Experiment design Bandit problems and Markov decision processes

Christos Dimitrakakis

UiO

November 13, 2019

Planning: Heuristics and exact solutions

Bandit problems as MDPs

Contextual Bandits

Case study: experiment design for clinical trials Practical approaches to experiment design

Reinforcement learning

Sequential problems: full observation

Example 1

- ▶ *n* meteorological stations $\{\mu_i \mid i = 1, \ldots, n\}$
- ▶ The *i*-th station gives a rain probability $x_{t,i} = P_{\mu_i}(y_t | y_1, \ldots, y_{t-1})$.
- ▶ Observation $x_t = (x_{t,1},...,x_{t,n})$: the predictions of all stations.
- \triangleright Decision a_t : Guess if it will rain
- \blacktriangleright Outcome y_t : Rain or not rain.
- \blacktriangleright Steps $t = 1, \ldots, T$.

Linear utility function

Reward function is $\rho(y_t, a_t) = \mathbb{I}\{y_t = a_t\}$ simply rewarding correct predictions with utility being

$$
U(y_1, y_2, \ldots, y_T, a_1, \ldots, a_T) = \sum_{t=1}^T \rho(y_t, a_t),
$$

the total number of correct predictions.

The *n* meteorologists problem is simple, as:

- ▶ You always see their predictions, as well as the weather, no matter whether you bike or take the tram (full information)
- ▶ Your actions do not influence their predictions (independence events)

In the remainder, we'll see two settings where decisions are made with either partial information or in a dynamical system. Both of these settings can be formalised with Markov decision processes.

Experimental design and Markov decision processes

The following problems

- ▶ Shortest path problems.
- ▶ Optimal stopping problems.
- ▶ Reinforcement learning problems.
- \blacktriangleright Experiment design (clinical trial) problems
- ▶ Advertising.

can be all formalised as Markov decision processes.

- ▶ Robotics.
- ▶ Economics.
- ▶ Automatic control.
- ▶ Resource allocation

Applications

 \blacktriangleright Efficient optimisation.

- \blacktriangleright Efficient optimisation.
- \blacktriangleright Online advertising.

- \blacktriangleright Efficient optimisation.
- ▶ Online advertising.
- \blacktriangleright Clinical trials.

- \blacktriangleright Efficient optimisation.
- ▶ Online advertising.
- \blacktriangleright Clinical trials.
- \blacktriangleright ROBOT SCIENTIST.

The stochastic *n*-armed bandit problem

Actions and rewards

- ▶ A set of actions $A = \{1, \ldots, n\}$.
- \blacktriangleright Each action gives you a random reward with distribution $\mathbb{P}(r_t | a_t = i)$.
- ▶ The expected reward of the *i*-th arm is $\rho_i \triangleq \mathbb{E}(r_t | a_t = i)$.

Interaction at time *t*

- 1. You choose an action $a_t \in A$.
- 2. You observe a random reward *r^t* drawn from the *i*-th arm.

The utility is the sum of the rewards obtained

$$
U\triangleq\sum_{t}r_{t}.
$$

We must maximise the expected utility, without knowing the values *ρi*.

Definition 2 (Policies)

A policy *π* is an algorithm for taking actions given the observed history $h_t \triangleq a_1, r_1, \ldots, a_t, r_t$

$$
\mathbb{P}^\pi(a_{t+1} \mid h_t)
$$

is the probability of the next action a_{t+1} .

Exercise 1

Why should our action depend on the complete history?

- A The next reward depends on all the actions we have taken.
- B We don't know which arm gives the highest reward.
- C The next reward depends on all the previous rewards.
- D The next reward depends on the complete history.
- E No idea.

Definition 2 (Policies)

A policy *π* is an algorithm for taking actions given the observed history $h_t \triangleq a_1, r_1, \ldots, a_t, r_t$

 $\mathbb{P}^{\pi}(\mathsf{a}_{t+1} | h_t)$

is the probability of the next action a_{t+1} .

Example 3 (The expected utility of a uniformly random policy) If $\mathbb{P}^{\pi}(a_{t+1} | \cdot) = 1/n$ for all *t*, then

Definition 2 (Policies)

A policy *π* is an algorithm for taking actions given the observed history $h_t \triangleq a_1, r_1, \ldots, a_t, r_t$ (*at*+1 *| ht*)

$$
\mathbb{P}^{\pi} (a_{t+1} \mid h_t)
$$

is the probability of the next action *at*+1.

