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1 Beliefs and probabilities
Probability and Bayesian inference

2 Hierarchies of decision making problems

3 Formalising Classification problems

4 Classification with stochastic gradient descent
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Beliefs and probabilities

Uncertainty

We cannot perfectly predict the future.

We cannot know for sure what happened in the past.

How can we quantify this uncertainty?

Probabilities!

Axioms of probability

For any probability measurea P on (Ω,Σ),

1 The probability of the certain event is P(Ω) = 1

2 The probability of the impossible event is P(∅) = 0

3 The probability of any event A ∈ Σ is 0 ≤ P(A) ≤ 1.

4 If A,B are disjoint, i.e. A ∩ B = ∅, meaning that they cannot happen at the same
time, then

P(A ∪ B) = P(A) + P(B)

aΣ is the set of possible events, with A ∈ Σ always A ⊂ Ω. Technically Σ is a σ-algebra
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Beliefs and probabilities

Definition 1 (Conditional probability)

The probability of A happening if we know that B has happened is defined to be:

P(A | B) ≜ P(A ∩ B)

P(B)
.

Conditional probabilities obey the same rules as probabilities.

Bayes’s theorem

For P(A1 ∪ A2) = 1, A1 ∩ A2 = ∅,

P(Ai | B)

=
P(B | Ai )P(Ai )

P(B)
=

P(B | Ai )P(Ai )

P(B | A1)P(A1) + P(B | A2)P(A2)

Example 2 (probability of rain)

What is the probability of rain given a forecast x1 or x2?

ω1: rain P(ω1) = 80%
ω2: dry P(ω2) = 20%

Table: Prior probability of rain
tomorrow

x1: rain P(x1 | ω1) = 90%
x2: dry P(x2 | ω2) = 50%

Table: Probability the forecast
is correct

P(ω1 | x1) = 87.8%
P(ω1 | x2) = 44.4%

Table: Probability that it will
rain given the forecast
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Beliefs and probabilities

Classification in terms of conditional probabilities
Features xt ∈ X .
Class label yt ∈ Y.
Probability model Pµ(xt | yt).
Prior class probability Pµ(yt = c).

Pµ(yt = c | xt) =
Pµ(xt | yt = c)Pµ(yt = c)∑

c′∈Y Pµ(xt | yt = c ′)Pµ(yt = c ′)

yt

xt

µ

Figure: A generative classification model. µ identifies the model (paramter). xt are the features
and yt the class label of the t-th example.

Figure: The effect of changing variance and prior when we assume a normal distribution.

Example 3 (Normal distribution)

A simple example is when xt is normally distributed in a matter that depends on the
class. Figure 2 shows the distribution of xt for two different classes, with means of −1
and +1 respectively, for three different case. In the first case, both classes have variance
of 1, and we assume the same prior probability for both

xt | yt = 0 ∼ N (−1, 1), xt | yt = 1 ∼ N (1, 1)

xt | yt = 0 ∼ N (−1, 1), xt | yt = 1 ∼ N (1, 1)

But how can we get a probability model in the first place?
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Classification in terms of conditional probabilities
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0

0.2

0.4

0.6

0.8

1

x

class 1 density

class 2 density

class 1 probability

(a) Equal prior and variance

Figure: The effect of changing variance and prior when we assume a normal distribution.
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Classification in terms of conditional probabilities
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Figure: The effect of changing variance and prior when we assume a normal distribution.
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Figure: The effect of changing variance and prior when we assume a normal distribution.
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Figure: The effect of changing variance and prior when we assume a normal distribution.
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Beliefs and probabilities

Subjective probability

Subjective probability measure ξ

If we think event A is more likely than B, then ξ(A) > ξ(B).

Usual rules of probability apply:
1 ξ(A) ∈ [0, 1].
2 ξ(∅) = 0.
3 If A ∩ B = ∅, then ξ(A ∪ B) = ξ(A) + ξ(B).
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Beliefs and probabilities

Bayesian inference illustration

Use a subjective belief ξ(µ) on M
Prior belief ξ(µ) represents our initial uncertainty.

We observe history h.

Each possible µ assigns a probability Pµ(h) to h.

We can use this to update our belief via Bayes’ theorem
to obtain the posterior belief:

ξ(µ | h) ∝ Pµ(h)ξ(µ) (conclusion = evidence × prior)

prior

evidence

conclusion
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Bayesian inference illustration

Use a subjective belief ξ(µ) on M
Prior belief ξ(µ) represents our initial uncertainty.

We observe history h.

Each possible µ assigns a probability Pµ(h) to h.
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Beliefs and probabilities Probability and Bayesian inference

Some examples

Example 4

John claims to be a medium. He throws a coin n times and predicts its value always
correctly. Should we believe that he is a medium?

