Institutt for informatikk

Universitetet 1 Oslo

Technical Report
IN1060 - Bruksorientert design

TeamUino

Siri Sollerud
Stela Ceaicovscaia

Zach Erjohn Kobe Gonsholt

Yan Jiang

TeamUino

Introduction

The topic of our group is to discover new ways of reducing food waste in grocery stores using IT
solutions. We chose to focus on grocery store employees and aim to provide a digital solution to
help to smooth their work process in the ‘too good to go’ service and also advocate ‘too good to

go’ App to raise people’ awareness of food waste.

After several cycles of user-centered design and iterations, we present a self-service box using
arduino which can reduce customers’ waiting time, reduce workload for employees and advocate
the App to a bigger audience. The customer can enter code using a number pad and receive
feedback on screen. When the password is correct and accepted, the motor will rotate and
unlock. The box’s appearance is also elaborately designed and decorated to promote the ‘too

good to go’ App.

Video

Our video first shows a scenario that shows the problem to the employees and customers in a
Coop Mega grocery store. Where an employee was already tired after a hectic day and had to
fetch ‘magic bag’ to the customers again and again. The customers were also not satisfied with
the long waiting time. Then we show a short animation video on how our self-service lockbox
works. The video then shows how our prototype can be used in the store. How the employee can
put bags in the box and customers can come and unlock the box to get their bag without waiting.
Our product (prototype) still can not perform stably in the grocery store environment with real
users due to some connection issues, therefore we have adopted a Wizard of Oz approach in
some parts of the prototype and video. All the people in our video agreed to being filmed in

advance.

Video Link:
https://voutu.be/LmZxXhG1uP8&

https://youtu.be/LmZxXhG1uP8

Technical solution

As early as our first iteration, we began to
think practically which Arduino parts can be
used to realize the functions that we want in
our prototypes. In our third iteration, we
began to work on arduino. We used switched
buttons as user input and LCD screen as user
feedback. We also compare the servo motor
and dc motor and settle with servo motor as it
is more easily controlled in our case. When
the servo motor starts to rotate, it draws more
current than if it were already in motion, so we
also have to place a 100 uf capacitor across

power and ground.

Later, we receive feedback from the users that
the switch is very difficult to use and with
very limited password selection as there were

only two switches connected to the pins.

Therefore, in the fourth iteration, we ordered
4*4 keypad and replace the switches so that it appears more like a system that we use in real life.

Now we can have input from 0 to 9 and letters A-D as shown in the figure.

B28A
@5 @ B
@ @@ <
®0® D

The system begins with greeting the users welcome to 'too good to go’ as shown in our code.
After the greeting, the system waits for user input. When the user enters passwords, we compare
it with the password that we set. If it is correct, the screen will show that it is correct

and the box is not unlocked. Then, the motor receives signals and rotates 90 degrees. And then

our box is unlocked, users can open it and get their magic bag.

The components of this product is showed below:

Components Numbers
Arduino Uno 1
LCD screen 1
Servo motor 1
4*4 keypad 1
Jumper wires 10+
Capacitor 1
Potentiometer 1
Resistors 1
Breadboard 1
USB cable 1
Male header pin 10+
Code

Codes and explanations see this link or see screenshots below :

https://create.arduino.cc/editor/yan2030_/ff48a5b1-f7b6-44¢c9-86¢3-1£2717f9cc29/preview

https://create.arduino.cc/editor/yan2030_/ff48a5b1-f7b6-44c9-86c3-1f2717f9cc29/preview

[//this is a self-service lockbox for the user of 'too good to go' App in grocery store Coop Mega
//it examine the user's input, if the entered code is correct, then the box will be lock/unlock

//setting up the lcd
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins, using some of the anolog pins as digital pins
LiquidCrystal lcd(12, 11, 10, 9, Al, A2);
#include <Servo.h>

=
QWO NV A WN B

e
N

//innitialize the motor
Servo myServo;

e
v W

//setting up the keypad

16 t#define Password_Length 4
17 #include <Keypad.h>

18

19 const byte ROWS = 4;

20 const byte COLS = 4;

]

N
N
“«

char hexaKeys[ROWS][COLS] = {

23 {1, '2', '3, 'A'%,
24 {'4', 's', '6', 'B'},

25 {'7'. '8, "9, 'C'},

6 {'*', "', '#', 'D'}

27 1 ;

28 //if using pin @ and 1, then should not use Serial print.

29 byte rowPins[ROWS] = {7, 6, 5, 4};
30 byte colPins[COLS] = {3, 2, 1, 0};
31
32 Keypad customKeypad = Keypad(makeKeymap(hexaKeys), rowPins, colPins, ROWS, COLS);
88
33

34 //set a password, can be changed

35 char Data[Password_Length];

36 char Master[Password_Length] = "238C";
37 byte data_count = 0, master_count = 0;
38 bool Pass_is_good;

39 char customKey;

42 v void setup({

43 myServo.attach(8);

44 myServo.write(0);

45 //this is a greeting message that prints on the screen
46 greeting(Q);

47 //clear the screen

48 led.clear();

53 v void loop() {
54 //if user input is activated, then add it to the data

55 - customKey = customKeypad.getKey();
56+ if (customKey){

57 Serial.println(customKey);

58 Data[data_count] = customKey;

59 lcd.setCursor(data_count,1);

60 lcd.print(Data[data_count]);

61 data_count++;

64

65 // when the length of the user input is same as our password, compare to see if the password is correct
66v if(data_count == Password_Length){

67 delay(2000);

68 led.clear();

69 // lcd.print(Data);
70 // lcd.setCursor(@,1);

L //1lcd.print(Master);
72 delay(2000);
73
74
75 //if the password is correct, print to the screen and unlock, rotate motor 9@ degrees
76v if(!strcmp(Data[@,3], Master[@,3]1)){
7 lcd.print("Correct™);
78 1lcd.clear(Q);
79 lcd.print("code accepted");
80 lcd.setCursor(@, 1);
81v if (locked == true){
82 led.print("**unlock**");
83 - delay(2000);
84 myServo.write(90);
85 delay(2000);
86 v }else{
87 lcd.print("**1locked**");
88 delay(2000);
89 myServo.write(90);
90 . delay(2000);
91 }
92 1
se 5
93 //if the password is not correct, give user feedback
94 v else{
95 lcd.print("Incorrect");
96 data_count=0;
97 delay(1000);
98 greeting();
99 i
100 //clear the data
101 led.clear();
102 clearData(Q);
103
104 }
105

106 //the method to clear the data, so it wont mess up with new user input
107 v void clearData(){

108 v while(data_count !=0){
109 Data[data_count--] = 0;
110 }

111 return;

112 }

113

114

115+ void greeting() {

116 lcd.begin(16, 2);

117 lcd.print("Too good");
118 lcd.setCursor(@, 1);

119

120 led.print("to go :)");
121 delay(3000);

122 lcd.clear();

123

1o

124
125
126
127
128
129
130
133

lcd.print("Welcome to self-");
lcd.setCursor(@, 1);
lcd.print("service lockbox");
delay(2000);

lcd.clear();