Example 3 (The expected utility of a uniformly random policy) If $\mathbb{P}^{\pi}(a_{t+1} | \cdot) = 1/n$ for all *t*, then

$$
\mathbb{E}^{\pi} U = \mathbb{E}^{\pi} \left(\sum_{t=1}^{T} r_t \right) = \sum_{t=1}^{T} \mathbb{E}^{\pi} r_t = \sum_{t=1}^{T} \sum_{i=1}^{n} \frac{1}{n} \rho_i = \frac{T}{n} \sum_{i=1}^{n} \rho_i
$$

Definition 2 (Policies)

A policy *π* is an algorithm for taking actions given the observed history $h_t \triangleq a_1, r_1, \ldots, a_t, r_t$

$$
\mathbb{P}^{\pi} (a_{t+1} \mid h_t)
$$

is the probability of the next action a_{t+1} .

The expected utility of a general policy

$$
\mathbb{E}^{\pi} U = \mathbb{E}^{\pi} \left(\sum_{t=1}^{T} r_t \right)
$$

Definition 2 (Policies)

A policy *π* is an algorithm for taking actions given the observed history $h_t \triangleq a_1, r_1, \ldots, a_t, r_t$

$$
\mathbb{P}^{\pi} (a_{t+1} \mid h_t)
$$

is the probability of the next action a_{t+1} .

The expected utility of a general policy

$$
\mathbb{E}^{\pi} U = \mathbb{E}^{\pi} \left(\sum_{t=1}^{T} r_t \right) = \sum_{t=1}^{T} \mathbb{E}^{\pi} (r_t)
$$
 (1.1)

Definition 2 (Policies)

A policy *π* is an algorithm for taking actions given the observed history $h_t \triangleq a_1, r_1, \ldots, a_t, r_t$

$$
\mathbb{P}^{\pi} (a_{t+1} \mid h_t)
$$

is the probability of the next action a_{t+1} .

The expected utility of a general policy

$$
\mathbb{E}^{\pi} U = \mathbb{E}^{\pi} \left(\sum_{t=1}^{T} r_t \right) = \sum_{t=1}^{T} \mathbb{E}^{\pi} (r_t)
$$
\n
$$
= \sum_{t=1}^{T} \sum_{a_t \in \mathcal{A}} \mathbb{E} (r_t | a_t) \sum_{h_{t-1}} \mathbb{P}^{\pi} (a_t | h_{t-1}) \mathbb{P}^{\pi} (h_{t-1})
$$
\n(1.1)

A simple heuristic for the unknown reward case

Say you keep a running average of the reward obtained by each arm

$$
\hat{\theta}_{t,i}=R_{t,i}/n_{t,i}
$$

- \blacktriangleright $n_{t,i}$ the number of times you played arm *i*
- \blacktriangleright $R_{t,i}$ the total reward received from *i*.

Whenever you play $a_t = i$:

$$
R_{t+1,i} = R_{t,i} + r_t, \qquad n_{t+1,i} = n_{t,i} + 1.
$$

Greedy policy:

$$
a_t = \arg\max_i \hat{\theta}_{t,i}.
$$

What should the initial values $n_{0,i}$, $R_{0,i}$ be?

Bernoulli bandits

Decision-theoretic approach

- ▶ Assume *r^t | a^t* = *i ∼ P^θⁱ* , with *θⁱ ∈ Θ*.
- ▶ Define prior belief *ξ*¹ on *Θ*.
- ▶ For each step *t*, find a policy *π* selecting action *a^t | ξ^t ∼ π*(*a | ξt*) to

$$
\max_{\pi} \mathbb{E}_{\xi_t}^{\pi}(U_t) = \max_{\pi} \mathbb{E}_{\xi_t}^{\pi} \sum_{a_t} \left(\sum_{k=1}^{T-t} r_{t+k} \middle| a_t \right) \pi(a_t \mid \xi_t).
$$

- \triangleright Obtain reward r_t .
- \blacktriangleright Calculate the next belief

$$
\xi_{t+1} = \xi_t(\cdot \mid a_t, r_t)
$$

How can we implement this?

Bayesian inference on Bernoulli bandits

- ▶ Likelihood: P*θ*(*r^t* = 1) = *θ*.
- **►** Prior: $\xi(\theta) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1}$ (i.e. *Beta*(*α, β*)).

Figure: Prior belief *ξ* about the mean reward *θ*.

