstrained optimisation problem. This involved defining the value of a policy for a
given trade-off λ and an underlying distribution with parameter θ. However, in a learning context
this parameter cannot be assumed to be known. One solution to this problem is to assume a
Bayesian approach and simply specify a subjective probability distribution ξ over parameters.
Typically, this would be calculated from a prior distribution and some available data.

The Bayesian decision problem
In the Bayesian setting, we simply need to maximise the expected V over all possible model

parameters. Assume we have some probability ξ over the parameters. Typically, ξ would be a
posterior distribution calculated from some prior and some data, but for simplicity we just write
ξ(θ) in this section. Then the expected value of a policy π is simply the following.

The Bayesian value of a policy
With some abuse of notation, we also define the value for a subjective belief, modelled as a
distribution ξ, over parameters

V (λ, ξ, π) =

∫
Θ

V (λ, θ, π) dξ(θ). (4.3.13)



4.3. CONCEPTS OF FAIRNESS 109

This is simply the expected value of our policy over each possible parameter θ, with respect
to the belief ξ.

Maximising the value of this policy should be possible with stochastic gradient ascent we can
easily obtain samples from ξ.

4.3.5 Further reading

Recently algorithmic fairness has been studied quite extensively in the context of statistical
decision making. Dwork et al. 10 , Kilbertus et al. 18 , Kleinberg et al. 19? ? studied fairness
under the one shot statistical decision making framework in this chapter. Jabbari et al. 15 ,
Joseph et al. 16 studied fairness in sequential decision making settings. Fairness has also been
studied in other machine learning topics, such as clustering7, natural language processing4 and
recommendation systems6.

Satisfying fairness constraints while maximizing expected utility in a more general setting in
the conditional independence setting has been considered by ?, under a specific model. Dimi-
trakakis et al. 9 consider the Bayesian setting, where the model is unknown.

In the individual fairness-as-meritocracy framework, Dwork et al. 10 and look for decision
rules that are smooth in a sense that similar individuals are treated similarly.

Finally, ? which considers the problem of uncertainty from the point of view of causal mod-
elling.

Online resources

• COMPAS analysis by propublica https://github.com/propublica/

compas-analysis

• Open policing database https://openpolicing.stanford.edu/

Learning outcomes

Understanding

• Graphical models and conditional independence.

• Fairness as independence and meritocracy.

Skills

• Specify a graphical model capturing dependencies between variables.

• Testing for conditional independence.

https://github.com/propublica/compas-analysis
https://github.com/propublica/compas-analysis
https://openpolicing.stanford.edu/
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• Verify if a policy satisfies a fairness condition.

Reflection

• How should we be fair with respect to sensitive attributes?

• Balancing the needs of individuals, the decision maker and society?

• Does having more data available make it easier to achieve fairness?

• What is the relation to game theory and welfare economics?
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4.4 Project: Credit risk for mortgages

Consider a bank that must design a decision rule for giving loans to individuals. In this particular
case, some of each individual’s characteristics are partially known to the bank. We can assume
that the insurer has a linear utility for money and wishes to maximise expected utility. Assume
that the t-th individual is associated with relevant information xt, sensitive information zt and
a potential outcome yt, which is whether or not they will default on their mortgage. For each
individual t, the decision rule chooses a ∈ A with probability π(at = a | xt).

As an example, take a look at the historical data in data/credit/german.data-mumeric,
described in data/credit/german.doc. Here there are some attributes related to financial sit-
uation, as well as some attributes related to personal information such as gender and marital
status.

A skeleton for the project is available at https://github.com/olethrosdc/ml-society-science/
tree/master/src/project-1. Start with random_banker.py as a template, and create a new
module name_banker.py. You can test your implementation with the TestLending.py program.

For ensuring progress, the project is split into three parts:

4.4.1 Deadline 1: September 18

The first part of the project focuses on a baseline implementation of a banker module.

1. Design a policy for giving or denying credit to individuals, given their probability for being
credit-worthy. Assuming that if an individual is credit-worthy, you will obtain a return on
investement of r = 5% per month.4 Take into account the length of the loan to calculate
the utility through NameBanker.expected_utility(). Assume that the loan is either
fully repaid at the end of the lending period n, or not at all to make things simple. If an
individual is not credit-worthy you will lose your investment of m credits, otherwise you
will gain m[(1 + r)n − 1] . Ignore macroenomic aspects, such as inflation. In this section,
simply assume you have a model for predicting creditworthiness as input to your policy,
which you can access NameBanker.get_proba().

2. Implement NameBanker.fit() to fit a model for calculating the probability of credit-
worthiness from the german data. Then implement NameBanker.predict_proba() to
predict the probability of the loan being returned for new data. What are the implicit
assumptions about the labelling process in the original data, i.e. what do the labels repre-
sent?

3. Combine the model with the first policy to obtain a policy for giving credit, given only
the information about the individual and previous data seen. In other words, implement
Namebanker.get_best_action().

4. Finally, using TestLending.py as a baseline, create a jupyter notebook where you docu-
ment your model development. Then compare your model against RandomBanker.

Here is a brief explanation of the purposes of each function:

4Feel free to experiment with different values for this.

https://github.com/olethrosdc/ml-society-science/tree/master/src/project-1
https://github.com/olethrosdc/ml-society-science/tree/master/src/project-1
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fit() Create a model estimating probabilities for predict_proba()
predict_proba() Return the probability that a person will return the loan

expected_utility() Calculate the expected utility of a particular action for a given individual
get_best_action() Return the action maximising expected utility

Table 4.1: Function explanataion

4.4.2 Deadline 2: October 2

The second part of the project focuses on issues of reproducibility, reliability, privacy and fairness.
That is, how desirable would it be to use this model in practice? Here are some sample questions
that you can explore, but you should be free to think about other questions.

1. Is it possible to ensure that your policy maximises revenue? How can you take into account
the uncertainty due to the limited and/or biased data? What if you have to decide for credit
for thousands of individuals and your model is wrong? How should you take that type of
risk into account?5

2. Does the existence of this database raise any privacy concerns? If the database was secret
(and only known by the bank), but the credit decisions were public, how would that affect
privacy? (a) Explain how you would protect the data of the people in the training set. (b)
Explain how would protect the data of the people that apply for new loans. (c) Implement
a private decision making mechanism for (b),6 and estimate the amount of loss in utility
as you change the privacy guarantee.

4.4.3 Deadline 3: October 16

Choose one concept of fairness, e.g. balance of decisions with respect to gender. How can you
measure whether your policy is fair? How does the original training data affect the fairness of
your policy? To help you in this part of the project, here is a list of guiding questions.

• Identify sensitive variables. Do the original features already imply some bias in data col-
lection?

• Analyse the data or your decision function with simple statistics such as histograms.

• For balance (or calibration), measure the total variation of the action (or outcome) distri-
bution for different outcomes (or actions) when the sensitive variable varies.

• Advanced: What would happen if you were looking at fairness by also taking into account
the amount of loan requested?

• Advanced: Using stochastic gradient descent, find a policy that balances out fairness and
utility.

Submit a final report about your project, either as a standalone PDF or as a jupyter notebook.
For this, you can imagine playing the role of an analyst who submits a possible decision rule to
the bank, or the authorities. You’d like to show that your decision rule is quite likely to make a

5You do not need to implement anything specific for this to pass the assignment, but you should outline an
algorithm in a precise enough manner that it can be implemented. In either case you should explain how your
solution mitigates this type of risk.

6If you have already implemented (a) as part of the tutorial, feel free to include the results in your report.
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profit, that it satisfies some standard of privacy and that it does not unduly discriminate between
applicants. You should definitely point out any possible deficiencies in your analysis due to your
assumptions, methodology, or the available data from which you are drawing conclusions.
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Chapter 5

Recommendation systems

Structured learning problems involve multiple latent variables with a complex structure. These
range from clustering and spech recognition to DNA and biological and social network analysis.
Since structured problems include relationships between many variables, they can be analysed
using graphical models.

115
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5.1 Recommendation systems

Figure 5.1: The recommendation problem

In many machine learning applications, we are dealing with the problem of proposing one or more
alternatives to a human. The human can accept zero or more of these choices. As an example,
when using an internet search engine, we typically see two things: (a) A list of webpages matching
our search terms (b) A smaller list of advertisements that might be relevant to our search. At a
high level,

The recommendation problem
At time t

1. A customer xt appears. For the internet search problem, xt would at least involve the
search term used.

2. We present a choice at. For the matching website, the choice is ranked list of websites.
For the advertisements, however, it is typical

3. The customer chooses yt. This might include selecting one or more of items suggested
in at. The choice of the customer may not be directly visible.

4. We obtain a reward rt = ρ(at, yt) ∈ R. Typically this is a payment either from the
customer or an advertiser.

The two problems in recommendation systems

• The modelling (or prediction) problem. Given the data, how to e.g. predict what
movies a user likes and dislikes.

• The recommendation problem. What movie(s) to actually recommend to a user.
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Although closely linked, those two problems have different evaluation metrics. The recom-
mendation problem is harder, especially because the data do not tell us what our recom-
mendation have been in the past, but only what users watched.

How to predict user preferences?

In order for us to be able to provide good recommendations, we need to be able to predict
user preferences. In the case of movies, preferences of a person for a movie can be expressed
in terms of the hypothetical rating that a user would give to a movie. As Fig. 5.2 shows, we
frequently do have data about individual user ratings for movies, and we would like to somehow
use those.

Figure 5.2: User ratings
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Figure 5.3: What to recommend?

Example 34. In the case of Netflix and related services, we would like to suggest movies to users which
they are more likely to watch, as shown in Figure 5.3. However, how can we tell which movies those can
be? It is probably not useful to just recommend them to rewatch a previously watched movie. We need
to somehow take into account information across our user database: if somebody watched mostly the
same films as you, then maybe you’d be interested in watching those movies she has that you haven’t
seen.

In the Netflix catalogue, in particular, users also post reviews of the movies they have watched, as
shown in Figure 5.2. This allows us to be able to guess the ratings of users from previous user’s ratings.

Predictions based on similarity

Content-based filtering.

• Users typically like similar items. For example, a horror movie fan typically rates
horror movies highly.

• That means we can one user’s ratings and item information to predict their ratings for
other items. In this scenario, we do not need to take into account the ratings of other
people.

Collaborative filtering
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• Similar users have similar tastes. For example, consider two users t, u who have each
watched a set of movies Mt and Mu respectively, and Mt,u = Mt ∩Mu is the set of
common movies. If their ratings are the same for those movies, i.e. xt.m = xu,m∀m ∈
Mt,u, then it’s a good guess that they might have the same ratings for movies they
have not both watched.

• That means we can use similar user’s ratings to predict the ratings for other users. The
advantage is that ratings are readily available. The disadvantage is that new users have
too few data to be matched to other users.

k-NN for similarity

Exercise 14. • Define a distance d : XM ×XM → R+ between user ratings.

• Apply a k-NN-like algorithm to prediction of user ratings from the dataset.

Similarity between users
Let us define a similarity wij ≥ 0 between two users so that∑

j ̸=i

wi,j = 1, wm
i,j ≜ wi,j I {xj,m} /

∑
k

wi,k I {xk,m} .

There wm
i,j only considers those users who have rated movie m, so that

∑
j ̸=i:xj,m>0 x

m
i,j = 1.

The overall similarity wi, j itself does not have to sum up to one, but it does need to be
non-negative.

Example 35 (k-nearest neighbours). wi,j = 1/k for the k nearest neighbours with respect to d.

Example 36 (Weighted distance).

wi,j =
exp[−d(i, j)]∑
k ̸=i exp[−d(i, j)]

Inferred ratings
Then we can define the inferred ratings to be the weighted average rating.

x̂u.m =
∑
j ̸=u

wm
u,jxu,m.

But if the value xu,m is missing, we need to only

A naive distance metric
A simple idea is to just look at the difference between the raw ratings in terms of the L1
norm:

d(i, j) ≜ ∥xi − xj∥1.
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However this has the problem that this makes users who have watched different amounts of
movies look very different.

Ignoring movies which are not shared.
We perhaps would only like to look at similarity for users with respect to which movies they
have rated. This would lead to a distance such as

d(i, j) ≜
∑
m

I {xi,m ∧ xj,m} |xi,m − xj,m|

Using side-information
In some cases, we have additional information about the products or users. For example,
users might be connected in a social network. Then we can tag users as similar if they are
strongly connected, even if one of them has few or no movie ratings.

