
Exercises for IN1900

Cecilie Glittum and Simen Moe
September 21, 2018

Preface

This document contains a number of programming exercises made for the course
IN1900. The chapter numbers and titles correspond to the chapters of the book
“A primer on Scientific Programming with Python” by Hans Petter Langtangen.
The exercises are meant to be a supplement to the exercise collection in the book,
and most are motivated by applications in science and applied mathematics.
The exercise collection is used for the first time in 2018, and there may be typos
and small errors. If you find any errors, or have other comments or questions
about the exercises, please send them to Joakim Sundnes: sundnes@simula.no.

1

Chapter 1

Computing with Formulas

Problem 1.1. Throw a ball
When throwing a ball in the air, it has a constant acceleration −g from gravity
(we’re excluding air resistance). The height of the ball relative to its starting
point is

y(t) = v0t−
1
2gt

2,

where v0 is the initial velocity of the ball and t is the time after the throw. The
ball reaches its maximum height at time

tmax = v0

g
.

Write a program computing the maximum height of the ball, that is y(tmax),
when v0 = 8.2m/s and g = 9.81m/s2. Print the result.

Filename: ball.py

Problem 1.2. Population growth
The growth of a population can often be described by a logistic function

N(t) = B

1 + Ce−kt ,

where B is the carrying capacity of the species in the enviroment, i.e., the
maximum size of the population that the environment can sustain indefinitely.
The constant k tells us something about how fast the population grows, while C
is given by the initial conditions. Let us consider a bacterial colony where we
take the carrying capacity to be B = 50000 and k = 0.2h−1. If the population is
5000 at t = 0, find C and write a code that finds the number of bacteria in the
colony after 24 hours.

Filename: population.py

Problem 1.3. Solve the quadratic equation
Given a quadratic equation

ax2 + bx+ c = 0,

the two roots are

x1 = −b+
√
b2 − 4ac

2a , x2 = −b−
√
b2 − 4ac

2a .

2

Make a program evaluating the roots of

3x2 + x+ 2 = 0.

Filename: find_roots.py

Problem 1.4. Forces in the hydrogen atom
There are two kinds of forces acting between the proton and the electron in the
hydrogen atom; Coulomb force and gravitational force. The Coulomb force can
be expressed as

FC = ke
e2

r2 ,

where ke is Coulomb’s constant, e is the elementary charge, and r is the distance
between the proton and the electron.

The gravitational force can be expressed as

FG = G
mpme

r2 ,

where G is the gravitational constant, mp is the mass of the proton, me is
the mass of the electron, and r is the distance between the particles. We can
use these expressions for FC and FG to illustrate the difference in strength
of these two forces, i.e., the electromagnetic and gravitational force. Use the
values ke = 9.0 · 109Nm2C−2, e = 1.6 · 10−19C, G = 6.7 · 10−11Nkg−2m2,
mp = 1.7·10−27kg andme = 9.1·10−31kg. You can take the distance between the
proton and electron to be approximately the Bohr radius r = a0 = 5.3 · 10−11m.

Make a program that computes both the Coulomb force and the gravitational
force between the proton and the electron. Write out the forces in scientific
notation with one decimal in units of Newton (N = kgm/s2). Also print the
ratio between the two forces.

Filename: hydrogen.py

3

Chapter 2

Loops and Lists

Problem 2.1. Multiply by five
Write a code printing out 5 · 1, 5 · 2, ..., 5 · 10, using either a for or a while loop.

Filename: multiplication.py

Problem 2.2. Multiplication table
Write a new code based on the one from Problem 2.1. This code should print
the whole miltiplication table from 1 · 1 to 10 · 10.

Hint: You may want to consider using one loop inside another.
Filename: mult_table.py

Problem 2.3. Stirling’s approximation
Stirling’s approximation can be written ln(x!) ≈ x ln x − x. This is a good
approximation for large x. Write out a nicely formatted table of integer x values,
the actual value of ln(x!), and Stirling’s approximation to ln(x!).

Filename: stirling.py

Problem 2.4. Errors in summation
The following code is supposed to compute the sum s =

∑M
k=1

1
(2k)2 .

s = 0; M = 3

for i in range(M):
s += 1/2*k**2

print(s)

This program does not work. Find the errors and write a correct program. Lastly,
write a similar code evaluating the same sum using a while loop. Check that
you get the same answers.

Filename: sum_for.py

Problem 2.5. Binomial coefficient
The binomial coefficient is indexed by two integers n and k and is written

(
n
k

)
.

It is given by the formula (
n

k

)
= n!
k!(n− k)! . (2.1)

4

We can write this out, and get(
n

k

)
=
n−k∏
j=1

k + j

j
. (2.2)

Use Eq. (2.2) and a for loop to find the binomial coefficient for n = 14 and
k = 3. Compute the same value using Eq. (2.1) and check that the results are
correct.

Hint: The
∏

sign is a product sign. Thus
∏n−k
j=1

k+j
j = k+1

1
k+2

2 . . . k+(n−k)
(n−k) .

When checking the result you will need math.factorial.
Filename: binomial.py

Problem 2.6. Table showing population growth
Consider again the bacterial colony from Problem 1.2. Let us study the number
of individuals for n+ 1 uniformly spaced t values throughout the interval [0, 48].
First store the t and N values in two lists t and N. Thereafter, write out a nicely
formatted table of t and N values by traversing the two lists with a for loop.

Filename: population_table.py

Problem 2.7. Nested list

a) Compute two lists of t and N values as explained in Problem 2.5. Store the
two lists in a new nested list tN1 such that tN1[0] and tN[1] correspond to
the two lists. Write out a table with t and N values in two columns by looping
over the data in the tN1 list. Each t value should be written with two decimals,
while each N value should be written as integer.

b) Make a nested list tN2 which holds each row in the table of t and N values.
Loop over the tN2 list and write out the t and N values with two decimals for
the t values and integers for the N values.

Filename: population_table2.py

Problem 2.8. Calculate Cesaro mean
Let (an)∞n=1 be a sequence of numbers, sk =

∑k
n=0 an = a0 + . . . ,+ak, and

SN = 1
N − 1

N−1∑
k=0

sk.

