Experiment design

Bandit problems and Markov decision processes

Christos Dimitrakakis
uio

November 13, 2019

Bandit problems
Planning: Heuristics and exact solutions

Bandit problems as MDPs

Contextual Bandits

Case study: experiment design for clinical trials
Practical approaches to experiment design

Reinforcement learning

Sequential problems: full observation

Example 1

» n meteorological stations {u; | i=1,...,n}

» The i-th station gives a rain probability x¢.; = P, (ye | y1,- .., Ye—1)-

» Observation @: = (x¢,1,...,X¢,n): the predictions of all stations.
> Decision a;: Guess if it will rain

» Outcome y;: Rain or not rain.

» Stepst=1,...,T.

Linear utility function
Reward function is p(y:, a:) = I {y: = a:} simply rewarding correct predictions
with utility being
-
U(y17.y27 sy YT,a1,. .0, aT) = ZP(}’n af)7

t=1

the total number of correct predictions.

The n meteorologists problem is simple, as:

> You always see their predictions, as well as the weather, no matter
whether you bike or take the tram (full information)

> Your actions do not influence their predictions (independence events)
In the remainder, we'll see two settings where decisions are made with either

partial information or in a dynamical system. Both of these settings can be
formalised with Markov decision processes.

Experimental design and Markov decision processes

The following problems
> Shortest path problems.
» Optimal stopping problems.
» Reinforcement learning problems.
» Experiment design (clinical trial) problems
» Advertising.
can be all formalised as Markov decision processes.

Applications

» Robotics.
» Economics.

Automatic control.

v

» Resource allocation

Bandit problems

Bandit problems

f(x)

Applications

» Efficient optimisation.

/\\ f(ﬁ\: sincx

Bandit problems

Applications

» Efficient optimisation. (g [
> Online advertising. 008 e

Bandit problems

Applications

» Efficient optimisation.

> Online advertising.

» Clinical trials.

Ultrasound

Bandit problems

Applications

» Efficient optimisation.
» Online advertising.
» Clinical trials.

» ROBOT SCIENTIST.

The stochastic n-armed bandit problem

Actions and rewards

» A set of actions A ={1,...,n}.
» Each action gives you a random reward with distribution P(r; | a; =).

» The expected reward of the i-th arm is p; £ E(r: | a: =).

Interaction at time t

1. You choose an action a; € A.

2. You observe a random reward r; drawn from the j-th arm.
The utility is the sum of the rewards obtained

UéZrt.
t

We must maximise the expected utility, without knowing the values p;.

Policy

Definition 2 (Policies)
A policy 7 is an algorithm for taking actions given the observed history

A
hf:al7r1,...7at7rt

P (e |)

is the probability of the next action a;y1.

Exercise 1
Why should our action depend on the complete history?

A The next reward depends on all the actions we have taken.
B We don’t know which arm gives the highest reward.

C The next reward depends on all the previous rewards.

D The next reward depends on the complete history.

E No idea.

Policy

Definition 2 (Policies)
A policy 7 is an algorithm for taking actions given the observed history
htéal,r17...,at7rt

P (ace1 | he)

is the probability of the next action a;y1.

Example 3 (The expected utility of a uniformly random policy)
If P™(ae+1 | -) = 1/n for all ¢, then

Policy

Definition 2 (Policies)
A policy 7 is an algorithm for taking actions given the observed history

htéal,rl,.,,,at,rt
Pﬂ(at+1 | ht)

is the probability of the next action a;y1.

Example 3 (The expected utility of a uniformly random policy)
If P™(ae41 | -) = 1/n for all t, then

;
E"U=E" (Z“) =
t=1 t:

T T n

. 1 T <
IE rt:ZZ;Pi:;;Pi

t=1 j=1

Policy

Definition 2 (Policies)
A policy 7 is an algorithm for taking actions given the observed history
htéal,rl,...,at,rt

Pw(atﬂ | ht)

is the probability of the next action a:y1.

The expected utility of a general policy

,
E"U=FE" (Z rt>
t=1

Policy

Definition 2 (Policies)
A policy 7 is an algorithm for taking actions given the observed history
htéal,rl,...,at,rt

Pw(atﬂ | ht)

is the probability of the next action a:y1.

