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Introduction to machine learning

Introduction to machine learning
m Data analysis, learning and planning
m Experiment design
m Bayesian inference.
m Course overview
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Introduction to machine learning

Pervasive “intelligent” systems
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Introduction to machine learning
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Introduction to machine learning  Data analysis, learning and planning

What can machine learning do?
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Introduction to machine learning Data analysis, learning and planning

Can machines learn from data?
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An unsupervised learning problem: topic modelling
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Introduction to machine learning Data analysis, learning and planning

Can machines learn from data?

A supervised learning problem: object recognition
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Introduction to machine learning Data analysis, learning and planning

Can machines learn from their mistakes?
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Introduction to machine learning Data analysis, learning and planning

Can machines make complex plans?
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Machines can make complex plans!
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Introduction to machine learning  Experiment design

The scientific process as machine learning
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Introduction to machine learning Experiment design

C. Dimitrakakis Adaptive Data Analysis August 21, 2019 11/ 5



Introduction to machine learning Experiment design

Adam, the robot scientist
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Introduction to machine learning Experiment design

Drug discovery
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Introduction to machine learning Experiment design

Drawing conclusions from results
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Introduction to machine learning  Bayesian inference.

Tycho Brahe's minute eye measurements

Tycho Brahe's Mars Observations
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Figure: Tycho's measurements of the orbit of Mars and the conclusion about the actual orbits
under the assumption of an earth-centric universe with circular orbits.

m Hypothesis: Earth-centric, Circular orbits

m Conclusion: Specific circular orbits )
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Introduction to machine learning  Bayesian inference.

Johannes Kepler's alternative hypothesis

Tycho Brahe’'s Mars Observations
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m Hypothesis: Circular or elliptic orbits

m Conclusion: Specific elliptic orbits

C. Dimitrakakis Adaptive Data Analysis August 21, 2019 16 / 53



Introduction to machine learning Bayesian inference.

200 years later, Gauss formalised this statistically
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Introduction to machine learning  Bayesian inference.

A warning: The dead salmon mirage

t-value
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Introduction to machine learning  Bayesian inference.

A simple simulation study

src/reproducibility/mri_analysis.ipynb
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Introduction to machine learning

Planning future experiments
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Planning experiments is like Tic-Tac-Toe
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Introduction to machine learning Bayesian inference.

Eve, another robot scientist

a malaria drug
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Introduction to machine learning Course overview

Machine learning in practice

Avoiding pitfalls

m Choosing hypotheses.
m Correctly interpreting conclusions.

m Using a good testing methodology.

Machine learning in society

m Privacy
m Fairness

m Safety
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Introduction to machine learning Course overview

Course structure

Module structure

m Activity-based, hands-on.
m Mini-lectures with short exercises in each class.

m Technical tutorials and labs in alternate week.

Modules
Three mini-projects.

m Simple decision problems: Credit risk.

m Sequential problems: Medical diagnostics and treatment.

C. Dimitrakakis Adaptive Data Analysis August 21, 2019

24 /53



Introduction to machine learning Course overview

Technical topics

Machine learning problems

m Unsupervised learning. .
m Supervised learning.

m Reinforcement learning.

Algorithms and models

m Bayesian inference and graphical models.
m Stochastic optimisation and neural networks.

m Backwards induction and Markov decision processes.
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Introduction to machine learning ~ Course overview

Further reading

m Bennett et al. 2 describe how the usual uncorrected analysis of fMRI data leads to
the conclusion that the dead salmon can reason about human images.

m Bennett et al.! discuss how to perform analyses of medical images in a principled
way. They also introduce the use of simulations in order to test how well a particular

method is going to perform.

Resources
m Online QA platform: https://piazza.com/class/jufgabru4dd57nh
m Course code and notes: https://github.com/olethrosdc/ml-society-science

m Book https://github.com/olethrosdc/ml-society-science/notes.pdf
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Nearest neighbours
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Nearest neighbours

Discriminating between diseases

Spectral statistics VVX strain
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Nearest neighbours

Nearest neighbour: the hidden secret of machine learning
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Nearest neighbours

Comparing spectral data
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Nearest neighbours

Comparing spectral data
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Nearest neighbours

The nearest neighbour algorithm

Algorithm 1 K-NN Classify
L: Input Data D = {(x1,1),...,(x7,y7)}, k>1,d: X x X = Ry, new point x € X
2. D =Sort(D,d) % Sort D so that d(x, x;) < d(x, xi+1).
3 py =20 I{yi=y}/kforyey.
4 Return p 2 (py,...,px)

Algorithm parameters

m Neighbourhood k > 1.
m Distance d : X x X — Ry.

