Privacy

Christos Dimitrakakis

September 17, 2019

Introduction

Database access models

Privacy in databases

k-anonymity

Differential privacy

Just because they're the problem, doesn't mean we aren't.

Privacy in statitical disclosure.

- Public analysis of sensitive data.
- ▶ Publication of "anonymised" data.

Not about cryptography

- ► Secure communication and computation.
- Authentication and verification.

An issue of trust

- Who to trust and how much.
- With what data to trust them.
- What you want out of the service.

Introduction

Database access models

Privacy in databases

k-anonymity

Differential privacy

Databases

Example 1 (Typical relational database in a tax office)

ID	Name	Salary	Deposits	Age	Postcode	Prof
1959060783	Li Pu	150,000	1e6	60	1001	Polit
1946061408	Sara Lee	300,000	-1e9	72	1001	Rent
2100010101	A. B. Student	10,000	100,000	40	1001	Tim

Database access

- ▶ When owning the database: Direct look-up.
- ▶ When accessing a server etc: Query model.

Databases

Example 1 (Typical relational database in a tax office)

ID	Name	Salary	Deposits	Age	Postcode	Prof
1959060783	Li Pu	150,000	1e6	60	1001	Polit
1946061408	Sara Lee	300,000	-1e9	72	1001	Rent
2100010101	A. B. Student	10,000	100,000	40	1001	Tim

response

Python program

Database System

Query

Queries in SQL

The SELECT statement

- ► SELECT column1, column2 FROM table;
- SELECT * FROM table;

Selecting rows

SELECT * FROM table WHERE column = value;

Arithmetic queries

- ► SELECT COUNT(column) FROM table WHERE condition;
- ► SELECT AVG(column) FROM table WHERE condition;
- ► SELECT SUM(column) FROM table WHERE condition;

Introduction

Database access models

Privacy in databases

k-anonymity

Differential privacy

Anonymisation

Example 2 (Typical relational database in Tinder)

Birthday	Name	Height	Weight	Age	Postcode	Profession
06/07	Li Pu	190	80	60-70	1001	Politicia
06/14	Sara Lee	185	110	70+	1001	Rentier
01/01	A. B. Student	170	70	40-60	6732	Time Tr

Anonymisation

Example 2 (Typical relational database in Tinder)

Birthday	Name	Height	Weight	Age	Postcode	Profession
06/07		190	80	60-70	1001	Politician
06/14		185	110	70+	1001	Rentier
01/01		170	70	40-60	6732	Time Traveller

The simple act of hiding or using random identifiers is called anonymisation.

Record linkage

Ethnicity
Date
Diagnosis
Procedure
Medication
Charge

Postcode
Birthdate
Sex

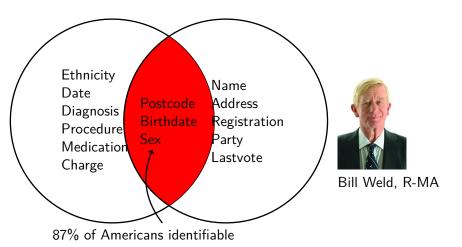
Bill Weld, R-MA

Record linkage

Name Postcode Address Birthdate Registration Sex Party Lastvote

Bill Weld, R-MA

Record linkage



Example 3 (Typical relational database in a tax office)

ID	Name	Salary	Deposits	Age	Postcode	Prof
1959060783	Li Pu	150,000	1e6	60	1001	Polit
1946061408	Sara Lee	300,000	-1e9	72	1001	Rent
2100010101	A. B. Student	10,000	100,000	40	6732	Time

Example 4 (Typical relational database in a tax office)

Birthday	Name	Height	Weight	Age	Postcode	Profession
06/07		190	80	60-70	1001	Politician
06/14		185	110	70+	1001	Rentier
01/01		170	70	40-60	6732	Time Traveller

k-anonymity

(a) Samarati

(b) Sweeney

Definition 5 (k-anonymity)

A database provides k-anonymity if for every person in the database is indistinguishable from k-1 persons with respect to *quasi-identifiers*.