The expected utility of a general policy

T

,
E"U=FE" (Z“) =
t=1 t:

E™(rt) (1.1)

Policy

Definition 2 (Policies)
A policy 7 is an algorithm for taking actions given the observed history
htéal,rl,...,at,rt

Pw(atﬂ | ht)

is the probability of the next action a:y1.

The expected utility of a general policy

E"U=E" (i n) = XT:JE”(n) (1.1)

t=1

= Z Z E(rt | at) Z]P’”(at | htf]_)PTr(htfl)

t=1 a;€ A he 1

A simple heuristic for the unknown reward case

Say you keep a running average of the reward obtained by each arm

et,i = Rt,i/nt,i

> ng,; the number of times you played arm i
> Ry the total reward received from i.

Whenever you play a; = i:
Rf+1,i = Rt,i + re, Ney1,i = Nt + 1.

Greedy policy:
ar = argmax 0y ;.
i

What should the initial values ng ;, Ro,; be?

Bernoulli bandits

Decision-theoretic approach

> Assume r; | a; = i ~ Py,, with 0; € 6.
> Define prior belief &1 on 6.

» For each step t, find a policy 7 selecting action a; | & ~ w(a | &) to

T—t
max EZ, (Us) = max Eg, Z (Z etk
k=1

at

ar) m(ae | &)-

» Obtain reward r;.

v

Calculate the next belief
€t+1 = ft(| at, /’t)

How can we implement this?

Bayesian inference on Bernoulli bandits

> Likelihood: Pg(r: = 1) = 6.
> Prior: £(0) o 02711 = 0)°"1 (i.e. Beta(a, B)).

3r i
25 4
ir 4
O L L

0 0.2 0.4 0.6 0.8 1

Figure: Prior belief £ about the mean reward 6.

Bayesian inference on Bernoulli bandits

For a sequence r =1, ..., r, = Pp(r) oc 67 (1 — g;)#0

10

— prior
™\ —likelihood
8r o

0 0.2 0.4 0.6 0.8 1

Figure: Prior belief £ about 8 and likelihood of 6 for 100 plays with 70 1s.

Bayesian inference on Bernoulli bandits

Posterior: Beta(a + #1(x), 8 + #0(1)).

10
— prior
~— likelihood
8 — posterior ||
6 4
a4k 4
ok i
O L = L
0 0.2 0.4 0.6 0.8 1

Figure: Prior belief £(6) about 6, likelihood of 6 for the data r, and posterior belief
£01r)

Bernoulli example.

Consider n Bernoulli distributions with unknown parameters 0; (i =1,...,n)
such that

re | ag = i ~ Bernoulli(6;), E(re | ac = 1) = 0. (1.2)

Our belief for each parameter 6; is Beta(c, 8;), with density f(0 | «i, 5i) so
that

&(b1,...,60n) = H f(0i | i, Bi)- (a priori independent)
i=1

t t
. N 1 .
Nt,iézﬂ{ak:l}7 rt’iéNt,'Zrt]I{ak:I}
k=1 k=1
Then, the posterior distribution for the parameter of arm i is
& = Beta(af, Bf), o = ai+ Neifei, B; = BiNei(1 — Fi,i)).

Since r: € {0,1} there are O((2n)") possible belief states for a T-step bandit
problem.

Belief states

v

The state of the decision-theoretic bandit problem is the state of our belief.

v

A sufficient statistic is the number of plays and total rewards.

v

Our belief state &; is described by the priors «, 8 and the vectors

Ne = (Nex, ..., Nei) (1.3)
Ft:(ft717...,i’\t,,‘). (14)
> The next-state probabilities are defined as:
t
. o
Pgt(rt: 1 ‘ at:I): af—’—lﬂ’t

as &4+1 is a deterministic function of &, r: and a;

» Optimising this results in a Markov decision process.

Markov process

SCAORS

Definition 3 (Markov Process — or Markov Chain)

The sequence {s; | t =1,...} of random variables s; : © — S is a Markov

process if
P(ses1 | Sty ..., 51) = P(se41 | st). (1.5)

> s is state of the Markov process at time t.

