
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Experiment design
Bandit problems and Markov decision processes

Christos Dimitrakakis

UiO

November 13, 2019

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bandit problems
Planning: Heuristics and exact solutions

Bandit problems as MDPs

Contextual Bandits

Case study: experiment design for clinical trials
Practical approaches to experiment design

Reinforcement learning

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sequential problems: full observation

Example 1

▶ n meteorological stations {µi | i = 1, . . . , n}
▶ The i-th station gives a rain probability xt,i = Pµi (yt | y1, . . . , yt−1).

▶ Observation xt = (xt,1, . . . , xt,n): the predictions of all stations.

▶ Decision at : Guess if it will rain

▶ Outcome yt : Rain or not rain.

▶ Steps t = 1, . . . ,T .

Linear utility function

Reward function is ρ(yt , at) = I {yt = at} simply rewarding correct predictions
with utility being

U(y1, y2, . . . , yT , a1, . . . , aT) =
T∑
t=1

ρ(yt , at),

the total number of correct predictions.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The n meteorologists problem is simple, as:

▶ You always see their predictions, as well as the weather, no matter
whether you bike or take the tram (full information)

▶ Your actions do not influence their predictions (independence events)

In the remainder, we’ll see two settings where decisions are made with either
partial information or in a dynamical system. Both of these settings can be
formalised with Markov decision processes.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Experimental design and Markov decision processes

The following problems

▶ Shortest path problems.

▶ Optimal stopping problems.

▶ Reinforcement learning problems.

▶ Experiment design (clinical trial) problems

▶ Advertising.

can be all formalised as Markov decision processes.

Applications

▶ Robotics.

▶ Economics.

▶ Automatic control.

▶ Resource allocation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bandit problems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bandit problems

Applications

▶ Efficient optimisation.

▶ Online advertising.

▶ Clinical trials.

▶ Robot scientist.

x

f (x)

f (x) = sincx

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bandit problems

Applications

▶ Efficient optimisation.

▶ Online advertising.

▶ Clinical trials.

▶ Robot scientist.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bandit problems

Applications

▶ Efficient optimisation.

▶ Online advertising.

▶ Clinical trials.

▶ Robot scientist.

Ultrasound

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bandit problems

Applications

▶ Efficient optimisation.

▶ Online advertising.

▶ Clinical trials.

▶ Robot scientist.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The stochastic n-armed bandit problem

Actions and rewards

▶ A set of actions A = {1, . . . , n}.
▶ Each action gives you a random reward with distribution P(rt | at = i).

▶ The expected reward of the i-th arm is ρi ≜ E(rt | at = i).

Interaction at time t

1. You choose an action at ∈ A.

2. You observe a random reward rt drawn from the i-th arm.

The utility is the sum of the rewards obtained

U ≜
∑
t

rt .

We must maximise the expected utility, without knowing the values ρi .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Policy

Definition 2 (Policies)

A policy π is an algorithm for taking actions given the observed history
ht ≜ a1, r1, . . . , at , rt

Pπ(at+1 | ht)

is the probability of the next action at+1.

Exercise 1
Why should our action depend on the complete history?

A The next reward depends on all the actions we have taken.

B We don’t know which arm gives the highest reward.

C The next reward depends on all the previous rewards.

D The next reward depends on the complete history.

E No idea.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Policy

Definition 2 (Policies)

A policy π is an algorithm for taking actions given the observed history
ht ≜ a1, r1, . . . , at , rt

Pπ(at+1 | ht)

is the probability of the next action at+1.

Example 3 (The expected utility of a uniformly random policy)

If Pπ(at+1 | ·) = 1/n for all t, then

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Policy

Definition 2 (Policies)

A policy π is an algorithm for taking actions given the observed history
ht ≜ a1, r1, . . . , at , rt

Pπ(at+1 | ht)

is the probability of the next action at+1.