What does the algorithm output when k = T7?
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Nearest neighbours

-

Figure: The nearest neighbours algorithm was introduced by Fix and Hodges Jr3, who also
proved consistency properties.
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Nearest neighbours

Nearest neighbour: What type is the new bacterium?
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Nearest neighbours

Nearest neighbour: What type is the new bacterium?
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Nearest neighbours

Separating the model from the classification policy

m The K-NN algorithm returns a model giving class probabilities for new data points.

m Deciding a class given the model

Tr(a|X):]I{p32pyVy}7 p:K_NN(Dakad7X)
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Nearest neighbours

Hands on with Python console

m src/decision-problems/knn-classify.py

m src/decision-problems/KNN.ipynb
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src/decision-problems/KNN.ipynb

Nearest neighbours

Discussion: Shortcomings of k-nearest neighbour

m Choice of k
m Choice of metric d.

m Representation of uncertainty.

Scaling with large amounts of data.

Meaning of label probabilities.
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Nearest neighbours

Learning outcomes

Understanding
m How kNN works

m The effect of hyperameters k, d for nearest neighbour.

m The use of kNN to classify new data.

Skills

m Use a standard kNN class in python
m Optimise kNN hyperparameters in an unbiased manner.

m Calculate probabilities of class labels using kNN.

Reflection

m When is kNN a good model?
m How can we deal with large amounts of data?

m How can we best represent uncertainty?
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Reproducibility

Reproducibility
®m The human as an algorithm
m Algorithmic sensitivity
m Beyond the data you have: simulation and replication
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Reproducibility

Computational reproducibility: Can the study be repeated?
Can we, from the available information and data, exactly reproduce the reported methods
and results?

m jupyter notebooks

m svn, git or mercurial version control systems

Scientific reproducibility: Is the conclusion correct?
Can we, from the available information and a new set of data, reproduce the conclusions
of the original study?

When publishing results about a new method, computational reproducibility is essential
for scientific reproducibility.
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Reproducibility

| 4
RealClear PO]_j_tj_CSv Polls . Election2018. Video Writers. wor

Poll Date Sample  MoE  Clinion (D) Trump (R) Spread
Final Results - - - 482 46.1 Clinton +2.1
RCP Average 111 - 1147 - - 468 436 Clinton +3.2
Bloomberg 11/4 - 11!5k-' 799 LV 35 46 43 Clinton +3
IBD/TIFP Tracking 11/4-1177 1107 v 31 43 42 Clinton +1
Economist/YouGov 11/4-11/7 3669 1V = 49 45 Clinton +4
LA Times/USC Tracking 11/1-1177 2935 IV 45 44 a7 Trump +3
ABC/Wash Post Tracking 11/3-11/6 220 25 49 48 Clinton +3
FOX News 11/3-11/6 1295 v 25 48 a4 Clinton +4
Monmouth 11/3-11/6 748 1LV 36 50 44 Clinton +6
NBC Mews/Wall 5t. Jm! 11/3-11/8 1282 v 27 48 43 Clinton +5
CBS News 11/2-11/6 1426 vV 30 47 43 Clinton +4
Reuters/Ipsos 11/2-11/6 2196 IV 23 44 39 Clinton +5

All General Election: Trump vs. Clinton Polling Data

RCP POLL AVERAGE

General Election: Trump vs. Clinton (D) +a.2
Clinton m Trump (R)

52

50

48

C. Dimitrakdkis I l“JrlL Aflpgtive DFfa Analysis M Aumjg 40 |




Reproducibility

The principle of independent evaluation
Data used for estimation cannot be used for evaluation.
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Reproducibility

Data Collection
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Figure: The decision process in classification.
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Reproducibility

Data Collection Training
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Figure: The decision process in classification.
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Reproducibility
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Reproducibility
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Figure: The decision process in classification.
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Reproducibility

Data Collection Training Holdout
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Figure: The decision process in classification.
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Reproducibility
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Reproducibility
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Reproducibility
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Reproducibility
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Figure: The decision process in classification.
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Reproducibility ~ The human as an algorithm

The human as an algorithm.
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Figure: Selecting algorithms and hyperparameters through holdouts
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Reproducibility ~ The human as an algorithm

The human as an algorithm.

