
Exam IN1010 spring 2021

Read	the	whole	problem	set	before	starting	to	answer	any	questions;	useful	information	
may	be	found	later	in	the	text.

The	combined		answer	to	problems	1	and	2	shall	constitute	a	complete	program	with	main	
and	all	necessary	classes.	You	may	deliver	your	program	as	one	.java	file,		or	you	may	choose	
to	have	each	class	in	a	separate	file.	The	.class	files	are	not	to	be	uploaded.	Illustrations	may	
either	be	drawn	by	hand	and	photographed	using	a	mobile	phone,	or	generated	by	a	
program.	Files	with	illustrations	must	be	named	according	to	which	problem	they	belong	to,	
and	they	must	be	in	.png,	.jpg	or	.pdf	format,	like	1a.jpg.	All	files	that	constitute	your	answer	
to	problems	1	and	2	are	to	be	uploaded	in	one	zip	file.

Problems	3	and	4	are	uploaded	as	separate	zip	files.	

Note:	The	programs	are	not	required	to	be	executable.	Insignificant	bugs	making	the	
program	fail	to	compile	or	execute,	will	be	ignored	by	the	censors.

Your	Java	code	should	be	coded	according	to	the	object-oriented	principles	taught	in	
IN1010.	Do	not	use	any	classes	from	the	Java	library,	apart	from	java.lang	(which	does	not	
need	importing),	except	where	explicitly	stated	that	such	classes	are	allowed.

If	you	need	a	value	not	defined	in	the	problem	set,	you	may	define	a	constant	with	a	suitable	
value.

In	this	problem	set,	you	will	have	to	make	many	random	decisions	using	the	class	Trekk	
("draw")	which	contains	a	static	method	int	trekkInt(int	min,	int	max)	which	returns	an	
integer	x,	where	min	<=	x	<=	max.	You	may	use	this	class,	even	if	you	not	written	it	as	your	
answer	to	problem	1d.

A forest of paths and walkers

In	this	problem	set	you	are	to	write	a	program	simulating	how	walkers	use	paths	in	a	forest.

			

Problem 1. The forest, the paths and the crossings 30%

There	are	many	stier	("paths")	in	a	forest.	In	this	problem,	we	classsify	some	as	kjerrevei	
("tractor	road")	and	others	as	naturst	("nature	trail").	All	paths	in	the	forest	are	either	
tractor	roads	or	nature	trails.

Some	paths	give	a	great	utsikt	("view"),	and	this	applies	to	both	tractor	roads	and	nature	
trails.	You	should	model	this	property	of	having	a	great	view	as	an	interface.

Problem	1	deals	mostly	with	building	the	forest	with	paths	and	crossings,	while	problem	2	is	
mostly	about	simulating	(pretending	to	be)	walkers	in	the	forest.

Problem 1a 3%

Draw	the	class	hierarchy	for	the	various	paths	in	the	forest	as	described	above.

End	problem	1a

1

Skogen	("the	forest")	has	many	paths	meeting	at	stikryss	("crossings").	You	are	to	write	the	
classes	Skog,	Kryss	and	all	the	classes	and	interfaces	you	described	in	problem	1a.	There	are	
few	restrictions	on	how	you	program	them,	as	long	as	you	follow	these	specifications:

The	class	Kryss	shall	have	a	data	structure	containing	all	the	paths	that	meet	at	the	crossing.	
In	this	class,	you	may	utilise	any	class	from	the	Java	API.	When	we	later	want	to	simulate	
people	walking	in	the	forest,	we	must	decide	which	path	a	walker	will	use	when	he	or	she	is	
at	a	crossing.	Consequently,	write	a	method	in	class	Kryss	returning	a	random	path	from	that	
crossing.	It	is	acceptable	for	a	walker	to	return	by	the	same	path	that	he	or	she	came	from.	
Furthermore,	Kryss	needs	a	Boolean	method	which	returns	true	if	the	crossing	is	isolated,	
i.e.,	that	no	paths	lead	to	or	from	the	crossing.	(For	example,	it	is	not	a	good	idea	to	start	
you	trip	at	such	a	crossing.)