Example 3 (The expected utility of a uniformly random policy)

If Pπ(at+1 | ·) = 1/n for all t, then

Eπ U = Eπ

(
T∑
t=1

rt

)
=

T∑
t=1

Eπ rt =
T∑
t=1

n∑
i=1

1

n
ρi =

T

n

n∑
i=1

ρi

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Policy

Definition 2 (Policies)

A policy π is an algorithm for taking actions given the observed history
ht ≜ a1, r1, . . . , at , rt

Pπ(at+1 | ht)

is the probability of the next action at+1.

The expected utility of a general policy

Eπ U = Eπ

(
T∑
t=1

rt

)

=
T∑
t=1

Eπ(rt) (1.1)

=
T∑
t=1

∑
at∈A

E(rt | at)
∑
ht−1

Pπ(at | ht−1)Pπ(ht−1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Policy

Definition 2 (Policies)

A policy π is an algorithm for taking actions given the observed history
ht ≜ a1, r1, . . . , at , rt

Pπ(at+1 | ht)

is the probability of the next action at+1.

The expected utility of a general policy

Eπ U = Eπ

(
T∑
t=1

rt

)
=

T∑
t=1

Eπ(rt) (1.1)

=
T∑
t=1

∑
at∈A

E(rt | at)
∑
ht−1

Pπ(at | ht−1)Pπ(ht−1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Policy

Definition 2 (Policies)

A policy π is an algorithm for taking actions given the observed history
ht ≜ a1, r1, . . . , at , rt

Pπ(at+1 | ht)

is the probability of the next action at+1.

The expected utility of a general policy

Eπ U = Eπ

(
T∑
t=1

rt

)
=

T∑
t=1

Eπ(rt) (1.1)

=
T∑
t=1

∑
at∈A

E(rt | at)
∑
ht−1

Pπ(at | ht−1)Pπ(ht−1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A simple heuristic for the unknown reward case

Say you keep a running average of the reward obtained by each arm

θ̂t,i = Rt,i/nt,i

▶ nt,i the number of times you played arm i

▶ Rt,i the total reward received from i .

Whenever you play at = i :

Rt+1,i = Rt,i + rt , nt+1,i = nt,i + 1.

Greedy policy:
at = argmax

i
θ̂t,i .

What should the initial values n0,i ,R0,i be?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bernoulli bandits

Decision-theoretic approach

▶ Assume rt | at = i ∼ Pθi , with θi ∈ Θ.

▶ Define prior belief ξ1 on Θ.

▶ For each step t, find a policy π selecting action at | ξt ∼ π(a | ξt) to

max
π

Eπ
ξt (Ut) = max

π
Eπ

ξt

∑
at

(
T−t∑
k=1

rt+k

∣∣∣∣∣ at
)
π(at | ξt).

▶ Obtain reward rt .

▶ Calculate the next belief

ξt+1 = ξt(· | at , rt)

How can we implement this?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bayesian inference on Bernoulli bandits

▶ Likelihood: Pθ(rt = 1) = θ.

▶ Prior: ξ(θ) ∝ θα−1(1− θ)β−1 (i.e. Beta(α, β)).

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
prior

Figure: Prior belief ξ about the mean reward θ.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bayesian inference on Bernoulli bandits

For a sequence r = r1, . . . , rn, ⇒ Pθ(r) ∝ θ
#1(r)
i (1− θi)

#0(r)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10
prior

likelihood

Figure: Prior belief ξ about θ and likelihood of θ for 100 plays with 70 1s.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bayesian inference on Bernoulli bandits

Posterior: Beta(α+#1(r), β +#0(r)).

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10
prior

likelihood

posterior

Figure: Prior belief ξ(θ) about θ, likelihood of θ for the data r , and posterior belief
ξ(θ | r)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bernoulli example.

