
IN1900 Thursday 23/8: formulas and variables
(chap 1)

Joakim Sundnes1,2 Hans Petter Langtangen1,2

Simula Research Laboratory1

University of Oslo, Dept. of Informatics2

Aug 22, 2018

What will you learn in IN1900?

General computer programming:
Thinking like a programmer
Translating mathematics to code
Generic concepts common to all languages
Debugging, testing etc.

Python (syntax)
Tools for programming (editor, terminal window)

Key topics for august 23

How to write and run a program
Variables
Statements
Assignment
Syntax
Importing modules

Chapter 1 is about evaluating formulas

Why?

Everybody understands the problem
Many fundamental concepts are introduced

variables
arithmetic expressions
objects
printing text and numbers

Example 1: evaluate a formula

Height of a ball in vertical motion

y(t) = v0t −
1
2
gt2

where

y is the height (position) as function of time t

v0 is the initial velocity at t = 0
g is the acceleration of gravity

Task:
Given v0 = 5, g = 9.81 and t = 0.6, compute y and print it to the
screen.

How to write and run the program

A program is plain text, written in a plain text editor
Use Atom, Gedit, Emacs, Vim or Spyder (not MS Word!)

Step 1. Write the program in a text editor, here the single line
print(5*0.6 - 0.5*9.81*0.6**2)

Step 2. Save the program to a file (say) ball.py. (.py denotes
Python.)
Step 3. Move to a terminal window and go to the folder
containing the program file.
Step 4. Run the program:
Terminal> python ball.py

The program prints out 1.2342 in the terminal window.

Python can be used interactively as a calculator and to test
statements

So far we have performed calculations in Python programs
Python can also be used interactively in what is known as a
shell
Type python (or ipython) in the terminal window
A Python shell is entered where you can write statements after
»> (IPython has a different prompt)

Terminal> python
Python 3.6.1 |Anaconda 4.4.0 (x86_64)| (default, May 11 2017, 13:04:09)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> 5*0.6-0.5*9.81*0.6**2
1.2342
>>> print(5*0.6-0.5*9.81*0.6**2)
1.2342

Arithmetic expressions are evaluated as you have learned in
mathematics

Example: 5
9 + 2a4/2, in Python written as 5/9 + 2*a**4/2

Same rules as in mathematics: proceed term by term
(additions/subtractions) from the left, compute powers first,
then multiplication and division, in each term
Use parenthesis to override these default rules - or use
parenthesis to explicitly tell how the rules work:
(5/9) + (2*(a**4))/2

Store numbers in variables to make a program more readable

Our example program looked like
print(5*0.6 - 0.5*9.81*0.6**2)

But from mathematics you are used to variables, e.g.,

v0 = 5, g = 9.81, t = 0.6, y = v0t −
1
2
gt2

We can use variables in a program too, and this makes the last
program easier to read and understand:
v0 = 5
g = 9.81
t = 0.6
y = v0*t - 0.5*g*t**2
print(y)

This program spans several lines of text and use variables,
otherwise the program performs the same calculations and gives the
same output as the previous program

Defining variables

A variable is a named entity for an item of data in our program
Variables can have different types, i.e. integer, float (decimal
number), text string, etc.
Technically, a variable is a name for a location in the
computers memory, where the data is stored
In Python, variables are defined simply by writing their name
and giving a value:

v0 = 5
g = 9.81

The type is determined automatically by Python, based on the
right hand side.

There is great flexibility in choosing variable names

In mathematics we usually use one letter for a variable
The name of a variable in a program can contain the letters
a-z, A-Z, underscore _ and the digits 0-9, but cannot start
with a digit
Variable names are case-sensitive (e.g., a is different from A)

initial_velocity = 5
accel_of_gravity = 9.81
TIME = 0.6
VerticalPositionOfBall = initial_velocity*TIME - \

0.5*accel_of_gravity*TIME**2
print(VerticalPositionOfBall)

(Note: the backslash allows an instruction to be continued on the
next line)

Good variable names make a program easier to understand!