Let (an)∞n=1 be the sequence with an = (−1)n. Calculate SN forN = 1, 2, 3, 4, 5, 10, 50
and print the results in a table.

Filename: cesaro_mean.py

Problem 2.9. Catalan numbers
A number on the form

Cn = 1
n+ 1

(
2n
n

)
= (2n)!

(n+ 1)!n!

is called a Catalan number. Compute and print the first 10 Catalan numbers.
Filename: catalan.py

5

Chapter 3

Functions and Branching

Problem 3.1. Implement a function for population growth
Consider again the function

N(t, k, B,C) = B

1 + Ce−kt .

Implement N as a python function population(t, k, B, C) that returns the
number of individuals in a population after a time t.

Write out a nicely formatted table of t and N values for the time interval
t ∈ [0, 48] using the values from Problem 2.6.

Filename: pop_func.py

Problem 3.2. Sum of integers
We consider the sum

∑n
i=1 i = 1 + 2 + · · ·+ n of positive integers up to n. It

can be shown that the sum is equal to n(n+1)
2 .

a) Write a function sumint(n) that returns the sum of all positive integers
up to n.

b) Write a function implementing n(n+1)
2 .

c) Write test functions for both a) and b) testing for specific known values.
Filename: sumint.py

Problem 3.3. Implement the factorial

a) The factorial can be implemented by a so called recursive function call. Use
a recursive function call to implement a function myfactorial(n) that returns
n!.

Hint: In this case, the recursive function call can be implemented as a function
taking a value n and returning n*myfactorial(n-1). Include a test to check if
n = 0, in that case return 1.

6

b) Write a test function where you call the myfactorial function and check
the value of the returned object for one value of n using math.factorial.

Filename: factorial.py

Problem 3.4. Half-wave rectifier
In a half-wave rectifier the positive part of a signal passes, while the negative
part is blocked. Thus, for a signal passing through a half-wave rectifier, the
negative values are set to zero. Let us look at a sine signal that has passed
through a half-wave rectifier:

f(x) =
{

sin x if sin x > 0
0 if sin x ≤ 0.

Implement f(x) as a Python function f(x) and make a test function for testing
the implementation of f(x) in both cases.

Filename: half_wave.py

Problem 3.5. Primality checker
Recall that a prime number is a number greater than 1 that has exactly 2 divisors.
Said differently, a number greater than one is a prime if it is divisible by only
itself and one. A number that is not prime is called composite. Every number n
can be written as a unique product of primes (e.g. 12 = 2 · 2 · 3), this is called
the prime factorization of n.

a) Make a function that takes a number n, and returns true if it’s prime, and
false if it’s not. Use the program to find all prime numbers up to 100.

Hint: You will only need to check divisibility for numbers up to and including√
(n), because any greater divisor will imply that there is a divisor less than this.

b) Make a function that instead finds the prime factorization of the input
number. It should print “prime” and return nothing if the number is prime,
and both print and return the factorization if it’s composite. Find the prime
factorization of 5525612.

c) Make test functions for the two functions above where you check for small
values of n.

d) Compare the runtime of the two functions with the number 33425626272.
Is the difference big? If so, why do you think one is faster than the other? The
following code returns the mean time it takes for your program to run once:
import timeit
timeit.timeit(’your_func(args)’, ’from __main__ import your_func’,number=1)

Filename: prime.py

Problem 3.6. Eulers totient function
Two numbers n andm are called relatively prime if they have no common divisors
except for 1. That is, no number greater than one should divide both numbers
with no residue.

7

a) Make a function that takes two numbers and returns true if they’re relatively
prime and false if they’re not.

b) Euler’s totient function is defined as

φ(d) = #{Numbers less than d which are relatively prime to d}.

Implement Eulers totient function and print φ(d) for d = 10, 50, 100, 200.

c) Make a test function for both a) and b).
Filename: euler.py

8

Chapter 4

User Input and Error
Handling

Problem 4.1. Quadratic with user input
Consider the usual formula for computing solutions to the quadratic equation
ax2 + bx+ c = 0 given by

x± = b±
√
b2 − 4ac
2a .

Write a program that asks the user for values of a,b, and c through the users
keyboard. Print the solutions.

Filename: quadratic_roots_input.py

Problem 4.2. Quadratic with exceptions
Modify the program in Problem 4.1 to read values for a,b, and c from the
command line. Use exceptions (IndexError) to handle missing arguments.

Filename: quadratic_roots_error.py

Problem 4.3. Quadratic fixed

In this exercise, use the sqrt function imported from math.

Consider the program from Problem 4.2. Not all inputs yield valid real solutions
(e.g. a = 1, b = 1, c = 1). Modify the program using exceptions or if-tests to
handle invalid input and provide a suitable message for the user.

Filename: quadratic_roots_error2.py

Problem 4.4. Estimating harmonic series
Let f(x) be the function

f(x) =
∞∑
n=1

xn

n
= x+ x2

2 + x3

3 + . . .

Write a program that approximates f(x) (that is, evaluates fN (x) =
∑N
n=1

xn

n)
with values of x and N given as command line arguments. Run the program for
x = 0.9, x = 1, and N = 10000. Print the results.

9

Remark. For x = 1 this is known as the harmonic series. Despite the low values
for large N , the series does not converge, but diverges very slowly. Try to run
the program for different values of N to see how big you can get the value of
f(1).

Filename: harmonic.py

Problem 4.5. Estimating harmonic series extended
Using the program from Problem 4.4, consider the following values for x and N
in a text file
x: 0.9 1
N: 500 1000 10 100 50000 10000 5000

a) Write a function to read a file containing information in the above format
that returns two lists containing the values of x and N .

b) Write a test function for a) that generates a file in the given format and
checks that the values returned by the function is correct.

c) Use the program from Problem 4.4 to evaluate fN (x) for the different values
of x and N . Create a function that writes the information to a file in a table
format with the first column containing the values of N in increasing order, and
the second and third the values of fN (x) at 0.9 and 1 respectively.