Bayesian inference on Bernoulli bandits

For a sequence $r = r_1, \ldots, r_n$, $\Rightarrow P_\theta(r) \propto \theta_i^{\#1(r)} (1-\theta_i)^{\#0(r)}$

Figure: Prior belief *ξ* about *θ* and likelihood of *θ* for 100 plays with 70 1s.

Bayesian inference on Bernoulli bandits

Posterior: $Beta(\alpha + #1(r), \beta + #0(r))$.

Figure: Prior belief *ξ*(*θ*) about *θ*, likelihood of *θ* for the data *r*, and posterior belief *ξ*(*θ | r*)

Bernoulli example.

Consider *n* Bernoulli distributions with unknown parameters *θⁱ* (*i* = 1*, . . . , n*) such that

$$
r_t | a_t = i \sim \text{Bernoulli}(\theta_i), \qquad \mathbb{E}(r_t | a_t = i) = \theta_i. \qquad (1.2)
$$

Our belief for each parameter θ_i is $Beta(\alpha_i, \beta_i)$, with density $f(\theta | \alpha_i, \beta_i)$ so that

$$
\xi(\theta_1,\ldots,\theta_n)=\prod_{i=1}^n f(\theta_i\mid\alpha_i,\beta_i).
$$
 (a priori independent)

$$
N_{t,i} \triangleq \sum_{k=1}^t \mathbb{I} \left\{ a_k = i \right\}, \qquad \hat{r}_{t,i} \triangleq \frac{1}{N_{t,i}} \sum_{k=1}^t r_t \mathbb{I} \left\{ a_k = i \right\}
$$

Then, the posterior distribution for the parameter of arm *i* is

$$
\xi_t = \mathcal{B}eta(\alpha_i^t, \beta_i^t), \qquad \alpha_i^t = \alpha_i + N_{t,i} \hat{r}_{t,i}, \; \beta_i^t = \beta_i N_{t,i} (1 - \hat{r}_{t,i})).
$$

Since $r_t \in \{0,1\}$ there are $O((2n)^T)$ possible belief states for a T -step bandit problem.

Belief states

- ▶ The state of the decision-theoretic bandit problem is the state of our belief.
- \blacktriangleright A sufficient statistic is the number of plays and total rewards.
- **►** Our belief state ξ *t* is described by the priors α , β and the vectors

$$
N_t = (N_{t,1}, \dots, N_{t,i})
$$
\n
$$
\hat{r}_t = (\hat{r}_{t,1}, \dots, \hat{r}_{t,i}).
$$
\n(1.3)

$$
= (r_{t,1},\ldots,r_{t,i}).
$$

 \blacktriangleright The next-state probabilities are defined as:

$$
\mathbb{P}_{\xi_t}(r_t=1\mid a_t=i)=\frac{\alpha_i^t}{\alpha_i^t+\beta_i^t}
$$

as *ξt*+1 is a deterministic function of *ξt*, *r^t* and *a^t*

▶ Optimising this results in a Markov decision process.

Markov process

$$
(s_{t-1} \rightarrow s_t \rightarrow s_{t+1})
$$

Definition 3 (Markov Process – or Markov Chain)

The sequence $\{s_t | t = 1, ...\}$ of random variables $s_t : \Theta \to \mathcal{S}$ is a Markov process if $\mathbb{P}(s \mid s, s) = \mathbb{P}(s \mid s)$. (1.5)

$$
\mathbb{P}(s_{t+1} | s_t, \ldots, s_1) = \mathbb{P}(s_{t+1} | s_t).
$$
 (1.5)

- \blacktriangleright *s_t* is state of the Markov process at time *t*.
- \blacktriangleright $\mathbb{P}(s_{t+1} | s_t)$ is the transition kernel of the process.

The state of an algorithm

Observe that the *α, β* form a Markov process. They also summarise our belief about which arm is the best.

Markov decision processes

In a Markov decision process (MDP), the state *s* includes all the information we need to make predictions.

Markov decision processes (MDP).

At each time step *t*:

- ▶ We observe state *s^t ∈ S*.
- ▶ We take action $a_t \in \mathcal{A}$.
- ▶ We receive a reward *r^t ∈* R. *a^t*

Markov property of the reward and state distribution

 $\mathbb{P}_{\mu}(s_{t+1} | s_t, a_t)$ (Transition distribution) $\mathbb{P}_{\mu}(r_t | s_t, a_t)$ (Reward distribution)

 s_t s_{t+1}

rt

Stochastic shortest path problem with a pit

Properties

- ▶ *T → ∞*.
- ▶ *r^t* = *−*1, but *r^t* = 0 at X and *−*100 at O and the problem ends.
- ▶ $\mathbb{P}_{\mu}(s_{t+1} = X | s_t = X) = 1.$
- \blacktriangleright $\mathcal{A} = \{ \text{North}, \text{South}, \text{East}, \text{West} \}$
- ▶ Moves to a random direction with probability *ω*. Walls block.