Some words are reserved in Python

Certain words have a special meaning in Python and cannot be
used as variable names. These are: and, as, assert, break,
class, continue, def, del, elif, else, except, exec, finally,
for, from, global, if, import, in, is, lambda, not, or, pass,
print, raise, return, try, with, while, and yield.

A program consists of statements

a = 1 # 1st statement (assignment statement)
b = 2 # 2nd statement (assignment statement)
c = a + b # 3rd statement (assignment statement)
print(c) # 4th statement (print statement)

Normal rule: one statement per line, but multiple statements per
line is possible with a semicolon in between the statements:
a = 1; b = 2; c = a + b; print(c)

Assignment statements evaluate right-hand side and assign
the result to the variable on the left-hand side

myvar = 10
myvar = 3*myvar # = 30

Example 2: a formula for temperature conversion

Given C = 21 as a temperature in Celsius degrees, compute the
corresponding Fahrenheit degrees F :

F =
9
5
C + 32

The Python program

C = 21
F = (9/5)*C + 32
print(F)

Execution:
Terminal> python c2f_v1.py
69.80000000000001

WARNING: Python 2 gives a different answer!

Terminal> python2 c2f_v1.py
53

Many programming languages give the same error; Java, C, C++,
...

The error is caused by (unintended) integer division

9/5 is not 1.8 but 1 in most computer languages (!)
If a and b are integers, a/b implies integer division: the largest
integer c such that cb ≤ a

Examples: 1/5 = 0, 2/5 = 0, 7/5 = 1, 12/5 = 2
In mathematics, 9/5 is a real number (1.8) - this is called float
division in Python and is the division we want
One of the operands (a or b) in a/b must be a real number
("float") to get float division
A float in Python has a dot (or decimals): 9.0 or 9. is float
No dot implies integer: 9 is an integer
9.0/5 yields 1.8, 9/5. yields 1.8, 9/5 yields 1

Corrected version (works in Python 2 and 3):
C = 21
F = (9.0/5)*C + 32

Variables refer to objects. Objects have types.

Variables refer to objects:
a = 5 # a refers to an integer (int) object
b = 9 # b refers to an integer (int) object
c = 9.0 # c refers to a real number (float) object
d = b/a # d refers to an int/int => int object
e = c/a # e refers to float/int => float object

We can convert between object types:
a = 3 # a is int
b = float(a) # b is float 3.0
c = 3.9 # c is float
d = int(c) # d is int 3
d = round(c) # d is float 4.0
d = int(round(c)) # d is int 4
d = str(c) # d is str '3.9'
e = '-4.2' # e is str
f = float(e) # f is float -4.2

Question for discussion

What is happening in this interactive Python session?
>>> a = '10'
>>> b = 10
>>> print(a*10)
10101010101010101010
>>> print(b*10)
100

We can check the types of objects.

We can check the type of objects with the Python function type:

a = 3 # a is int
c = 3.9 # c is float
h = 'Hello!' # h is string (str)
print(type(a)) # Output: <class 'int'>
print(type(c)) # Output: <class 'float'>
print(type(h)) # Output: <class 'str'>

Syntax is the exact specification of instructions to the
computer

Programs must have correct syntax, i.e., correct use of the
computer language grammar rules, and no misprints!

This is a program with two syntax errors:
myvar = 5.2
prinnt(Myvar)

prinnt(Myvar)

NameError: name 'prinnt' is not defined

Only the first encountered error is reported and the program is
stopped (correct the error and continue with next error)

Blanks (whitespace) can be used to nicely format the
program text

Blanks may or may not be important in Python programs. These
statements are equivalent (blanks do not matter):
v0=3
v0 = 3
v0= 3
v0 = 3

Blanks at the start of a line do matter:
v0 = 3

g = 9.81 #invalid, gives an error message

In Python, such blanks are used to group blocks of code together
(more about this in Ch. 2)

Comments are useful to explain how you think in programs
Program with comments:
program for computing the height of a ball
in vertical motion
v0 = 5 # initial velocity
g = 9.81 # acceleration of gravity
t = 0.6 # time
y = v0*t - 0.5*g*t**2 # vertical position
print(y)
"""
Comments can also be put inside a triple quoted
string
"""

Note:
Everything after # on a line is a comment and ignored by
Python
Comments are used to explain what the computer instructions
mean, what variables mean, how the programmer reasoned
when she wrote the program, etc.
Bad comments say no more than the code:
a = 5 # set a to 5

Example 3: What if we need a more advanced math
formula?