It's the analyst's job to define quasi-identifiers

Birthday	Name	Height	Weight	Age	Postcode	Pre
06/07	Li Pu	190	80	60+	1001	Ро
06/14	Sara Lee	185	110	60+	1001	Re
06/12	Nikos Papadopoulos	170	82	60+	1243	Po
01/01	A. B. Student	170	70	40-60	6732	Tir
05/08	Li Yang	175	72	30-40	6910	Tir
		'				,

Table: 1-anonymity.

Birthday	Name	Height	Weight	Age	Postcode	Profession
06/07		190	80	60+	1001	Politician
06/14		185	110	60+	1001	Rentier
06/12		170	82	60+	1243	Politician
01/01		170	70	40-60	6732	Time Traveller
05/08		175	72	30-40	6910	Policeman

1-anonymity

C. Dimitrakakis Privacy

Birthday	Name	Height	Weight	Age	Postcode	Profession
06/07		180-190	80+	60+	1*	
06/14		180-190	80+	60+	1*	
06/12		170-180	60+	60+	1*	
01/01		170-180	60-80	20-60	6*	
05/08		170-180	60-80	20-60	6*	

1-anonymity

Birthday	Name	Height	Weight	Age	Postcode	Profession
		180-190	80+	60+	1*	
		180-190	80+	60+	1*	
		170-180	60-80	60+	1*	
		170-180	60-80	20-60	6*	
		170-180	60-80	20-60	6*	

Table: 2-anonymity: the database can be partitioned in sets of at least 2 records

Figure: If two people contribute their data $x = (x_1, x_2)$ to a medical database, and an algorithm π computes some public output a from x, then it should be hard infer anything about the data from the public output.

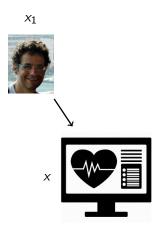


Figure: If two people contribute their data $x = (x_1, x_2)$ to a medical database, and an algorithm π computes some public output a from x, then it should be hard infer anything about the data from the public output.

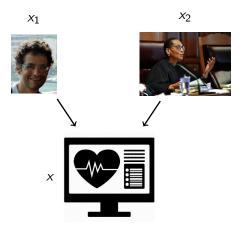


Figure: If two people contribute their data $x = (x_1, x_2)$ to a medical database, and an algorithm π computes some public output a from x, then it should be hard infer anything about the data from the public output.

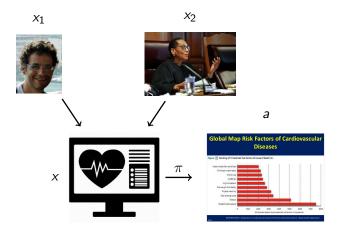


Figure: If two people contribute their data $x = (x_1, x_2)$ to a medical database, and an algorithm π computes some public output a from x, then it should be hard infer anything about the data from the public output.

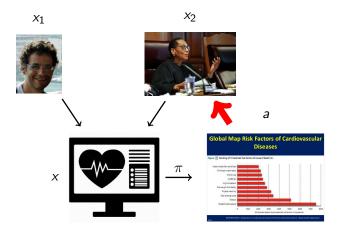


Figure: If two people contribute their data $x = (x_1, x_2)$ to a medical database, and an algorithm π computes some public output a from x, then it should be hard infer anything about the data from the public output.

Privacy desiderata

We wish to calculate something on some private data and publish a privacy-preserving, but useful, version of the result.

- Anonymity: Individual participation remains hidden.
- \triangleright Secrecy: Individual data x_i is not revealed.
- Side-information: Linkage attacks are not possible.
- Utility: The calculation remains useful.

- n athletes
- Ask whether they have doped in the past year.
- Aim: calculate % of doping.
- ► How can we get truthful / accurate results?