Consider n Bernoulli distributions with unknown parameters θi (i = 1, . . . , n)
such that

rt | at = i ∼ Bernoulli(θi), E(rt | at = i) = θi . (1.2)

Our belief for each parameter θi is Beta(αi , βi), with density f (θ | αi , βi) so
that

ξ(θ1, . . . , θn) =
n∏

i=1

f (θi | αi , βi). (a priori independent)

Nt,i ≜
t∑

k=1

I {ak = i} , r̂t,i ≜
1

Nt,i

t∑
k=1

rt I {ak = i}

Then, the posterior distribution for the parameter of arm i is

ξt = Beta(αt
i , β

t
i), αt

i = αi + Nt,i r̂t,i , βt
i = βiNt,i (1− r̂t,i)).

Since rt ∈ {0, 1} there are O((2n)T) possible belief states for a T -step bandit
problem.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Belief states

▶ The state of the decision-theoretic bandit problem is the state of our belief.

▶ A sufficient statistic is the number of plays and total rewards.

▶ Our belief state ξt is described by the priors α, β and the vectors

Nt = (Nt,1, . . . ,Nt,i) (1.3)

r̂t = (r̂t,1, . . . , r̂t,i). (1.4)

▶ The next-state probabilities are defined as:

Pξt (rt = 1 | at = i) =
αt
i

αt
i + βt

i

as ξt+1 is a deterministic function of ξt , rt and at

▶ Optimising this results in a Markov decision process.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Markov process

st−1 st st+1

Definition 3 (Markov Process – or Markov Chain)

The sequence {st | t = 1, . . .} of random variables st : Θ → S is a Markov
process if

P(st+1 | st , . . . , s1) = P(st+1 | st). (1.5)

▶ st is state of the Markov process at time t.

▶ P(st+1 | st) is the transition kernel of the process.

The state of an algorithm

Observe that the α, β form a Markov process. They also summarise our belief
about which arm is the best.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Markov decision processes

In a Markov decision process (MDP), the state s includes all the information
we need to make predictions.

Markov decision processes (MDP).

At each time step t:

▶ We observe state st ∈ S.
▶ We take action at ∈ A.

▶ We receive a reward rt ∈ R. at

st st+1

rt

Markov property of the reward and state distribution

Pµ(st+1 | st , at) (Transition distribution)

Pµ(rt | st , at) (Reward distribution)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Stochastic shortest path problem with a pit

O X

Properties

▶ T → ∞.

▶ rt = −1, but rt = 0 at X and −100 at O
and the problem ends.

▶ Pµ(st+1 = X |st = X) = 1.

▶ A = {North, South,East,West}
▶ Moves to a random direction with

probability ω. Walls block.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

at

θ

rt

Figure: The basic bandit MDP. The decision maker selects at , while the parameter θ of
the process is hidden. It then obtains reward rt . The process repeats for t = 1, . . . ,T .

ξt

at

rt

ξt+1

at+1

rt+1

Figure: The decision-theoretic bandit MDP. While θ is not known, at each time step t
we maintain a belief ξt on Θ. The reward distribution is then defined through our
belief.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Backwards induction (Dynamic programming)

for n = 1, 2, . . . and s ∈ S do

E(Ut | ξt) = max
at∈A

E(rt | ξt , at) +
∑
ξt+1

P(ξt+1 | ξt , at)E(Ut+1 | ξt+1)

end for

st at rt st+1

?

0.7

1.4

1

0

1

0

?

?

0.7

0.3

0.4

0.6

Exercise 1
What is the value vt(st) of the
first state?
A 1.4

B 1.05

C 1.0

D 0.7

E 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Backwards induction (Dynamic programming)

for n = 1, 2, . . . and s ∈ S do

E(Ut | ξt) = max
at∈A

E(rt | ξt , at) +
∑
ξt+1

P(ξt+1 | ξt , at)E(Ut+1 | ξt+1)

end for

st at rt st+1

1.4

0.7

1.4

1

0

1

0

0

1

0.7

0.3

0.4

0.6

Exercise 1
What is the value vt(st) of the
first state?
A 1.4

B 1.05

C 1.0

D 0.7

E 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Heuristic algorithms for the n-armed bandit problem