µ1: John is a medium.

µ0: John is not a medium.

The answer depends on what we expect a medium to be able to do, and how likely we
thought he’d be a medium in the first place.
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Beliefs and probabilities Probability and Bayesian inference

Bayesian inference

mutually exclusive models M = {µ1, . . . , µk}.

Probability model for any data x : Pµ(x) ≡ P(x | µ).
For each model, we have a prior probability ξ(µ) that it is correct.

Posterior probability

ξ(µ | x) = P(x | µ)ξ(µ)∑
µ′∈M P(x | µ′)ξ(µ′)

=
Pµ(x)ξ(µ)∑

µ′∈M Pµ′(x)ξ(µ′)
.
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Beliefs and probabilities Probability and Bayesian inference

Bayesian inference

mutually exclusive models M = {µ1, . . . , µk}.
Probability model for any data x : Pµ(x) ≡ P(x | µ).
For each model, we have a prior probability ξ(µ) that it is correct.

Posterior probability

ξ(µ | x) = P(x | µ)ξ(µ)∑
µ′∈M P(x | µ′)ξ(µ′)

=
Pµ(x)ξ(µ)∑

µ′∈M Pµ′(x)ξ(µ′)
.

Interpretation

M: Set of all possible models that could describe the data.

Pµ(x): Probability of x under model µ.

Alternative notation P(x | µ): Probability of x given that model µ is correct.

ξ(µ): Our belief, before seeing the data, that µ is correct.

ξ(µ | x): Our belief, aftering seeing the data, that µ is correct.
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Beliefs and probabilities Probability and Bayesian inference

Exercise 1 (Continued example for medium)

Pµ(x) =
n∏

t=1

Pµ(xt). (independence property)

Pµ1(xt = 1) = 1, Pµ1(xt = 0) = 0. (true medium model)

Pµ0(xt = 1) = 1/2, Pµ0(xt = 0) = 1/2. (non-medium model)

ξ(µ0) = 1/2, ξ(µ1) = 1/2. (prior belief)

ξ(µ1 | x) =
Pµ1(x)ξ(µ1)

Pξ(x)
(posterior belief)

Pξ(x) ≜ Pµ1(x)ξ(µ1) + Pµ0(x)ξ(µ0). (marginal distribution)

Throw a coin 4 times, and have a classmate make a prediction. What your belief that
your classmate is a medium? Is the prior you used reasonable?
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Exercise 1 (Continued example for medium)
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Beliefs and probabilities Probability and Bayesian inference

Sequential update of beliefs

M T W T F S S
CNN 0.5 0.6 0.7 0.9 0.5 0.3 0.1
SMHI 0.3 0.7 0.8 0.9 0.5 0.2 0.1
YR 0.6 0.9 0.8 0.5 0.4 0.1 0.1

Rain? Y Y Y N Y N N

Table: Predictions by three different entities for the probability of rain on a particular day, along
with whether or not it actually rained.

Exercise 2

n meteorological stations {µi | i = 1, . . . , n}
The i-th station predicts rain Pµi (xt | x1, . . . , xt−1).

Let ξt(µ) be our belief at time t. Derive the next-step belief ξt+1(µ) ≜ ξt(µ|yt) in
terms of the current belief ξt .

Write a python function that computes this posterior

ξt+1(µ) ≜ ξt(µ|xt) =
Pµ(xt | x1, . . . , xt−1)ξt(µ)∑
µ′ Pµ′(xt | x1, . . . , xt−1)ξt(µ′)
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Beliefs and probabilities Probability and Bayesian inference

Bayesian inference for Bernoulli distributions

Estimating a coin’s bias

A fair coin comes heads 50% of the time. We want to test an unknown coin, which we
think may not be completely fair.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
prior

Figure: Prior belief ξ about the coin bias θ.
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Beliefs and probabilities Probability and Bayesian inference

Bayesian inference for Bernoulli distributions

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
prior

Figure: Prior belief ξ about the coin bias θ.

For a sequence of throws xt ∈ {0, 1},

Pθ(x) ∝
∏
t

θxt (1− θ)1−xt = θ#Heads(1− θ)#Tails
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Beliefs and probabilities Probability and Bayesian inference

Bayesian inference for Bernoulli distributions

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10
prior

likelihood

Figure: Prior belief ξ about the coin bias θ and likelihood of θ for the data.