Write responses in class: Age, Gender, Tobacco use

16 / 38

C. Dimitrakakis Privacy September 17, 2019

- n athletes
- Ask whether they have doped in the past year.
- Aim: calculate % of doping.
- How can we get truthful / accurate results?

Write responses in class: Age, Gender, Tobacco use

Algorithm for randomising responses about drug use

- 1. Flip a coin.
- 2. If it comes heads, respond truthfully.
- 3. Otherwise, flip another coin and respond yes if it comes heads and no otherwise.

Exercise 1

Assume that the observed rate of positive responses in a sample is p, that everybody follows the protocol, and the coin is fair. Then, what is the true rate q of drug use in the population?

- n athletes
- Ask whether they have doped in the past year.
- Aim: calculate % of doping.
- How can we get truthful / accurate results?

Write responses in class: Age, Gender, Tobacco use

Solution.

Since the responses are random, we will deal with expectations first

$$\mathbb{E}\,p = \frac{1}{2} \times \frac{1}{2} + q \times \frac{1}{2}$$

16 / 38

C. Dimitrakakis Privacy

- n athletes
- Ask whether they have doped in the past year.
- Aim: calculate % of doping.
- How can we get truthful / accurate results?

Write responses in class: Age, Gender, Tobacco use

Solution.

Since the responses are random, we will deal with expectations first

$$\mathbb{E} p = \frac{1}{2} \times \frac{1}{2} + q \times \frac{1}{2} = \frac{1}{4} + \frac{q}{2}$$

16 / 38

C. Dimitrakakis Privacy

- n athletes
- Ask whether they have doped in the past year.
- Aim: calculate % of doping.
- How can we get truthful / accurate results?

Write responses in class: Age, Gender, Tobacco use

Solution.

Since the responses are random, we will deal with expectations first

$$\mathbb{E} p = \frac{1}{2} \times \frac{1}{2} + q \times \frac{1}{2} = \frac{1}{4} + \frac{q}{2}$$
$$q = 2 \mathbb{E} p - \frac{1}{2}.$$

The randomised response mechanism

Definition 6 (Randomised response)

The i-th user, whose data is $x_i \in \{0,1\}$, responds with $a_i \in \{0,1\}$ with probability

$$\pi(a_i = j \mid x_i = k) = p, \qquad \pi(a_i = k \mid x_i = k) = 1 - p,$$

where $j \neq k$.

C. Dimitrakakis Privacy

The randomised response mechanism

Definition 6 (Randomised response)

The *i*-th user, whose data is $x_i \in \{0,1\}$, responds with $a_i \in \{0,1\}$ with probability

$$\pi(a_i = j \mid x_i = k) = p, \qquad \pi(a_i = k \mid x_i = k) = 1 - p,$$

where $j \neq k$.

Given the complete data x, the mechanism's output is $a = (a_1, \ldots, a_n)$.

The randomised response mechanism

Definition 6 (Randomised response)

The i-th user, whose data is $x_i \in \{0,1\}$, responds with $a_i \in \{0,1\}$ with probability

$$\pi(a_i = j \mid x_i = k) = p, \qquad \pi(a_i = k \mid x_i = k) = 1 - p,$$

where $j \neq k$.

Given the complete data x, the mechanism's output is $a=(a_1,\ldots,a_n)$. Since the algorithm independently calculates a new value for each data entry, the output is

$$\pi(a \mid x) = \prod_{i} \pi(a_i \mid x_i)$$

Exercise 1

Let the adversary have a prior $\xi(x=0)=1-\xi(x=1)$ over the values of the true response of an individual. we use the randomised response mechanism with p and the adversary observes the randomised data a=1 for that individual, then what is $\xi(x=1 \mid a=1)$?

18 / 38

C. Dimitrakakis Privacy September 17, 2019

The local privacy model

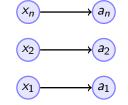


Figure: The local privacy model

Differential privacy.