The	class	Sti	needs	a	constructor	which	defines	the	length	of	the	path	(in	meters)	and	the	
two	crossings	at	either	end	of	the	path;	these	are	parameters	to	the	constructor.	A	path	
always	references	two	crossings,	one	at	either	end.	A	path	has	no	direction,	and	it	is	OK	for	a	
path	to	reference	the	same	crossing	at	both	ends;	in	this	case,	a	walk	along	this	path	will	
only	be	a	short	roundtrip.	Later,	when	we	want	to	simulate	people	walking	in	the	forest,	we	
must	determine	where	the	walker	ends	up	when	starting	out	on	a	given	path.	You	must	
write	a	method	finnAndreEnde	("find	other	end")	in	the	class	Sti,	which,	given	one	end	of	
the	path	as	a	parameter,	returns	the	other	end.	Furthermore,	the	class	Sti	needs	a	method	
int	beregnGaaTid(int	v)	("compute	walking	time")	which	determines	how	long	it	takes	to	
walk	the	path	with	the	given	speed	v,	and	returns	the	result.	The	speed	is	given	as	meters	
per	second,	and	the	result	should	be	given	as	whole	minutes.	It	is	your	decision	to	either	
round	the	result	or	drop	the	digits	after	the	decimal	point.

A	path	with	a	good	view	contains	a	number	utsiktsVerdi	("view	value")	between	(and	
including)	1	and	6	stating	the	quality	of	the	view.	This	number	should	also	be	a	parameter	to	
the	class	constructor.	This	constructor	must	check	the	parameter	value	and,	it	it	is	not	in	the	
range	1-6,	an	exception	(a	subclass	of	RuntimeException)	must	be	thrown.	You	decide	what	
to	name	the	exception.	Any	path	with	a	view	must	have	a	method	to	read	the	view	value.

The	class	Skog	must	have	a	constructor	which	builds	the	data	structure	of	paths	and	
crossings.	There	are	ANTSTIER	paths	and	ANTKRYSS	crossings,	and	these	constants	are	set	by	
the	class	constructor.	Skog	shall	contain	an	array	pointing	to	all	crossings.	Skog's	constructor	
is	to	build	the	structure	in	the	following	way:	First,	create	all	the	crossings	(without	any	
paths	for	the	time	being)	and	put	these	in	the	array	of	crossings.	Then,	create	all	the	paths.	
For	each	path,	select	two	random	crossings	between	which	the	path	is	to	go;	also,	select	the	
type	of	path	and	the	length.

Every	created	path	should	have	an	equal	chance	(25%)	of	being	a	tractor	road,	a	nature	trail,	
a	tractor	road	with	a	view	or	a	nature	trail	with	a	view.	When	creating	a	path	with	a	view,	the	
program	must	also	select	a	quality	value,	and	each	of	the	six	values	should	have	an	equal	
chance.	The	length	of	the	path	is	drawn	randomly	in	the	range	220-2500	meters.

2

Note	that	this	random	system	of	paths	is	not	very	realistic,	but	we	don't	care	about	that	in	
problems	1-3.	For	instance,	it	is	quite	all	right	to	have	crossings	with	no	paths,	or	with	just	
one.

The	class	Skog	shall	have	a	method	hentTilfeldigKryss()	("get	random	crossing")	which	
returns	a	crossing	in	the	forest	selected	randomly,	and	another	method	hentTilfeldigStart()	
("get	random	start")	which	guarantees	that	the	returned	crossing	has	at	least	one	path	and	
is	thus	suitable	for	starting	a	hike.	You	may	assume	that	at	least	one	such	crossing	always	
exists	in	the	forest.

Problem 1b. Weight 3%

Draw	a	data	structure	with	three	objects	of	class	Kryss	and	two	objects	of	a	subclass	of	
class	Sti.	Do	not	include	any	methods.

End	problem	1b

Problem 1c. 23%

Write	the	classes	Skog,	Kryss	and	all	the	classes	and	interfaces	you	described	in	problem	
1a.		

End	problem	1c

Problem 1d. 1%

Write	the	class	Trekk	("draw")	with	its	static	method	int	trekkInt(int	min,	int	max)	("draw	
int")	as	described	in	the	introduction.	The	method	returns	a	random	integer	N	where	
0<=min<=N<=max.	One	way	of	drawing	a	random	integer	in	the	range	0	to	N-1	(both	
numbers	included)	is	to	write	(int)(Math.random()*N).