> P(se41 | s¢) is the transition kernel of the process.

The state of an algorithm
Observe that the «, 8 form a Markov process. They also summarise our belief
about which arm is the best.

Markov decision processes

In a Markov decision process (MDP), the state s includes all the information
we need to make predictions.

Markov decision processes (MDP). 0
At each time step t:

» We observe state s; € S. °
» We take action a; € A.
» We receive a reward r; € R.

Markov property of the reward and state distribution

P.(se+1 | s, a) (Transition distribution)
Pu(re | st, at) (Reward distribution)

Stochastic shortest path problem with a pit

Properties

» T — oo.

» rr=—1, but r =0 at X and —100 at O
and the problem ends.

>]P)H(SH,]_ = Xle = X) =1.
» A = {North, South, East, West}

» Moves to a random direction with
probability w. Walls block.

Figure: The basic bandit MDP. The decision maker selects a;, while the parameter 6 of
the process is hidden. It then obtains reward r;. The process repeats for t =1,..., T.

Figure: The decision-theoretic bandit MDP. While 6 is not known, at each time step t
we maintain a belief £ on ©. The reward distribution is then defined through our
belief.

Backwards induction (Dynamic programming)
forn=1,2,...and s € S do

E(Ue | &) = g‘gﬁE(n | &ty ae) + ZP(&H | &t ae) E(Usra | €evr)

Se41

end for

Exercise 1
What is the value v¢(s;) of the
first state?

A 14

B 1.05
C 1.0
D 0.7
EO

St at r St+1

Backwards induction (Dynamic programming)
forn=1,2,...and s € S do

E(Ue | &) = g‘gﬁE(n | &ty ae) + ZP(&H | &t ae) E(Usra | €evr)

Se41

end for

Exercise 1
What is the value v¢(s;) of the
first state?

A 14

B 1.05
C 1.0
D 0.7
EO

St at r St+1

Heuristic algorithms for the n-armed bandit problem

Algorithm 1 UCB1

Input A
0o,i =1, Vi
fort=1,...do

21
ar = arg max;c 4 {Ot i+ /Nt nltl}

re ~ Pg(r | a:) // play action and get reward // update model
Iyt,at = N1, +1
et,at = [Ntfl,atetfl,at +Art]/NtA,at
Vi# ar, Neij = Ne—v,i, Orj = 0e—1,i
end for

Algorithm 2 Thompson sampling

Input A, &
for t=1,... do
9 ~ étfl(e)

a: € argmax, E;[r: | ar = a.
re ~ Po(r | a;) // play action and get reward // update model

§e(0) = &—1(0 | ac, rr).

end for

Example 4 (Clinical trials)

Consider an example where we have some information x; about an individual
patient t, and we wish to administer a treatment a;. For whichever treatment
we administer, we can observe an outcome y;. Our goal is to maximise
expected utility.

Definition 5 (The contextual bandit problem.)
At time t,

» We observe x; € X.

» We play a; € A.

» We obtain r; € R with r; | a: = a,x: = x ~ Py(r | a, x).

Example 6 (The linear bandit problem)

» A=[n], X =Rk, 0 =(01,...,0,), 0; cR*, r e R.
> r~ (0] x),1)

Example 7 (A clinical trial example)
» A=[n], X =R 0 =(61,...,0,), 6, e R, y € {0,1}.
>y ~ Bernoulli(1/(1 + exp[— (6. x)?]).
> r=U(ay).

Example 8 (One-stage problems)

> Initial belief &
» Side information x
» Simultaneously takes actions a.

> Observes outcomes y.

Eg, (Ul @) =) Py | a,z)r(a| =) EE(U |z a,y)
—_——

z,Y
’ post-hoc value

(4.1)

Example 8 (One-stage problems)

v

Initial belief &

Side information x

v

v

Simultaneously takes actions a.

> Observes outcomes y.

Definition 9 (Expected information gain)

EZ, (D (&]é) | 2) = Y Pe(y | a,z)n(a | 2)D (4(- | 2, a,9)llé) (4.1)

T,y

Example 8 (One-stage problems)

> Initial belief &
> Side information x
» Simultaneously takes actions a.

» Observes outcomes y.