Say we throw the coin 100 times and obtain 70 heads. Then we plot the likelihood Pθ(x)
of different models.
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Beliefs and probabilities Probability and Bayesian inference

Bayesian inference for Bernoulli distributions

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10
prior

likelihood

posterior

Figure: Prior belief ξ(θ) about the coin bias θ, likelihood of θ for the data, and posterior belief
ξ(θ | x)

From these, we calculate a posterior distribution over the correct models. This represents
our conclusion given our prior and the data.
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Beliefs and probabilities Probability and Bayesian inference

Learning outcomes

Understanding

The axioms of probability, marginals and conditional distributions.

The philosophical underpinnings of Bayesianism.

The simple conjugate model for Bernoulli distributions.

Skills

Be able to calculate with probabilities using the marginal and conditional definitions
and Bayes rule.

Being able to implement a simple Bayesian inference algorithm in Python.

Reflection

How useful is the Bayesian representation of uncertainty?

How restrictive is the need to select a prior distribution?

Can you think of another way to explicitly represent uncertainty in a way that can
incorporate new evidence?
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Hierarchies of decision making problems

1 Beliefs and probabilities

2 Hierarchies of decision making problems
Simple decision problems
Decision rules

3 Formalising Classification problems

4 Classification with stochastic gradient descent
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Hierarchies of decision making problems Simple decision problems

Preferences

Example 5

Food

A McDonald’s cheeseburger

B Surstromming

C Oatmeal

Money

A 10,000,000 SEK

B 10,000,000 USD

C 10,000,000 BTC

Entertainment

A Ticket to Liseberg

B Ticket to Rebstar

C Ticket to Nutcracker
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Hierarchies of decision making problems Simple decision problems

Rewards and utilities

Each choice is called a reward r ∈ R.

There is a utility function U : R → R, assigning values to reward.

We (weakly) prefer A to B iff U(A) ≥ U(B).

Exercise 3

From your individual preferences, derive a common utility function that reflects
everybody’s preferences in the class for each of the three examples. Is there a simple
algorithm for deciding this? Would you consider the outcome fair?
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Hierarchies of decision making problems Simple decision problems

Preferences among random outcomes

Example 6

Would you rather . . .

A Have 100 EUR now?

B Flip a coin, and get 200 EUR if it comes heads?

The expected utility hypothesis

Rational decision makers prefer choice A to B if

E(U|A) ≥ E(U|B),

where the expected utility is

E(U|A) =
∑
r

U(r)P(r |A).

In the above example, r ∈ {0, 100, 200} and U(r) is increasing, and the coin is fair.

Risk and monetary rewards

If U is convex, we are risk-seeking.

If U is linear, we are risk neutral.

If U is concave, we are risk-averse.

Decision problems September 4, 2019 17 / 44



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Hierarchies of decision making problems Simple decision problems

Preferences among random outcomes

Example 6

Would you rather . . .

A Have 100 EUR now?

B Flip a coin, and get 200 EUR if it comes heads?

The expected utility hypothesis

Rational decision makers prefer choice A to B if

E(U|A) ≥ E(U|B),

where the expected utility is

E(U|A) =
∑
r

U(r)P(r |A).

In the above example, r ∈ {0, 100, 200} and U(r) is increasing, and the coin is fair.

Risk and monetary rewards
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where the expected utility is
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Preferences among random outcomes

Example 6

Would you rather . . .

A Have 100 EUR now?

B Flip a coin, and get 200 EUR if it comes heads?

The expected utility hypothesis

Rational decision makers prefer choice A to B if

E(U|A) ≥ E(U|B),

where the expected utility is

E(U|A) =
∑
r

U(r)P(r |A).

In the above example, r ∈ {0, 100, 200} and U(r) is increasing, and the coin is fair.

Risk and monetary rewards
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Hierarchies of decision making problems Simple decision problems

Uncertain rewards
Decisions a ∈ A
Each choice is called a reward r ∈ R.
There is a utility function U : R → R, assigning values to reward.
We (weakly) prefer A to B iff U(A) ≥ U(B).

Example 7

You are going to work, and it might rain.
What do you do?

a1: Take the umbrella.

a2: Risk it!

ω1: rain

ω2: dry

ρ(ω, a) a1 a2
ω1 dry, carrying umbrella wet
ω2 dry, carrying umbrella dry

U[ρ(ω, a)] a1 a2
ω1 0 -10
ω2 0 1

Table: Rewards and utilities.

maxa minω U = 0

minω maxa U = 0
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Hierarchies of decision making problems Simple decision problems

Expected utility

E(U | a) =
∑
r

U[ρ(ω, a)]P(ω | a)

Example 8

You are going to work, and it might rain. The forecast said that the probability of rain
(ω1) was 20%. What do you do?

a1: Take the umbrella.

a2: Risk it!

