Ch.3: Functions and branching

Ole Christian Lingjeerde, Dept of Informatics, UiO

September 3-7, 2018 (PART 2)

Today's agenda

@ A brief recap of the last lecture

e A small quiz

o Live-programming of exercises 3.20, 3.23, 3.28
@ More about functions + branching

Short recap of functions

Defining a function in Python

def f(x):
return 2 * x**2 + x

Using a function in Python

x=-0.6
print (£ (x)) #0.12
print (f (x**2)) # 0.6192

4

Python functions can have local variables

a=0.5 # Global wariable
def g(x):
a = 0.6323 # Local wariable
b =a*x + 1
return b
print(a) # a is 0.5
print (g(0))

print(a) # a i1s still 0.5

Local variables can hide global variables

If a local variable and a global variable have the same name, only
the local variable is visible inside the function.

Example:

def g(t):
alpha = 1.0
beta = 2.0
return alpha + beta*t

print (g(1)) # Prints out '3.0'

alpha = 10.0
print(g(1)) # Still prints out '3.0'

In this example, the value alpha = 10.0 is never actually used.

What is the purpose of hiding global variables?

@ It can be very useful to access global variables inside a
function, for example to access constants defined outside the
function.

o Still, the rule is that when a name collision occurs, the local
variable "wins" and the global variable becomes invisible

@ Why? Because otherwise it would be impossible to know how
a function would behave when used in new contexts (with new
global variables).

Changing global variables in a function

Suppose we wanted to change the value of a global variable from
inside a function. Not as easy as it seems:

x =10

def f(y):
x =5 # We try to change the global wvariable
return x +y

print(x) # Prints out '10'
print(£(0)) # Prints out '5'
print (x) # Prints out '10' (so the global wariable = %s still 10!)

Attempting to change a global variable inside a function fails in this
case, because we inadvertently define a local variable x when we
write x=5.

Changing global variables in a function (2)

o If we really want to change a global variable inside a function,
we have to declare the variable as global.

@ However, you should only do this if you really have to.

Example:
x = 10
def f(y):
global x # This says: don't create a local variable
x =5 # This time we do change the global wariable

return x +y

print(x) # Prints out '10'
print(£(0)) # Prints out '5'
print(x) # Prints out '5' (so the global wariable z is changed)

Example: Compute a function defined as a sum

This function approximates In(1 + x) for x > 1:

L(X’”):znﬁ (1ix>i

i=1
Corresponding Python function:

def L(x,n):
s =0
for i in range(l, n+1):
s += (1.0/1)*(x/(1.0+x)) **1i
return s

Example of use:

import math
x = 5.0
print (L(x, 10), L(x, 100), math.log(1l+x))

Returning errors as well from the L(x, n) function

Suppose we want to return more information about the
approximation:

@ The first neglected term in the sum
@ The error (In(1 + x) — L(x; n))

def L2(x,n):
s =0
for i in range(l, n+1):
s += (1.0/1i)*(x/(1.0+x))**i
first_neglected_term = (1.0/(n+1))*(x/(1.0+x))**(n+1)
import math
exact_error = math.log(l+x) - s
return s, first_neglected_term, exact_error

typical call:
x =1.2; n = 100
value, approximate_error, exact_error = L2(x, n)

Keyword arguments are useful to simplify function calls and

help document the arguments

Functions can have arguments of the form name=value, and these
are called keyword arguments.