Filename: harmonic_table.py

Problem 4.6. A result on prime numbers
A famous result concerning prime numbers states that the number of primes
below a natural number n, denoted π(n), is approximately given by

π(n) ≈ n

log(n) .

That is, the fraction p(n) = π(n)/ n
log(n) tends to 1 as n → ∞. The following

table contains the exact values of π(n) for some values of n.
n: 10**20 10**4 10**2 10**1 10**12 10**4 10**6 10**15
pi(n): 2220819602560918840 1229 25 4 37607912018 168 78498 29844570422669

a) Write a function that reads the file given above and returns two tuples
containing sorted values of n and π(n). It is important that the correspondence
in the orderings are correct, that is, the same as in the table above.

b) Write a test function that generates a file with the format above and tests
that the returned values are correct. It should test that the order of the elements
are in correspondence as in the file.

Hint: The == operator on tuples will take the order into account. The same
operator on lists will not.

c) Create a function that writes the values of n and p(n) to a file in a table
format in increasing order with the values of n in the first column and the
corresponding values of p(n) in the second column.

10

Bonus problem There are better approximations to π(n), for example the
function

Li(n) =
∫ n

2

1
log(t)dt

Approximate the integral for different values of n and modify the program to
write these into a third column.

Hint: Implement an algorithm for approximating the integral (e.g. the
trapezoidal rule) and compute the difference as before.

Filename: primes.py

Problem 4.7. Conversion from other bases
Recall that a binary number is a sequence of zeros and ones which converted to
the decimal system becomes

∑
i 2i where i is a term in the sequence containing

a 1 (e.g. 100101 = 25 + 22 + 20 = 37).

a) Write a function that takes a binary number and converts it to a decimal
number. If the argument is not a binary number, a message should be printed
and nothing returned.

Hint: Let the number in the argument be of type string to avoid problems
with numbers starting with a zero.

b) Let the binary number from a) be taken as a command line argument.
Use exceptions (IndexError) to handle missing input. Print the convertion of
100111101.

c) Extend the program with a function to also handle numbers written in base
3.

Hint: An example of a ternary number(a number in base 3) converted to a
decimal number: 1201 = 1 · 33 + 2 · 32 + 0 · 31 + 1 · 30.

Filename: base_convertion.py

11

Chapter 5

Array Computing and
Curve Plotting

Problem 5.1. Fill arrays; loop version
We study the function

f(x) = ln(x).

We want to fill two arrays x and y with x and f(x) values, respectively. Use 101
uniformly spaced x values in the interval [1, 10]. Create empty x and y arrays
and compute each element in x and y with a for loop.

Filename: fill_log_arrays_loop.py

Problem 5.2. Fill arrays; vectorized version
Vectorize the code in Problem 5.1 by creating the x values using the linspace
function from the numpy package and evaluating f(x) with an array argument.

Filename: fill_log_arrays_vectorized.py

Problem 5.3. Plot the population growth
Again, we’re considering a population undergoing logistic growth. The number
of individuals in the population is given by

N(t, k, B,C) = B

1 + Ce−kt .

Plot this function for t ∈ [0, 48] with a carrying capacity B = 50000, C = 9 from
the initial condition that we have 5000 individuals at t = 0 and a steepeness of
k = 0.2.

Filename: population_plot.py

Problem 5.4. Plot Stirling’s approximation
Stirling’s approximation is

ln(x!) ≈ x ln x− x.

a) Make two functions stirling(x) and exact(x), returning Stirling’s ap-
proximation and the exact value of ln(x!), respectively. Plot both the approxi-
mation and the exact curve in the same figure.

12

Hint: To implement a vectorized version of the exact function, you can use
scipy.special.gamma(x). This function is a “generalized factorial” which can find
the “factorial” of float numbers. It works such that n! = gamma(n + 1). You
can also just consider integer values and plot the value of ln(x!) for each integer
x in the interval you’re considering. Keep in mind that math.factorial is not
vectorized.

b) Use a while loop and find the minimal value of x for the relative error to
be less than 0.1%.

Hint: Relative error is given as (a− ã)/a, where a is the exact value and ã
is the approximation. Also, do not start with x smaller than or equal to 1, why?

Filename: stirling_plot.py

Problem 5.5. Fermi-Dirac distribution
The Fermi-Dirac distribution says something about the probability of an energy
state being occupied by a particle, or more precisely a fermion, e.g. an electron.
It is a function of energy and temperature given by

f(E, T) = 1
1 + e(E−µ)/kT , (5.1)

where E is energy, T is temperature, k is Boltzmann’s constant and µ is the
so-called chemical potential. Use k = 8.6 · 10−5eVK−1 and µ = 4.74eV and
make a program that visualizes the Fermi-Dirac distribution on the interval
E ∈ [0, 10]eV when T = 0.1K. (eV is a unit of energy, 1eV = 1.6 · 10−19J.)

Filename: Fermi_Dirac.py

Problem 5.6. Animate the temperature dependence of the Fermi-
Dirac distribution
Make an animation of the Fermi-Dirac distribution f(E, T) from Problem 5.5
We’re interested in studying how the distribution changes when we raise the
temperature. Plot f as a function of E on [0, 10] for a set of temperatures
T ∈ [0.1, 3 · 104]. Also make an animated GIF file. Remember to label your axes
and include a legend to show the value of the temperature.

Hint: A suitable resolution can be 1000 intervals (1001 points) along the E
axis, 60 intervals (61 points) in temperature, and 6 frames per second in the
animated GIF file. Use the recipe in Section 5.3.4 and remember to remove the Stemmer

dette i siste
utgave?

Stemmer
dette i siste
utgave?

family of old plot files in the beginning of the program.
Filename: Fermi_Dirac_movie.py

Problem 5.7. Bump functions
Consider the function

f(x) =
{
ke
− 1

1−x2 −1 < x < 1
0 otherwise.

a) Plot the function with k = 1 on the interval −2 ≤ x ≤ 2 by implementing a
vectorized version in your program.