Definition 9 (Expected utility of final policy)

ES, (mfgx Egp

o) = Foly | ae)nla] @) maxED (o @) (4)
Y

EZ(p|a,z,y) =Y p(a,y)Pe(y | x, a)m(a | x) Pe(x) (4.2)

a,x,y

Experiment design for a one-stage problem

v

Select some model P for generating data.

v

Select an inference and/or decision making algorithm X for the task.

v

Select a performance measure U.

v

Generate data D from PP and measure the performance of A on D.

The reinforcement learning problem
Learning to act in an unknown world, by interaction and reinforcement.

internal state “Neward

X

environment

action 5|
—
at e

observation x: s

Learning by interaction

The reinforcement learning problem
Learning to act in an unknown world, by interaction and reinforcement.

internal state “Neward

X

environment
Expected total reward

...when using policy 7 in u: action |
at * >
U(p,m) <
observation x: “

Learning by interaction

The reinforcement learning problem

Learning to act in an unknown world, by interaction and reinforcement.

internal state “Neward

X

environment
Expected total reward

...when using policy 7 in u: action § |
at > >
U(Uv 7") ~
observation x; *

Learning by interaction
Can't we just max, U(p,m)?

The reinforcement learning problem

Learning to act in an unknown world, by interaction and reinforcement.

internal state “Neward

X

environment
Expected total reward

...when using policy 7 in u: action 51
at * >
U(p,) <
observation x: .

Learning by interaction

Knowing p contradicts the problem definition

Solving a given MDP

Markov decision processes (MDP).
At each time step t: 0
> \We observe state s; € S. 5
» We take action a; € A. 6
» We receive a reward r; € R with /69
re ~ Pu(re | sty ar)
» We go to the next state s;11 € S
with sep1 ~ Pu(Set1 | e, ar)
Backwards induction (Value iteration)
forn=1,2,...and s € S do

EZ*(Uf | st) = Q‘SﬁE”(’f | st,ac) + E]Pp,(st+1 | st ar) EZ*(UtJrl | st+1)

St+1

end for

The discounted setting
Ue=> 7r, 7v€(0,1)
k=0

Value functions

Vi(s) 2 E(U: | st =s), Qi (s,a) £EE(U: | se = s,a: = a)

The discounted setting
Ue=> 7r, 7v€(0,1)
k=0
Value functions
Vi(s) 2 E(U: | st =s), Qi (s,a) £EE(U: | se = s,a: = a)

Bellman equation

Vi(s) =Ei(r | st =s)+ “YZ Vi (se+1) PL(Ser1 | st)

St+1

Qi(s,a) =Eyu(r | st =s,a = a) +’YZ Q)i (St41,m(Se41))Pul(Sev1 | st,ae = a)

St+1

The discounted setting

U= Z’kawk» 7€ (0,1)
k=0

Value functions
Vi(s) 2 E(U: | st =s), Qi (s,a) £EE(U: | se = s,a: = a)

Bellman equation

Vi(s) =Ei(r | st =s)+ “YZ Vi (se+1) PL(Ser1 | st)

St+1
Qi(s,a) =Eu(r|se=s,a=2a)+7 > Qi(ser1, m(st+1))Pulsers | se, ac = a)
St+1

Optimality condition

Vii(s) = Vi(s)vs

Q-learning and induction

Q-Value iteration

Qni1(s,a) =r(s,a) ""YZ Pu(sts1 | st,ae = a) ma?X Qn(5t+1»3/)

St+1
Q-learning

Re = re 4y max Qe(se41, a)
a

Qria(s,a) = (1 — a)Qu(s, a) + (Ry)

Summary

Markov decision processes

> Formalise experiment design

> Formalise environments in reinforcement learning

Solving MDPs

> Discrete case: dynamic programming.

> General case: approximations, gradient methods, etc.

Reinforcement learning and experiment design

» Formal but intractable Bayesian solution.

» Convergent algorithms in simple settings.

	Bandit problems
	Planning: Heuristics and exact solutions

	Bandit problems as MDPs
	Contextual Bandits
	Case study: experiment design for clinical trials
	Practical approaches to experiment design

	Reinforcement learning