Example:

def printAll(x, y, z=1, w=2.5):
print(x, y, z, w)

Examples on calling functions with keyword arguments

>>> def somefunc(argl, arg2, kwargl=True, kwarg2=0):
>>> print (argl, arg2, kwargl, kwarg2)

>>> somefunc('Hello', [1,2]) # drop kwargl and kwarg2
Hello [1, 2] True O # default values are used

>>> somefunc('Hello', [1,2], kwargl='Hi')
Hello [1, 2] Hi O # kwarg2 has default value

>>> somefunc('Hello', [1,2], kwarg2='Hi')
Hello [1, 2] True Hi # kwargl has default value

>>> somefunc('Hello', [1,2], kwarg2='Hi', kwargl=6)

Hello [1, 2] 6 Hi # specify all args
If we use name=value for all arguments in the call, their sequence
can in fact be arbitrary:

>>> somefunc(kwarg2='Hello', argl='Hi', kwargl=6, arg2=[2])
Hi [2] 6 Hello

lfa=['A",['B',['B','C']]] then which of the expressions
below are equal to B?

e a[o0]

e a[1][1]

e a[2][0]

e a[1][-2]

e a[-1][0]

o a[1][1[0]

o afa.index('B")]

o a[len(a)-1][len(a)-1][0]

Creating lists

['A', '"A',, "A'] of length 5000
["AO', 'A1', ..., 'A4999']

Equal or not?

Suppose a = [0, 2, 4, 6, 8, 10]. Which of the expressions
below are equal to True?

e a[0] == a[-6]

e a[l] == a[-5]

a[l:4] == [2, 4, 6, §]

a[1:4] == [a[i] for i in range(1,4)]

aisa

o Create the list a
o Create the list b

al:] is a

Suppose the following statements are performed:

a= [0, 1, 2, 3, 4]
b=a
b[0] = 50

print(al0], b[0])

What is printed out here?

Suppose the following statements are performed:

a= [0, 1, 2, 3, 4]
b = al:]
b[0] = 50

print(al0], b[0])

What is printed out here?

Suppose we have defined a function

def h(x, y, z=0):
import math
res = x * math.sin(y) + z
return res

Which of these function calls are allowed?
e r = h(0)

What is printed out here:

def myfunc(k):
x =k * 2
print('x = 7%g' % x)

x =5

print('x = Jg' % x)
myfunc(5)

print('x = %g' % %)

Exercise 3.20

Write functions
Three functions hwl, hw2, and hw3 work as follows:

>>> print (hwl())

>>> Hello, World

>>>

>>> hw2()

>>> Hello, World

>>>

>>> print (hw3('Hello, ', 'World'))
>>> Hello, World

>>>

>>> print (hw3('Python ', 'function'))
>>> Python function

Write the three functions.

Filename: hw_ func.

Exercise 3.23

Wrap a formula in a function

Implement the formula (1.9) from Exercise 1.12 in a Python
function with three arguments: egg(M, To=20, Ty=70).

M2/3c1/3 To— T,
t L [0.760] .

T Kr2(4r/3)2/3 T, = Tw

The parameters p, K, ¢, and Tw can be set as local (constant)
variables inside the function. Let t be returned from the function.
Compute t for these conditions:

e Soft (Ty < 70) and hard boiled (Ty > 70)
e Small (M = 47g) and large (M = 67g) egg
o Fridge (TO = 4C) and hot room (T0 = 25C).

Filename: egg func.

Exercise 3.28

Find the max and min elements in a list

Given a list a, the max function in Python's standard library
computes the largest element in a: max(a). Similarly, min(a)
returns the smallest element in a.

Write your own max and min functions.

Hint: Initialize a variable max_elem by the first element in the list,
then visit all the remaining elements (a[1:]), compare each
element to max_elem, and if greater, set max_elem equal to that
element. Use a similar technique to compute the minimum element.

Filename: maxmin_list.

More about functions: an example

Consider a function of t, with parameters A, a, and w:

f(t; A a,w) = Ae ?'sin(wt)

Possible implementation in Python:

from math import pi, exp, sin

def f(t, A=1, a=1, omega=2%pi):
return Axexp(-a*t)*sin(omega*t)

Observe that t is a positional argument, while A, a, and w are
keyword arguments. That gives us large freedom when calling the

v4
vb

function:
vl = £(0.2) # Only give t
v2 = £(0.2, omega=1) # Change default value of omega
v3 = £(0.2, omega=1, A=2.5) # Change default value of omega and 4

f(A=5, a=0.1, omega=1, t=1.3) # Change all three parameters
£(0.2, 1, 2.5) # Change default value of 4 and a

Even functions can be used as arguments in functions

In Python, functions are allowed to take functions as arguments.
Thus we can "pass on" a function to another function.

