Adaptive Data Analysis Machine learning in science and society

Christos Dimitrakakis

August 21, 2019

Introduction

- 1 Introduction to machine learning
 - Data analysis, learning and planning
 - Experiment design
 - Bayesian inference.
 - Course overview
- 2 Nearest neighbours
- 3 Reproducibility

Scientific applications

Scientific applications

Pervasive "intelligent" systems

Home assistants

Autonomous vehicles

Web advertising

Ridesharing

Lending

Public policy

Home assistants Privacy, Fairness, Safety

Web advertising

Lending

Autonomous vehicles

Ridesharing

Public policy

What can machine learning do?

Can machines learn from data?

An unsupervised learning problem: topic modelling

Can machines learn from data?

A supervised learning problem: object recognition

C. Dimitrakakis

Can machines learn from their mistakes?

Learning by interaction

Reinforcement learning

Take actions a_1, \ldots, a_t , so as to maximise utility $U = \sum_{t=1}^T r_t$

C. Dimitrakakis Adaptive Data Analysis August 21, 2019 7 / 53

Can machines make complex plans?

Machines can make complex plans!

The scientific process as machine learning

Adam, the robot scientist

Drug discovery

Drawing conclusions from results

Tycho Brahe's minute eye measurements

Figure: Tycho's measurements of the orbit of Mars and the conclusion about the actual orbits, under the assumption of an earth-centric universe with circular orbits.

- Hypothesis: Earth-centric, Circular orbits
- Conclusion: Specific circular orbits
 Adaptive Data Analysis

Johannes Kepler's alternative hypothesis

■ Hypothesis: Circular or elliptic orbits

■ Conclusion: Specific elliptic orbits

Tycho Brahe's Mars Observations

source: Tychonis Brahe Dani Opera Omnia

200 years later, Gauss formalised this statistically

Sketch of the orbits of Ceres and Pallas (nachlaß Gauß, Handb. 4). Courtesy of Universitätsbibliothek Göttingen.

1801		Mittlere Somen- Zeit							n				Abweich.				Scho Lange									Ort der Sonne +- 20" Abstration					d.		gar.				
Jan.	1 2	9 00 0	43	1	7.5	3000	27	1.5	, 2	55		47	4	8, 8	15	3	7	45	.55	NI	2,7	2	2 .	58.	2000		6.	42,	1 0	Z 9 0	ir	1 2	30	. 9	9,	992	615
1	3	١ĕ	34	:5	3.3	13	26	3	3.4	Ha	z	39	.3	6, 6	15	4	#	31,	6	Ì٢	2	D	6	58,	612	5	8	g,	0	0	13	a	20	6.6	6.	002	612
ž.	10		30	4	2,1	13	20	2	3 · 1	5 5	1	35	4	1	16	4	7	57) 27.	0	ľ.	2,	L	ŧ.	15,	5	5	3 .	55,	0	9	14	4	24	. 9	9,	992	041
	21	8	2	T	7.5	13	25	29	2.7	3 5	1	22	2	5, ¢	4 -		٠.			١.					п	٠.			- 1						۲.		
	13														16					13	2	1	0	37,	6 2	. 1	6	59,	7	9	23	12	13	. 8	9,	992	849
	14		50	0	157	3	25	3	.7	26	٠.	7	0	24.4	16	1	7	3.	7	ľ	3	, 1	2		2/2		2	50,	7							992	
	18	17	35	1	1,3	13	25	68	١,	::15	1	2\$	4	5, 6	١.					1					1				F			: .			1.		
£	19	7	31	2	83	3	26	1	3, 1	5 5	1	32		2/2	14	4	9	16,	I	Į	2	3 2	5	59.	2 2	5	3	38,	2	9	.29	19	53	3. 8	9,	993	060
4	21		24	-	2.7	13	20	34	b 2	7)4	I	38	3	4.3	16	t 5	8	35,	9	11	2	3	4	21,	3 1	14	6	6,	0	10	.1	20	40	3,5	9,	993	143
e .	22	13	20	.3	9.7	3	20	. 62	1. 4	3	1	42	2	1, 2	14		3	18.	5	15	2	3	9	1,	8	4	3 .	28,	3	1p	. 2	23	35	, 0	19.	993	188
	23	13	10		26.5	15	27	3	. 9	Œ		40	*	5 - 6	13		8	- 5-	9.	15	-3	4	•	15,	21	-3	8	52,	-	10	-3	29	3	. 7	19,	993	234
	20	ž	38	-20	P.N.	3	30	12	20	910	5	-3	3	91.	i.	3		34	*	J.	*		2	13,	3		•		3	ш	.0	20	-	2.5	19,	993	300
	30	:6	31	9	6.1	13	20		7. 3	4 0	2	24		2.4	16	. :	ş.	21.	ě.																	993	
Febr																																				993	
	2	6	41	3	5.1	13	31	1	1.0	6 5	2	49	4	5-4	1:5	5	8,	57.																		993	
	5	6	31	3	1,5	13	33		1.7	0 5	3	15	4	3,5	318	1,	5.	1,	0	li	-25	2	2	43.	4 0	5	i	23	0	to	16	31	4	5.5	6.	994	075
	8	6	21	3	9.2	13	34	.53	, 5	0 5	3	44	3	7. 5	18	3	I,	23.	2	ſr	25	5	3	29,	5.0	4	ŝ	5	o	10	19	33	33	. 3	19,	994	327
	11	16	11	5	8,2	13	37		5, 5	415	4	16	31	3. 2	115	4	7	58,	8	ir	20	2	5	20.	00	12	6	2.	91	10	22	35	1	1, 4	Fe.	994	582