ρ(ω, a) a1 a2
ω1 dry, carrying umbrella wet
ω2 dry, carrying umbrella dry

U[ρ(ω, a)] a1 a2
ω1 0 -10
ω2 0 1

EP(U | a) 0 -1.2

Table: Rewards, utilities, expected utility for 20% probability of rain.
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Hierarchies of decision making problems Decision rules

Bayes decision rules

Consider the case where outcomes are independent of decisions:

U(ξ, a) ≜
∑
µ

U(µ, a)ξ(µ)

This corresponds e.g. to the case where ξ(µ) is the belief about an unknown world.

Definition 9 (Bayes utility)

The maximising decision for ξ has an expected utility equal to:

U∗(ξ) ≜ max
a∈A

U(ξ, a). (2.1)
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Hierarchies of decision making problems Decision rules

The n-meteorologists problem

Exercise 4

Meteorological models M = {µ1, . . . , µn}
Rain predictions at time t: pt,µ ≜ Pµ(xt = rain).

Prior probability ξ(µ) = 1/n for each model.

Should we take the umbrella?

M T W T F S S
CNN 0.5 0.6 0.7 0.9 0.5 0.3 0.1
SMHI 0.3 0.7 0.8 0.9 0.5 0.2 0.1
YR 0.6 0.9 0.8 0.5 0.4 0.1 0.1

Rain? Y Y Y N Y N N

Table: Predictions by three different entities for the probability of rain on a particular day, along
with whether or not it actually rained.

1 What is your belief about the quality of each meteorologist after each day?

2 What is your belief about the probability of rain each day?

Pξ(xt = rain | x1, x2, . . . xt−1) =
∑
µ∈M

Pµ(xt = rain | x1, x2, . . . xt−1)ξ(µ | x1, x2, . . . xt−1)

3 Assume you can decide whether or not to go running each day. If you go running
and it does not rain, your utility is 1. If it rains, it’s -10. If you don’t go running,
your utility is 0. What is the decision maximising utility in expectation (with respect
to the posterior) each day?

Decision problems September 4, 2019 21 / 44
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Hierarchies of decision making problems Decision rules

The n-meteorologists problem
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Hierarchies of decision making problems Decision rules

The n-meteorologists problem
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YR 0.6 0.9 0.8 0.5 0.4 0.1 0.1

Rain? Y Y Y N Y N N

Table: Predictions by three different entities for the probability of rain on a particular day, along
with whether or not it actually rained.

1 What is your belief about the quality of each meteorologist after each day?

2 What is your belief about the probability of rain each day?

Pξ(xt = rain | x1, x2, . . . xt−1) =
∑
µ∈M

Pµ(xt = rain | x1, x2, . . . xt−1)ξ(µ | x1, x2, . . . xt−1)

3 Assume you can decide whether or not to go running each day. If you go running
and it does not rain, your utility is 1. If it rains, it’s -10. If you don’t go running,
your utility is 0. What is the decision maximising utility in expectation (with respect
to the posterior) each day?
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Formalising Classification problems

Deciding a class given a model

Features xt ∈ X .

Label yt ∈ Y.

Decisions at ∈ A.

Decision rule π(at | xt) assigns probabilities to actions.

Standard classification problem

A = Y, U(a, y) = I {a = y}

Exercise 5

If we have a model Pµ(yt | xt), and a suitable U, what is the optimal decision to make?

at ∈ argmax
a∈A

∑
y

Pµ(yt = y | xt)U(a, y)

For standard classification,

at ∈ argmax
a∈A

Pµ(yt = a | xt)
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Label yt ∈ Y.

Decisions at ∈ A.

Decision rule π(at | xt) assigns probabilities to actions.

Standard classification problem

A = Y, U(a, y) = I {a = y}

Exercise 5

If we have a model Pµ(yt | xt), and a suitable U, what is the optimal decision to make?

at ∈ argmax
a∈A

∑
y

Pµ(yt = y | xt)U(a, y)

For standard classification,

at ∈ argmax
a∈A

Pµ(yt = a | xt)

Decision problems September 4, 2019 22 / 44



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Formalising Classification problems

Deciding a class given a model
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Formalising Classification problems

Deciding the class given a model family

Training data DT = {(xi , yi ) | i = 1, . . . ,T}
Models {Pµ | µ ∈ M}.
Prior ξ on M.