End	problem	1d

Oppgave 2. Simulating walkers in the forest 45%

Based	on	the	program	parts	you	created	in	the	previous	problem,	you	shall	now	write	a	
complete	program	simulating	walkers	in	the	forest.	You	shall	not	use	any	threads	in	
problems	1	or	2.

In	problem	2	you	shall	make	the	components	of	a	general	simulator	and	then	simulate	the	
walkers	using	this	simulator.	You	are	strongly	encouraged	to	read	all	of	problem	2	
thoroughly,	including	how	to	simulate	the	walkers,	before	starting	your	implementation.	

A	simple	general	simulator

You	are	to	implement	a	simple	general	simulator	consisting	of	the	classes	Simulator,	Aktivitet	
("activity")	and	PrioKo	("priority	queue").	There	will	be	only	one	object	of	the	class	
Simulator,	and	it	shall	have	an	instance	variable	int	globaltid	("global	time")	starting	at	0.	The	
class	Aktivitet	models	a	general	activity.	All	activities	have	a	handling	("action")	performed	
by	an	instance	method	void	handling().	In	addition,	all	activities	have	an	instance	variable	int	
tid	("time")	denoting	when	this	action	is	to	be	performed	next.	Consequently,	tid	>=	
globaltid	is	an	invariant	for	all	activities.

In	every	step	of	the	simulation,	the	action	of	the	activity	with	the	lowest	value	of	tid	is	
executed.	To	achieve	this,	the	activities	are	stored	in	a	prioritetskø	("priority	queue")	so	that	

3

the	activity	with	lowest	time	is	removed	first.	This	priority	queue	is	implemented	as	a	class	
PrioKo.	The	classes	Simulator,	PrioKo	and	Aktivitet	are	designed	to	work	together	(they	are	
tightly	coupled)	and	the	instance	variables	in	the	Aktivitet	class	should	be	accessible	from	
other	classes	in	the	same	package	(classes	in	the	same	folder).	Thus,	you	should	not	protect	
the	instance	variables	of	Aktivitet	by	specifying	access	as	private	(or	protected).

The	class	Aktivitet	shall	have:

• two	instance	variables	referencing,	respectively,	the	objects	with	lower	and	

higher	value	of	the	instance	variable	tid	in	the	priority	queue	(and	used	as	
successor	and	predecessor	pointers)

• an	instance	variabel	tid	(see	above)

• an	abstract	method	handling	(see	above).

Furthermore,	the	class	shall	implement	the	interface	Comparable	to	be	able	to	compare	
values	of	the	instance	variable	tid	in	two	Aktivitet	objects.

Problem 2a Weight 4%

Write	the	class	Aktivitet	

End	problem	2a

Priority	queue	for	activities

Without	using	any	classes	in	the	Java	library,	make	a	class	PrioKo	which	implements	a	double	
linked	priority	queue	of	Aktivitet	objects.	The	class	is	to	have	two	methods:	settInn(a)	
("enter")	and	hentUt()	("remove").			

hentUt()	removes	and	returns	the	first	object	(i.e.,	the	one	with	lowest	tid)	in	the	queue.

settInn(a)	searches	backwards	(i.e.,	starts	by	comparing	the	new	object	with	the	one	with	
largest	tid)	and	enters	the	new	object	in	the	correct	position	in	the	priority	queue.

Problem 2b Weight 10%

Write	the	class	PrioKo

End	problem	2b

Simulator

Now,	you	are	to	write	the	class	Simulator.	This	simulator	shall	contain	a	priority	queue.	
Simulator's	constructor	has	as	parameter	an	array	with	references	to	all	the	activities	that	
are	to	be	simulated;	these	are	put	in	the	priority	queue.	The	activities	may	all	have	0	as	the	
value	of	tid,	and	it	must	be	OK	to	have	a	priority	queue	with	all	activities	having	the	same	
tid.

The	next	time	anything	will	happen	is	determined	by	the	instance	variable	tid	in	the	activity	
with	lowest	tid	(i.e.,	the	first	Aktivitet	in	the	priority	queue).	This	instance	variable	is	updated	
in	the	method	handling()	in	subclasses	of	Aktivitet.	