13

b) Animate the function on the same interval as above when k decreases from
1 to 0.

Filename: bump.py

Problem 5.8. Band structure of solids
Electrons in solids are waves. These waves have different wave lengths λ. Often,
waves are characterised by their wave number k = 2π/λ, and the wave number
is associated with the energy of the electron. The energies of electrons in solids
have a band structure, i.e., there are different bands of energies separated by a
band gap.

The file bands.txt contains k-values and corresponding energies for the
three first bands of a solid. Have your program read the values for k and the
energies and plot the energy bands as functions of k in the same figure. You will
see that some energies never can be obtained by electrons in the solids. These
areas of non-allowed energies are called the bad gaps.

Filename: band_structure.py

Problem 5.9. Half-wave rectifier vectorized
In Problem 3.4, we implemented a function illustrating a sine signal after it had
passed through a half-wave rectifier. Vectorize this function and plot f(x) for
x ∈ [0, 10π].

Hint: The numpy.where(condition, x1, x2) function returns an array
of the same length as condition, whose element number i equals x1[i] if
condition is True, and x2[i] otherwise.

Filename: half_wave_vec.py

Problem 5.10. Singularity plot
In this problem we consider the function

f(r, θ) =
(
e

1
r cos θ cos

(
−1
r

sin θ
)
,−e 1

r sin
(
−1
r

sin θ
))

with 0.01 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. Create arrays of r and θ values on the unit
circle centered at the origin with n uniformly spaced values. Fix axes between
-0.5 and 0.5 for x and y and visualize the function for n = 10, 50, 100, 500. You
can use the following to generate the correct values for r and θ:
theta = np.linspace(0,2*np.pi,100)
r = np.linspace(0.01,1,100)
r, theta = np.meshgrid(r,theta)

Remark. If we had an ideal computer that could calculate every value in an
interval and plot it, then the image we have plotted would touch every single
value in the plane, except for at most one! In our program we have 0.01 < r < 1.
The remarkable thing is that the same is true if we replace the inequality with
0 < r < ε for any ε > 0. Not only that, but all those points are hit an infinite
number of times!

Filename: ess_sing.py

Problem 5.11. Approximate |x|
The absolute value f(x) = |x| can be written as a sum

f(x) = π

2 −
4
π

∞∑
n=1

cos(2n− 1)x
(2n− 1)2 .

14

Write a program that calculates the first N terms for N = 1, 2, 3, 4 and plots it
against the exact function. Let the x-axis be [−π, π] with a suitable y-axis.

Filename: approx_abs.py

Problem 5.12. Plotting graphs
A graph is a collection of lines and points in the plane such that each line connects
two points. For two points [x1, y1], [x2, y2], the line between them consists of the
points

[tx1 + (1− t)x2, ty1 + (1− t)y2], 0 ≤ t ≤ 1.

a) Make a function that takes two points and plots the line between them.
Plot a vertical and a horizontal line.

b) A complete graph is a graph such that any two points has a line that
connects them. Make a function that takes a list of points and plots the complete
graph on those points. Choose some points of your choosing in the 1x1 square
and plot the graph on those points.

c) Given a natural number n, make a function that plots the following graph:

• Two vertical rows with n points should be placed side by side.

• Each point on the left side should have a line to every point on the right
side and vice versa.

• No two points on the same side should be connected by a single line.

Filename: graph.py

Problem 5.13. Inefficiency of primality checker
Consider the program from Problem 3.5. Use the timeit module and run
the program to find the time it takes to find a factorization of an n digit
number. Plot the time against the number of digits for the numbers in the file
prime_check.dat. You can use the following code to time the function for
different numbers:
str1 = "f(" + str(n) + ")"
str2= "g(" + str(n) + ")"
time1 = timeit.timeit(str1, ’from __main__ import f’,number=100)
time2 = timeit.timeit(str2, ’from __main__ import g’,number=100)

Filename: prime_ineff.py

Problem 5.14. Animating a cycloid
One may create a curve by placing a circle on the x-axis, fixing a point on
the circle, and then drawing the trace of the point as the circle is rolling. The
resulting curve is called a cycloid. In mathematical language it is given as

r(θ) = [R(θ − sin θ), R(1− cos θ)]

where R is the radius of the rotating circle and θ is the angle starting at 0 and
increasing.

15

a) Animate the cycloid as a function of θ starting at 0, ending at 15. Draw a
point at the end of the cycloid that varies with the animation.

Hint: A point can be added through a new plot using for example

point, = axes.plot([],[],’o’)

and updating during the animation.

b) Add the rolling circle defining the cycloid to the plot. You may use that at
a given time θ, the circle is given as s(θ) = (R · θ + cos θ,R+ sin θ).

Filename: cycloid.py

16

Chapter 6

Dictionaries and Strings

Problem 6.1. A result on primes “dictionarized”
Consider the program from Problem 4.6. Since the entries correspond to each
other, working with two seperate lists is cumbersome. We may avoid that using
dictionaries. Modify the program such that the values are saved in a dictionary
instead of a list. Let the values of n be keys with values π(n).

Filename: primes_dict.py

Problem 6.2. Representation of polynomials
Let f(x) =

∑n
i=0 aix

i and g(x) =
∑m
j=0 bmx

m be two polynomials. Recall that
a polynomial can be expressed as a dictionary with keys equal to the degree of a
term with value the corresponding coefficient(So 3x2 + 1/2 is represented by the
dictionary {2 : 3, 0 : 1/2}).

a) Create a function that takes two dictionaries (corresponding to two polyno-
mials f and g) as arguments and returns a dictionary corresponding to the sum
of the two.

b) Create a function as above that returns the dictionary corresponding two
the product of two polynomials.

Hint: fg =
∑n+m
k=0 ckx

k where ck =
∑
i+j=k aibj

c) Add a function that evaluates a polynomial dictionary at a point. Make
test functions for all three.