Inferring a latent representation
Rather than going through specific algorithms for calculating similarities, we can think about
learning a latent representation from the data. For example we could infer a network of users,
and so a distance, from the individual ratings:

d(i, j) ≜ f(xi,xj , θ)

More generally, we can try and infer some other latent representation.

5.1.1 Least squares representation

Latent representation

The predictive model

• xum rating of user u for movie m.

• rum = I {xum > 0} indicates which movies are rated.

• zm ∈ Rn: an n-dimensional representation of a movie.

• cu ∈ Rn: an n-dimensional representation of a user.

Given C,Z, our predicted movie rating can be written as

x̂u,m ≜ c⊤u zm, X̂ ≜ C⊤Z.

On the left side we have individual ratings and on the right side, in matrix form.
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We can now try and see how well this prediction fits the data for a movie. One idea is to
simply use |x̂m,u − xm,u| to show the difference between the prediction and the actual rating.
Now can now define the prediction error for a given representation C,Z as

f(C,Z) = ∥(R ◦ X̂ −R ◦X)⊤(R ◦ X̂ −R ◦X)∥1

Here multiplying with the R matrix ensures that we ignore pairs with no ratings.

Alternating Least Squares22

Ct+1 = argmin
C

f(C,Zt) + λg(Z,Zt) (5.1.1)

Ct = argmin
Z

f(Ct,Z) + +λg(Zt,Z) (5.1.2)

5.1.2 Preferences as a latent variable

A simple preference model

As a simple model, we can assume that each person belongs to a type. Every type has the
same preferences over films. In the simplest possible model, a user of type ci that has watched a
movie m will rate the film deterministically xc,m. More generally, we can assume the following
model.

xtct

θ

Figure 5.4: Basic preference model

Example 37 (Discrete preference model). • User type c ∈ C. For simplicity, we can think of there
being a finite number of types C = {1, . . . , n}.

• User ratings x with xm ∈ X = {0, 1} rating for movie m.

• Preference distribution

Pθ(x|c) =
M∏

m=1

θxm
m,c(1− θm,c)

(1−xm).

• Pθ(c) = θc,
∑

c θc = 1.

A more complex preference model

As a simple model, we can assume that each person belongs to a type. Every type has the
same preferences over films. In the simplest possible model, a user of type ci that has watched a
movie m will rate the film deterministically xc,m. More generally, we can assume the following
model.
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xc z

θ

Figure 5.5: Preference model

Preference model

• User type c ∈ C. For simplicity, we can think of there being a finite number of types
C = {1, . . . , n}.

• Movie type z ∈ Z.

• Preference distribution
Pθ(x|c, z) = N (c⊤z, σθ)

• Feature prior
Pθ(c) = N (0, λθ)

5.1.3 The recommendation problem

What to recommend

x

x1

x2

c z

Figure 5.6: Preference model

The recommendation problem for a given θ

max
π

Eπ
θ (U | x) = max

a

∑
c,z

U(a, y)P(y | a, c, z)Pθ(c, z | x) (5.1.3)

= max
a

∑
c,z

U(a, y)
∑
xa

P(y | a, xa)Pθ(xa | c, z)Pθ(c, z | x) (5.1.4)

Two ways to model the effect of actions
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xc za

y

x1

x2

Figure 5.7: Preference model

What is the right model for the effects of our actions? In the most general case, the model
could depend on the complete set of latent ratings of all the movies. However, it is hard to
interpret this, as the user is also probably not aware of what these ratings are themselves. So it
seems simpler and more appropriate to predict the outcome based on our action and the latent
representation, especially since we will be marginalising over the individual ratings anyway.
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5.2 More fun with latent variable models

Clustering is the problem of automatically seggregating data of different types into clusters.
When the goal is anomaly detection, then there are typically two clusters. When the goal is
compression or auto-encoding then there are typically as many clusters as needed for sufficienlty
good accuracy.

Clusters as latent variables

xtct

θ

Figure 5.8: Graphical model for independent data from a cluster distribution.

The clustering distribution
The learning problem is to estimate the parameter θ describing the distribution of observa-
tions xt and clusters ct.

xt | ct = c, θ ∼ Pθ(x|c), ct | θ ∼ Pθ(c), θ ∼ ξ(θ)

Given a parameter θ, the clustering problem is to estimate the probability of each cluster
for each new observation.

Pθ(ct | xt) =
Pθ(xt | ct)Pθ(ct)∑

c′ Pθ(xt | ct = c′)Pθ(ct = c′)

Bayesian formulation of the clustering problem

• Prior ξ on parameter space Θ.

• Data xT = x1, . . . , xT . Cluster assignments cT unknown.

• Posterior ξ(· | xT ).

Posterior distribution
The data we obtain do not include the cluster assignments, but we can still formulate the
posterior distribution of parameters given the data.

ξ(θ | xT ) = Pθ(x
T )ξ(θ)∑

θ∈Θ Pθ′(xT )ξ(θ′)
, Pθ(x

T ) =
∑

cT∈CT

Cluster Density︷ ︸︸ ︷
Pθ(x

T | cT )Pθ(c
T )︸ ︷︷ ︸

Cluster prior

(5.2.1)

We simply need to expand the data-dependent term to include all possible cluster assign-
ments. This is of course not trivial, since the number of assignments is exponential in T .
However, algorithms such as Markov Chain Monte Carlo can be used instead.
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Marginal posterior prediction

Pξ(ct | xt, xT ) =
∑
θ∈Θ

Pθ(ct | xt)ξ(θ | xT )

Example 38 (Preference clustering). The learning problem is to estimate the parameter θ describing
the distribution of observations xt and clusters ct. In this example, we can assume

C = {1, . . . , C}, xt.m ∈ {0, 1}.

This means that all movies are either watched or not, and we’d simply want to predict which movie
somebody is likely to watch. This allows us to use the following simple priors, splitting the parameters
in two parts θ = (θ1, θ2).

Model family

Pθ1(ct = c) = θ1,c, ct ∼ Multinomial (θ1) (5.2.2)

Pθ2(xt,m = 1 | ct = c) = θ2,m,c xt,m | ct = c ∼ Bernoulli(θ2,m,c) (5.2.3)

Since everything is discrete, it makes sense that we can use a Multinomial model for the cluster
distribution and a Bernoulli model for whether or not a movie was watched. Now we only need to
specify a useful prior for each one of those. The standard priors to use, are a Beta prior for the Bernoulli
and the Dirichlet for the Multinomial, as they are conjuate.

Prior

θ1 ∼ Dirichlet(γ), θ2 ∼ Beta(α, β) (5.2.4)

Typically γ = (1/2, . . . , 1/2) and α = β = 1/2 to allow for the possibility of nearly deterministic
behaviour.

See src/pymc/beta_bernoulli_clustering.py

Supervised learning

src/pymc/beta_bernoulli_clustering.py
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x1

xT

xt

y1

yT

yt

Figure 5.9: Graphical model for a classical supervised learning problem.

Semi-supervised learning

x1

xi

xT

xt

y1

yi

yT

yt

Figure 5.10: Graphical model for a classical semi-supervised learning problem.

x1

xi

xT

xt

y1

yi

yT

yt

Figure 5.11: Generative version of the semi-supervised model
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x1

xT

xt

y1

yT

yt

Figure 5.12: Basic unsupervised learning model

Applications

• Clustering

• Compression
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5.3 Social networks

Social networks afford us another opportunity to take a look at data. We can use connections
between users to infer their similarity: if two users are connected, then they are more likely to
have similar preferences.

Network model

c1 c2 c3

x1 x2 x3

z12

z13

z23

Figure 5.13: Graphical model for data from a social network.

In the model seen in Figure 5.13, each user t is characterised by their cluster membership ct
and emits data xt. Users t, u are connected when zt,u = 1.
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5.4 Sequential structures

The simplest type of structure in data is sequences. Examples include speech, text and DNA
sequences, as well as data acquired in any sequential decision making problem such as recom-
mendation systems or robotics. Sequential data is always thought to arise from some Markovian
processes, defined below.

Markov process

xt−1 xt xt+1

Figure 5.14: Graphical model for a Markov process.

Definition 5.4.1 (Markov process). A Markov process is a sequence of variables xt : Ω → X
such that xt+1 | xt ⊥⊥ xt−k∀k ≤ 1.

Application

• Sequence compression (especially with variable order Models).

• Web-search (Page-Rank)

• Hidden Markov Models.

• MCMC.

Hidden Markov model
Frequently the sequential dependency is not in the data itself, but in some hidden underlying

markov process. In that case, the hidden variable xt is the state of the process. The observed
variable yt is simply an observation.

xt−1 xt xt+1

yt−1 yt yt+1

Figure 5.15: Graphical model for a hidden Markov model.

Pθ(xt+1 | xt) (transition distribution)

Pθ(yt | xt) (emission distribution)

For any given parater value θ, it is easy to estimate the probability distribution over states given
the observations Pθ(x

T | yT ). As an example, if yT is raw speech data and xT is a sequence of



130 CHAPTER 5. RECOMMENDATION SYSTEMS

words, and θ are the parameters of our speech model, then we can obtain probabilities for every
possible sequence of words that was uttered. Frequently, though, in speech recognition we are
only interested in the most likely seuence of words. This makes the problem simple enough to
be solved instantaneously by modern cellphones.

Application

• Speech recognition.

• Filtering (Kalman Filter).

• DNA analysis.
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Causality

131



132 CHAPTER 6. CAUSALITY

6.1 Introduction

Headaches and aspirins
Causal questions do not just deal with statistical relationships. The meaning of these ques-

tions is slightly different depending on whether we are talking about the population at large, or
a specific individual. For populations, the main question is whether or not our actions have a
causal effect. In observational data, we also need to consider the direction of causation.
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(a) Dose-response curve.
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(b) Response distribution

Figure 6.1: Investigation the response of the population to various doses of the drug.

Example 39 (Population effects). We can ask ourselves two different questions about the effect of
population effect aspirin on headaches.

• Is aspirin an effective cure for headaches?

• Does having a headache lead to aspirin-taking?

For individuals, the first question is, what is the possible effect of our actions? This is called
the effect of causes. The second question is, what was the reason for something happening? That
is called the cause of effects?

Example 40 (Individual effects). We can ask ourselves two different questions about the individual
effect of aspirin on headaches.

• Effects of Causes: Will my headache pass if I take an aspirin?

• Causes of Effects: Would my headache have passed if I had not taken an aspirin?

In order to be able to meaningfully talk about effects and causes we must also introduce
decisions. Formally, there is nothing different in the decisions in this section and those introduced
in Section 2.4. However, in this case we will try and use decisions to model outside interventions
in a “natural” system, whereby a null decision means that we do not intervene.
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Overview

Inferring causal models
We can distinguish different models from observational or experimental data.

Inferring individual effects
The effect of possible intervention on an individual is not generally determinable. We usually
require strong assumptions.

Decision-theoretic view
There are many competing approaches to causality. We will remain within the decision-
theoretic framework, which allows us to crisply define both our knowledge and assumptions.

What causes what?

θ

at xt

(a) Independence of at.

θ

at xt

(b) Independence of xt.

Example 41. Suppose we have data xt, at where

• xt: lung cancer

• at: smoking

Does smoking cause lung cancer or does lung cancer make people smoke? Can we compare the two
models above to determine it?

The answer is no. Let us consider two different parametrisations of the distribution. One in
which at generates xt, and the converse, for any given parameter value θ, as given below:

Pθ(D) =
∏
t

Pθ(xt, at) =
∏
t

Pθ′(xt | at)Pθ′(at) =
∏
t

Pθ′′(at | xt)Pθ′′(xt).

In particular, for any parametrisation θ of the joint distribution, there exists a θ′ and θ′′ giving
the same probabilities for all xt, at. For the example above, we can look at Bernoulli distributions
for both variables so that Pθ(xt = x, at = a) = θx,a. Then

θ′a =
∑
x

θx,a, θ′x|a = θx,a/θ
′
a

θ′′x =
∑
a

θx,a, θ′a|x = θx,a/θ
′′
x .

This means we can define prior distributions ξ, ξ′, ξ′′ in these three parameter spaces that give
exactly the same results, e.g. by modelling each parameter as an independent Beta distribution.
So, clearly simply looking at a simple graphical model does not let us answer this question.
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6.1.1 Decision diagrams

However, graphical models can be extended to model causal relations. In particular, we can use
decision diagrams1, which include not only random variables, but also decision variables, denoted
with squares, as well as utility variables, denoted via diamonds. In the following examples, we
assume there are some underlying distributions specified by parameters θ, which we include
in the diagrams for clarity. Even though it may seem intuitively sensible to suppose it, the
arrow directions in the diagrams do not indicate direct causes. The only important thing for
determining whether some variable influences another is whether or not there is independence
between the corresponding decision and random variables.