Definition 7 (ϵ -Differential Privacy)

A stochastic algorithm $\pi:\mathcal{X}\to\mathcal{A}$, where \mathcal{X} is endowed with a neighbourhood relation N, is said to be ϵ -differentially private if

$$\left| \ln \frac{\pi(a \mid x)}{\pi(a \mid x')} \right| \le \epsilon, \qquad \forall x N x'. \tag{5.1}$$

Defining neighbourhoods

Birthday	Name	Height	Weight
06/07	Li Pu	190	80
06/14	Sara Lee	185	110
06/12	Nikos Papadopoulos	170	82
01/01	A. B. Student	170	70
05/08	Li Yang	175	72

Table: Data x

Birthday	Name	Height	Weight
06/07	Li Pu	190	80
06/14	Sara Lee	185	110
01/01	A. B. Student	170	70
05/08	Li Yang	175	72

Table: 1-Neighbour *x* ∕

Defining neighbourhoods

Birthday	Name	Height	Weight
06/07	Li Pu	190	80
06/14	Sara Lee	185	110
06/12	Nikos Papadopoulos	170	82
01/01	A. B. Student	170	70
05/08	Li Yang	175	72

Table: Data x

Birthday	Name	Height	Weight
06/07	Li Pu	190	80
06/14	Sara Lee	185	110
06/13	Nikos Papadopoulos	180	80
01/01	A. B. Student	170	70
05/08	Li Yang	175	72

Table: 2-Neighbour x'

The definition of differential privacy

- First rigorous mathematical definition of privacy.
- Relaxations and generalisations possible.
- Connection to learning theory and reproducibility.

Current uses

- Apple.
- Google.
- Uber.
- US 2020 Census.

Open problems

- Complexity of differential privacy.
- Verification of implementations and gueries.

The randomised response mechanism with $p \le 1/2$ is $(\ln \frac{1-p}{p})$ -DP.

Proof.

Consider
$$x=(x_1,\ldots,x_j,\ldots,x_n),\ x'=(x_1,\ldots,x_j',\ldots,x_n).$$
 Then
$$\pi(a\mid x)$$

23 / 38

C. Dimitrakakis Privacy

The randomised response mechanism with $p \le 1/2$ is $(\ln \frac{1-p}{p})$ -DP.

Proof.

Consider
$$x=(x_1,\ldots,x_j,\ldots,x_n),\ x'=(x_1,\ldots,x_j',\ldots,x_n).$$
 Then
$$\pi(a\mid x)=\prod_i\pi(a_i\mid x_i)$$

The randomised response mechanism with $p \le 1/2$ is $(\ln \frac{1-p}{p})$ -DP.

Proof.

Consider
$$x=(x_1,\ldots,x_j,\ldots,x_n)$$
, $x'=(x_1,\ldots,x_j',\ldots,x_n)$. Then
$$\pi(a\mid x)=\prod_i\pi(a_i\mid x_i)$$

$$=\pi(a_j\mid x_j)\prod\pi(a_i\mid x_i)$$

The randomised response mechanism with $p \le 1/2$ is $(\ln \frac{1-p}{p})$ -DP.

Proof.

Consider
$$x=(x_1,\ldots,x_j,\ldots,x_n)$$
, $x'=(x_1,\ldots,x_j',\ldots,x_n)$. Then
$$\pi(a\mid x)=\prod_i\pi(a_i\mid x_i)$$

$$=\pi(a_j\mid x_j)\prod\pi(a_i\mid x_i)$$

$$\leq \frac{p}{1-p}\pi(a_j\mid x_j')\prod_{i\neq j}\pi(a_i\mid x_i)$$

$$\pi(a_j = k \mid x_j = k) = 1 - p$$
 so the ratio is $\max\{(1-p)/p, p/(1-p)\} \le (1-p)/p$ for $p \le 1/2$.

The randomised response mechanism with $p \le 1/2$ is $(\ln \frac{1-p}{p})$ -DP.