A warning: The dead salmon mirage

A simple simulation study

src/reproducibility/mri_analysis.ipynb

Planning future experiments

Planning experiments is like Tic-Tac-Toe

C. Dimitrakakis

Eve, another robot scientist

a malaria drug

イロト イ部ト イミト イミト

Avoiding pitfalls

- Choosing hypotheses.
- Correctly interpreting conclusions.
- Using a good testing methodology.

Machine learning in society

- Privacy
- Fairness
- Safety

Avoiding pitfalls

- Choosing hypotheses.
- Correctly interpreting conclusions.
- Using a good testing methodology.

Machine learning in society

- Privacy Credit risk.
- Fairness
- Safety

Avoiding pitfalls

- Choosing hypotheses.
- Correctly interpreting conclusions.
- Using a good testing methodology.

Machine learning in society

- Privacy Credit risk.
- Fairness Job market.
- Safety

Avoiding pitfalls

- Choosing hypotheses.
- Correctly interpreting conclusions.
- Using a good testing methodology.

Machine learning in society

- Privacy Credit risk.
- Fairness Job market.
- Safety Medicine.

Course structure

Module structure

- Activity-based, hands-on.
- Mini-lectures with short exercises in each class.
- Technical tutorials and labs in alternate week.

Modules

Three mini-projects.

- Simple decision problems: Credit risk.
- Sequential problems: Medical diagnostics and treatment.

Technical topics

Machine learning problems

- Unsupervised learning. .
- Supervised learning.
- Reinforcement learning.

Algorithms and models

- Bayesian inference and graphical models.
- Stochastic optimisation and neural networks.
- Backwards induction and Markov decision processes.

Further reading

- Bennett et al.² describe how the usual uncorrected analysis of fMRI data leads to the conclusion that the dead salmon can reason about human images.
- Bennett et al.¹ discuss how to perform analyses of medical images in a principled way. They also introduce the use of simulations in order to test how well a particular method is going to perform.

Resources

- Online QA platform: https://piazza.com/class/jufgabrw4d57nh
- Course code and notes: https://github.com/olethrosdc/ml-society-science
- Book https://github.com/olethrosdc/ml-society-science/notes.pdf

- 1 Introduction to machine learning
- 2 Nearest neighbours
- 3 Reproducibility

Discriminating between diseases

Spectral statistics VVX strain

Spectral statistics for BUT

Nearest neighbour: the hidden secret of machine learning

Comparing spectral data

Comparing spectral data

The nearest neighbour algorithm

Algorithm 1 K-NN Classify

- 1: Input Data $D = \{(x_1, y_1), \dots, (x_T, y_T)\}, k \geq 1, d : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+, \text{ new point } x \in \mathcal{X}$
- 2: D = Sort(D, d) % Sort D so that $d(x, x_i) \leq d(x, x_{i+1})$.
- 3: $p_y = \sum_{i=1}^k \mathbb{I}\left\{y_i = y\right\} / k \text{ for } y \in \mathcal{Y}.$
- 4: Return $p \triangleq (p_1, \ldots, p_k)$

Algorithm parameters

- Neighbourhood $k \ge 1$.
- Distance $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$.

What does the algorithm output when k = T?

Figure: The nearest neighbours algorithm was introduced by Fix and Hodges Jr 3 , who also proved consistency properties.

Nearest neighbour: What type is the new bacterium?

Nearest neighbour: What type is the new bacterium?