θ

xt

yt

atat π

U

Figure 6.4: A typical decision diagram where xt: individual information, yt: individual result,
at: action, π: policy

Example 42 (Taking an aspirin). The diagram in Figure 6.4 does not completely specify the decision
problem. For aspirin taking, we can define the following variables:

• Individual t

• Individual information xt

• at = 1 if t takes an aspirin, and 0 otherwise.

• yt = 1 if the headache is cured in 30 minutes, 0 otherwise.

• π: intervention policy.

Example 43 (A recommendation system). Consider the example of a recommendation system, where
we have data of the form (xt, at, yt). The performance of the recommendation system depends not only
on the parameter θ, but also on the chosen policy π.

• xt: User information (random variable)

• at: System action (random variable)

• yt: Click (random varaible)

• π: recommendation policy (decision variable).

In both cases, there are some questions we can ask using the underlying model. The depen-
dency structure is not enough to know a priori whether we can obtain meaningful answers. This
depends on the specific assumptions we make about the model.

Conditional distributions and decision variables.
We begin with a parenthesis on conditional distributions. We normally define the conditional

distribution of A given B under a probability measure P as:

P (A | B) ≜ P (A ∩B)

P (B)
.

However, decision variables are outside the scope of this probability measure, and yet we need
to define conditional distributions using them.

1Otherwise called influence diagrams
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The conditional distribution of decisions
If π ∈ Π is a decision variable, we represent the conditional distribution of any random
variable a given π simply as a collection of probability measures {π(a) | π ∈ Π}, one for
each possible value π. The following notations will be equivalent:

π(a) ≡ Pπ(a) ≡ P(a | π).

The reader should note that the standard definition of a conditional distribution also P (A |
B) creates a collection of distributions on A, with elements PB(A). However, it also specifies
a rule for doing so from the complete distribution P .

If the random variables a also depends on some probability law Pθ, then it will be
convenient to use the notation

Pπ
θ (a) ≡ P(a | θ, π).

6.1.2 Common structural assumptions

In order to be clear about what constitutes an observation by the experimenter and what is
a decision, we must clearly separate random variables from decision variables. The individual
actions may be random variables, but they will depend on decisions taken. As we will see later,
this is useful for modelling interventions.

Basic causal structures

Directed graphical models are not sufficient to determine causality by themselves, as they
only determine correlations between random variables. If we have decision variables, however,
we can always determine whether or not our decisions influence outcomes.

Non-cause

π at yt

θ

Figure 6.5: π does not cause y

In the diagram above, we see that yt ⊥⊥ π.

Example 44. Consider the model

yt ∼ N (0, 1)

at | yt, π ∼ N (yt + π, 1)
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4 3 2 1 0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

Non-Cause

Figure 6.6: Pπ(yt) for π ∈ {−1, 1} when π is not a cause for yt

In this example, we see tht yt is independent of the policy π. However, yt is not independent of the
action taken, as the action depends on yt directly. The correlation between y, a is shown in Figure 6.9a.

No confounding
Confounding is a term that indicates the existence of latent variables that create dependen-
cies between yt, π, at. We are sure that there is no confounding whenever yt ⊥⊥ π | at, as
captured by the diagram in Figure 6.7. In this case π is a direct cause for yt through at.

π at yt

θ

Figure 6.7: No confounding: π causes yt

Example 45. Consider the model

at ∼ N (π, 1)

yt | at, π ∼ N (at, 1)
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Figure 6.8: Pπ(yt) for π ∈ {−1, 1} when π is a direct cause for yt

We can see how the distribution of yt changes when π changes in Figure 6.8. In this case there is
also a correlation between at, yt as seen in Figure 6.9.
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(a) Non-cause
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(b) Cause

Figure 6.9: Correlation between at and yt

Covariates

Sufficient covariate
Sometimes the variable of interest is not conditionally independent of the treatment, unless
there exists a sufficient covariate xt such that yt ⊥⊥ π | at, xt. If xt is not observed, then it
is sometimes called a confounder.
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π at yt

xt θ

Figure 6.10: Sufficient covariate xt

Example 46. Consider the model

xt ∼ N (0, 1)

at ∼ N (xt + π, 1)

yt | at, π ∼ N (xt + at, 1),

Here xt influences the outcome yt, but also directly influences at through the policy π. As we can see in
Figure 6.8, the policy then has an influence on yt
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Figure 6.11: Pπ(yt) for π ∈ {−1, 1} when π is a direct cause for yt

Instrumental variables and confounders
If the sufficient covariate xt is not observed, we may still have another variable available, zt,
on the basis of which we make our decisions. This is called an instrumental variable. . In
this case zt still depends on xt and the effect of the treatment depends on xt directly. As xt
is a latent covariate, it can be called a confounder.

π at yt

xtzt θ

Figure 6.12: Instrumental variable zt
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Example 47. Consider the model

xt ∼ N (0, 1)

zt ∼ N (xt, 1)

at ∼ N (zt + π, 1)

yt | at, π ∼ N (xt + at, 1)

In this scenario, xt directly influences the outcome yt, but is not observed.
2
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Figure 6.13: Pπ(yt) for π ∈ {−1, 1} when π is a direct cause for yt

6.2 Interventions

Interventions are of primary interest when we have a set of observational data, collected under
a null or default policy π0. We then wish to intervene with some policy π in order to maximise
our utility function, or to simply try and estimate the exact relationships between variables.

Modelling interventions

• Observational data D. This represents data we have collected from some previous regime.
In order to be able to model the problem precisely, we must posit the existence of some
default policy π0 under which the data was collected.

• Policy space Π. This must include π0, as well as any other policies that the decision maker
may be able to choose in the future.

Default policy
The space of policies Π includes a default policy π0, under which the data was collected.
The policy π0 might already be known, if for example the data was collected with a specific
algorithm. However, frequently π0 is not given, and must also be inferred from the data. In
that case, it can be seen as an additional parameter, complementary to θ.

2Hence, it can be called a confounder.
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Intervention policies
Except π0, policies π ∈ Π represent different interventions specifying a distribution π(at |
xt).

• Direct interventions. The simplest scenario is when we are able to choose a π for
which we know π(at | xt). This counts as a direct intervention, as we can specify any
distribution of actions allowed in Π. If Π includes all conditional distributions, we
can select an arbitrary action for every individual. This assumption is plausible for
algorithmic decision making such as recommendation systems, but implausible when
the actions are taken by another agent, such as a human.

• Indirect interventions and non-compliance. In this scenario we assume that, while we
are free to choose policies from Π, we do not know what distribution π(at | xt) each
policy specifies. In algorithmic decision making, this occurs whenever π represents
hyperparameters and algorithms for which we have insufficient information. Then
policies must be evaluated through some type of black-box (e.g. A/B) testing. When
the actions are taken by (human) agents, the policy implies making a recommendation,
which may not be followed by the agent. If we denote the recommendation by vt, then
we can write π(at | xt) =

∑
zt
π(at | zt, xt)π(zt | xt). In this scenario we can freely

specify π(zt | xt), but π(at | zt, xt) must be estimated. For that reason, it is usually
simpler to simply marginalise out at. But perhaps the simplest approach is to consider
non-compliance as a confounder xt, and zt as an instrumental variable.

Example 48 (Weight loss). Consider weight loss. We can collect observational data from a population
of overweight adults over a year. We can imagine that x represents the weight and vital statistics of an
individual and y their change in weight after a year. We may also observe their individual actions a,
such as whether or not they are following a particular diet or exercise regime. Under the default policy
π0, their actions are determined only the individuals. Consider an alternative policy π, which prescribes
diet and exercise regimes. Due to non-compliance, actual actions taken by individuals may differ from
prescribed actions. In addition, actions might not be observed.

θ

zt

xt

yt

at π

U

Figure 6.14: Model of non-compliance as a confounder.

6.3 Policy evaluation and optimisation

The value of an observed policy

In this section, we will focus on the general model of Figure 6.4. If we have data D =
{(xt, at, yt) | t ∈ [T ]} generated from some policy π0, we can always infer the average quality of
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each action a under that policy.

ÊD(U | a) ≜ 1

| {t | at = a} |
∑

t:at=a

U(at, yt) (6.3.1)

≈ Eπ0

θ (U | a) (at, yt) ∼ Pπ0

θ . (6.3.2)

Can we calculate the value of another policy? As we have seen from Simpson’s paradox, it is
folly to simply select

â∗D ∈ argmax
a

ÊD(U | a),

as the action also depends on the observations x through the policy. To clarify this, let us look
again at the model shown in Figure 6.4.

xt | θ ∼ Pθ(x)

yt | θ, xt, at ∼ Pθ(y | xt, at)
at | xt, π ∼ π(a | xt).

Assume that x ∈ X , a continuous space, but y ∈ Y is discrete. In this scenario, then the value
of an action under a policy π is nonsensical, as it does not really depend on the policy itself:

Eπ
θ (U | a) =

∫
X

dPθ(x)
∑
y∈Y

Pθ(y | x, a)U(a, y).

We see that there is a clear dependence on the distribution of x, and there is no dependence on
the policy any more. In fact, equation above only tells us the expected utility we’d get if we
always chose the same action a. But what is the optimal policy? First, we have to define the
value of a policy.

The value of a policy

Eπ
θ (U) =

∫
X

dPθ(x)
∑
a∈A

π(a | x)
∑
y∈Y

Pθ(y | x, a)U(a, y)

The optimal policy under a known parameter θ is given simply by

max
π∈Π

Eπ
θ (U),

where Π is the set of allowed policies.

Monte-Carlo estimation

The simplest method to estimate the value of an alternative policy is to use Monte-Carlo
estimation and importance sampling. However, this estimate can have a very high variance if
the alternative policy is very different from the original policy.
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Importance sampling3

We can obtain an unbiased estimate of the utility in a model-free manner through importance
sampling:

Eπ
θ (U) =

∫
X

dPθ(x)

T∑
t=1

∑
a

Eθ(U | a, x)π(a | x)

≈ 1

T

∑
a

Eθ(U | a, xt)π(a | xt), xt ∼ Pθ(x)

=
1

T

∑
a

Eθ(U | a, xt)
π(a | xt)
π0(a | xt)

π0(a | xt)

≈ 1

T

T∑
t=1

Ut
π(at | xt)
π0(at | xt)

, at | xt ∼π0, Ut | xt, at ∼ Pθ(Ut | xt, at)

Bayesian estimation
Unforunately this method has high variance. If we π0 is given, we can calculate the utility

of any policy to whatever degree of accuracy we wish. We begin with a prior ξ on Θ and obtain
the following, assuming the policy π0 is stationary.

ξ(θ | D,π0) ∝
∏
t

Pπ0

θ (xt, yt, at)

Eπ
ξ (U | D) =

∫
Θ

Eπ
θ (U) dξ(θ | D)

=

∫
Θ

∫
X

dPθ(x)
T∑

t=1

∑
a

Eθ(U | a, x)π(a | x) dξ(θ | D).

Causal inference and policy optimisation
Causal inference requires building a complete model for the effect of both the model parameter

θ, representing nature, and the policy π, representing the decision maker. This means that we
have to be explicit about the dependencies of random variables on the model and the policy.

θ yt at π

U

Figure 6.15: Simple decision problem.

Example 49. Let at, yt ∈ {0, 1}, θ ∈ [0, 1]2 and

yt | at = a ∼ Bernoulli(θa)
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Then, by estimating θ, we can predict the effect of any action. How can we estimate θ from historical
data? We simply have to select the right parameter value. Simply put, each choice of a corresponds to
one part of the parameter vector. This means that the maximum likelihood estimate

θ̂a ≜ 1

| {t | at = a} |
∑

{t | at=a}

yt

is valid. We can also consider a product-Beta prior Beta(α0
a, β

0
b ) for each one of the Bernoulli parameters,

so that the posterior after t observations is

αt
a = α0

a +
∑

{t | at=a}

yt, βt
a = β0

a +
∑

{t | at=a}

(1− yt).

How can we optimise the policy? Let us parametrise our policy with π(at = 1) = w.
For a fixed θ, the value of the policy is

Eπ
θ U = θ1w + θ0(1− w)

The gradient with respect to w is
∇Eπ

θ U = θ1 − θ0,

so we can use the update
w(n+1) = w(n) + δ(n)θ1 − θ0.