Proof.

Consider
$$x = (x_1, \dots, x_j, \dots, x_n)$$
, $x' = (x_1, \dots, x_j', \dots, x_n)$. Then

$$\pi(a \mid x) = \prod_{i} \pi(a_{i} \mid x_{i})$$

$$= \pi(a_{j} \mid x_{j}) \prod_{i \neq j} \pi(a_{i} \mid x_{i})$$

$$\leq \frac{p}{1-p} \pi(a_{j} \mid x'_{j}) \prod_{i \neq j} \pi(a_{i} \mid x_{i})$$

$$= \frac{1-p}{p} \pi(a \mid x')$$

23 / 38

C. Dimitrakakis Privacy

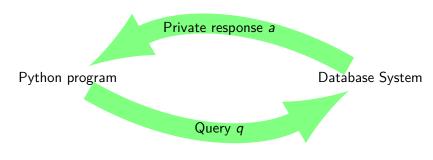


Figure: Private database access model

Response policy

The policy defines a distribution over responses a given the data x and the query q.

$$\pi(a \mid x, q)$$

Differentially private queries

The DP-SELECT statement

- ▶ DP-SELECT ϵ column1, column2 FROM table;
- ▶ DP-SELECT ϵ * FROM table;

Selecting rows

```
DP-SELECT \epsilon * FROM table WHERE column = value;
```

Arithmetic queries

- ightharpoonup DP-SELECT ϵ COUNT(column) FROM table WHERE condition;
- ▶ DP-SELECT ϵ AVG(column) FROM table WHERE condition;
- lacktriangledown DP-SELECT ϵ SUM(column) FROM table WHERE condition;

Composition

If we answer T queries with an ϵ -DP mechanism, then our cumulative privacy loss is ϵT .

Exercise 2

Adversary knowledge

$$m{x}=(x_1,\ldots,x_j=0,\ldots,x_n)$$
 $m{x}'=(x_1,\ldots,x_j=1,\ldots,x_n).$ $m{\xi}(m{x})=1-m{\xi}(m{x}')$

What can we say about the posterior distribution of the adversary $\xi(\boldsymbol{x}\mid\boldsymbol{a},\pi)$ after having seen the output, if π is ϵ -DP?

4□▶ 4□▶ 4□▶ 4□▶ 4□ ♥ 990

Exercise 2

Adversary knowledge

$$egin{aligned} oldsymbol{x} & = (x_1, \dots, x_j = 0, \dots, x_n) \ & oldsymbol{x}' = (x_1, \dots, x_j = 1, \dots, x_n). \ & egin{aligned} \xi(oldsymbol{x}) & = 1 - \xi(oldsymbol{x}') \ & egin{aligned} \pi(oldsymbol{a}_t \mid oldsymbol{x}_t = oldsymbol{x}) \ \pi(oldsymbol{a}_t \mid oldsymbol{x}_t = oldsymbol{x}') \end{aligned}$$

What can we say about the posterior distribution of the adversary $\xi(x\mid a,\pi)$ after having seen the output, if π is ϵ -DP?

Dealing with multiple attributes.

Independent release of multiple attributes.

For n users and k attributes, if the release of each attribute i is ϵ -DP then the data release is $k\epsilon$ -DP. Thus to get ϵ -DP overall, we need ϵ/k -DP per attribute.

The Laplace mechanism.

Definition 8 (The Laplace mechanism)

For any function $f: \mathcal{X} \to \mathbb{R}$,

$$\pi(a \mid x) = Laplace(f(x), \lambda), \tag{5.2}$$

where the Laplace density is defined as

$$p(\omega \mid \mu, \lambda) = \frac{1}{2\lambda} \exp\left(-\frac{|\omega - \mu|}{\lambda}\right).$$

and has mean μ and variance $2\lambda^2$.