Example: If we know how to compute f(x) then we can use the
following approximation to find numerically the 2nd derivative of
f(x) in a given point:

f(x — h) —2f(x) + f(x + h)

f(x) ~ 2

Python implementation:

def diff2(f, x, h=1E-6):
r = (f(x-h) - 2*%f(x) + f(x+h))/float (h*h)
return r

Here, the first argument to diff2(.) is a function.

A small sidetrack

The function we just defined had one keyword argument h=1E-6. Is
there any good reason to choose h = 0.000001 rather than a
smaller or larger value?

o Mathematically, we expect the approximation to improve when
h gets smaller.

@ However, when we solve problems numerically we also need to
take into account rounding errors.

@ Some numerical problems are more sensitive to rounding errors
than others, so in practice we may have to do a bit of trial and
error.

The effect of changing the value of h

To study the effect of changing h we write a small program:

def g(t):
return tx*(-6)

Compute g''(t) for smaller and smaller values of h:
for k in range(1,14):

h = 10**(-k)

print ('h=%.0e: 7.5f' % (h, diff2(g, 1, h)))

Output (g”(1) = 42)

h=1e-01: 44.61504
h=1e-02: 42.02521
h=1e-03: 42.00025
h=1e-04: 42.00000
h=1e-05: 41.99999
h=1e-06: 42.00074
h=1e-07: 41.94423
h=1e-08: 47.73959
h=1e-09: -666.13381
h=1e-10: 0.00000

h=1le-11: 0.00000

h=1e-12: -666133814.77509
h=1e-13: 66613381477.50939

Rounding errors dominate for small h-values

For h < 1078 the results are totally wrong!

@ Problem 1: for small h we subtract numbers of roughly equal
size and this gives rise to rounding error.

@ Problem 2: for small h the rounding error is divided by a very
small number (h?), which amplifies the error.

Possible solution: use float variables with more digits.

@ Python has a (slow) float variable (decimal.Decimal) with
arbitrary number of digits
e Using 25 digits gives accurate results for h < 10713

However, higher accuracy is rarely needed in practice.

Functions vs. main program

The main program is the part of the program that is not inside any
functions. In general:

o Execution starts with the first statement in the main program
and proceeds line by line, top to bottom.

@ Functions are only executed when they are called

Note: functions can be called from the main program or from a
function. During program execution, this can sometimes result in
long "chains" of function calls.

Anonymous functions (lambda functions)

Sometimes a function just involves the calculation of an expression.
In that case, we can use the lambda construction to define it.

Example: the function

def f(x,y):
return x**2 - yx*x2

can be defined in just one line with the lambda construction:

f = lambda x, y: xk*2 - y**2

Lambda functions can be used directly as arguments:

z = g(lambda x, y: x**2 - y**2, 4)

Can you guess why lambda functions are also called anonymous
functions?

Documenting functions is important

To add a brief description (doc string) to a function, place it right
after the function header and inside triple quotes.

Examples:

def C2F(C):
"thiconvert Celsius degrees (C) to Fahrenheit.'"""
return (9.0/5)*C + 32

def 1line(x0, yO, x1, y1):
mnn
Compute the coefficients a and b in the expression for a
straight line y = a*z + b through two specified points.

z0, y0: the first point (floats).

z1, yl: the second point (floats).

return: a, b (floats) for the line (y=a*z+b).
a = (yl - y0O)/(x1 - x0)

b = y0 - a*x0

return a, b

If-tests

An if-test allows the program to take different actions depending on
what the current state of the program is. An if-test thus branches
(splits) the flow of actions.