However, w ∈ [0, 1], which means our optimisation must be constrained. Then we obtain that w = 1 if
θ1 > θ0 and 0 otherwise.

When θ is not known, we can use stochastic gradient descent.

∇Eπ
ξ U =

∫
Θ

[∇Eπ
θ U ] dξ(θ)

to obtain:
w(n+1) = w(n) + δ(n)θ

(n)
1 − θ

(n)
0 .

where θ(n) ∼ ξ.

θ yt at π

U

xt

Figure 6.16: Decision problem with covariates.

Example 50. Let at, xt = {0, 1}, yt ∈ R, θ ∈ R4 and

yt | at = a, xt = x ∼ Bernoulli(θa,x)

Then, by estimating θ, we can predict the effect of any action.

6.4 Individual effects and counterfactuals

Counterfactual analysis is mainly about questions relative to individuals, and specifically about
what the effects of alternative actions would have been in specific instances in the past. We
will assume a decision-theoretic viewpoint throughout, in order to be as clear as possible and
avoiding imprecise language.
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6.4.1 Disturbances and structural equation models

A structural equation model describes the random variables as deterministic functions of the
decisions variables and the random exogenous disturbances. This allows us to separate the
unobserved randomness from the known functional relationship between the other variables.
Structurally, the model is essentially a variant of decision diagrams, as shown in Figure 6.17.

θ

xt

yt

at π

U

ωt,y

ωt,x ωt,a

Figure 6.17: Decision diagram with exogenous disturbances ω.

We still need to specify particular functional relationships between the variables. Generally
speaking, a random variable taking values in X , is simply a function Ω×Θ → X . For example, in
Figure 6.17 yt = fy(ω, θ). Taking into account the dependencies, this can be rewritten in terms of
a function of the other random variables, and the local disturbance: yt = fy|a,x(a, x, ωt,y, θ). The
choice of the function, together with the distribution of the parameter θ and the disturbances ω,
fully determines our model.

Example 51 (Structural equation model for Figure 6.17). In structural equation models, the only ran-
dom variables are the exogenous disturbances. In a fully Bayesian framework, θ is also a latent random
variable. The remaining variables are deterministic functions.

θ ∼ N (04, I4),

xt = θ0ωt,x, ωt,x ∼ Bernoulli(0.5)

yt = θ1 + θ2xt + θ3at + ωt,y, ωt,y ∼ N (0, 1)

at = π(xt) + ωt,a mod |A| ωt,a ∼ 0.1D(0) + 0.9Unif (A),

Structural equation models are particularly interesting in applications such as economics,
where there are postulated relations between various economic quantities. If relationships be-
tween variables satisfy nice properties, then we can perform counterfactual inferences of the type
: “What if I had not taken an aspirin?” In the example above, if we can infer the noise variables
ω, we can change the value of some choice variables, i.e. at and see the effect on other variables
like yt directly.

Treatment-unit additivity
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θ yt

at π

U

ωt,y

ωt,a

Figure 6.18: Decision diagram for treatment-unit additivity

Assumption 6.4.1 (TUA). For any given treatment a ∈ A, the response variable satisfies

yt = g(at) + ωt,y

This implies that

E[yt | at = a] = g(at) + E(ωt,y)

6.4.2 Example: Learning instrumental variables

This example is adapted from Hartford et al. 14 , who use a deep learning to infer causal effects in
the presence of instrumental variables. They break down the problem in two prediction tasks: the
first is treatment prediction, and the second conditional treatment distribution. Unfortunately
they do not use a decision-theoretic framework and so the difference between actual prices and
policy changes is unclear.

Example 52 (Pricing model). In the following pricing model, we wish to understand how sales are
affected by different pricing policies. In this example, there is a variable zt which is an instrument, as it
varies for reasons that are independent of demand and only affects sales through ticket prices.

xt yt

zt at π

ωt

Figure 6.19: Graph of structural equation model for airport pricing policy π: at is the actual
price, zt are fuel costs, xt is the customer type, yt is the amount of sales, ωt is whether there is
a conference. The dependency on θ is omitted for clarity.

There are a number of assumptions we can make on the instrument zt.

Assumption 6.4.2 (Relevance). at depends on zt.

In our example, it also depends on xt.

Assumption 6.4.3 (Exclusion). zt ⊥⊥ yt | xt, at, ωt.

In other words, the outcome does not depend on the instrument directly. This was also
satisfied in our first example of an instrumental variable.

Assumption 6.4.4 (Unconfounded instrument). zt ⊥⊥ ωt | xt.
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Prediction tasks
We can use the following structural equation model

yt = gθ(at, xt) + ωt, Eθ ωt = 0, ∀θ ∈ Θ (6.4.1)

There are two slightly different prediction tasks we can think of in this model.

Standard prediction
In standard prediction tasks, we just want to estimate the distribution of sales given the
characteristics and price. Since the actions are correlated with the outcome through the
confounder, this estimate is biased.

Pπ
θ (yt | xt, at), Eπ

θ (yt | xt, at) = gθ(xt, at) + Eπ
θ (ωt | xt, at).

Counterfactual prediction

Eπ
θ (yt | xt, zt) =

∫
A
[g(at | xt, zt) + Eθ(ω | xt)]︸ ︷︷ ︸

h(at,xt)

dπ(at | xt)

6.4.3 Discussion

Further reading

• Pearl, Causality.

• Dawid 8

6.4.4 Exercises

In the following exercises, we are taking actions at and obtaining outcomes yt. Our utility
function is simply U = yt.

Exercise 15. Let us have some data generated from a null treatment policy π0 of the form (at, yt).
There is a simple model that explains the data of the form

yt | at = a, θ ∼ N (a+ θ, 1),

where the actions are distribution according to π(at).

• Assume that π0 ∈ [0, 1] is given and it is at | π = π0 ∼ Bernoulli(π0). First, estimate θ. Then,
calculate the distribution of yt | π0, θ for any other policy and plot the resulting mean and variance
as π changes. You can do this first in a maximum-likelihood manner. Advanced: estimate the
posterior distribution of θ for a normal prior on θ.

• Now assume that π0 is not given. This means that you must also estimate π0 itself before estimating
the effect of any other policy π on the data.
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• In this exercise, can you learn about other actions when you are not taking them? Why?

Exercise 16. Let us have some data generated from a null treatment policy π0 of the form (at, yt). Let
us now consider a slightly model where θ ∈ R2.

yt | at = a, θ ∼ N (θa, 1),

where the actions are distribution according to π(at).

• Assume that π0 ∈ [0, 1] is given and it is at | π = π0 ∼ Bernoulli(π0). First, estimate θ. Then,
calculate the distribution of yt | π0, θ for any other policy and plot the resulting mean and variance
as π changes. You can do this first in a maximum-likelihood manner. Advanced: estimate the
posterior distribution of θ for a normal prior on θ.

• Now assume that π0 is not given. This means that you must also estimate π0 itself before estimating
the effect of any other policy π on the data.

• In this exercise, can you learn about other actions when you are not taking them? Why?

Exercise 17. Given your estimates, find the optimal policy for each one of those cases. Measure the
quality of this policy on

• The actual data you have already (e.g. using importance sampling)

• On new simulations (using the testing framework).

Advanced: The optimal policy when θ is known is to always take the same action. Does that still hold
when θ is not known and you are estimating it all the time from new data?

Exercise 18 (Advanced). Let us have some data generated from a null treatment policy π0 of the form
(xt, at, yt), with at, xt ∈ {0, 1}.

yt | at = a, xt = x, θ ∼ N (θa,x, 1),

where the actions are distribution according to π0(at | xt).
• Assume that π0 is given and it is at | xt = x, π = π0 ∼ Bernoulli(wx). First, estimate θ. Repeat

your analysis.

• Now assume that π0 is not given. Again, repeat your analysis.

• Is there now globally better action at? Should it depend on xt, like in the observed policy? Can
you estimate the optimal policy?
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7.1 Introduction

This unit describes the very general formalism of Markov decision processes (MDPs) for formal-
ising problems in sequential decision making. Thus a Markov decision process can be used toMarkov decision process
model stochastic path problems, stopping problems, reinforcement learning problems, experiment
design problems, and control problems.

We being by taking a look at the problem of experimental design. One instance of this problemexperimental design
occurs when considering how to best allocate treatments with unknown efficacy to patients in
an adaptive manner, so that the best treatment is found, or so as to maximise the number of
patients that are treated successfully. The problem, originally considered by? ? , informally can
be stated as follows.

We have a number of treatments of unknown efficacy, i.e. some of them work better than the
others. We observe patients one at a time. When a new patient arrives, we must choose which
treatment to administer. Afterwards, we observe whether the patient improves or not. Given
that the treatment effects are initially unknown, how can we maximise the number of cured
patients? Alternatively, how can we discover the best treatment? The two different problems
are formalised below.

Adaptive treatment alloca-
tion Example 53. Consider k treatments to be administered to T volunteers. To each volunteer only a single

treatment can be assigned. At the t-th trial, we treat one volunteer with some treatment at ∈ {1, . . . , k}.
We then obtain obtain a reward rt = 1 if the patient is treated and 0 otherwise. We wish to choose
actions maximising the utility U =

∑
t rt. This would correspond to maximising the number of patients

that get treated over time.

Adaptive hypothesis test-
ing Example 54. An alternative goal would be to do a clinical trail , in order to find the best possible

treatment. For simplicity, consider the problem of trying to find out whether a particular treatment
is better or not than a placebo. We are given a hypothesis set Ω, with each ω ∈ Ω corresponding
to different models for the effect of the treatment and the placebo. Since we don’t know what is the
right model, we place a prior ξ0 on Ω. We can perform T experiments, after which we must make
decide whether or not the treatment is significantly better than the placebo. To model this, we define a
decision set A = {a0, a1} and a utility function U : A×Ω → R, which models the effect of each decision
d given different versions of reality ω. One hypothesis ω ∈ Ω is true. To distinguish them, we can
choose from a set of k possible experiments to be performed over T trials. At the t-th trial, we choose
experiment at ∈ {1, . . . , k} and observe outcome xt ∈ X , with xt ∼ Pω drawn from the true hypothesis.
Our posterior is

ξt(ω) ≜ ξ0(ω | a1, . . . , at, x1, . . . , xt).

The reward is rt = 0 for t < T and

rT = max
a∈A

EξT (U | a).

Our utility in this can again be expressed as a sum over individual rewards, U =
∑T

t=1 rt.

Both formalizations correspond to so-called bandit problems which we take a closer look at in
the following section.

7.2 Bandit problems

The simplest bandit problem is the stochastic n-armed bandit. We are faced with n different
one-armed bandit machines, such as those found in casinos. In this problem, at time t, you have
to choose one action (i.e. a machine) at ∈ A = {1, . . . , n}. In this setting, each time t you play
a machine, you receive a reward rt, with fixed expected value ωi = E(rt | at = i). Unfortunately,
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you do not know ωi, and consequently the best arm is also unknown. How do you then choose
arms so as to maximise the total expected reward?

Definition 7.2.1 (The stochastic n-armed bandit problem.). This is the problem of selecting a
sequence of actions at ∈ A, with A = {1, . . . , n}, so as to maximise expected utility, where the
utility is

U =

T−1∑
t=0

rt,

where T ∈ (0,∞] is the horizon. The reward rt is stochastic, and only depends on the current
action, with expectation E(rt | at = i) = ωi.

In order to select the actions, we must specify some policy or decision rule. This can only policy
depend on the sequence of previously taken actions and observed rewards. Usually, the policy
π : A∗×R∗ → A is a deterministic mapping from the space of all sequences of actions and rewarsd
to actions. That is, for every observation and action history a1, r1, . . . , at−1, rt−1 it suggests a
single action at. However, it could also be a stochastic policy, that specifies a mapping to action
distributions. We use the following notation for stochastic history-dependent bandit policies,

π(at | at−1, rt−1) (7.2.1)

to mean the probability of actions at given the history until time t.
How can we solve bandit problems? One idea is to apply the Bayesian decision-theoretic

framework we have developed earlier to maximise utility in expectation. More specifically, given
the horizon T ∈ (0,∞], we define define our utility from time t to be:

Ut =
T−t∑
k=1

rt+k. (7.2.2)

To apply the decision theoretic framework, we need to define a suitable family of probability
measures F , indexed by parameter ω ∈ Ω describing the reward distribution of each bandit,
together with a prior distribution ξ on Ω. Since ω is unknown, we cannot maximise the expected
utility with respect to it. However, we can always maximise expected utility with respect to our
belief ξ. That is, we replace the ill-defined problem of maximising utility in an unknown model
with that of maximising expected utility given a distribution over possible models. The problem
can be written in a simple form:

max
π

Eπ
ξ Ut = max

π

∫
Ω

Eπ
ω Ut dξω. (7.2.3)

The difficulty lies not in formalising the problem, but in the fact that the set of learning policies
is quite large, rendering the optimisation infeasible.