Filename: poly_dict.py

Problem 6.3. Saving information in a nested dictionary
The file below contains information about various people. The first column is
the name, the second is the age, and the third is the gender.
John, 55, Male
Toney, 23, Male
Karin, 42, Female
Cathie, 29, Female
Rosalba, 12, Female
Nina, 50, Female
Burton, 16, Male
Joey, 90, Male

17

a) Create a function that reads the file and returns the information in a nested
dictionary. For example the key ’John’ has the dictionary {’Age’: 55, ’Gender’:
’Male’} as value. When reading the file, the name should read "John", not "John,
".

b) Create a function that takes as an argument a nested dictionary as above,
a person name, and optional arguments: a number (age), and a string (gender)
which returns the same dictionary with the new age and gender. Note that
neither should be changed if no age or gender is given.

c) Extend the function with the possibility to change the name of a person.
One should not be allowed to change a name to one that is taken (Can you think
of a way to allow this without overwriting another person?). Read the file above
and change the gender and name of John. Iterate the dictionary and print the
new information in a table format.
Remark. The nested dictionary here is a prototype of what is known as a class,
and the functions from b) is a prototype for what will be known as methods in
that class.

Filename: people_dict.py

Problem 6.4. Finding the frequency of words in a text

a) Write a function that reads the file RandomWords.dat and finds the frequency
of words of length n. Save the information in a dictionary with the length as
keys and the number of words of that length as values. You may assume that all
words are separated by spaces and that only punctuation marks appear in the
text.

Hint: For your program to be compatible with words of any length, it might
be helpful to use defaultdict imported from collections. See page 306 in the book. Sjekk at side-

tallet er rett.
Sjekk at side-
tallet er rett.Use the function dict() on such an object to convert it to an ordinary dictionary

b) Write a test function that generates a file of words and checks that the
function returns the correct values.

Filename: word_length.py

Problem 6.5. Compute digital roots
Given a number, say 5282, we can compute the sum of the digits. In this case
5 + 2 + 8 + 2 = 17, and doing this again gives 1 + 7 = 8. The one digit number
we get by doing this is called the digital root of the number.

a) Make a function that calculates the digital root of a number.
Hint: Convert the number to a string in order to work with it.

b) Plot the digital root of numbers up to 500 with the digital root on the
x-axis and the frequency of digital roots on the y-axis. Use plt.scatter(x,y)
for the plot.

Filename: dig_root.py

18

Problem 6.6. Münchhausen Numbers
A Münchhausen number is a number such that the sum of every digit to the
power of itself equals the original number. E.g. 11 = 1 is a Münchhausen
numbera, and 55 + 33 + 22 = 3156 6= 532, so 532 is not.

Make a function that checks if a number is Münchhausen. Find a Münch-
hausen number different from one.

Hint: There is only one such number different from 1.
Filename: m_numbers.py

Problem 6.7. Timezone converter
In the file timezones.dat you will find places and their timezone in GMT
format.

a) Make a function that reads the file and saves the information in a dictionary.

b) Create a function that takes local Norwegian time (GMT +1) in the string
format ’ddmmyy-hhmm’, a place, and returns the local time at that place. Your
program should display a message to the user if a place that is not saved in the
dictionary is used. Do the following conversions:

• March 21st 2018 05.34 in Vancouver

• December 31th 2017 20.03 in Sydney

• January 1st 2018 00.15 in London

Filename: timezones.py

19

Chapter 7

Introduction to Classes

Problem 7.1. Saving information in a class
In this problem you can use the program from 6.3.

a) Create a class Person with name, age, and gender as initial arguments.

b) Add methods for changing a persons name, age, and gender.

c) Add a method __str__ that returns a string with all the information of
that person. Create an instance of John as with the information in the table
from Problem 6.3. Change the name and gender of John. Print the information
of the instance before and after changing.

Filename: class_people.py

Problem 7.2. Extending the AccountP class
Modify the class AccountP in the book to include a method transfer that
transfers an amount between two accounts. The method should take an amount
and the account you want to transfer to as arguments. Write a test function
that checks that the methods deposit, withdraw, transfer and get_balance
works properly.

Filename: AccountP.py

Problem 7.3. Approximating the square root of two
The square root of two can be represented by a so called continued fraction on
the following form: √

(2) = 1 + 1
1 +

√
(2)

= 1 + 1
2 + 1

1+
√

(2)

= 1 + 1
2 + 1

2+ 1
1+
√

(2)

In this exercise we will exhibit two possibilities for approximating the number√
(2).

20

a) Make a class Square with a method approx_frac that takes an integer n,
an initial value and returns the first n fractions as above with initial value x0.
This can be done by iterating the function

f(x) = 1 + 1
1 + x

starting at x0. For n = 2 and x0 = 1 this gives

f(f(x0)) = 1 + 1
2 + 1

1+1
.

b) Another way to approximate the square is by iterating the function f(x) =
1
2
(
x+ 2

x

)
. Add a method approx_iter that takes a number x0, an integer n,

and returns the value of the function at x0 iterated n times. For n = 2 we would
have f(f(x0)). From here on we assume for simplicity that 0.1 ≤ x0 ≤ 2.

c) Create a method that returns a nicely formatted table with the two approx-
imations and their difference ε along with the exact value for n = 1, 2, 5, 10. Run
the program, which approximation is best?

d) To visualize the approximation plot the exact value as a line in the plane
and the two approximations as points (n, yn), where yn is the approximation.
Use n = 1, 2, 5, 10.

Filename: square_iteration.py

Problem 7.4. Tangent lines on a quadratic curve
Consider a quadratic polynomial on the form f(x) = x2 + bx+ c. At a point x0
the tangent line is given by l(x) = (2x0 + b)x+C where C = f(x0)− (2x0 + b)x0.

a) Make a class Quadratic with a function f(x) (a quadratic polynomial as
above) as initial argument. Make a method that computes the tangent at a
point and returns the function l(x).

Hint: You will need to extract the coefficients b = f(1)−f(0)−1 and c = f(0).

b) Create a method that plots the function along with its tangent at a point.

c) Make a method that animates the tangent line moving over the curve f(x).
Make the animation for uniformly distributed x values in the interval −5 ≤ x ≤ 5.
Test the program with the function f(x) = x2.