Example: consider the function

sinx, 0<x<nm
Fx) = { 0, otherwise

A Python implementation of f needs to test on the value of x and
branch into two computations:

from math import sin, pi

def f(x):
if 0 <= x <= pi:
return sin(x)
else:
return O

General form of an if-test

if condition:
<block of statements, executed when condition==True>

Type 2 (if-else)

if condition:

<block of statements, executed when condition==True>
else:

<block of statements, executed when condition==False>

Type 3 (if-elif-else)

if conditionl:

<block of statements>
elif condition2:

<block of statements>
elif condition3:

<block of statements>
else:

<block of statements>

Example 1

A piecewise defined function

0, x <0
X, 0<x<«1
2—x, 1<x<2
0, x> 2

Python implementation with if-elif-else:

def N(x):
if x < 0:
return O
elif 0 <= x < 1:
return x
elif 1 <= x < 2:
return 2 - x
elif x >= 2:
return O

Example 2

The following function counts how many times s occurs in a:

def

count(s, a):
cnt = 0
for e in a:
if e == s:
cnt +=
return cnt

Example of use:

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

count (5.3, [2.2, 6.6, 2.5, 5.3, 8.9, 5.3])

2

count('Anna', ['0Ola', 'Karianne', 'Anna', 'Jens'])
1

count([1,2], [1, 5, [1,2], [1,2], 31)

2

Inline if-tests

Common construction:

if condition:
variable = valuel
else:
variable = value2

More compact syntax with one-line if-else:

variable = (valuel if condition else value2)

Example:

def f(x):
return (sin(x) if 0 <= x <= 2xpi else 0)

A very special form of if-test: assert

Sometimes in a program you want to stop program execution and
give an error message if a condition is not true. For this purpose,
we can can use the assert statement. General form:

assert condition, message

Example:

>>>x =5

>>> assert x > 0, "x should be positive" # Nothing happens
>>> x = -5

>>> assert x > 0, "x should be positive" # (Generates error message
Traceback (most recent call last):

File "<ipython-input-30-c680011d20e2>", line 1, in <module>
assert x > 0, "x should be positive"

AssertionError: x should be positive

Writing test functions

Suppose we have written a new function with some return values.
To convince ourselves it works properly, we should try it for some
input values and see if the result matches what we expect.

Note: the strategy above only works if we actually know what the
answer should be. Often we know this for some input values.

Test strategy

@ Write the new function.

o Write a test function that calls the new function with input
values chosen so we know what the output should be.

o If the output from the new function differs from the expected
output, we stop execution and print an error message.

def sum3(a): # Find sum of every 3rd element in a
res = sum([a[i] for i in range(0,len(a),3)])
return res

def test_sum3(): # Associated test function
nnncall sum3(a) to check that it works."""
a = [0,1,2,3,4,5] # Some chosen input value

expected = 3 # What the output should be

computed = sum3(a)

success = (computed == expected) # Did the test pass?
message = 'computed s, expected /s' J (computed, expected)

assert success, message

Test functions with many tests

def sum3(a): # Find sum of every 3rd element in a
res = sum([a[i] for i in range(0,len(a),3)])
return res

def test_sum3(): # Associated test function
mnncell sum3(a) to check that it works."""
tol = 1E-14

inputs = [[6], [6,11, [6,1,2], [6,1,2,3]]

answers = [6, 6, 6, 9]

for a, expected in zip(inputs, answers):
computed = sum3(a)
message = '/s != Js' 7 (computed, expected)
assert abs(expected - computed) < tol, message

Recall that zip(a, b) creates pairs [a[i],b[i]]:
>>> zip(inputs, answers)
>>> [([e]l, 6), ([6, 11, 6), ([6, 1, 21, 6), ([6, 1, 2, 31, 9)]

More about test functions

A test function will run silently if all tests pass. If one test above
fails, assert will raise an AssertionError.

Rules for test functions:

@ name begins with test_
@ no arguments

@ must have an assert success statement, where success is
True if the test passed and False otherwise
(assert success, msg prints msg on failure)

The optional msg parameter writes a message if the test fails.