The following figure summarises the statement of the bandit problem in the Bayesian setting.

Decision-theoretic statement of the bandit problem

• Let A be the set of arms.

• Define a family of distributions F = {Pω,i | ω ∈ Ω, i ∈ A} on R.
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• Assume the i.i.d model rt | ω, at = i ∼ Pω,i.

• Define prior ξ on Ω.

• Select a policy π : A∗ × R∗ → A maximising

Eπ
ξ U = Eπ

ξ

T−1∑
t=0

rt

There are two main difficulties with this approach. The first is specifying the family and the
prior distribution: this is effectively part of the problem formulation and can severely influence
the solution. The second is calculating the policy that maximises expected utility given a prior
and family. The first problem can be resolved by either specifying a subjective prior distribution,
or by selecting a prior distribution that has good worst-case guarantees. The second problem is
hard to solve, because in general, such policies are history dependent and the set of all possible
histories is exponential in the horizon T .

7.2.1 An example: Bernoulli bandits

As a simple illustration, consider the case when the reward for choosing one of the n actions is
either 0 or 1, with some fixed, yet unknown probability depending on the chosen action. This
can be modelled in the standard Bayesian framework using the Beta-Bernoulli conjugate prior.
More specifically, we can formalise the problem as follows.

Consider n Bernoulli distributions with unknown parameters ωi (i = 1, . . . , n) such that

rt | at = i ∼ Bernoulli(ωi), E(rt | at = i) = ωi. (7.2.4)

Each Bernoulli distribution thus corresponds to the distribution of rewards obtained from each
bandit that we can play. In order to apply the statistical decision theoretic framework, we have
to quantify our uncertainty about the parameters ω in terms of a probability distribution.

We model our belief for each bandit’s parameter ωi as a Beta distribution Beta(αi, βi), with
density f(ω | αi, βi) so that

ξ(ω1, . . . , ωn) =
n∏

i=1

f(ωi | αi, βi).

Recall that the posterior of a Beta prior is also a Beta. Let

Nt,i ≜
t∑

k=1

I {ak = i}

be the number of times we played arm i and

r̂t,i ≜
1

Nt,i

t∑
k=1

rt I {ak = i}

be the empirical reward of arm i at time t. We can let this equal 0 when Nt,i = 0. Then, the
posterior distribution for the parameter of arm i is

ξt = Beta(αi +Nt,ir̂t,i , βi +Nt,i(1− r̂t,i)).
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Since rt ∈ {0, 1} the possible states of our belief given some prior are N2n.
In order for us to be able to evaluate a policy, we need to be able to predict the expected

utility we obtain. This only depends on our current belief, and the state of our belief corresponds
to the state of the bandit problem. This means that everything we know about the problem at belief state
time t can be summarised by ξt. For Bernoulli bandits, sufficient statistic for our belief is the
number of times we played each bandit and the total reward from each bandit. Thus, our state
at time t is entirely described by our priors α, β (the initial state) and the vectors

Nt = (Nt,1, . . . , Nt,i) (7.2.5)

r̂t = (r̂t,1, . . . , r̂t,i). (7.2.6)

At any time t, we can calculate the probability of observing rt = 1 or rt = 0 if we pull arm i as:

ξt(rt = 1 | at = i) =
αi +Nt,ir̂t,i
αi + βi +Nt,i

So, not only we can predict the immediate reward based on our current belief, but we can also
predict all next possible beliefs: the next state is well-defined and depends only on the current
state. As we shall see later, this type of decision problem is more generally called a Markov
decision process (Definition 8.1.1). For now, we shall more generally (and precisely) define the
bandit process itself.

7.2.2 The stochastic n-armed bandit problem

The stochastic n-armed bandit problem
Let us return to the example of bandit problems. As before, we have n actions corresponding

to probability distributions Pi on the real numbers.

F = {Pi | i = 1, . . . , n} .

At each time-step t we select an action at, obtaining a random reward distributed according to:

rt | at = i ∼ Pi.

Our objective is to find a policy π maximising the expected total reward.

Eπ Ut = Eπ

T∑
k=t

rk, a∗t ≜ max {E(rt | at = i) | i = 1, . . . , n} .

Had we known the distribution, we could simply always the maximising action, as the expected
reward of the i-th action can be easily calculated from Pi and the reward only depends on our
current action. The situation is similar when F is a parametric family unknown parameter ω∗,
outlined below.

F = {Pi(· | ω) | ω ∈ Ω} , rt | at = i, ω∗ = ω ∼ Pi(r | ω∗). (7.2.7)

If in addition we have a subjective belief ξ over Ω, we could (as explained in Sec. 7.2) in principle
calculate the policy maximising the ξ-expected utility:

Eπ
ξ Ut = Eπ

ξ

T∑
k=t

rk. (7.2.8)

This of course will now have to be a history-dependent policy. In the remainder of this section,
we shall examine algorithms algorithms which eventually convergence to the optimal action, but
for which we cannot always guarantee a good initial behaviour.
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7.2.3 Estimation and Robbins-Monro approximation

The basic idea of the Robbins-Monro stochastic approximation algorithm? is to maintain a set
of point estimates of a parameter we want to approximate and perform random steps that on
average move towards the solution, in a way to be made more precise later. It can in fact be
seen as a generalisation of stochastic gradient descent.

Algorithm 3 Robbins-Monro bandit algorithm

1: input Step-sizes (ηt)t, initial estimates (µi,0)i, policy π.
2: for t = 1, . . . , T do
3: Take action at = i with probability π(i | a1, . . . , at−1, r1, . . . , rt−1).
4: Observe reward rt.
5: µt,i = ηi,trt + (1− ηi,t)µi,t−1 // estimation step

6: µt,i = µj,t−1 for j ̸= i.
7: end for
8: return µT

A simple Robbins-Monro algorithm for the n-armed bandit problem is given in Algorithm 3.
The input is a particular policy π, that gives us a probability over the next actions given the
observed history, a set of initial estates µi,0 for the bandit means, and a sequence of step sizes η.

If you examine the updates carefully, you will be able to find what the cost function you are
trying to minimise is. This simple update rule can be seen as trying to minimise the expected
squared error between your estimated reward, and the random reward obtained by each bandit.
Consequently, the variance of the reward of each bandit plays an important role.

The step-sizes η must obey certain constraints in order for the algorithm to work, in particular
it must decay neither too slowly, nor too fast. There is one particular choice, for which our
estimates are in fact the mean estimate of the expected value of the reward for each action i,
which is a natural choice if the bandits are stationary.

The other question is what policy to use to take actions. We must take all actions often
enough, so that we have good estimates for the expected reward of every bandit. One simple
way to do it is to play the apparently best bandit most of the time, but to sometimes select
bandits randomly. This is called ϵ-greedy action selection. This ensures that all actions are tried
a sufficient number of times.

Definition 7.2.2. ϵ-greedy action selection

π̂∗
ϵ ≜ (1− ϵt)π̂

∗
t + ϵt Unif (A), (7.2.9)

π̂∗
t (i) = I

{
i ∈ Â∗

t

}
/|Â∗

t |, Â∗
t = argmax

i∈A
µt,i (7.2.10)
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Figure 7.1: ϵt = 0.1, η ∈ {0.01, 0.1, 0.5}.
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Figure 7.2: ϵt = ϵ, η = 0.1.

The main two parameters of the algorithm are randomness ϵ-greedy action selection and the
step-size. Figures 7.1 and 7.2 show the average reward obtained, if we keep the step size α or the
randomness ϵ fixed, respectively. We see that there the choice of values really affects convergence.

For a fixed ϵ, we find that larger values of α tend to give a better result eventually, while
smaller values have a better initial performance. This is a natural trade-off, since large α appears
to “learn” fast, but it also “forgets” quickly. That is, for a large α, our estimates mostly depend
upon the last few rewards observed.

Things are not so clear-cut for the choice of ϵ. We see that the choice of ϵ = 0, is significantly
worse than ϵ = 0.1. So, that appears to suggest that there is an optimal level of exploration. How
should that be determined? Ideally, we should be able to to use the decision-theoretic solution
seen earlier, but perhaps a good heuristic way of choosing ϵ may be good enough.

7.2.4 Decision-theoretic bandit process

The basic bandit process can be seen in Figure ??. We can now define the general decision-
theoretic bandit process, not restricted to independent Bernoulli bandits.

Definition 7.2.3. Let A be a set of actions, not necessarily finite. Let Ω be a set of possible
parameter values, indexing a family of probability measures F = {Pω,a | ω ∈ Ω, a ∈ A}. There
is some ω ∈ Ω such that, whenever we take action at = a, we observe reward rt ∈ R ⊂ R with
probability measure:

Pω,a(R) ≜ Pω(rt ∈ R | at = a), R ⊆ R. (7.2.11)

Let ξ1 be a prior distribution on Ω and let the posterior distributions be defined as:

ξt+1(B) ∝
∫
B

Pω,at(rt) dξt(ω). (7.2.12)
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The next belief is random, since it depends on the random quantity rt. In fact, the probability
of the next reward lying in R if at = a is given by the following marginal distribution:

Pξt,a(R) ≜
∫
Ω

Pω,a(R) dξt(ω). (7.2.13)

ξ0t+1

ξ1t+1

ξ2t+1

ξ3t+1

a1t

a2t

ξn

r = 0

r = 1

r = 0

r = 1

Figure 7.3: A partial view of the multi-stage process. Here, the probability that we obtain r = 1
if we take action at = i is simply Pξt,i({1}).

Finally, as ξt+1 deterministically depends on ξt, at, rt, the probability of obtaining a particular
next belief is the same as the probability of obtaining the corresponding rewards leading to the
next belief. In more detail, we can write:

P(ξt+1 = ξ | ξt, at) =
∫
R
I {ξt(· | at, rt = r) = ξ} dPξt,a(r). (7.2.14)

In practice, although multiple reward sequences may lead to the same beliefs, we frequently
ignore that possibility for simplicity. Then the process becomes a tree. A solution to the problem
of what action to select is given by a backwards induction algorithm.

The backwards induction algorithm

U∗(ξt) = max
at

E(rt | ξt, at) +
∑
ξt+1

P(ξt+1 | ξt, at)U∗(ξt+1). (7.2.15)

The above equation is the backwards induction algorithm for bandits. If you look at this backwards induction
structure, you can see that next belief only depends on the current belief, action and reward, i.e.
it satisfies the Markov property, as seen in Figure 7.3.1 The intuition behind the algorithm lies

1In fact, a decision-theoretic bandit process is a specific case of a Markov decision process
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in the following observation

Eπ
ξt(Ut) = Eπ

ξt

(
T∑

k=t

rk

)
(7.2.16)

= Eπ
ξt

(
rt +

T∑
k=t+1

rk

)
(7.2.17)

= Eπ
ξt (rt) + Eπ

ξt (Ut+1) (7.2.18)

= Eπ
ξt (rt) +

∫
Ξ

Eπ
ξt+1

(Ut+1) dP(ξt+1 | ξt, π) (7.2.19)

Optimising over all possible policies is possible since the remaining utility from time t+ 1 does
not depend upon our previous decisions. This is due to the additive utility function, and allows
us to do:

maxEπ
ξt(Ut) = max

at

Eξt (rt | at) +
∫
Ξ

max
π′

Eπ′

ξt+1
(Ut+1) dP(ξt+1 | ξt, at) (7.2.20)

at

ω

rt

at+1

rt+1

ω

ξt

at

rt

ξt+1

at+1

rt+1

ξt

at

rt

ξt+1

at+1

rt+1

Figure 7.4: Three views of the bandit process. Figure ?? shows the basic bandit process, from
the view of an external observer. The decision maker selects at, while the parameter ω of the
process is hidden. It then obtains reward rt. The process repeats for t = 1, . . . , T . The decision-
theoretic bandit process is shown in Figures ?? and ??. While ω is not known, at each time step
t we maintain a belief ξt on Ω. The reward distribution is then defined through our belief. In
Figure ??, we can see that complete process, where the dependency on ω is clear. In Figure ??,
we marginalise out ω and obtain a model where the transitions only depend on the current belief
and action.