Figure: The basic bandit MDP. The decision maker selects *at*, while the parameter *θ* of the process is hidden. It then obtains reward r_t . The process repeats for $t = 1, \ldots, T$.

Figure: The decision-theoretic bandit MDP. While *θ* is not known, at each time step *t* we maintain a belief *ξt* on *Θ*. The reward distribution is then defined through our belief.

Backwards induction (Dynamic programming)

for $n = 1, 2, \ldots$ and $s \in S$ **do**

$$
\mathbb{E}(U_t \mid \xi_t) = \max_{a_t \in \mathcal{A}} \mathbb{E}(r_t \mid \xi_t, a_t) + \sum_{\xi_{t+1}} \mathbb{P}(\xi_{t+1} \mid \xi_t, a_t) \mathbb{E}(U_{t+1} \mid \xi_{t+1})
$$

end for

Backwards induction (Dynamic programming)

for $n = 1, 2, \ldots$ and $s \in S$ **do**

$$
\mathbb{E}(U_t \mid \xi_t) = \max_{a_t \in \mathcal{A}} \mathbb{E}(r_t \mid \xi_t, a_t) + \sum_{\xi_{t+1}} \mathbb{P}(\xi_{t+1} \mid \xi_t, a_t) \mathbb{E}(U_{t+1} \mid \xi_{t+1})
$$

end for

Heuristic algorithms for the *n*-armed bandit problem

Algorithm 1 UCB1

Input *A* $\hat{\theta}_{0,i} = 1, \forall i$ **for** $t = 1, \ldots$ **do** $a_t = \arg \max_{i \in A} \left\{ \hat{\theta}_{t-1,i} + \sqrt{\frac{2 \ln t}{N_{t-1}}} \right\}$ *^Nt−*1*,ⁱ* λ *r*_{*t*} \sim *P*^{θ}(*r | a*_{*t*}) // play action and get reward // update model $N_{t,a_t} = N_{t-1,a_t} + 1$ $\hat{\theta}_{t, a_t} = [N_{t-1, a_t} \theta_{t-1, a_t} + r_t]/N_{t, a_t}$ $\forall i \neq a_t$, $N_{t,i} = N_{t-1,i}$, $\hat{\theta}_{t,i} = \hat{\theta}_{t-1,i}$ **end for**

Algorithm 2 Thompson sampling

Input A, ξ_0 for $t = 1, \ldots$ do $\hat{\theta} \sim \xi_{t-1}(\theta)$ $a_t \in \arg \max_a \mathbb{E}_{\hat{\theta}}[r_t \mid a_t = a].$ *r*_{*t*} \sim *P* $_{\theta}$ (*r* | *a*_t) // play action and get reward // update model *ξt*(*θ*) = *ξ^t−*¹(*θ | at,rt*). **end for**

Example 4 (Clinical trials)

Consider an example where we have some information *x^t* about an individual patient *t*, and we wish to administer a treatment *at*. For whichever treatment we administer, we can observe an outcome *yt*. Our goal is to maximise expected utility.

Definition 5 (The contextual bandit problem.)

At time *t*,

- ▶ We observe $x_t \in \mathcal{X}$.
- ▶ We play $a_t \in \mathcal{A}$.
- ▶ We obtain r_t $∈ \mathbb{R}$ with r_t $| a_t = a, x_t = x \sim P_\theta(r | a, x)$.

Example 6 (The linear bandit problem)

- \blacktriangleright $\mathcal{A} = [n], \mathcal{X} = \mathbb{R}^k, \ \theta = (\theta_1, \ldots, \theta_n), \ \theta_i \in \mathbb{R}^k, \ r \in \mathbb{R}.$
- ▶ *r ∼ N* (*θ ⊤ ^a x*)*,* 1)

Example 7 (A clinical trial example)

- \blacktriangleright $\mathcal{A} = [n], \mathcal{X} = \mathbb{R}^k, \ \theta = (\theta_1, \dots, \theta_n), \ \theta_i \in \mathbb{R}^k, \ y \in \{0, 1\}.$
- ▶ *y ∼ Bernoulli*(1*/*(1 + *exp*[*−*(*θ ⊤ ^a x*) 2]).
- \blacktriangleright $r = U(a, y)$.