Posterior over classification models

ξ(µ | DT ) =
Pµ(y1, . . . , yT | x1, . . . , xT )ξ(µ)∑

µ′∈M Pµ′(y1, . . . , yT | x1, . . . , xT )ξ(µ′)

The Bayes rule for maximising Eξ(U | a, xt ,DT )

The decision rule simply chooses the action:

at ∈ argmax
a∈A

∑
y

∑
µ∈M

Pµ(yt = y | xt)ξ(µ | DT )U(a, y) (3.1)

We can rewrite this by calculating the posterior marginal marginal label probability

Pξ|DT
(yt | xt) ≜ Pξ(yt | xt ,DT ) =

∑
µ∈M

Pµ(yt | xt)ξ(µ | DT ).
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Formalising Classification problems

Deciding the class given a model family
Training data DT = {(xi , yi ) | i = 1, . . . ,T}
Models {Pµ | µ ∈ M}.
Prior ξ on M.
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Pµ(y1, . . . , yT | x1, . . . , xT )ξ(µ)∑

µ′∈M Pµ′(y1, . . . , yT | x1, . . . , xT )ξ(µ′)

If not dealing with time-series data, we assume independence between xt :

Pµ(y1, . . . , yT | x1, . . . , xT ) =
T∏
i=1

Pµ(yi | xi )

The Bayes rule for maximising Eξ(U | a, xt ,DT )
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at ∈ argmax
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Deciding the class given a model family
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at ∈ argmax
a∈A
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∑
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Formalising Classification problems

Deciding the class given a model family
Training data DT = {(xi , yi ) | i = 1, . . . ,T}
Models {Pµ | µ ∈ M}.
Prior ξ on M.

Posterior over classification models

ξ(µ | DT ) =
Pµ(y1, . . . , yT | x1, . . . , xT )ξ(µ)∑

µ′∈M Pµ′(y1, . . . , yT | x1, . . . , xT )ξ(µ′)

The Bayes rule for maximising Eξ(U | a, xt ,DT )

The decision rule simply chooses the action:

at ∈ argmax
a∈A

∑
y

∑
µ∈M

Pµ(yt = y | xt)ξ(µ | DT )U(a, y) (3.1)

= argmax
a∈A

∑
y

Pξ|DT
(yt | xt)U(a, y) (3.2)

We can rewrite this by calculating the posterior marginal marginal label probability

Pξ|DT
(yt | xt) ≜ Pξ(yt | xt ,DT ) =

∑
µ∈M

Pµ(yt | xt)ξ(µ | DT ).
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Formalising Classification problems

Approximating the model

Full Bayesian approach for infinite M
Here ξ can be a probability density function and

ξ(µ | DT ) = Pµ(DT )ξ(µ)/Pξ(DT ), Pξ(DT ) =

∫
M

Pµ(DT )ξ(µ) d,

can be hard to calculate.

Maximum a posteriori model

We only choose a single model through the following optimisation:

µMAP(ξ,DT )
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Formalising Classification problems

Approximating the model

Full Bayesian approach for infinite M
Here ξ can be a probability density function and

ξ(µ | DT ) = Pµ(DT )ξ(µ)/Pξ(DT ), Pξ(DT ) =

∫
M

Pµ(DT )ξ(µ) d,

can be hard to calculate.

Maximum a posteriori model

We only choose a single model through the following optimisation:

µMAP(ξ,DT ) = argmax
µ∈M

Pµ(DT )ξ(µ)
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Formalising Classification problems

Approximating the model

Full Bayesian approach for infinite M
Here ξ can be a probability density function and

ξ(µ | DT ) = Pµ(DT )ξ(µ)/Pξ(DT ), Pξ(DT ) =

∫
M

Pµ(DT )ξ(µ) d,

can be hard to calculate.

Maximum a posteriori model

We only choose a single model through the following optimisation:

µMAP(ξ,DT ) = argmax
µ∈M

goodness of fit︷ ︸︸ ︷
lnPµ(DT ) + ln ξ(µ)︸ ︷︷ ︸

regulariser

.
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Formalising Classification problems

Learning outcomes

Understanding

Preferences, utilities and the expected utility principle.

Hypothesis testing and classification as decision problems.

How to interpret p-values Bayesian tests.

The MAP approximation to full Bayesian inference.

Skills

Being able to implement an optimal decision rule for a given utility and probability.

Being able to construct a simple null hypothesis test.

Reflection

When would expected utility maximisation not be a good idea?

What does a p value represent when you see it in a paper?

Can we prevent high false discovery rates when using p values?

When is the MAP approximation good?
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Formalising Classification problems Statistical testing

Simple hypothesis testing

The simple hypothesis test as a decision problem

M = {µ0, µ1}
a0: Accept model µ0

a1: Accept model µ1

U µ0 µ1

a0 1 0
a1 0 1

Table: Example utility function for simple hypothesis tests.

Example 10 (Continuation of the medium example)

µ1: that John is a medium.

µ0: that John is not a medium.