In reality, the reward depends only on the action and the unknown ω, as can be seen in
Figure ??. This is the point of view of an external observer. However, from the point of view
of the decision maker, the distribution of ω only depends on his current belief. Consequently,
the distribution of rewards also only depends on the current belief, as we can marginalise over
ω. This gives rise to the decision-theoretic bandit process shown in Figure ??. In the following
section, we shall consider Markov decision processes more generally.

Illustration of backwards induction

Backwards induction (Dynamic programming)
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for t = 1, 2, . . . and ξt ∈ Ξt do

U∗
t (ξt) = max

at∈A
E(rt | ξt, at) +

∑
ξt+1∈Ξt+1

P(ξt+1 | ξt, at)U∗
t+1(ξt+1)

end for

st at rt st+1

?1.4

0.7

1.4

1

0

1

0

?0

?1

0.7
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0.6

Exercise 19. What is the value vt(st) of the first state?

A 1.4

B 1.05

C 1.0

D 0.7

E 0

7.2.5 Heuristic algorithms for the n-armed bandit problem

Here we introduce two algorithms, UCB (upper confidence bound) and Thompson sampling,
which are nearly optimal heuristics. Although the following algorithms are not optimal in the
sense that the maximise Bayes-expected utility, they perform nearly as well as an oracle that
knows the model parameters θ. In particular, if π∗(θ) is the policy that knows the true parame-
ter,and π the UCB or Thompson sampling policy, then the expected difference in utility relative
to the oracle2 is

L(π, θ) ≜ Eπ∗

θ

T∑
t=1

(rt)− Eπ
θ

T∑
t=1

(rt) ≤ O(
√
T )∀θ ∈ Θ.

This general bound is parameter-independent, but there are also O(ln(T )) bounds that depend
on θ.

The UCB algorithm
For rewards in [0, 1] we can apply the UCB algorithm introduced by Auer et al. 1 . This applies

Hoeffding’s inequality to construct a confidence interval around estimates of the mean reward

2Also called the regret of the algorithm
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of each arm, and simply picks the arm with the highest upper confidence interval, as shown in
Algorithm 4.

Algorithm 4 UCB1

Input A
θ̂0,i = 1, ∀i
for t = 1, . . . do

at = argmaxi∈A

{
θ̂t−1,i +

√
2 ln t

Nt−1,i

}
rt ∼ Pθ(r | at) // play action and get reward

/* update model */

Nt,at = Nt−1,at + 1

θ̂t,at = [Nt−1,atθt−1,at + rt]/Nt,at

∀i ̸= at, Nt,i = Nt−1,i, θ̂t,i = θ̂t−1,i

end for

The Thompson sampling algorithm
In the Bayesian setting, whenever we can define some prior belief ξ0 over parameters Θ, we

can use Thompson sampling, first introduced by Thompson 23 . The idea of this algorithm is to
simply sample a parameter value θ̂ from the posterior, and then select the action that seems
optimal with respect to the sample, as shown in Algorithm 5.

Algorithm 5 Thompson sampling

Input A, ξ0
for t = 1, . . . do

θ̂ ∼ ξt−1(θ)
at ∈ argmaxa Eθ̂[rt | at = a].
rt ∼ Pθ(r | at) // play action and get reward

ξt(θ) = ξt−1(θ | at, rt). // update model

end for

7.3 Contextual Bandits

In the simplest bandit setting, our only information when selecting an arm is the sequence
of previous plays and rewards obtained. However, in many cases we have more information
whenever we draw an arm.

Example 55 (Clinical trials). Consider an example where we have some information xt about an indi-
vidual patient t, and we wish to administer a treatment at. For whichever treatment we administer, we
can observe an outcome yt. Our goal is to maximise expected utility.

Definition 7.3.1 (The contextual bandit problem.). At time t,

• We observe xt ∈ X .

• We play at ∈ A.

• We obtain rt ∈ R with rt | at = a, xt = x ∼ Pθ(r | a, x).

Example 56 (The linear bandit problem). • A = [n], X = Rk, θ = (θ1, . . . , θn), θi ∈ Rk, r ∈ R.
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• r ∼ N (θ⊤a x), 1)

Example 57 (A clinical trial example). In this scenario, each individual is described by a real vector xt,
and the outcome is described by a logistic model. The reward is simply a known function of the action
and outcome.

• A = [n], X = Rk, θ = (θ1, . . . , θn), θi ∈ Rk, y ∈ {0, 1}.
• y ∼ Bernoulli(1/(1 + exp[−(θ⊤a x)

2]).

• r = U(a, y).

Algorithms for the contextual bandit problem
The simplest algorithm we can use is Thompson sampling, shown in Algorithm 6

Algorithm 6 Thompson sampling for contextual bandits

Input A, ξ0
for t = 1, . . . do

θ̂ ∼ ξt−1(θ)
Observe xt.
at ∈ argmaxa Eθ̂[rt | xt, at = a].
rt ∼ Pθ(r | at) // play action and get reward // update model

ξt(θ) = ξt−1(θ | at, rt, xt).
end for

We can also consider the full decision theoretic solution to Thompson sampling

Backwards induction in the contextual setting

for n = 1, 2, . . . and s ∈ S do

E(Ut | xt, ξt) = max
at∈A

E(rt | xt, ξt, at) +
∑
ξt+1

P(ξt+1 | ξt, xt, at)E(Ut+1 | ξt+1)

end for

As ξt+1 is a deterministic function of ξt, xt, at, we can simply replace the sum in the right
hand side as follows:

E(Ut+1 | xt, at) =
∑
ξt+1

P(ξt+1 | ξt, xt, at)E(Ut+1 | ξt+1) (7.3.1)

=
∑
rt

P(rt | ξt, xt, at)E[Ut+1 | ξt(· | rt, xt, at)] (7.3.2)

(7.3.3)

where P(rt | ξt, xt, at) =
∫
Θ
Pθ(rt | xt, at) dξt(θ) is the marginal reward distribution.

7.4 Case study: experiment design for clinical trials

While standard bandit problems are inherently interesting for computer-mediated tasks, they are
not typical of experiment design problems that involve humans in the loop. In particular, you
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would expect humans to only be able to select and implement a small number of intervention
policies.

Example 58 (One-stage problems). In a classical one-stage experiment design problem, the experimenter
only has a single observation

• Initial belief ξ0

• Side information x

• Simultaneously takes actions a.

• Observes outcomes y.

You can see this as a standard one-stage contextual bandit problem, but it is better to take advantage
of the fact that all the variables are vectors i.e .x = x1:k. You can also see this as a parallelisation of
the sequential problem. The goal here is typically to maximise expected utility after the data has been
collected. Thus, the question is how to optimise the data collection process itself.

Eπ
ξ0 (U | x) =

∑
a,y

Pξ0(y | a,x)π(a | x)Eπ
ξ0(U | x,a,y)︸ ︷︷ ︸
post-hoc value

(7.4.1)

There are a few different typical objectives one could have for this type of design. The first
might be, how to maximise expected information gain

Definition 7.4.1 (Expected information gain).

Eπ
ξ0 (D (ξ1∥ξ0) | x) =

∑
a,y

Pξ0(y | a,x)π(a | x)D (ξ0(· | x,a,y)∥ξ0) (7.4.2)

As you can see, here there is no dependence on the policy. We just care about getting the
maximal amount of information from our experiment

An alternative is to be able to maximise expected utility for the optimal policy after the
observations have been seen.

Definition 7.4.2 (Expected utility of final policy). For some simple reward function ρ(xt, yt),
maximise:

Eπ
ξ0

(
max
π1

Eπ1

ξ1
ρ

∣∣∣∣x) =
∑
a,y

Pξ0(y | a,x)π(a | x)max
π1

Eπ1

ξ0
(ρ | a,x,y) (7.4.3)

Eπ1

ξ0
(ρ | a,x,y) =

∑
a,x,y

ρ(a, y)Pξ1(y | x, a)π1(a | x)Pξ1(x) (7.4.4)

7.4.1 Practical approaches to experiment design

Unfortunately, a lot of the time it is not possible to simply select an appropriate prior distribution,
select a model, etc, However, the same process can be used in practical scenarios. The procedure
can be seen as follows.

Experiment design for a one-stage problem

• Select some model P for generating data. This can be based on historical data. For
example, you can try and fit a neural network, a Gaussian process, or any other model
on historical data.
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• Select an inference and/or decision making algorithm λ for the task. For example, you
may simply want to create a classifier, or you may want to do null-hypothesis testing.
In all cases, your algorithm and decision making procedure should be fully defined at
this point.

• Select a performance measure U .

• Generate data D from P and measure the performance of λ on D.

Experiment design for a multi-stage problem
Here we would like to distinguish two cases. The first, where we care about performance
during the experiment (e.g. maximising the number of patients cured), or whether we care
about the best policy we can find after the experiment has been concluded (e.g. finding the
best treatment). There are many heuristic approaches we can follow.

• Use myopic (n-step) experiment design. When your utility is of the form U =
∑T

k=t rt,
do not solve the complete problem. Instead, at each step t, find the policy πt max-
imising Eπt

ξt

∑t+n
k=t rt. For n = 1, you obtain a simply myopic strategy.

• Use a simple heuristic like UCB (or Linear UCB), or Thompson sampling.

• If computing posteriors is hard, use bootstrapping-based Thompson sampling12 or
MCMC.
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8.1 Markov decision processes and reinforcement learning

Bandit problems are one of the simplest instances of reinforcement learning problems. Informally,
speaking, these are problems of learning how to act in an unknown environment, only through
interaction with the environment and limited reinforcement signals. The learning agent interacts
with the environment through actions and observations, and simultaneously obtains rewards.
For example, we can consider a rat running through a maze designed by an experimenter, which
from time to time finds a piece of cheese, the reward. The goal of the agent is usually to maximise
some measure of the total reward. In summary, we can state the problem as follows.

The reinforcement learning problem.
The reinforcement learning problem is the problem of learning how to act in an unknown
environment, only by interaction and reinforcement.

Generally, we assume that the environment µ that we are acting in has an underlying state
st ∈ S, which changes with in discrete time steps t. At each step, the agent obtains an observation
xt ∈ X and chooses actions at ∈ A. We usually assume that the environment is such that its
next state st+1 only depends on its current state st and the last action taken by the agent, at.
In addition, the agent observes a reward signal rt, and its goal is to maximise the total reward
during its lifetime.

Doing so when the environment µ is unknown, is hard even in seemingly simple settings, like
n-armed bandits, where the underlying state never changes. In many real-world applications,
the problem is even harder, as the state is not directly observed. Instead, we may simply have
some measurements xt, which give only partial information about the true underlying state st.

Reinforcement learning problems typically fall into one of the following three groups: (1)
Markov decision processes (MDPs), where the state st is observed directly, i.e. xt = st; (2)
Partially observable MDPs (POMDPs), where the state is hidden, i.e. xt is only probabilistically
dependent on the state; and (3) stochastic Markov games, where the next state also depends on
the move of other agents. While all of these problem descriptions are different, in the Bayesian
setting, they all can be reformulated as MDPs, by constructing an appropriate belief state,
similarly to how we did it for the decision theoretic formulation of the bandit problem.

In this chapter, we shall restrict our attention to Markov decision processes. Hence, we shall
not discuss the existence of other agents, or the case where we cannot observe the state directly.

Definition 8.1.1 (Markov Decision Process). A Markov decision process µ is a tuple µ =
⟨S,A,P,R⟩, where S is the state space and A is the action space. The transition distributiontransition distribution
being P = {P (· | s, a) | s ∈ S, a ∈ A} is a collection of probability measures on S, indexed in
S × A and the reward distribution R = {ρ(· | s, a) | s ∈ S, a ∈ A} is a collection of probabilityreward distribution
measures on R, such that:

P (S | s, a) = Pµ(st+1 ∈ S | st = s, at = a) (8.1.1)

ρ(R | s, a) = Pµ(rt ∈ R | st = s, at = a). (8.1.2)

For simplicity, we shall also use

rµ(s, a) = Eµ(rt+1 | st = s, at = a), (8.1.3)

for the expected reward.
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Of course, the transition and reward distributions are different for different environments µ.
For that reason, we shall usually subscript the relevant probabilities and expectations with µ,
unless the MDP is clear from the context.

µ

at

st st+1

rt

Markov property of the reward and state distribution

Pµ(st+1 ∈ S | s1, a1, . . . , st, at) = Pµ(st+1 ∈ S | st, at) (8.1.4)

Pµ(rt ∈ R | s1, a1, . . . , st, at) = Pµ(rt ∈ R | st, at) (8.1.5)

where S ⊂ S and R ⊂ R are reward and state subsets respectively.

