Taylor series for $\cos x$

The Taylor appoximation to $\cos x$ can be written as

$$
\cos x \approx S(x ; n)=\sum_{j=0}^{n}(-1)^{j} \frac{x^{2 j}}{(2 n)!}
$$

To formulate this sum as a difference equation, we write the sum as $S(x ; n)=$ $\sum_{j=0}^{n} a_{j}$, and find a relation between two consecutive terms. We have

$$
a_{j}=(-1)^{j} \frac{x^{2 j}}{(2 j)!},
$$

and by a few manipulations we get

$$
\begin{aligned}
a_{j} & =(-1)^{j} \frac{x^{2 j}}{(2 j)!}=(-1)^{j} \frac{x^{2(j-1)+2}}{(2 j)(2 j-1)(2 j-2) \ldots} \\
& =(-1)(-1)^{j-1} \frac{x^{2} x^{2(j-1)}}{(2 j)(2 j-1)((2(j-1))!)}=(-1) \frac{x^{2}}{2 j(2 j-1)} a_{j-1}
\end{aligned}
$$

This relation is on the same form as equation A. 61 from the book, and we can apply the steps from exercise A. 14 directly.