Example 8 (One-stage problems)

- ▶ Initial belief *ξ*⁰
- \blacktriangleright Side information x
- ▶ Simultaneously takes actions *a*.
- ▶ Observes outcomes *y*.

$$
\mathbb{E}_{\xi_0}^{\pi}(U \mid x) = \sum_{x,y} \mathbb{P}_{\xi_0}(y \mid a, x) \pi(a \mid x) \underbrace{\mathbb{E}_{\xi_0}^{\pi}(U \mid x, a, y)}_{\text{post-hoc value}}
$$
(4.1)

Example 8 (One-stage problems)

- ▶ Initial belief *ξ*⁰
- ▶ Side information *x*
- ▶ Simultaneously takes actions *a*.
- ▶ Observes outcomes *y*.

Definition 9 (Expected information gain)

$$
\mathbb{E}_{\xi_0}^{\pi}(\mathbb{D}(\xi_1||\xi_0) \mid \boldsymbol{x}) = \sum_{\boldsymbol{x}, \boldsymbol{y}} \mathbb{P}_{\xi_0}(\boldsymbol{y} \mid \boldsymbol{a}, \boldsymbol{x}) \pi(\boldsymbol{a} \mid \boldsymbol{x}) \mathbb{D}(\xi_0(\cdot \mid \boldsymbol{x}, \boldsymbol{a}, \boldsymbol{y}) || \xi_0) \qquad (4.1)
$$

Example 8 (One-stage problems)

- ▶ Initial belief *ξ*⁰
- ▶ Side information *x*
- ▶ Simultaneously takes actions *a*.
- ▶ Observes outcomes *y*.

Definition 9 (Expected utility of final policy)

$$
\mathbb{E}_{\xi_0}^{\pi} \left(\max_{\pi_1} \mathbb{E}_{\xi_1}^{\pi_1} \rho \bigg| \mathbf{x} \right) = \sum_{\mathbf{x}, \mathbf{y}} \mathbb{P}_{\xi_0}(\mathbf{y} \mid \mathbf{a}, \mathbf{x}) \pi(\mathbf{a} \mid \mathbf{x}) \max_{\pi_1} \mathbb{E}_{\xi_0}^{\pi_1}(\rho \mid \mathbf{a}, \mathbf{x}, \mathbf{y}) \quad (4.1)
$$

$$
\mathbb{E}_{\xi_0}^{\pi_1}(\rho \mid \mathbf{a}, \mathbf{x}, \mathbf{y}) = \sum_{\mathbf{a}, \mathbf{x}, \mathbf{y}} \rho(\mathbf{a}, \mathbf{y}) \mathbb{P}_{\xi_1}(\mathbf{y} \mid \mathbf{x}, \mathbf{a}) \pi_1(\mathbf{a} \mid \mathbf{x}) \mathbb{P}_{\xi_1}(\mathbf{x}) \quad (4.2)
$$

Experiment design for a one-stage problem

- \blacktriangleright Select some model $\mathbb P$ for generating data.
- **►** Select an inference and/or decision making algorithm λ for the task.
- ▶ Select a performance measure *U*.
- **►** Generate data *D* from $\mathbb P$ and measure the performance of λ on *D*.

Learning to act in an unknown world, by interaction and reinforcement.

Learning to act in an unknown world, by interaction and reinforcement.

Expected total reward . . . when using policy *π* in *µ*:

U(*µ, π*)

Learning to act in an unknown world, by interaction and reinforcement.

Expected total reward

. . . when using policy *π* in *µ*:

U(*µ, π*)

Can't we just max_{*π*} $U(\mu, \pi)$?

Expected total reward . . . when using policy *π* in *µ*: *U*(*µ, π*)

Learning to act in an unknown world, by interaction and reinforcement.

Knowing *µ* contradicts the problem definition

Solving a given MDP

Markov decision processes (MDP).