Figure 8.1: The structure of a Markov decision process.

Dependencies of rewards. Sometimes it is more convenient to have rewards that depend on
the next state as well, i.e.

rµ(s, a, s
′) = Eµ(rt+1 | st = s, at = a, st+1 = s′), (8.1.6)

though this is complicates the notation considerably since now the reward is obtained on the next
time step. However, we can always replace this with the expected reward for a given state-action
pair:

rµ(s, a) = Eµ(rt+1 | st = s, at = s) =
∑
s′∈S

Pµ(s
′ | s, a)rµ(s, a, s′) (8.1.7)

In fact, it is notationally more convenient to have rewards that only depend on the current state:

rµ(s) = Eµ(rt | st = s). (8.1.8)

For simplicity, we shall mainly consider the latter case.

The agent. The environment does not exist in isolation. The actions are taken by an agent,
who is interested in obtaining high rewards. Instead of defining an algorithm for choosing actions
directly, we define an algorithm for computing policies, which define distributions on actions.
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The agent’s policy π

Pπ(at | st, . . . , s1, at−1, . . . , a1) (history-dependent policy)

Pπ(at | st) (Markov policy)

In some sense, the agent is defined by its policy π, which is a conditional distribution on
actions given the history. The policy π is otherwise known as a decision function. In general,policy
the policy can be history-dependent. In certain cases, however, there are optimal policies that
are Markov. This is for example the case with additive utility functions. In paticular, the utility
function maps from the sequence of all possible rewards to a real number U : R∗ → R, given
below:

Definition 8.1.2 (Utility). Given a horizon T and a discount factor γ ∈ (0, 1], the utility
function U : R∗ → R is defined as

U(r0, r1, . . . , rT ) =
T∑

k=0

γkrk. (8.1.9)

It is convenient to give a special name to the utility starting from time t, i.e. the sum of rewards
from that time on:

Ut ≜
T−t∑
k=0

γkrt+k. (8.1.10)

At any time t, the agent wants to to find a policy π maximising the expected total future
reward

Eπ
µ Ut = Eπ

µ

T−t∑
k=0

γkrt+k. (expected utility)

This is so far identical to the expected utility framework we had seen so far, with the only
difference that now the reward space is a sequence of numerical rewards and that we are acting
within a dynamical system with state space S. In fact, it is a good idea to think about the value
of different states of the system under certain policies, in the same way that one things about
how good different positions are in chess.

8.1.1 Value functions

A value function represents the expected utility of a given state, or state-and-action pair for
a specific policy. They are really useful as shorthand notation and as the basis of algorithm
development. The most basic of those is the state value function.

State value function

V π
µ,t(s) ≜ Eπ

µ(Ut | st = s) (8.1.11)

The state value function for a particular policy π can be interpreted as how much utility you
should expect if you follow the policy starting from state s at time t, for the particular MDP µ.
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State-action value function

Qπ
µ,t(s, a) ≜ Eπ

µ(Ut | st = s, at = a) (8.1.12)

The state-action value function for a particular policy π can be interpreted as how much
utility you should expect if you play action a, at state s at time t, and then follow the policy π,
for the particular MDP µ.

It is also useful to define the optimal policy and optimal value functions for a given MDP. In
the following, a star indicates optimal quantities. The optimal policy π∗

π∗(µ) : V
π∗(µ)
t,µ (s) ≥ V π

t,µ(s) ∀π, t, s (8.1.13)

dominates all other policies π everywhere in S.
The optimal value function V ∗

V ∗
t,µ(s) ≜ V

π∗(µ)
t,µ (s), Q∗

t,µ(s) ≜ Q
π∗(µ)
t,µ (s, a). (8.1.14)

is the value function of the optimal policy π∗.

Finding the optimal policy when µ is known

When the MDP µ is known, the expected utility of any policy can be calculated. Therefore,
one could find the optimal policy by brute force, i.e. by calculating the utility of every possible
policy. This might be as reasonable strategy if the number of policies is small. However, there
are many better appr. First, there are iterative/offline methods where an optimal policy is found
for all states of the MDP. These either try to estimate the optimal value function directly, or try
to iteratively improve a policy until it is optimal. The second type of methods tries to find an
optimal policy online. That is, the optimal actions are estimated only for states which can be
visited in the future starting from the current state. However, the same main ideas are used in
all of these algorithms.

8.2 Finite horizon, undiscounted problems

The conceptually simplest type of problems are finite horizon problems where T <∞ and γ = 1.
The first thing we shall try to do is to evaluate a given policy for a given MDP. There are a
number of algorithms that can achieve this.

8.2.1 Policy evaluation

Here we are interested in the problem of determining the value function of a policy π (for
γ = 1, T < ∞). All the algorithms we shall consider can be recovered from the following
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recursion. Noting that Ut+1 =
∑T−t

k=1 rt+k we have:

V π
µ,t(s) ≜ Eπ

µ(Ut | st = s) (8.2.1)

=

T−t∑
k=0

Eπ
µ(rt+k | st = s) (8.2.2)

= Eπ
µ(rt | st = s) + Eπ

µ(Ut+1 | st = s) (8.2.3)

= Eπ
µ(rt | st = s) +

∑
i∈S

V π
µ,t+1(i)P

π
µ(st+1 = i|st = s). (8.2.4)

Note that the last term can be calculated easily through marginalisation.

Pπ
µ(st+1 = i|st = s) =

∑
a∈A

Pµ(st+1=i|st=s, at=a)Pπ(at=a|st=s).

This derivation directly gives a number of policy evaluation algorithms.

Direct policy evaluation Direct policy evaluation is based on (8.2.2), which can be imple-
mented by Algorithm 7. One needs to marginalise out all possible state sequences to obtain the
expected reward given the state at time t+ k giving the following:

Eπ
µ(rt+k | st = s) =

∑
st+1,...,st+k∈Sk

Eπ
µ(rt+k | st+k)Pπ

µ(st+1, . . . , st+1 | st).

By using the Markov property, we calculate the probability of reaching any state from any other
state at different times, and then add up the expected reward we would get in that state under
our policy. Then V̂t(s) = V π

µ,t(s) by definition.
Unfortunately it is not a very good idea to use direct policy evaluation. The most efficient

implementation involves calculating P (st | s0) recursively for every state. This would result in
a total of |S|3T operations. Monte-Carlo evaluations should be considerably cheaper, especially
when the transition structure is sparse.

Algorithm 7 Direct policy evaluation

1: for s ∈ S do
2: for t = 0, . . . , T do
3:

V̂t(s) =
T∑

k=t

∑
j∈S

Pπ
µ(sk = j | st = s)Eπ

µ(rk | sk = j).

4: end for
5: end for

8.2.2 Monte-Carlo policy evaluation

Another conceptually simple algorithm is Monte-Carlo policy evaluation shown as Algorithm 8.
The idea is that instead of summing over all possible states to be visited, we just draw states
from the Markov chain defined jointly by the policy and the Markov decision process. Unlike
direct policy evaluation the algorithm needs a parameter K, the number of trajectories to gen-
erate. Nevertheless, this is a very useful method, employed within a number of more complex
algorithms.
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Algorithm 8 Monte-Carlo policy evaluation

for s ∈ S do
for k = 0, . . . ,K do

Choose initial state s1.
for t = 1, . . . , T do

at ∼ π(at | st) // Take action
Observe reward rt and next state st+1.
Set rt,k = rt.

end for
Save total reward:

V̂k(s) =

T∑
t=1

rt,k.

end for
Calculate estimate:

V̂ (s) =
1

K

K∑
k=1

V̂k(s).

end for

Remark 8.2.1. The estimate V̂ of the Monte Carlo evaluation algorithm satisfies

∥V − V̂ ∥∞ ≤
√

ln(2|S|/δ)
2K

with probability 1− δ

Proof. From Hoeffding’s inequality (2.4.5) we have for any state s that

P

(
|V̂ (s)− V (s)| ≥

√
ln(2|S|/δ)

2K

)
≤ δ/|S|.

Consequently, using a union bound of the form P (A1 ∪ A2 ∪ . . . ∪ An) ≤
∑

i P (Ai) gives the
required result.

The main advantage of Monte-Carlo policy evaluation is that it can be used in very general
settings. It can be used not only in Markovian environments such as MDPs, but also in partially
observable and multi-agent settings.

8.2.3 Backwards induction policy evaluation

Finally, the backwards induction algorithm shown as Algorithm 9 is similar to the backwards
induction algorithm we saw for sequential sampling and bandit problems. However, here we
are only evaluating a policy rather than finding the optimal one. This algorithm is slightly less
generally applicable than the Monte-Carlo method because it makes Markovian assumptions.
The Monte-Carlo algorithm, can be used for environments that with a non-Markovian variable
st.
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Algorithm 9 Backwards induction policy evaluation

For each state s ∈ S, for t = 1, . . . , T − 1:

V̂t(s) = rπµ(s) +
∑
j∈S

Pπ
µ(st+1 = j | st = s)V̂t+1(j), (8.2.5)

with V̂T (s) = rπµ(s).

Theorem 8.2.1. The backwards induction algorithm gives estimates V̂t(s) satisfying

V̂t(s) = V π
µ,t(s) (8.2.6)

Proof. For t = T −1, the result is obvious. We can prove the remainder by induction. Let (8.2.6)
hold for all t ≥ n+1. Now we prove that it holds for n. Note that from the recursion (8.2.5) we
have:

V̂t(s) = rµ(s) +
∑
j∈S

Pµ,π(st+1 = j | st = s)V̂t+1(j)

= r(s) +
∑
j∈S

Pµ,π(st+1 = j | st = s)V π
µ,t+1(j)

= r(s) + Eµ,π(Ut+1 | st = s)

= Eµ,π(Ut | st = s) = V π
µ,t(s),

where the second equality is by the induction hypothesis, the third and fourth equalities are by
the definition of the utility, and the last by definition of V π

µ,t.

8.2.4 Backwards induction policy optimisation

Backwards induction as given in Alg 10 is the first non-naive algorithm for finding an optimal
policy for the sequential problems with T stages. It is basically identical to the backwards
induction algorithm we saw in Chapter ??, which was for the very simple sequential sampling
problem, as well as the backwards induction algorithm for the decision-theoretic bandit problem.

Algorithm 10 Finite-horizon backwards induction

Input µ, set ST of states reachable within T steps.
Initialise VT (s) := maxa r(s, a), for all s ∈ ST .
for n = T − 1, T − 2, . . . , 1 do

for s ∈ Sn do
πn(s) = argmaxa r(s, a) +

∑
s′∈Sn+1

Pµ(s
′ | s, a)Vn+1(s

′)

Vn(s) = r(s, a) +
∑

s′∈Sn+1
Pµ(s

′ | s, πn(s))Vn+1(s
′)

end for
end for
Return π = (πn)

T
n=1.

Theorem 8.2.2. For T -horizon problems, backwards induction is optimal, i.e.

Vn(s) = V ∗
µ,n(s) (8.2.7)
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Proof. Note that the proof below also holds for r(s, a) = r(s). First we show that Vt ≥ V ∗
t . For

n = T we evidently have VT (s) = maxa r(s, a) = V ∗
µ,T (s). Now assume that for n ≥ t+1, (8.2.7)

holds. Then it also holds for n = t, since for any policy π′

Vt(s) = max
a

r(s, a) +∑
j∈S

Pµ(j | s, a)Vt+1(j)


≥ max

a

r(s, a) +∑
j∈S

Pµ(j | s, a)V ∗
µ,t+1(j)

 (by induction assumption)

≥ max
a

r(s, a) +∑
j∈S

Pµ(j | s, a)V π′

µ,t+1(j)


≥ V π′

t (s).

This holds for any policy π′, including π′ = π, the policy returned by backwards induction.
Then:

V ∗
µ,t(s) ≥ V π

µ,t(s) = Vt(s) ≥ V ∗
µ,t(s).

Remark 8.2.2. A similar theorem can be proven for arbitrary S. This requires using sup instead
of max and proving the existence of a π′ that is arbitrary-close in value to V ∗. For details, see? .

8.3 Infinite-horizon

When problems have no fixed horizon, they usually can be modelled as infinite horizon problems,
sometimes with help of a terminating state, whose visit terminates the problem, or discounted
rewards, which indicate that we care less about rewards further in the future. When reward dis-
counting is exponential, these problems can be seen as undiscounted problems with random and
geometrically distributed horizon. For problems with no discounting and no termination states
there are some complications in the definition of optimal policy. However, we defer discussion of
such problems to Chapter ??.