Algorithm 1 UCB1

Input A
θ̂0,i = 1, ∀i
for t = 1, . . . do

at = argmaxi∈A

{
θ̂t−1,i +

√
2 ln t

Nt−1,i

}
rt ∼ Pθ(r | at) // play action and get reward // update model

Nt,at = Nt−1,at + 1
θ̂t,at = [Nt−1,at θt−1,at + rt]/Nt,at

∀i ̸= at , Nt,i = Nt−1,i , θ̂t,i = θ̂t−1,i

end for

Algorithm 2 Thompson sampling

Input A, ξ0
for t = 1, . . . do

θ̂ ∼ ξt−1(θ)
at ∈ argmaxa Eθ̂[rt | at = a].
rt ∼ Pθ(r | at) // play action and get reward // update model

ξt(θ) = ξt−1(θ | at , rt).
end for

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Example 4 (Clinical trials)

Consider an example where we have some information xt about an individual
patient t, and we wish to administer a treatment at . For whichever treatment
we administer, we can observe an outcome yt . Our goal is to maximise
expected utility.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Definition 5 (The contextual bandit problem.)

At time t,

▶ We observe xt ∈ X .

▶ We play at ∈ A.

▶ We obtain rt ∈ R with rt | at = a, xt = x ∼ Pθ(r | a, x).

Example 6 (The linear bandit problem)

▶ A = [n], X = Rk , θ = (θ1, . . . , θn), θi ∈ Rk , r ∈ R.
▶ r ∼ N (θ⊤a x), 1)

Example 7 (A clinical trial example)

▶ A = [n], X = Rk , θ = (θ1, . . . , θn), θi ∈ Rk , y ∈ {0, 1}.
▶ y ∼ Bernoulli(1/(1 + exp[−(θ⊤a x)2]).

▶ r = U(a, y).

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Example 8 (One-stage problems)

▶ Initial belief ξ0

▶ Side information x

▶ Simultaneously takes actions a.

▶ Observes outcomes y.

Eπ
ξ0 (U | x) =

∑
x,y

Pξ0(y | a,x)π(a | x)Eπ
ξ0(U | x,a,y)︸ ︷︷ ︸
post-hoc value

(4.1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Example 8 (One-stage problems)

▶ Initial belief ξ0

▶ Side information x

▶ Simultaneously takes actions a.

▶ Observes outcomes y.

Definition 9 (Expected information gain)

Eπ
ξ0 (D (ξ1∥ξ0) | x) =

∑
x,y

Pξ0(y | a,x)π(a | x)D (ξ0(· | x,a,y)∥ξ0) (4.1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Example 8 (One-stage problems)

▶ Initial belief ξ0

▶ Side information x

▶ Simultaneously takes actions a.

▶ Observes outcomes y.

Definition 9 (Expected utility of final policy)

Eπ
ξ0

(
max
π1

Eπ1
ξ1

ρ

∣∣∣∣x) =
∑
x,y

Pξ0(y | a,x)π(a | x)max
π1

Eπ1
ξ0
(ρ | a,x,y) (4.1)

Eπ1
ξ0
(ρ | a,x,y) =

∑
a,x,y

ρ(a, y)Pξ1(y | x , a)π1(a | x)Pξ1(x) (4.2)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Experiment design for a one-stage problem

▶ Select some model P for generating data.

▶ Select an inference and/or decision making algorithm λ for the task.

▶ Select a performance measure U.

▶ Generate data D from P and measure the performance of λ on D.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The reinforcement learning problem

Learning to act in an unknown world, by interaction and reinforcement.

Expected total reward

. . . when using policy π in µ:

U(µ, π)

xt

at

rt

µ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The reinforcement learning problem

Learning to act in an unknown world, by interaction and reinforcement.

Expected total reward

. . . when using policy π in µ:

U(µ, π)

xt

at

rt

µ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The reinforcement learning problem

Learning to act in an unknown world, by interaction and reinforcement.