Why write test functions according to these rules?

o Easy to recognize where functions are verified

@ Test frameworks, like nose and pytest, can automatically run
all your test functions (in a folder tree) and report if any bugs
have sneaked in

@ This is a very well established standard

Terminal> py.test -s .
Terminal> nosetests -s .

We recommend py.test - it has superior output.

A test function as test_double() is often referred to as a unit
test since it tests a small unit (function) of a program. When all
unit tests work, the whole program is supposed to work.

Comments on test functions

@ Many find test functions to be a difficult topic

@ The idea is simple: make problem where you know the answer,
call the function, compare with the known answer

@ Just write some test functions and it will be easy

@ The fact that a successful test function runs silently is
annoying - can (during development) be convenient to insert
some print statements so you realize that the statements are
run

Summary of if-tests and functions

If tests:
if x < 0:
value = -1
elif x >= 0 and x <= 1:
value = x
else:
value = 1

User-defined functions:

def quadratic_polynomial(x, a, b, c):
value = a*x*x + b*x + c
derivative = 2*a*x + b
return value, derivative

function call:

x=1
p, dp = quadratic_polynomial(x, 2, 0.5, 1)
p, dp = quadratic_polynomial (x=x, a=-4, b=0.5, c=0)

Positional arguments must appear before keyword arguments:

def f(x, A=1, a=1, w=pi):
return Axexp(-a*x)*sin(w*x)

A summarizing example for Chapter 3; problem

An integral

/ab f(x)dx

can be approximated by Simpson’s rule:

b b_a n/2
/a f(x)dx%?’n< (a) +f(b +4Zf (2i = 1)h)

n/2—1

+2) flat 2ih))

i=1

where n is an even integer.
Problem: make a function Simpson(f, a, b, n=500) for
computing an integral of £(x) by Simpson’s rule.

The program: function for computing the formula

def Simpson(f, a, b, n=500):
nmann
Return the approzimation of the integral of f

from a to b using Simpson's rule with n intervals.
nmunn

h = (b - a)/float(n)

suml = 0
for i in range(l, n/2 + 1):
suml += f(a + (2*i-1)*h)

sum2 = 0
for i in range(l, n/2):
sum2 += f(a + 2*ix*h)

integral = (b-a)/(3*n)*(f(a) + £(b) + 4*suml + 2*sum2)
return integral

The program: function, now with test for possible errors

def Simpson(f, a, b, n=500):

if a > b:
print ('Error: a=Jg > b=lg' % (a, b))
return None

Check that n is even

if n % 2 !'= 0:
print ('Error: n=/d is not an even integer!' % n)
n = ntl # make n even

as before...

return integral

The program: application (and main program)

def h(x):
return (3./2)*sin(x)**3

from math import sin, pi

def application():
print ('Integral of 1.5%sin~3 from O to pi:')
for n in 2, 6, 12, 100, 500:
approx = Simpson(h, 0, pi, n)
print ('n=Y3d, approx=),18.15f, error=/9.2E' 7 \
(n, approx, 2-approx))

application()

The program: verification (with test function)

Property of Simpson's rule: 2nd degree polynomials are integrated
exactly!

def test_Simpson(): # rule: no arguments
"""Check that quadratic functions are integrated exactly."”"""
a=1.5
b =2.0
n=238
g = lambda x: 3*x**2 - 7xx + 2.5 # test integrand
G = lambda x: x**3 - 3.5*x**2 + 2.5%x # integral of g

exact = G(b) - G(a)

approx = Simpson(g, a, b, n)

success = abs(exact - approx) < 1E-14 # tolerance for floatd
msg = 'exact=Jg, approx=/g' % (exact, approx)

assert success, msg

Can either call test_Simpson() or run nose or pytest:

Terminal> nosetests -s Simpson.py
Terminal> py.test -s Simpson.py

Ran 1 test in 0.005s

0K