Filename: quadratic_tangents.py

Problem 7.5. Numerical approximations for the derivative
Let f(x) be a function and f ′(x) its derivative. There are many ways to
approximate the derivative, some of which are:

f ′(x) ≈ f(x+ h)− f(x)
h

f ′(x) ≈ f(x+ h)− f(x− h)
2h

f ′(x) ≈ −f(x+ 2h) + 8f(x+ h)− 8f(x− h) + f(x− 2h)
12h

21

a) Make a class Diff with a function f as initial argument and implement
three methods diff1, diff2, and diff3 approximating the derivative using the
above formulas.

b) Create a method plot_diff(self, h, exact=0) (where exact is the exact
derivative if possible) which plots the different approximations in the same figure.
Use the program to approximate f ′(x) where f(x) = ex for h = 1, 0.8, 0.6, 0.4,
0.2, 0.1. Which approximation is better? Is the difference big?

Filename: class_diff.py

Problem 7.6. Visualizing functions
For a function f(x) we can plot the graph of the function as points (x, f(x)).
This results in a curve in the plane. Suppose we have a function

f(x, y) = (u(x, y), v(x, y)).

The graph of this function lives in four dimensions and is not easily visualized.
On way to visualize these functions is to instead of looking at the graph we look
at how f act on points. For example, how the grid lines in the plane look after
f is applied.

a) First we consider a specific function f(x, y) = (x2 − y2, 2xy). Write a
program where you define the function f and make a figure with x and y axis
from -2 to 2 where you plot a number of the grid lines in x and y direction in
the same plot. You will need around 15 lines in each direction. Make a another
plot side-by-side in the same figure of all points (x2 − y2, 2xy) where x and y
are the points in the first plot.

b) To make the construction more flexible, modify your program to be a class
Visualize taking a function f(x, y) = (u(x, y), v(x, y)) as initial argument. It
should contain a method grid(self, n) that generates two plots, one of grid
lines, and one of the image as in a).

c) We used grid lines of the plane to see how the function f behaved. We could
have used any curves in the plane. Extend the class with a method circ that
instead of using points corresponding to grid lines, uses circles with expanding
radii. Let the axes go from -5 to 5 and the radii be uniformly distributed
between 0 and 10 (15 circles should be sufficient). Test with the function
f(x, y) = (x2 − y2 + x+ 1, 2xy + y). The second plot should consist of circular
like objects with a self-crossing.

d) Add a method grid_anim that shows an animation of the image of the
functions

fε(x, y) = [(1− ε)x+ εu(x, y), (1− ε)y − εv(x, y)]

where ε varies from 0 to 1.

22

e) Using the functions

f(x, y) = (x2 − y2, 2xy) and g(x, y) = (x2 − y2 + x+ 1, 2xy + y),

test the grid and grid_anim methods on f , and the circ method on g. Use
15 gridlines and 15 circles.
Remark. For the student familiar with complex numbers, this is exactly how
one would visualize a complex function f(z). In our case we can use this for any
function f(x, y), but we usually restrict ourself to look at functions corresponding
to certain complex functions, namely the differentiable ones.

Filename: plot_functions.py

23

Chapter 8

Random Numbers and
Simple Games

Problem 8.1. Throw a die
Compute the probability of getting a 6 when throwing a die. Write a program
that throws a die N times and count how many times the die shows 6, let this
number be M . Then compute the probability of getting a 6 when throwing a
die as M/N .

Filename: die.py

Problem 8.2. Telephone number
A Norwegian telephone number consists of eight digits. We assume that all digits
from 0 to 9 are equally probable in every place of the telephone number. Make
a program that finds the probability of having a telephone number where the
digit 1 appears at least four times.

Filename: telephone.py

Problem 8.3. Coin-flip game
Two persons are playing a simple coin-flip game. They flip a coin in turn, and
whoever first gets a heads wins the game. Make a program to model 100 such
games. Estimate the probability for the first person to flip to win the game.

Filename: coin.py

Problem 8.4. Approximate π by throwing darts
You are throwing darts at a square shaped target with an inscribed circle. Let the
length of the sides of the square be 2, which means that the circle has radius 1.
Assume that you throw the darts such that the darts gets uniformly distributed
on the target. Then, the number of darts which hits the target inside the circle
divided by the total number of darts that hits the target is approximately the
area of the circle divided by the total area of the target. This approximation
gets more accurate the more darts you throw.

number of darts inside circle
number of darts that hits target ≈

area of circle
area of target = π

4 .

Thus, π can be approximated by

π ≈ 4 number of darts inside circle
number of darts that hits target .

24

Write a program that throwsM darts uniformly on the target. Then approximate
π. Read M from the command line.

Filename: approximate_pi.py

Problem 8.5. Wheel of fortune
At an amusement park they have a wheel of fortune where you can win 2kg of
chocolate. You get to choose one number between 1 and 20 for 20NOK. Assume
that you play on the same number until you win.

a) Write a program that finds the average number of times you have to play
before you win and check if you earn or loose money, compared to buying 2kg of
chocolate in the store.

b) Modify your program so that every time you lose you move one place to
the right, i.e. you increase n by one. If you are at n = 20 you go back to n = 1.
Does this make any difference to the result?

Filename: wheel_of_fortune.py

Problem 8.6. Birthday probability
Make a function that generates a string of random integers between 0 and 9.
Estimate the probability that your birthday is contained in a string of random
numbers of length 1000. Let the format of the date be on the form ddmmyy.
Print the estimates in %.

Filename: birthday_prob.py

25

Chapter 9

Object-Oriented
Programming

Problem 9.1. Implement Newtons method

a) Make a subclass Function of the class Diff in problem 7.5 that takes a
function f as an initial variable. It should contain a method such that the
following code is compatible with your program and prints the value of f at 2.
def f(x):

return x**2
func = Function(f)
print(f(2))

b) We would like the class to give estimated values for roots of f . That is,
points such that f(x) = 0. To do this we implement Newton’s formula. It is
given recursively as

xn+1 = xn −
f(xn)
f ′(xn) ,

where we give a starting point x0. In some cases(not all) xn will approach a root
of f . Implement this in a method approx_root that takes a starting point and
a bound ε < 1 as arguments and approximates xn such that f(xn) < ε.