Expected total reward

. . . when using policy π in µ:

U(µ, π)

xt

at

rt

µ

Can’t we just maxπ U(µ, π)?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The reinforcement learning problem

Learning to act in an unknown world, by interaction and reinforcement.

Expected total reward

. . . when using policy π in µ:

U(µ, π)

xt

at

rt

µ

Knowing µ contradicts the problem definition

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Solving a given MDP

Markov decision processes (MDP).

At each time step t:

▶ We observe state st ∈ S.
▶ We take action at ∈ A.

▶ We receive a reward rt ∈ R with
rt ∼ Pµ(rt | st , at)

▶ We go to the next state st+1 ∈ S
with st+1 ∼ Pµ(st+1 | st , at)

at

st st+1

rt

Backwards induction (Value iteration)

for n = 1, 2, . . . and s ∈ S do

Eπ∗
µ (Ut | st) = max

at∈A
Eµ(rt | st , at) +

∑
st+1

Pµ(st+1 | st , at)Eπ∗
µ (Ut+1 | st+1)

end for

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The discounted setting

Ut =
∞∑
k=0

γk rt+k , γ ∈ (0, 1)

Value functions

V π
µ (s) ≜ E(Ut | st = s), Qπ

µ (s, a) ≜ E(Ut | st = s, at = a)

Bellman equation

V π
µ (s) = Eπ

µ(rt | st = s) + γ
∑
st+1

V π
µ (st+1)Pπ

µ(st+1 | st)

Qπ
µ (s, a) = Eµ(rt | st = s, at = a) + γ

∑
st+1

Qπ
µ (st+1, π(st+1))Pµ(st+1 | st , at = a)

Optimality condition

V ∗
µ (s) ≥ V π

µ (s)∀s

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The discounted setting

Ut =
∞∑
k=0

γk rt+k , γ ∈ (0, 1)

Value functions

V π
µ (s) ≜ E(Ut | st = s), Qπ

µ (s, a) ≜ E(Ut | st = s, at = a)

Bellman equation

V π
µ (s) = Eπ

µ(rt | st = s) + γ
∑
st+1

V π
µ (st+1)Pπ

µ(st+1 | st)

Qπ
µ (s, a) = Eµ(rt | st = s, at = a) + γ

∑
st+1

Qπ
µ (st+1, π(st+1))Pµ(st+1 | st , at = a)

Optimality condition

V ∗
µ (s) ≥ V π

µ (s)∀s

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The discounted setting

Ut =
∞∑
k=0

γk rt+k , γ ∈ (0, 1)

Value functions

V π
µ (s) ≜ E(Ut | st = s), Qπ

µ (s, a) ≜ E(Ut | st = s, at = a)

Bellman equation

V π
µ (s) = Eπ

µ(rt | st = s) + γ
∑
st+1

V π
µ (st+1)Pπ

µ(st+1 | st)

Qπ
µ (s, a) = Eµ(rt | st = s, at = a) + γ

∑
st+1

Qπ
µ (st+1, π(st+1))Pµ(st+1 | st , at = a)

Optimality condition

V ∗
µ (s) ≥ V π

µ (s)∀s

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Q-learning and induction

Q-Value iteration

Qn+1(s, a) = r(s, a) + γ
∑
st+1

Pµ(st+1 | st , at = a)max
a′

Qn(st+1, a
′)

Q-learning

R̂t = rt + γmax
a′

Q̂t(st+1, a
′)

Q̂t+1(s, a) = (1− α)Q̂n(s, a) + α(R̂t)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Summary

Markov decision processes

▶ Formalise experiment design

▶ Formalise environments in reinforcement learning

Solving MDPs

▶ Discrete case: dynamic programming.

▶ General case: approximations, gradient methods, etc.

Reinforcement learning and experiment design

▶ Formal but intractable Bayesian solution.

▶ Convergent algorithms in simple settings.

	Bandit problems
	Planning: Heuristics and exact solutions

	Bandit problems as MDPs
	Contextual Bandits
	Case study: experiment design for clinical trials
	Practical approaches to experiment design

	Reinforcement learning