C. Dimitrakakis Privacy

Example 9 (Calculating the average salary)

- The i-th person receives salary x_i
- We wish to calculate the average salary in a private manner.

Local privacy model

- Obtain $y_i = x_i + \omega$, where $\omega \sim \text{Laplace}(\lambda)$.
- ightharpoonup Return $a = n^{-1} \sum_{i=1}^{n} y_i$.

Centralised privacy model

Return $a = n^{-1} \sum_{i=1}^{n} x_i + \omega$, where $\omega \sim \text{Laplace}(\lambda')$.

How should we add noise in order to guarantee privacy?

The centralised privacy model

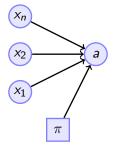


Figure: The centralised privacy model

Assumption 1

The data x is collected and the result a is published by a trusted curator

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ □ ✓ Q ○
 September 17, 2019 30 / 38

C. Dimitrakakis Privacy

Definition 10 (Sensitivity)

The sensitivity of a function f is

$$\mathbb{L}(f) \triangleq \sup_{x \in Nx'} |f(x) - f(x')|$$

Example 11

If
$$f: \mathcal{X} \to [0, B]$$
, e.g. $\mathcal{X} = \mathbb{R}$ and $f(x) = \min\{B, \max\{0, x\}\}$, then

◆□▶ ◆御▶ ◆差▶ ◆差▶ ○差 ○夕@@

C. Dimitrakakis Privacy September 17, 2019 31/38

Definition 10 (Sensitivity)

The sensitivity of a function f is

$$\mathbb{L}\left(f\right) \triangleq \sup_{\mathsf{x} \mathsf{N} \mathsf{x}'} |f(\mathsf{x}) - f(\mathsf{x}')|$$

Example 11

If $f: \mathcal{X} \to [0, B]$, e.g. $\mathcal{X} = \mathbb{R}$ and $f(x) = \min\{B, \max\{0, x\}\}\$, then $\mathbb{L}(f) = B$.

(ロト 4回 ト 4 重 ト 4 重 ト 三 重 りなべ)

C. Dimitrakakis

Definition 10 (Sensitivity)

The sensitivity of a function f is

$$\mathbb{L}\left(f\right) \triangleq \sup_{\mathsf{x} \mathsf{N} \mathsf{x}'} |f(\mathsf{x}) - f(\mathsf{x}')|$$

Example 11

If $f: \mathcal{X} \to [0, B]$, e.g. $\mathcal{X} = \mathbb{R}$ and $f(x) = \min\{B, \max\{0, x\}\}\$, then $\mathbb{L}(f) = B$.

Example 12

If $f: [0, B]^n \to [0, B]$ is $f = \frac{1}{n} \sum_{t=1}^n x_t$, then

C. Dimitrakakis

Definition 10 (Sensitivity)

The sensitivity of a function f is

$$\mathbb{L}(f) \triangleq \sup_{\mathsf{x} \mathsf{N} \mathsf{x}'} |f(\mathsf{x}) - f(\mathsf{x}')|$$

Example 11

If $f: \mathcal{X} \to [0, B]$, e.g. $\mathcal{X} = \mathbb{R}$ and $f(x) = \min\{B, \max\{0, x\}\}\$, then $\mathbb{L}(f) = B$.

Example 12

If $f: [0, B]^n \to [0, B]$ is $f = \frac{1}{n} \sum_{t=1}^n x_t$, then $\mathbb{L}(f) = B/n$.

◆ロト ◆問 ▶ ◆ 恵 ▶ ◆ 恵 ● 夕 Q (*)

C. Dimitrakakis

Privacy

Theorem 13

The Laplace mechanism on a function f with sensitivity $\mathbb{L}(f)$, ran with *Laplace*(λ) *is* $\mathbb{L}(f)/\lambda$ -*DP*.