Hint: Implement a simple convergence test. Check that f(xn) < 1 after
100 iterations. If not terminate the loop and inform the user that there is no
convergence for that starting point. It is still a possibility for convergence, but
unlikely.

c) Test the program with the function f(x) = x2 − 1 and starting value 5 with
bounds 10−i, for i = 1, 2, 3, 4, 5, 6. Print the approximated value for x, f(x)
and the bound in a table format. Try to run the program with starting value 0.
What happens, can you see why?

Filename: newton.py

26

Appendix A

Sequences and Difference
Equations

Problem A.1. Computing Bell numbers
Let B0 = B1 = 1, the n’th Bell number is defined recursively as

Bn+1 =
n∑
k=0

(
n

k

)
Bk.

Make a function that returns the n first Bell numbers and print the first 10.
Filename: bell.py

Problem A.2. Solve a difference equation numerically
We study the difference equation

xn = xn−1 + xn−2.

Write a program that writes out the first 15 elements of the sequence for
x0 = x1 = 1.

Filename: fibonacci.py

Problem A.3. The spreading of a disease
We want to study the spreading of a disease. Assume that 25% of the people
that are ill this week are still ill next week. It takes two weeks from when you get
infected until you become ill, and a person who is ill will on average infect 5/7
persons each week, who will become ill two weeks later. Let xn be the number
of ill people in week n. Thus, the number of ill people is given by the following
difference equation

xn = 1
4xn−1 + 5

7xn−2.

a) Let x0 = 100 and x1 = 150. Write a program that stores the number of ill
persons in an array up to week N = 50 and plot the result. What happens if an
ill person on average infects 3/4 persons each week?

27

b) We do not need to store all the N + 1 values. Since xn only depends on
xn−1 and xn−2, these are the only values we need to store. Modify the program
from a) to use two variables and not an array for the entire sequence. Print the
number of ill persons each week in a nicely formatted table.

Filename: disease.py

Problem A.4. Find difference equations for computing ln x
The Taylor expansion of ln x is

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n
n

,

for x ∈ (0, 2].
We can define the sum as

ln x ≈ S(x;n) =
n∑
j=0

(−1)j+1 (x− 1)j
j

,

so that S(x, n) =
∑n
j=1 aj and

aj = − (j − 1)
j

(x− 1)aj−1.

Introduce sj = S(x, j − 1) and aj as the two sequences to compute. We have
the initial values s1 = 0 and a1 = (x− 1).

a) Find the set of difference equations for sj and aj .
Hint: You can find an example on how this is done for ex in section A.1.8

in the book.

b) Implement the system of difference equations in a function ln_Taylor(n, x),
which returns sn+1 and |an+1|. The term |an+1| is the first neglected in the sum
and may act as a rough estimate of the size of the error in the Taylor polynomial
approximation.

c) Verify the implementation by computing the difference equations for n = 3
by hand and comparing with the output from the ln_Taylor function. Automate
this comparison in a test function.

d) Check that the accuracy of the Taylor polynomial improves as n increaces
and x is close to 1. What happens when x > 2?

Filename: ln_Taylor_series_diffeq.py

Problem A.5. Lotka-Volterra two species model
We have previously studied the logistic model for poulation growth. This is a
model showing the growth of a population in the abscence of preditors. The
Lotka-Volterra model describes interactions between two species in an ecosystem,
a predator and a prey. We will in the following take the preys to be rabbits and

28

the predators to be foxes. The number of rabbits and foxes in week n is denoted
by Rn and Fn respectively, and the population is modelled by the equations

Rn+1 = Rn + aRn − cRnFn
Fn+1 = Fn + ecRnFn − bFn,

where a is the natural growth rate of rabbits in the absence of predation, b is
the natural death rate of foxes in the absence of food (rabbits), c is the death
rate per encounter of rabbits due to predation and e is the efficiency of turning
predated rabbits into foxes.

Write a program that computes the number of rabbits and foxes up to
n = 500. Use a = 0.04, b = 0.1, c = 0.005 and e = 0.2. In the begining we have
R0 = 100 and F0 = 20. Plot how the number of individuals in the populations
vary with time.

Filename: Lotka_Volterra.py

29

Appendix E

Programming of
Differential Equations

Problem E.1. Decrease the length of the time steps
We have the following differential equation

dx

dt
= cos(6t)

1 + t+ x
.

Use Forward Euler to solve this differential equation numerically. You should
solve it on the interval t ∈ [0, 10] for n = {20, 30, 35, 40, 50, 100, 1000, 10000}.
Plot all the solutions in the same plot.

Filename: decrease_dt.py

Problem E.2. Implement Euler’s midpoint method
Make a subclass Midpoint in the ODESolver hierarchy from Section E.3 for
solving ordinary differential equations with Euler’s midpoint method. This
method computes

uk+1/2 = uk + dtf(uk, tk)/2,
uk+1 = uk + dtf(uk+1/2, tk + dt/2).

Test your implementation on y = x cos(x) and plot the numerical solutions
obtained from both Euler’s midpoint method and Forward Euler together with
the analytical solution. Use 15 time steps on the interval x ∈ [0, 10].