What if we need to compute sin x , cos x , ln x , etc. in a
program?
Such functions are available in Python’s math module
In general: lots of useful functionality in Python is available in
modules - but modules must be imported in our programs

Task: Evaluate
Q = sin x cos x + 4 ln x

for x = 1.2, and print the result to the screen.

Example 4: formatting of output

Output from calculations often contain text and numbers, e.g.,
At t=0.6 s, y is 1.23 m.

Task: assign values to two variables; t = 0.6 and y = 1.2342. Print
the values as indicated above, with one decimal for t and two for y .

So-called printf-formatting gives control over the output

t = 0.6; y = 1.2342
print('At t=%g s, y is %.2f m.' % (t, y))

The printf format has “slots” where the variables listed at the end
are put: %g ← t, %.2f ← y

Examples on different printf formats

%g most compact formatting of a real number
%f decimal notation (-34.674)
%10.3f decimal notation, 3 decimals, field width 10
%.3f decimal notation, 3 decimals, minimum width
%e or %E scientific notation (1.42e-02 or 1.42E-02)
%9.2e scientific notation, 2 decimals, field width 9
%d integer
%5d integer in a field of width 5 characters
%s string (text)
%-20s string, field width 20, left-adjusted

(See the the book for more explanation and overview)

Using printf formatting in our program

Triple-quoted strings (""") can be used for multi-line output, and
here we combine such a string with printf formatting:
v0 = 5
g = 9.81
t = 0.6
y = v0*t - 0.5*g*t**2

print("""
At t=%f s, a ball with
initial velocity v0=%.3E m/s
is located at the height %.2f m.
""" % (t, v0, y))

Running the program:
Terminal> python ball_print2.py

At t=0.600000 s, a ball with
initial velocity v0=5.000E+00 m/s
is located at the height 1.23 m.

Summary of Chapter 1 (part 1)

Programs must be accurate!
Variables are names for objects
We have met different object types: int, float, str
Choose variable names close to the mathematical symbols in
the problem being solved
Arithmetic operations in Python: term by term (+/-) from left
to right, power before * and / - as in mathematics; use
parenthesis when there is any doubt
(If you use Python 2: Watch out for unintended integer
division!)

Summary of Chapter 1 (part 2)

Mathematical functions like sin x and ln x must be imported from
the math module:
from math import sin, log
x = 5
r = sin(3*log(10*x))

Use printf syntax for full control of output of text and numbers!
Important terms: object, variable, algorithm, statement,
assignment, implementation, verification, debugging

Summarizing example: throwing a ball (problem)

We throw a ball with velocity v0, at an angle θ with the horizontal,
from the point (x = 0, y = y0). The trajectory of the ball is a
parabola (we neglect air resistance):

y = x tan θ − 1
2v0

gx2

cos2 θ
+ y0

Program tasks:
initialize input data (v0, g , θ, y0)
import from math
compute y

We give x , y and y0 in m, g = 9.81m/s2, v0 in km/h and θ in
degrees - this requires conversion of v0 to m/s and θ to radians

Summarizing example: throwing a ball (solution)

Program:
g = 9.81 # m/s**2
v0 = 15 # km/h
theta = 60 # degrees
x = 0.5 # m
y0 = 1 # m

print """v0 = %.1f km/h
theta = %d degrees
y0 = %.1f m
x = %.1f m""" % (v0, theta, y0, x)

convert v0 to m/s and theta to radians:
v0 = v0/3.6
from math import pi, tan, cos
theta = theta*pi/180

y = x*tan(theta) - 1/(2*v0)*g*x**2/((cos(theta))**2) + y0

print('y = %.1f m' % y)