Eξ(U | a0) = 1× ξ(µ0 | x)+0× ξ(µ1 | x), Eξ(U | a1) = 0× ξ(µ0 | x)+1× ξ(µ1 | x)
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Formalising Classification problems Statistical testing

Null hypothesis test

Many times, there is only one model under consideration, µ0, the so-called null
hypothesis.

The null hypothesis test as a decision problem

a0: Accept model µ0

a1: Reject model µ0

Example 11

Construction of the test for the medium

µ0 is simply the Bernoulli(1/2) model: responses are by chance.

We need to design a policy π(a | x) that accepts or rejects depending on the data.

Since there is no alternative model, we can only construct this policy according to its
properties when µ0 is true.

In particular, we can fix a policy that only chooses a1 when µ0 is true a proportion δ
of the time.

This can be done by construcing a threshold test from the inverse-CDF.
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Using p-values to construct statistical tests

Definition 12 (Null statistical test)

The statistic f : X → [0, 1] is designed to have the property:

Pµ0({x | f (x) ≤ δ}) = δ.

If our decision rule is:

π(a | x) =

{
a0, f (x) ≤ δ

a1, f (x) > δ,

the probability of rejecting the null hypothesis when it is true is exactly δ.

The value of the statistic f (x), otherwise known as the p-value, is uninformative.
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Issues with p-values

They only measure quality of fit on the data.

Not robust to model misspecification.

They ignore effect sizes.

They do not consider prior information.

They do not represent the probability of having made an error.

The null-rejection error probability is the same irrespective of the amount of data
(by design).
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p-values for the medium example

µ0 is simply the Bernoulli(1/2) model: responses are by chance.

CDF: Pµ0(N ≤ n | K = 100)

ICDF: the number of successes that will happen with probability at least δ

e.g. we’ll get at most 50 successes a proportion δ = 1/2 of the time.

Using the (inverse) CDF we can construct a policy π that selects a1 when µ0 is true
only a δ portion of the time, for any choice of δ.
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p-values for the medium example

µ0 is simply the Bernoulli(1/2) model: responses are by chance.

CDF: Pµ0(N ≤ n | K = 100)

ICDF: the number of successes that will happen with probability at least δ

e.g. we’ll get at most 50 successes a proportion δ = 1/2 of the time.

Using the (inverse) CDF we can construct a policy π that selects a1 when µ0 is true
only a δ portion of the time, for any choice of δ.
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p-values for the medium example

µ0 is simply the Bernoulli(1/2) model: responses are by chance.

CDF: Pµ0(N ≤ n | K = 100)

ICDF: the number of successes that will happen with probability at least δ

e.g. we’ll get at most 50 successes a proportion δ = 1/2 of the time.

Using the (inverse) CDF we can construct a policy π that selects a1 when µ0 is true
only a δ portion of the time, for any choice of δ.
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p-values for the medium example

µ0 is simply the Bernoulli(1/2) model: responses are by chance.

CDF: Pµ0(N ≤ n | K = 100)

ICDF: the number of successes that will happen with probability at least δ

e.g. we’ll get at most 50 successes a proportion δ = 1/2 of the time.

Using the (inverse) CDF we can construct a policy π that selects a1 when µ0 is true
only a δ portion of the time, for any choice of δ.
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p-values for the medium example

µ0 is simply the Bernoulli(1/2) model: responses are by chance.

CDF: Pµ0(N ≤ n | K = 100)

ICDF: the number of successes that will happen with probability at least δ

e.g. we’ll get at most 50 successes a proportion δ = 1/2 of the time.

Using the (inverse) CDF we can construct a policy π that selects a1 when µ0 is true
only a δ portion of the time, for any choice of δ.
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p-values for the medium example

µ0 is simply the Bernoulli(1/2) model: responses are by chance.

CDF: Pµ0(N ≤ n | K = 100)

ICDF: the number of successes that will happen with probability at least δ

e.g. we’ll get at most 50 successes a proportion δ = 1/2 of the time.
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Formalising Classification problems Statistical testing

Building a test

The test statistic

We want the test to reflect that we don’t have a significant number of failures.

f (x) = 1− binocdf(
n∑

t=1

xt , n, 0.5)

What f (x) is and is not

It is a statistic which is ≤ δ a δ portion of the time when µ0 is true.

It is not the probability of observing x under µ0.

It is not the probability of µ0 given x .
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Exercise 6

Let us throw a coin 8 times, and try and predict the outcome.

Select a p-value threshold so that δ = 0.05. For 8 throws, this corresponds to

> 6
successes or ≥ 87.5% success rate

.

Let’s calculate the p-value for each one of you

What is the rejection performance of the test?
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Exercise 6

Let us throw a coin 8 times, and try and predict the outcome.