Filename: Midpoint.py

Problem E.3. Modeling war between nations
We consider the interaction between two nations C1 and C2 and a system of
equations for modeling a conflict between these [braun]. Assuming that each
nation is determined to defend itself against a possible attack, let x(t) and y(t)
denote the armaments of the first and second nation respectively. The change
x′(t) depends on the armaments of y(t). We assume that it’s proportional to it,
say ky(t) for some positive constant k. It also depends on the relationship of the
two. Assuming anger leads to increased armaments, let g measure the relationship
between them, positive numbers meaning anger towards the other nation and 0
means neutral, and negative numbers meaning disarmament. The cost of having

30

an army will restrain x(t), represented by a term −αx for some positive constant
α. Similar setup for y(t) yields a system of differential equations:

dx
dt = ky(t)− αx(t) + g,

dy
dt = lx(t)− βy(t) + h. (E.1)

In the case where x′(t) = y′(t) = 0 we have reached a stable point where neither
nation is increasing armies. We interpret such a fixed point as peace. In the case
were x(t) and y(t) diverges we have an arms race, and we interpret this as war.

a) Make a function that solves the system (E.1) with a numerical method of
your own choice (you may use ODESolver to do this) and a function that plots
the solution curves of x(t) and y(t) for given initial values. Your program should
not solve beyond the point where either x or y is zero. We want to allow the
value zero, so have your program check whether x and y are larger than a very
small negative number. If you use ODESolver this can be done by defining a
terminate function to send with the solve method. Until otherwise specified, we
let t be the time measured in years.

Filename: C_model.py

b) Modify your program to instead consist of two classes. The first class
ProblemConflict should contain the following:

• An init method saving all information relevant to the problem (parameters
etc)

• A call method such that the class can be called as a function. It should
take an array [x, y] of specific values of x and y at time t, the time t, and
return the right hand side of the ODE system.

The second class Solver should consist of the following:

• An init method that takes a problem instance on the form above, and a
step length dt.

• A method that solves the problem, with the same restrictions as in Problem
a). It should solve any problem on the same form as ProblemConflict
that is given by two differential equations.

• A method that plots the solutions as in Problem a).

• A method that saves an image of the plot in .png format. When this is
called, no plot should be visible to the user.

Use the parameter values α = β = 0.2, g = h = 0, x0 = 10000, y0 = 20000. Run
the program once with k = l = 0.2, and once for k = l = 0.3 plotting the first 10
years. What is the interpreted difference between these two?

Hint: You may need to convert step length to the number of time points to
use. This can be done as

n = int(round("Last time step" / "Step length")) + 1.

Filename: C_model_class.py

31

c) Let us consider the parameter values k = l = 0.9, α = β = 0.2, and
g = h = 0. One can argue that these give rough estimates for the arms race
between 1909 to 1914 between the alliances of France and Russia, and Germany
and Austria-Hungary [braun]. Assuming stability prior to this and negligible
armies, we assume x0 ≈ 0 and y0 ≈ 0 (This does not mean that neither nation
had armies, but that they were much smaller prior to the arms race). Solve the
problem when x0 and y0 are zero versus when they are small positive numbers.
Plot the next 5 years of both in the same figure. What happens?

Filename: C_model_c.py

d) So far we have seen a model intended to describe a conflict situation prior
to war. The preceding model doesn’t describe what happens during a war, but
similar equations can.

First of all, we will work with two types of warfare. The conventional
one, what we know as regular warfare, and guerrilla warfare, where groups
of combatants use military tactics such as ambush, raids, hit-and-run, among
others.

We first consider two conventional armies engaging. Let x(t) and y(t) denote
the respective forces (the number of soldiers) and t denote the time measured
in days. The rate of change of x(t) is affected by combat loss, operational loss
(non-combat related. e.g. disease, accidents), and reinforcements. Combat loss
should be proportional to the size of the opponent, represented by a term −αy(t),
α > 0. The operational losses should depend only on x(t), represented by a
term −kx(t), k > 0. The reinforcements are represented by a function f(t). In
short-term warfare, the operational losses are negligible, and we will assume it
to be zero. We get equations

dx
dt = −αy(t) + f(t), dy

dt = −βx+ g(t).

For a conventional-guerrilla combat, y(t) representing the guerrilla army, we
assume that the combat losses also depend on the size of its own army. As
guerrilla armies often use strategies of surprise and hidden attacks, it is safe
to assume that bigger losses are experienced when the army is larger. Let
−βx(t)y(t) denote the combat loss of a guerrilla army. By the same arguments
as above, we get equations

dx
dt = −αy(t) + f(t), dy

dt = −βx(t)y(t) + g(t).

Make two classes ProblemCCWar and ProblemGCWar on the same form as
ProblemConflict representing the new problems. Note that f and g are now
functions. To handle the case when they are constant, you may need the com-
mands callable(f) that checks if f a callable, and isinstance(f, (float, int))
that checks if f is a float or int, in order to convert a constant to a constant
function.

Filename: CW_model.py

e) The battle of Iwo Jima is a famous battle during World War II. It was fought
on an island just outside of Japan. America invaded the island on February 19,
1945, and the fight lasted for 36 days. The Japanese army consisted of around
21500 soldiers, while the Americans had a number above 50000 by the 36th day.

32

During the war, the Japanese had no reinforcements. The Americans started
with no soldiers, but landed 54000 soldiers the first day, 6000 the third, 13000
the sixth, and none for the remaining. The reinforcements is therefore given as

f(t) =

54000 0 ≤ t < 1
0 1 ≤ t < 2
6000 2 ≤ t < 3
0 3 ≤ t < 5
13000 5 ≤ t < 6
0 t ≥ 6

It can be shown that good estimates for the parameter values are α = 0.0544
and β = 0.0106 [braun]. The exact values on a day to day basis is given in the
file Casualties.dat. Plot the modeled American army vs the exact numbers,
and y(t) vs x(t). Both plots should have the x-axis corresponding to the first
T = 36 days.

Filename: iwo_jima.py

f) Find the least number of soldiers Japan would need (according to the model)
to have won the fight. You may round to the nearest hundred. Hint: Check
which army decreases to zero first. You might want to extend the variable T for
this.

Filename: least_number.py

g) Suppose the Japanese army was interpreted as a guerrilla army. Find a
value for β such that the fight is close. Is it likely that the outcome would be
different if America met a large guerrilla army?

Filename: guerrilla.py

33

	Computing with Formulas
	Loops and Lists
	Functions and Branching
	User Input and Error Handling
	Array Computing and Curve Plotting
	Dictionaries and Strings
	Introduction to Classes
	Random Numbers and Simple Games
	Object-Oriented Programming
	Sequences and Difference Equations
	Programming of Differential Equations