The	simulator	shall	contain	a	method	void	simuler(int	t)	("simulate")	to	simulate	the	
activities;	t	is	how	many	minutes	the	simulation	shall	last.	Consequently,	the	method	
simuler(int	t)	should	contain	a	while-loop	like	this:				while	(globaltid	<	t)			{	.	.	.		}	

The	body	of	the	while-loop	shall	do	this:

4

• Remove	the	activity	with	the	lowest	tid	from	the	priority	queue.

• Assign	globaltid	to	this	lowest	tid.

• Call	the	method	handling()	in	the	activity	(As	this	method	is	abstract	in	Aktivitet,	it	

must	be	defined	by	a	subclass	like	Turgaaer,	see	below).	When	terminating	the	
action,	we	assume	that	this	method	increases	the	local	time	to	the	point	of	time	in	
the	future	when	this	activity	is	to	be	executed	by	the	the	simulator	again.

• Enter	this	activity	in	the	priority	queue	again	(with	the	new	time).

Problem 2c weight 10%

Write	the	complete	Simulator	class

End	problem	2c

Simulate	walkers

You	are	now	to	employ	this	simulator	to	simulate	walkers.	The	class	Turgaaer	("walker")	is	
consequently	a	subclass	of	Aktivitet.

A	walker	has	a	speed	(in	meters/minute)	and	a	place	(a	reference	to	a	Kryss)	at	which	the	
walker	is	positioned	or	headed	for.	The	speed	and	the	crossing	where	the	walker	starts	are	
parameters	to	Turgaaer's	constructor.	All	walkers	start	at	tid	equals	0. 

When	a	walker	leaves	a	crossing,	the	program	shall	set	the	activity	time	to	when	the	walker	
arrives	at	the	next	crossing	(see	below).	Consequently,	the	method	handling()	in	the	
Turgaaer	class	is	called	by	the	simulator	when	a	walker	reaches		a	crossing.	The	method	
must	then	choose	where	the	walker	should	proceed	next	by	drawing	a	random	path	from	
the	present	crossing	(and	it	may	be	the	path	from	which	he	or	she	came).	The	walker's	next	
destination	is	the	other	end	of	that	path.	Then,	the	walker	calls	the	method	beregnGaaTid	
("compute	walking	time")	for	the	selected	path	and	with	the	walker's	speed	as	parameter.	
Based	on	this	walking	time,	the	walker	determines	when	he	or	she	will	arrive	at	the	other	
end	(the	old	value	of	tid	(which	is	0	when	the	walker	first	starts	out)	+	the	time	it	takes	to	
reach	the	other	end	of	the	path).	The	last	thing	the	method	does	is	to	assign	the	new	arrival	
time	at	the	other	end	of	the	path	to	the	instance	variable	tid.

Problem 2d weight 9%

Write	the	class	Turgaaer.

End	problem	2d

The	main	program	in	class	TestSimulator

Write	the	class	TestSimulator	with	a	main()	method	so	that	everything	works.	This	method		
shall	create	the	forest,	create	all	the	walkers	and	create	the	simulator	with	all	the	walkers.	
Define	a	constant	specifying	how	many	walkers	should	be	created.	For	each	walker,	draw	a	
random	start	crossing	at	which	the	walker	should	start.	The	walker's	speed	is	also	drawn	
randomly;	it	should	be	in	the	range	20-200.	Finally,	call	the	method	simuler(t)	in	the	
simulator	to	do	the	actual	simulation;	the	parameter	is	an	integer	drawn	randomly	from	the	
range	30-480.

Problem 2e weight 10%

Write	the	class	TestSimulator	with	a	main()	method	as	described	above.

5

End	problem	2e

Problem 2f weight 2%

In	the	class	Turgaaer,	an	unlucky	programmer	may,	by	mistake,	try	to	specify	a	new	time	less	
than	the	current	time.	This	will	ruin	the	simulation.	How	should	the	Aktivitet	class	be	coded	
to	be	more	robust	and	prevent	the	time	from	going	backwards	or	standing	still?

Deliver	your	answer	as	a	new	Java	file	named	Aktivitet2.java.	Please	add	comments	to	
explain	the	changes	you	have	made.	Aktivitet2	is	not	supposed	to	work	with	the	other	files	
in	your	other	classes	in	problems	1	and	2.

End	problem	2f

Delivery	of	problems	1	and	2:	All	program	files	and	files	with	drawings	should	be	collected	in	
a	zip	file	named	Oppgave1_2.zip

6