Data Collegdon Training oldout

X ;:DT, Dy

A1

Algorithm, hyperparameters

Figure: Selecting algorithms and hyperparameters through holdouts

C. Dimitrakakis Adaptive Data Analysis August 21, 2019

43 /53
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Reproducibility ~ The human as an algorithm

The human as an algorithm.
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Reproducibility ~ The human as an algorithm

The human as an algorithm.
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The human as an algorithm.
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Reproducibility ~ The human as an algorithm

Holdout sets

Original data D, e.g. D = (x1,...,x7).

Training data Dt C D, e.g. Dr =x1,...,%,, n < T.

Holdout data Dy = D \ D, used to measure the quality of the result.
Algorithm X\ with hyperparametrs ¢.

Get algorithm output m = A(Dr, ).

Calculate quality of output U(m, Dy)

Holdout and test sets for unbiased algorithm comparison

Algorithm 2 Unbiased adaptive evaluation through data partitioning
Partition data into D7, Dy, D*.

for A € A do
for ¢ € &, do
Te.x = A(Dr, ¢).
end for

Get 7} maximising U(7mg,x, DH).
ux = U(r3, D).

end for

A" = arg max, ux.
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Reproducibility ~ The human as an algorithm

Final performance measurement
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Reproducibility  Algorithmic sensitivity

Independent data sets

Experiment

X )@—)@(—)\

1st sample 1st Result Algorithm

Figure: Multiple samples

C. Dimitrakakis Adaptive Data Analysis August 21, 2019 46 / 53



Independent data sets

Experiment

Reproducibility  Algorithmic sensitivity
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Reproducibility  Algorithmic sensitivity

Bootstrap samples

2nd Sample  2nd Result

D> ™2
Experiment
X j——3(D; A\
training 1st sample 1st Result Algorithm
Figure: Bootstrap replicates of a single sample
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Reproducibility  Algorithmic sensitivity

Bootstrapping

Bootstrapping is a general technique that can be used to:
m Estimate the sensitivity of A to the data x.
m Obtain a distribution of estimates 7 from X\ and the data x.
m When estimating the performance of an algorithm on a small dataset D*, use
bootstrap samples of D*.

Bootstrapping

Input Training data D, number of samples k.
Fori=1,... k

DY) = Bootstrap(D)

return {D(;) ’ i = L...,k}.

where Bootstrap(D) samples with replacement |D| points from Dr.
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Reproducibility  Algorithmic sensitivity

Cross-validation

k-fold Cross-Validation
Input Training data D7, number of folds k, algorithm A, measurement function U
Create the partition DW .. , D™ so that Uﬁ;l D® = D.
Define DY) = D\ D¥)
i = A(DY)
Fori=1,... k:
ma 7 =ADY)
ui = U(m)
A return {y1,...,y}.
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Reproducibility ~ Beyond the data you have: simulation and replication

Simulation

Steps for a simulation pre-study

Define a data-generating process as close to the original dataset as possible.
Collect data according to your protocol.
Run the intended analysis.

B See if the results are reasonable, or if you need more power.
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Reproducibility ~ Beyond the data you have: simulation and replication

Simulation

Simulation study

Create a simulation that allows you to collect data similar to the real one.
Collect data from the simulation and analyse it according to your protocol.

If the results are not as expected, alter the protocol or the simulation. In which
cases do you get good results?

@ Finally, use the best-performing method as the protocol.
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Reproducibility ~ Beyond the data you have: simulation and replication

Independent replication

Replication study

Reinterpret the original hypothesis and experiment.
Collect data according to the original protocol, unless flawed.
Run the analysis again, unless flawed.

@A See if the conclusions are in agreement.
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Reproducibility ~ Beyond the data you have: simulation and replication

Learning outcomes

Understanding

m What is a hold-out set, cross-validation and bootstrapping.
m The idea of not reusing data input to an algorithm to evaluate it.

m The fact that algorithms can be implemented by both humans and machines.

Skills
m Use git and notebooks to document your work.
m Use hold-out sets or cross-validation to compare parameters/algorithms in Python.

m Use bootstrapping to get estimates of uncertainty in Python.

Reflection
m What is a good use case for cross-validation over hold-out sets?
m When is it a good idea to use bootstrapping?

m How can we use the above techniques to avoid the false discovery problem?

Can these techniques fully replace independent replication?
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Reproducibility ~ Beyond the data you have: simulation and replication
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