Select a p-value threshold so that δ = 0.05. For 8 throws, this corresponds to

> 6
successes or ≥ 87.5% success rate

.

Let’s calculate the p-value for each one of you

What is the rejection performance of the test?
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Figure: Here we see how the rejection threshold, in terms of the success rate, changes with the
number of throws to achieve an error rate of δ = 0.05.
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Exercise 6

Let us throw a coin 8 times, and try and predict the outcome.

Select a p-value threshold so that δ = 0.05. For 8 throws, this corresponds to > 6
successes or ≥ 87.5% success rate.

Let’s calculate the p-value for each one of you

What is the rejection performance of the test?
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Figure: Here we see the rejection rate of the null hypothesis (µ0) for two cases. Firstly, for the
case when µ0 is true. Secondly, when the data is generated from Bernoulli(0.55).

Decision problems September 4, 2019 32 / 44



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Formalising Classification problems Statistical testing

Statistical power and false discovery.

Beyond not rejecting the null when it’s true, we also want:

High power: Rejecting the null when it is false.

Low false discovery rate: Accepting the null when it is true.

Power

The power depends on what hypothesis we use as an alternative.

False discovery rate

False discovery depends on how likely it is a priori that the null is false.
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The Bayesian version of the test

Example 13

1 Set U(ai , µj) = I {i = j}.
2 Set ξ(µi ) = 1/2.

3 µ0: Bernoulli(1/2).

4 µ1: Bernoulli(θ), θ ∼ Unif ([0, 1]).

5 Calculate ξ(µ | x).
6 Choose ai , where i = argmaxj ξ(µj | x).

Bayesian model averaging for the alternative model µ1

Pµ1(x) =

∫
Θ

Bθ(x) dβ(θ) (3.3)

ξ(µ0 | x) =
Pµ0(x)ξ(µ0)

Pµ0(x)ξ(µ0) + Pµ1(x)ξ(µ1)
(3.4)
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Figure: Here we see the convergence of the posterior probability.
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null test

Bayes test

Figure: Comparison of the rejection probability for the null and the Bayesian test when µ0 is true.
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Figure: Comparison of the rejection probability for the null and the Bayesian test when µ1 is true.

Decision problems September 4, 2019 35 / 44



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Formalising Classification problems Statistical testing

Further reading

Points of significance (Nature Methods)

Importance of being uncertain https://www.nature.com/articles/nmeth.2613

Error bars https://www.nature.com/articles/nmeth.2659

P values and the search for significance
https://www.nature.com/articles/nmeth.4120

Bayes’ theorem https://www.nature.com/articles/nmeth.3335

Sampling distributions and the bootstrap
https://www.nature.com/articles/nmeth.3414
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Classification with stochastic gradient descent

1 Beliefs and probabilities

2 Hierarchies of decision making problems

3 Formalising Classification problems

4 Classification with stochastic gradient descent
Neural network models
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Classification with stochastic gradient descent

Classification as an optimisation problem.

The µ-optimal classifier

max
θ∈Θ

f (πθ, µ,U), f (πθ, µ,U) ≜ Eπθ
µ (U) (4.1)

f (πθ, µ,U) =
∑
x,y,a

U(a, y)πθ(a | x)Pµ(y | x)Pµ(x) (4.2)

≈
T∑
t=1

∑
at

U(at , yt)πθ(at | xt), (xt , yt)
T
t=1 ∼ Pµ. (4.3)
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Classification with stochastic gradient descent

Bayesian inference for Bernoulli distributions

Estimating a coin’s bias

A fair coin comes heads 50% of the time. We want to test an unknown coin, which we
think may not be completely fair.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
prior

Figure: Prior belief ξ about the coin bias θ.
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Classification with stochastic gradient descent

Bayesian inference for Bernoulli distributions

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
prior

Figure: Prior belief ξ about the coin bias θ.

For a sequence of throws xt ∈ {0, 1},

Pθ(x) ∝
∏
t

θxt (1− θ)1−xt = θ#Heads(1− θ)#Tails
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Classification with stochastic gradient descent

Bayesian inference for Bernoulli distributions

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10
prior

likelihood

Figure: Prior belief ξ about the coin bias θ and likelihood of θ for the data.

Say we throw the coin 100 times and obtain 70 heads. Then we plot the likelihood Pθ(x)
of different models.
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Classification with stochastic gradient descent

Bayesian inference for Bernoulli distributions

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10
prior

likelihood

posterior

Figure: Prior belief ξ(θ) about the coin bias θ, likelihood of θ for the data, and posterior belief
ξ(θ | x)

From these, we calculate a posterior distribution over the correct models. This represents
our conclusion given our prior and the data.
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Classification with stochastic gradient descent

Stochastic gradient methdos

Gradient ascent

θi+1 = θi + α∇θg(θi ).