Proof.

$$\frac{\pi(a\mid x)}{\pi(a\mid x')} = \frac{e^{|a-f(x')|/\lambda}}{e^{|a-f(x)|/\lambda}} \leq \frac{e^{|a-f(x)|/\lambda + \mathbb{L}(f)/\lambda}}{e^{|a-f(x)|/\lambda}} = e^{\mathbb{L}(f)/\lambda}$$

So we need to use $\lambda = \mathbb{L}(f)/\epsilon$ for ϵ -DP. What is the effect of applying the Laplace mechanism in the local versus centralised model?

C. Dimitrakakis

Interactive queries

- System has data x.
- User asks query q.
- System responds with a.
- ▶ There is a common utility function $U: \mathcal{X}, \mathcal{A}, \mathcal{Q} \to \mathbb{R}$.

We wish to maximisation U with our answers, but are constrained by the fact that we also want to preserve privacy.

C. Dimitrakakis

The Exponential Mechanism.

Definition 14 (The Exponential mechanism)

For any utility function $U: \mathcal{Q} \times \mathcal{A} \times \mathcal{X} \to \mathbb{R}$, define the policy

$$\pi(\mathbf{a} \mid \mathbf{x}) \triangleq \frac{e^{\epsilon U(q, \mathbf{a}, \mathbf{x})/\mathbb{L}(U(q))}}{\sum_{\mathbf{a}'} e^{\epsilon U(q, \mathbf{a}', \mathbf{x})/\mathbb{L}(U(q))}}$$
(5.3)

What happens when $\epsilon \to \infty$? What about when $\epsilon \to 0$?

September 17, 2019

34 / 38

C. Dimitrakakis Privacy

Prior

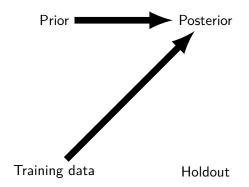
35/38

C. Dimitrakakis Privacy September 17, 2019

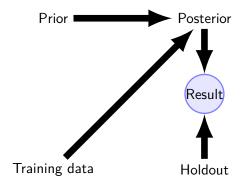
Prior

Training data

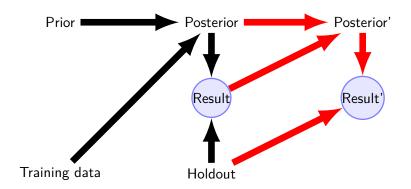
Holdout



<ロ > ∢回 > ∢回 > ∢ 直 > √ 直 > りへ⊙



C. Dimitrakakis



◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ りへの

The reusable holdout? 1

Algorithm parameters

- Performance measure f.
- ightharpoonup Threshold au.
- Noise σ .
- ▶ Budget *B*.

Algorithm idea

Run algorithm λ on data D_T and get e.g. classifier parameters θ . Run a DP version of the function $f(\theta, D_H) = \mathbb{I}\{U(\theta, D_T) \ge \tau U(\theta, D_H)\}$.

https://ai.googleblog.com/2015/08/the-reusable-holdout-preserving.html

¹Also see

Available privacy toolboxes

k-anonymity

► https://github.com/qiyuangong/Mondrian Mondrian k-anonymity

Differential privacy

- https://github.com/bmcmenamin/ thresholdOut-explorationsThreshold out
- https://github.com/steven7woo/ Accuracy-First-Differential-PrivacyAccuracy-constrained DP
- https://github.com/menisadi/pydpVarious DP algorithms
- https://github.com/haiphanNJIT/PrivateDeepLearning Deep learning and DP

September 17, 2019 37/38

C. Dimitrakakis Privacy September 17, 2019

Learning outcomes

Understanding

- Linkage attacks and k-anonymity.
- Inferring data from summary statistics.
- The local versus global differential privacy model.
- False discovery rates.

Skills

- Make a dataset satisfy k-anonymity with respect to identifying attributes.
- Apply the randomised response and Laplace mechanism to data.
- Apply the exponential mechanism to simple decision problems.
- Use differential privacy to improve reproducibility.

Reflection

How can potentially identifying attributes be chosen to a