At each time step *t*:

- ▶ We observe state *s^t ∈ S*.
- ▶ We take action a_t \in A.
- ▶ We receive a reward $r_t \in \mathbb{R}$ with $r_t \sim P_\mu(r_t \mid s_t, a_t)$
- ▶ We go to the next state *st*+1 *∈ S* ${\rm with} \ s_{t+1} \sim P_\mu(s_{t+1} \mid s_t, a_t)$

Backwards induction (Value iteration)

for $n = 1, 2, \ldots$ and $s \in S$ do

$$
\mathbb{E}_{\mu}^{\pi^*}(U_t | s_t) = \max_{a_t \in \mathcal{A}} \mathbb{E}_{\mu}(r_t | s_t, a_t) + \sum_{s_{t+1}} \mathbb{P}_{\mu}(s_{t+1} | s_t, a_t) \mathbb{E}_{\mu}^{\pi^*}(U_{t+1} | s_{t+1})
$$

The discounted setting

$$
U_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k}, \qquad \gamma \in (0,1)
$$

Value functions

$$
V_{\mu}^{\pi}(s) \triangleq \mathbb{E}(U_t | s_t = s), \qquad Q_{\mu}^{\pi}(s, a) \triangleq \mathbb{E}(U_t | s_t = s, a_t = a)
$$

The discounted setting

$$
U_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k}, \qquad \gamma \in (0,1)
$$

Value functions

 $V_{\mu}^{\pi}(s) \triangleq \mathbb{E}(U_t | s_t = s), \qquad Q_{\mu}^{\pi}(s, a) \triangleq \mathbb{E}(U_t | s_t = s, a_t = a)$

Bellman equation

$$
\begin{aligned} V^{\pi}_{\mu}(\mathsf{s}) &= \mathbb{E}^{\pi}_{\mu} (r_{t} \mid \mathsf{s}_{t} = \mathsf{s}) + \gamma \sum_{s_{t+1}} V^{\pi}_{\mu} (\mathsf{s}_{t+1}) \, \mathbb{P}^{\pi}_{\mu} (\mathsf{s}_{t+1} \mid \mathsf{s}_{t}) \\ Q^{\pi}_{\mu}(\mathsf{s}, a) &= \mathbb{E}_{\mu} (r_{t} \mid \mathsf{s}_{t} = \mathsf{s}, a_{t} = a) + \gamma \sum_{s_{t+1}} Q^{\pi}_{\mu} (\mathsf{s}_{t+1}, \pi(\mathsf{s}_{t+1})) P_{\mu} (\mathsf{s}_{t+1} \mid \mathsf{s}_{t}, a_{t} = a) \end{aligned}
$$

The discounted setting

$$
U_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k}, \qquad \gamma \in (0,1)
$$

Value functions

$$
V_{\mu}^{\pi}(s) \triangleq \mathbb{E}(U_t | s_t = s), \qquad Q_{\mu}^{\pi}(s, a) \triangleq \mathbb{E}(U_t | s_t = s, a_t = a)
$$

Bellman equation

$$
\begin{aligned} V^{\pi}_{\mu}(s) &= \mathbb{E}^{\pi}_{\mu} (r_t \mid s_t = s) + \gamma \sum_{s_{t+1}} V^{\pi}_{\mu} (s_{t+1}) \, \mathbb{P}^{\pi}_{\mu} (s_{t+1} \mid s_t) \\ Q^{\pi}_{\mu}(s,a) &= \mathbb{E}_{\mu} (r_t \mid s_t = s, a_t = a) + \gamma \sum_{s_{t+1}} Q^{\pi}_{\mu} (s_{t+1}, \pi(s_{t+1})) P_{\mu} (s_{t+1} \mid s_t, a_t = a) \end{aligned}
$$

Optimality condition

$$
V_\mu^*(\mathsf{s})\geq V_\mu^\pi(\mathsf{s})\forall\mathsf{s}
$$

Q-learning and induction

Q-Value iteration

$$
Q_{n+1}(s, a) = r(s, a) + \gamma \sum_{s_{t+1}} P_{\mu}(s_{t+1} | s_t, a_t = a) \max_{a'} Q_n(s_{t+1}, a')
$$

Q-learning

$$
\hat{R}_t = r_t + \gamma \max_{a'} \hat{Q}_t(s_{t+1}, a')
$$

$$
\hat{Q}_{t+1}(s, a) = (1 - \alpha) \hat{Q}_n(s, a) + \alpha(\hat{R}_t)
$$

Summary

Markov decision processes

- \blacktriangleright Formalise experiment design
- ▶ Formalise environments in reinforcement learning

Solving MDPs

- ▶ Discrete case: dynamic programming.
- \blacktriangleright General case: approximations, gradient methods, etc.

Reinforcement learning and experiment design

- ▶ Formal but intractable Bayesian solution.
- ▶ Convergent algorithms in simple settings.