Stochastic gradient ascent

g(θ) =

∫
M

f (θ, µ) dξ(µ)

θi+1 = θi + α∇θf (θi , µi ), µi ∼ ξ.
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Classification with stochastic gradient descent Neural network models

Two views of neural networks

Neural network classification model Pθ(y | xt)

xt yt

Objective: Find the best model for DT .

Neural network classification policy π(at | xt)

xt at

Objective: Find the best policy for U(a,x).

Difference between the two views

We can use standard probabilistic methods for P.

Finding the optimal π is an optimisation problem.
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Classification with stochastic gradient descent Neural network models

Two views of neural networks

Neural network classification model Pθ(y | xt)

xt yt

Objective: Find the best model for DT .

Neural network classification policy π(at | xt)

xt at

Objective: Find the best policy for U(a,x).

Difference between the two views

We can use standard probabilistic methods for P.

Finding the optimal π is an optimisation problem.
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Classification with stochastic gradient descent Neural network models

Linear networks and the perceptron algorithm

x a

θ

Figure: Abstract graphical model for a neural network

Definition 14 (Linear classifier)

Θ =
[
θ1 · · · θC

]
=

θ1,1 · · · θ1,C
...

. . .
...

θN · · · θN,C


πΘ(a | x) = exp

(
θ⊤
a x

)
/
∑
a′

exp
(
θ⊤
a′x

)
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Classification with stochastic gradient descent Neural network models

Linear networks and the perceptron algorithm

x aθ

Figure: Abstract graphical model for a neural network

Definition 14 (Linear classifier)

Θ =
[
θ1 · · · θC

]
=

θ1,1 · · · θ1,C
...

. . .
...

θN · · · θN,C


πΘ(a | x) = exp

(
θ⊤
a x

)
/
∑
a′

exp
(
θ⊤
a′x

)
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Classification with stochastic gradient descent Neural network models

Linear networks and the perceptron algorithm

x1

x2

a1

a2

θ11

θ12

θ211

θ22

Figure: Graphical model for a linear neural network.

Definition 14 (Linear classifier)

Θ =
[
θ1 · · · θC

]
=

θ1,1 · · · θ1,C
...

. . .
...

θN · · · θN,C


πΘ(a | x) = exp

(
θ⊤
a x

)
/
∑
a′

exp
(
θ⊤
a′x

)
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Classification with stochastic gradient descent Neural network models

Linear networks and the perceptron algorithm

x1

x2

a1

a2

θ11

θ12

θ211

θ22

Figure: Graphical model for a linear neural network.

Definition 14 (Linear classifier)

Θ =
[
θ1 · · · θC

]
=

θ1,1 · · · θ1,C
...

. . .
...

θN · · · θN,C


πΘ(a | x) = exp

(
θ⊤
a x

)
/
∑
a′

exp
(
θ⊤
a′x

)
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Classification with stochastic gradient descent Neural network models

Linear networks and the perceptron algorithm

x1

x2

a1

h1(z) = ez1/[ez1 + ez2 ]

a2

h2(z) = ez2/[ez1 + ez2 ]

z1

gθ1(x) = x⊤θ1

z2

gθ2(x) = x⊤θ2

θ11

θ12
θ21

θ22

Figure: Architectural view of a linear neural network.

Definition 14 (Linear classifier)

Θ =
[
θ1 · · · θC

]
=

θ1,1 · · · θ1,C
...

. . .
...

θN · · · θN,C


πΘ(a | x) = exp

(
θ⊤
a x

)
/
∑
a′

exp
(
θ⊤
a′x

)
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Classification with stochastic gradient descent Neural network models

Gradient ascent for a matrix U

max
θ

T∑
t=1

∑
at

U(at , yt)πθ(at | xt) (objective)

∇θ

T∑
t=1

∑
at

U(at , yt)πθ(at | xt) (gradient)

=
T∑
t=1

∑
at

U(at , yt)∇θπθ(at | xt) (4.4)

Chain Rule of Differentiation

f (z), z = g(x),
df

dx
=

df

dg

dg

dx
(scalar version)

∇θπ = ∇gπ∇θg (vector version)
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Classification with stochastic gradient descent Neural network models

Learning outcomes

Understanding

Classification as an optimisation problem.

(Stochastic) gradient methods and the chain rule.

Neural networks as probability models or classification policies.

Linear neural netwoks.

Nonlinear network architectures.

Skills

Using a standard NN class in python.

Reflection

How useful is the ability to have multiple non-linear layers in a neural network.

How rich is the representational power of neural networks?

Is there anything special about neural networks other than their allusions to biology?
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