What if it a **completely different strain**? C. Dimitrakakis

Separating the model from the classification policy

- The K-NN algorithm returns a model giving class probabilities for new data points.
- Deciding a class given the model

$$\pi(a \mid x) = \mathbb{I}\{p_a \geq p_y \forall y\}, \qquad p = \text{K-NN}(D, k, d, x)$$

Hands on with Python console

- src/decision-problems/knn-classify.py
- src/decision-problems/KNN.ipynb

Discussion: Shortcomings of k-nearest neighbour

- Choice of *k*
- Choice of metric d.
- Representation of uncertainty.
- Scaling with large amounts of data.
- Meaning of label probabilities.

Learning outcomes

Understanding

- How kNN works
- The effect of hyperameters k, d for nearest neighbour.
- The use of kNN to classify new data.

Skills

- Use a standard kNN class in python
- Optimise kNN hyperparameters in an unbiased manner.
- Calculate probabilities of class labels using kNN.

Reflection

- When is kNN a good model?
- How can we deal with large amounts of data?
- How can we best represent uncertainty?

- 1 Introduction to machine learning
- 2 Nearest neighbours
- 3 Reproducibility
 - The human as an algorithm
 - Algorithmic sensitivity
 - Beyond the data you have: simulation and replication

Computational reproducibility: Can the study be repeated?

Can we, from the available information and data, exactly reproduce the reported methods and results?

- jupyter notebooks
- svn, git or mercurial version control systems

Scientific reproducibility: Is the conclusion correct?

Can we, from the available information and a new set of data, reproduce the conclusions of the original study?

When publishing results about a new method, computational reproducibility is essential for scientific reproducibility.

RealClear Politics >

Polls V Election 2018 Video Writers V

Poll	Date	Sample	MoE	Clinton (D)	Trump (R)	Spread
Final Results				48.2	46.1	Clinton +2.1
RCP Average	11/1 - 11/7			46.8	43.6	Clinton +3.2
Bloomberg	11/4 - 11/6	799 LV	3.5	46	43	Clinton +3
IBD/TIPP Tracking	11/4 - 11/7	1107 LV	3.1	43	42	Clinton +1
Economist/YouGov	11/4 - 11/7	3669 LV	-	49	45	Clinton +4
LA Times/USC Tracking	11/1 - 11/7	2935 LV	4.5	44	47	Trump +3
ABC/Wash Post Tracking	11/3 - 11/6	2220 LV	2.5	49	46	Clinton +3
FOX News	11/3 - 11/6	1295 LV	2.5	48	44	Clinton +4
Monmouth	11/3 - 11/6	748 LV	3.6	50	44	Clinton +6
NBC News/Wall St. Jrnl	11/3 - 11/5	1282 LV	2.7	48	43	Clinton +5
CBS News	11/2 - 11/6	1426 LV	3.0	47	43	Clinton +4
Reuters/lpsos	11/2 - 11/6	2196 LV	2.3	44	39	Clinton +5

The principle of independent evaluation

Data used for estimation cannot be used for evaluation.

Data Collection

Figure: The decision process in classification.

Figure: The decision process in classification.

Algorithm, hyperparameters

Figure: The decision process in classification.

Figure: The decision process in classification.

Figure: The decision process in classification.

Figure: The decision process in classification.

Figure: The decision process in classification.

Figure: The decision process in classification.

Classification accuracy

$$\mathbb{E}_{\chi}[U(\pi)] = \sum_{x,y} \underbrace{\mathbb{P}_{\chi}(x,y)}_{\text{Data probability}} \underbrace{\pi(a=y\mid x)}^{\text{Decision probability}}$$

 C. Dimitrakakis
 Adaptive Data Analysis
 August 21, 2019
 42 / 53

Figure: The decision process in classification.

Classification accuracy

$$\mathbb{E}_{D_H} U(\pi) = \sum_{(x,y) \in D_H} \pi(a = y \mid x) / |D_H|.$$

←ロト ←回ト ← 重ト ← 重 ・ 夕へで

Figure: Selecting algorithms and hyperparameters through holdouts

The human as an algorithm.

Figure: Selecting algorithms and hyperparameters through holdouts

The human as an algorithm.

Figure: Selecting algorithms and hyperparameters through holdouts

C. Dimitrakakis

Figure: Selecting algorithms and hyperparameters through holdouts

C. Dimitrakakis

The human as an algorithm.

Algorithm, hyperparameters

Figure: Selecting algorithms and hyperparameters through holdouts

The human as an algorithm.