8.3.1 Examples

We begin with some examples, which will help elucidate the concept of terminating states and
infinite horizon. The first is shortest path problems, where the aim is to find the shortest path
to a particular goal. Although the process terminates when the goal is reached, not all policies
may be able to reach the goal, and so the process may never terminate.

Shortest-path problems

We shall consider two types of shortest path problems, deterministic and stochastic. Although
conceptually very different, both problems have essentially the same complexity.

Consider an agent moving in a maze, aiming to get to some terminating goal state X. That
is, when reaching this state, the agent cannot move anymore, and receives a reward of 0. In
general, the agent can move deterministically in the four cardinal directions, and receives a
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negative reward at each time step. Consequently, the optimal policy is to move to X as quickly
as possible.

14 13 12 11 10 9 8 7

15 13 6

16 15 14 4 3 4 5

17 2

18 19 20 2 1 2

19 21 1 0 1

20 22

21 23 24 25 26 27 28

Properties

• γ = 1, T → ∞.

• rt = −1 unless st = X, in which case rt = 0.

• Pµ(st+1 = X|st = X) = 1.

• A = {North, South,East,West}
• Transitions are deterministic and walls block.

Solving the shortest path problem can be done simply by looking at the distance of any point
to X. Then the reward obtained by the optimal policy starting from any point, is simply the
negative distance. The optimal policy simply moves to the state with the smallest distance to
X.

Stochastic shortest path problem with a pit Now assume the shortest path problem with
stochastic dynamics. That is, at each time-step there is a small probability ω that move to a
random direction. In addition, there is a pit O, that is a terminating state with a reward of
−100.

O X

Properties

• γ = 1, T → ∞.

• rt = −1, but rt = 0 at X and −100 at O and
episode ends.

• Pµ(st+1 = X|st = X) = 1.

• A = {North, South,East,West}

• Moves to a random direction with probability
ω. Walls block.
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Figure 8.2: Pit maze solutions for two values of ω.

Randomness changes the solution significantly in this environment. When ω is relatively
small, it is worthwhile (in expectation) for the agent to pass past the pit, even though there
is a risk of falling in and getting a reward of −100. In the example given, even starting from
the third row, the agent prefers taking the short-cut. For high enough ω, the optimal policy
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avoids approaching the pit. Still, the agent prefers jumping in the pit, than being trapped at the
bottom of the maze forever.

Continuing problems

Finally, many problems have no natural terminating state, but are continuing ad infinitum.
Frequently, we model those problems using a utility that discounts future rewards exponentially.
This way, we can guarantee that the utility is bounded. In addition, exponential discounting
also has some economical sense. This is partially because of the effects of inflation, and partially
because money now may be more useful than money in the future. Both these effects diminish
the value of money over time. As an example, consider the following inventory management
problem.

Example 59 (Inventory management). There are K storage locations, and each location i can store ni

items. At each time-step there is a probability ϕi that a client tries to buy an item from location i,
where

∑
i ϕi ≤ 1. If there is an item available, when this happens, you gain reward 1. There are two

types of actions, one for ordering a certain number u units of stock, paying c(u). Further one may move
u units of stock from one location i to another location j, paying ψij(u).

An easy special case is when K = 1, and we assume that deliveries happen once every
m timesteps, and each time-step a client arrives with probability ϕ. Then the state set S =
{0, 1, . . . , n} corresponds to the number of items we have, the action set A = {0, 1, . . . , n}
to the number of items we may order. The transition probabilities are given by P (s′|s, a) =(
m
d

)
ϕd(1− ϕ)m−d, where d = s+ a− s′, for s+ a ≤ n.

8.3.2 MDP Algorithms

Let us now look at three basic algorithms for solving a known Markov decision process. The
first, value iteration, is a simple extension of the backwards induction algorithm to the infinite
horizon case.

Value iteration

In this version of the algorithm, we assume that rewards are dependent only on the state. An
algorithm for the case where reward only depends on the state can be obtained by replacing
r(s, a) with r(s).

Algorithm 11 Value iteration

Input µ, S.
Initialise v0 ∈ V.
for n = 1, 2, . . . do

for s ∈ Sn do
πn(s) = argmaxa∈A

{
r(s, a) + γ

∑
s′∈S Pµ(s

′ | s, a)vn−1(s
′)
}

vn(s) = r(s, πn(s)) + γ
∑

s′∈S Pµ(s
′ | s, πn(s))vn−1(s

′)
end for
break if termination-condition is met

end for
Return πn, Vn.
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The value iteration algortihm is a direct extension of the backwards induction algorithm for an
infinite horizon. However, since we know that stationary policies are optimal, we do not need to
maintain the values and actions for all time steps. At each step, we can merely keep the previous
value vn−1. However, since there is an infinite number of steps, we need to know whether the
algorithm converges to the optimal value, and what is the error we make at a particular iteration.

Theorem 8.3.1. The value iteration algorithm satisfies

• limn→∞ ∥vn − v∗∥ = 0.

• For each ϵ > 0 there exists Nϵ <∞ such that for all n ≥ Nϵ

∥vn+1 − vn∥ ≤ ϵ(1− γ)/2γ. (8.3.1)

• For n ≥ Nϵ the policy πϵ that takes action

argmax
a

r(s, a) + γ
∑
j

p(j|s, a)vn(s
′)

is ϵ-optimal, i.e. V πϵ
µ (s) ≥ V ∗

µ (s)− ϵ for all states s.

• ∥vn+1 − v∗∥ < ϵ/2 for n ≥ Nϵ.

Proof. The first two statements follow from the fixed-point Theorem ??. Now note that

∥V πϵ
µ − v∗∥ ≤ ∥V πϵ

µ − vn∥+ ∥vn − v∗∥

We can bound these two terms easily:∥∥V πϵ
µ − vn+1

∥∥ =
∥∥LπϵV

πϵ
µ − vn+1

∥∥ (by definition of Lπϵ)

≤
∥∥LπϵV

πϵ
µ − L vn+1

∥∥+ ∥L vn+1 − vn+1∥ (triangle)

=
∥∥LπϵV

πϵ
µ − Lπϵvn+1

∥∥+ ∥L vn+1 − L vn∥ (by definition)

≤ γ
∥∥V πϵ

µ − vn+1

∥∥+ γ ∥vn+1 − vn∥ . (by contraction)

An analogous argument gives the same bound for the second term ∥vn−v∗∥. Then, rearranging
we obtain

∥V πϵ − vn+1∥ ≤ γ

1− γ
∥vn+1 − vn∥, ∥vn+1 − v∗∥ ≤ γ

1− γ
∥vn+1 − vn∥,

and the third and fourth statements follow from the second statement.

The termination condition of value iteration has been left unspecified. However, the theoremtermination condition
above shows that if we terminate when (8.3.1) is true, then our error will be bounded by ϵ.
However, better termination conditions can be obtained.

Now let us prove how fast value iteration converges.

Theorem 8.3.2 (Value iteration monotonicity). Let V be the set of value vectors with Bellman
operator L . Then:

1. Let v,v′ ∈ V with v′ ≥ v. Then L v′ ≥ L v.

2. Let vn+1 = L vn. If there is an N s.t. L vN ≤ vN , then L vN+k ≤ vN+k for all k ≥ 0
and similarly for ≥.
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Proof. Let π ∈ argmaxπ r + γPµ,πv. Then

L v = r + γPµ,πv ≤ r + γPµ,πv
′ ≤ max

π′
r + γPµ,π′v′,

where the first inequality is due to the fact that Pv ≥ Pv′ for any P . For the second part,

L vN+k = vN+k+1 = L kL vN ≤ L kvN = vN+k.

since L vN ≤ vN by assumption and consequently L kL vN ≤ L kvN by part one of the theorem.

Thus, value iteration converges monotonically to V ∗
µ if the initial value v0 ≤ v′ for all v′.

If r ≥ 0, it is sufficient to set v0 = 0. Then vn is always a lower bound on the optimal value
function.

Theorem 8.3.3. Value iteration converges with error in O(γn) More specifically, for r ∈ [0, 1]
and v0 = 0,

∥vn − V ∗
µ ∥ ≤ γn

1− γ
, ∥V πn

µ − V ∗
µ ∥ ≤ 2γn

1− γ
.

Proof. The first part follows from the contraction property (Theorem ??):

∥vn+1 − v∗∥ = ∥L vn − L v∗∥ ≤ γ∥vn − v∗∥. (8.3.2)

Now divide by γn to obtain the final result.

Although value iteration converges exponentially fast, the convergence is dominated by the
discount factor γ. When γ is very close to one, convergence can be extremely slow. In fact, ?
showed that the number of iterations are on the order of 1/(1− γ), for bounded accuracy of the
input data. The overall complexity is Õ(|S|2|A|L(1− γ)−1, omitting logarithmic factors, where
L is the total number of bits used to represent the input.1

8.4 Reinforcement learning

—
Markov decision processes are also a central formalism in reinforcement learning. In partic-

ular, we can use an MDP to represent the model of the world and how it responds to an agent’s
actions. The policy, or decision-making algorithm, π describes the agent’s behaviour, and the
MDP µ describes how the environment responds. Since MDPs have the Markov property, ev-
erything that agent needs to calculate its optimal actions is contained in the current state of
the world. There are three main research problems in reinforcement learning with MPDs from a
computer science perspective.

The computational complexity of solving MDPs. If we are given the MDP µ, then there
is no learning involved. The basic computational problem is finding the optimal policy π∗(µ)
for that MDP. When S,A are discrete, there are a number of algorithms such as backwards
induction (usually called value iteration in the infinite horizon setting), policy iteration and
linear programming which can obtain the optimal policy. However, the exact computational
complexity of solving MDPs is thought not to be polynomial.

1Thus the result is weakly polynomial complexity, due to the dependence on the input size description.
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Convergent algorithms for learning an optimal policy. Here our only focus is an al-
gorithm that, through interaction with the MDP will eventually find the optimal (or a nearly-
optimal) policy. In this setting interactions with the problem are so cheap as to be negligible.
Algorithms in this domain include well-known examples such as Q-learning24 and other stochas-
tic approximations.

The sample complexity of learning in MDPs. This is the problem of finding a nearly-
optimal policy as quickly as possible. In this case, we do not really care about the reward we
obtain while interacting with the MDP, but we still want to minimise the computational cost of
simulation. This goal is typically interesting from a theoretical perspective.2 However, it is also
of practical use when the interaction with the MDP can be done without much risk. This is the
case when the whole problem is a simulation, as in playing Atari games. It is also the case when
the algorithm can interact in the real world without any directly negative consequences, such as
when we let a robot explore in a controlled laboratory setting.

Nearly-optimal learning in MDPs and regret. Finally, we may want to perform as well
as possible while acting in the MDP, when we initially know very little or nothing about it. In a
Bayesian decision-theoretic setting, the problem can be formulated directly as the optimisation
of expected utility under our belief. However, a way of measuring how fast an algorithm can
learn the optimal policy is given by the notion of regret. This is a time-dependent function that
measures the gap in total reward by an agent that knows µ and the learning algorithm:

ℓπµ(T ) ≜
T∑

t=1

Eπ∗(µ)
µ (rt)− Eπ

µ(rt).

If an algorithm can achieve a sublinear regret for any MDP, e.g. maxµ ℓ
π
µ(T ) ∈ O(

√
T ), this

implies that the algorithm converges to the optimal policy. For finite MDPs, the question of
finding an algorithm that is optimal in the sense of having a regret as close as possible to the
best known regret lower bound is close to being settled.

8.4.1 More general settings.

Typically the world is not fully observable, meaning that even if the environment has Marko-
vian dynamics, the agent does not observe the state st directly. Instead, it might obtain some
observation xt with conditional distribution Pµ(xt | st). Then the process is known as Partially
Observable Markov Decision Process (POMDP). This makes the problem significantly harder,
even when the underlying model µ is known.

Finally, it is common that agents do not act by themselves, but also interact with other
agents. Work in this area is related to game theory, and in particular stochastic and partial
information games. These games introduce new solution concepts such as Nash equilibria, even
when something like agent utilities are well-defined. However, the simple case of full-information
adversarial games like chess, is remarkably similar to MDPs, and indeed reinforcement learning
algorithms have been successfully employed to obtain master-level play.

2Specifically, we are typically interested in results under the probably approximately correct (PAC) framework.
See Kearns and Singh 17 for an analysis of Q-learning.
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