Figure: Selecting algorithms and hyperparameters through holdouts

C. Dimitrakakis

Figure: Selecting algorithms and hyperparameters through holdouts

◆□ > ◆圖 > ◆圖 > ◆圖 >

Holdout sets

- Original data D, e.g. $D = (x_1, \ldots, x_T)$.
- Training data $D_T \subset D$, e.g. $D_T = x_1, ..., x_n$, n < T.
- Holdout data $D_H = D \setminus D_T$, used to measure the quality of the result.
- Algorithm λ with hyperparametrs ϕ .
- Get algorithm output $\pi = \lambda(D_T, \phi)$.
- Calculate quality of output $U(\pi, D_H)$

Holdout and test sets for unbiased algorithm comparison

Algorithm 2 Unbiased adaptive evaluation through data partitioning

```
Partition data into D_{\mathcal{T}}, D_{H}, D^{*}.

for \lambda \in \Lambda do

for \phi \in \Phi_{\lambda} do

\pi_{\phi,\lambda} = \lambda(D_{\mathcal{T}}, \phi).

end for

Get \pi_{\lambda}^{*} maximising U(\pi_{\phi,\lambda}, D_{H}).

u_{\lambda} = U(\pi_{\lambda}^{*}, D^{*}).

end for

\lambda^{*} = \arg \max_{\lambda} u_{\lambda}.
```

Final performance measurement

Independent data sets

Figure: Multiple samples

Independent data sets

Figure: Multiple samples

Figure: Bootstrap replicates of a single sample

Bootstrapping

Bootstrapping is a general technique that can be used to:

- **E**stimate the sensitivity of λ to the data x.
- Obtain a distribution of estimates π from λ and the data x.
- When estimating the performance of an algorithm on a small dataset D^* , use bootstrap samples of D^* .

Bootstrapping

- **Input** Training data D, number of samples k.
- **2** For i = 1, ..., k
- $D^{(i)} = Bootstrap(D)$
- **4** return $\{D^{(i)} \mid i = 1, ..., k\}$.

where Bootstrap(D) samples with replacement |D| points from D_T .

◆ロト ◆問 > ◆注 > ◆注 > 注 り < ②</p>

C. Dimitrakakis

k-fold Cross-Validation

- **Input** Training data D_T , number of folds k, algorithm λ , measurement function U
- \square Create the partition $D^{(1)} \dots, D^{(k)}$ so that $\bigcup_{i=1}^k D^{(k)} = D$.
- $\pi_i = \lambda(D_T^{(i)})$
- **5** For i = 1, ..., k:
- $\pi_i = \lambda(D^{(i)})$
- $u_i = U(\pi_i)$
- **8 return** $\{y_1,\ldots,y_i\}$.

Simulation

Steps for a simulation pre-study

- Define a data-generating process as close to the original dataset as possible.
- Collect data according to your protocol.
- 3 Run the intended analysis.
- 4 See if the results are reasonable, or if you need more power.

Simulation study

- I Create a simulation that allows you to collect data similar to the real one.
- Collect data from the simulation and analyse it according to your protocol.
- If the results are not as expected, alter the protocol or the simulation. In which cases do you get good results?
- Finally, use the best-performing method as the protocol.

Independent replication

Replication study

- 1 Reinterpret the original hypothesis and experiment.
- Collect data according to the original protocol, unless flawed.
- 3 Run the analysis again, unless flawed.
- 4 See if the conclusions are in agreement.

Learning outcomes

Understanding

- What is a hold-out set, cross-validation and bootstrapping.
- The idea of not reusing data input to an algorithm to evaluate it.
- The fact that algorithms can be implemented by both humans and machines.

Skills

- Use git and notebooks to document your work.
- Use hold-out sets or cross-validation to compare parameters/algorithms in Python.
- Use bootstrapping to get estimates of uncertainty in Python.

Reflection

- What is a good use case for cross-validation over hold-out sets?
- When is it a good idea to use bootstrapping?
- How can we use the above techniques to avoid the false discovery problem?
- Can these techniques fully replace independent replication?

4日 > 4周 > 4 至 > 4 至 >

- [1] Craig M. Bennett, George L. Wolford, and Michael B. Miller. The principled control of false positives in neuroimaging. *Social cognitive and affective neuroscience*, 4 4: 417–22, 2009. URL https://pdfs.semanticscholar.org/19c3/d8b67564d0e287a43b1e7e0f496eb1e8a945.pdf.
- [2] Craig M Bennett, Abigail A Baird, Michael B Miller, and George L Wolford. Journal of serendipitous and unexpected results. *Journal of Serendipitous and Unexpected Results (jsur. org)-Vol*, 1(1):1-5, 2012. URL https://teenspecies.github.io/pdfs/NeuralCorrelates.pdf.
- [3] Evelyn Fix and Joseph L Hodges Jr. Discriminatory analysis-nonparametric discrimination: consistency properties. Technical report, California Univ Berkeley, 1951.

C. Dimitrakakis Adaptive Data Analysis August 21, 2019 53 / 53