App.E: Systems of differential equations

Hans Petter Langtangen ${ }^{1,2}$ Joakim Sundnes ${ }^{1,2}$

Simula Research Laboratory ${ }^{1}$
University of Oslo, Dept. of Informatics ${ }^{2}$

Nov 5, 2018

- Exercise 9.1, 9.3, 9.4
- More on ODE solvers:
- The forward Euler method as a class
- Alternative ODE solvers
- Class hierarchies for ODE solvers
- Vector ODEs (Systems of ODEs)

Systems of differential equations (vector ODE)

$$
\begin{aligned}
u^{\prime} & =v \\
v^{\prime} & =-u \\
u(0) & =1 \\
v(0) & =0
\end{aligned}
$$

Two ODEs with two unknowns $u(t)$ and $v(t)$:

$$
\begin{aligned}
u^{\prime}(t) & =v(t) \\
v^{\prime}(t) & =-u(t)
\end{aligned}
$$

Each unknown must have an initial condition, say

$$
u(0)=0, \quad v(0)=1
$$

In this case, one can derive the exact solution to be

$$
u(t)=\sin (t), \quad v(t)=\cos (t)
$$

Systems of ODEs appear frequently in physics, biology, finance, ...

Model for spreading of a disease in a population:

$$
\begin{aligned}
S^{\prime} & =-\beta S I \\
I^{\prime} & =\beta S I-\nu R \\
R^{\prime} & =\nu I
\end{aligned}
$$

Initial conditions:

$$
\begin{aligned}
S(0) & =S_{0} \\
I(0) & =I_{0} \\
R(0) & =0
\end{aligned}
$$

Making a flexible toolbox for solving ODEs

- For scalar ODEs we could make one general class hierarchy to solve "all" problems with a range of methods
- Can we easily extend class hierarchy to systems of ODEs?
- Yes!

Vector notation for systems of ODEs: unknowns and equations

General software for any vector/scalar ODE demands a general mathematical notation. We introduce n unknowns

$$
u^{(0)}(t), u^{(1)}(t), \ldots, u^{(n-1)}(t)
$$

in a system of n ODEs:

$$
\begin{aligned}
& \frac{d}{d t} u^{(0)}=f^{(0)}\left(u^{(0)}, u^{(1)}, \ldots, u^{(n-1)}, t\right) \\
& \frac{d}{d t} u^{(1)}=f^{(1)}\left(u^{(0)}, u^{(1)}, \ldots, u^{(n-1)}, t\right) \\
& \vdots \\
&= \\
& \frac{d}{d t} u^{(n-1)}=f^{(n-1)}\left(u^{(0)}, u^{(1)}, \ldots, u^{(n-1)}, t\right)
\end{aligned}
$$

Vector notation for systems of ODEs: vectors

We can collect the $u^{(i)}(t)$ functions and right-hand side functions $f^{(i)}$ in vectors:

$$
\begin{aligned}
& u=\left(u^{(0)}, u^{(1)}, \ldots, u^{(n-1)}\right) \\
& f=\left(f^{(0)}, f^{(1)}, \ldots, f^{(n-1)}\right)
\end{aligned}
$$

The first-order system can then be written

$$
u^{\prime}=f(u, t), \quad u(0)=U_{0}
$$

where u and f are vectors and U_{0} is a vector of initial conditions

The magic of this notation:

Observe that the notation makes a scalar ODE and a system look the same, and we can easily make Python code that can handle both cases within the same lines of code (!)

- Recall: ODESolver was written for a scalar ODE
- Now we want it to work for a system $u^{\prime}=f, u(0)=U_{0}$, where u, f and U_{0} are vectors (arrays)
- What are the problems?

Forward Euler applied to a system:

$$
\underbrace{u_{k+1}}_{\text {vector }}=\underbrace{u_{k}}_{\text {vector }}+\Delta t \underbrace{f\left(u_{k}, t_{k}\right)}_{\text {vector }}
$$

In Python code:

$$
\text { unew }=u[k]+d t * f(u[k], t)
$$

where

- u is a two-dim. array ($\mathrm{u}[\mathrm{k}]$ is a row)
- f is a function returning an array (all the right-hand sides $\left.f^{(0)}, \ldots, f^{(n-1)}\right)$

Example - scalar ODE vs system of two

```
Scalar ODE
t = [0. 0.4 0.8 1.2 (...) ]
u = [llllll}1.
u[0] = 1.0
u[1] = 1.4
(...)
```

System of two ODEs
$\left.\mathrm{u}=\left[\begin{array}{ll}1.0 & 0.8\end{array}\right]\left[\begin{array}{ll}1.4 & 1.1\end{array}\right]\left[\begin{array}{ll}1.9 & 2.7\end{array}\right](. .).\right]$
$u[0]=\left[\begin{array}{ll}1.0 & 0.8\end{array}\right]$
$u[1]=\left[\begin{array}{ll}1.4 & 1.1\end{array}\right]$
(...)

The adjusted superclass code (part 1)

To make ODESolver work for systems:

- Ensure that $f(u, t)$ returns an array. This can be done be a general adjustment in the superclass!
- Inspect U_{0} to see if it is a number or list/tuple and make corresponding u 1-dim or 2-dim array
class ODESolver:

```
def __init__(self, f):
        # Wrap user's f in a new function that always
        # converts list/tuple to array (or let array be array)
        self.f = lambda u, t: np.asarray(f(u, t), float)
    def set_initial_condition(self, UO):
        if isinstance(UO, (float,int)): # scalar ODE
            self.neq = 1 # no of equations
            UO = float(UO)
        else:
                            # system of ODEs
            UO = np.asarray(UO)
            self.neq = UO.size
        self.UO = UO
```


The superclass code (part 2)

class ODESolver:

```
    def solve(self, time_points, terminate=None):
    if terminate is None:
            terminate = lambda u, t, step_no: False
    self.t = np.asarray(time_points)
    n = self.t.size
    if self.neq == 1: # scalar ODEs
        self.u = np.zeros(n)
    else: # systems of ODEs
        self.u = np.zeros((n,self.neq))
    # Assume that self.t[0] corresponds to self.UO
    self.u[0] = self.UO
    # Time loop
    for k in range(n-1):
        self.k = k
        self.u[k+1] = self.advance()
        if terminate(self.u, self.t, self.k+1):
            break # terminate loop over k
    return self.u[:k+2], self.t[:k+2]
```

All subclasses from the scalar ODE works for systems as well

Newton's 2nd law for a ball's trajectory through air leads to

$$
\begin{aligned}
\frac{d x}{d t} & =v_{x} \\
\frac{d v_{x}}{d t} & =0 \\
\frac{d y}{d t} & =v_{y} \\
\frac{d v_{y}}{d t} & =-g
\end{aligned}
$$

Air resistance is neglected but can easily be added

- 4 ODEs with 4 unknowns:
- the ball's position $x(t), y(t)$
- the velocity $v_{x}(t), v_{y}(t)$

Throwing a ball; code

Define the right-hand side:

```
def f(u, t):
    x, vx, y, vy = u
    g = 9.81
    return [vx, 0, vy, -g]
```


Main program:

```
\# Initial condition, start at the origin:
x = 0; y = 0
\# velocity magnitude and angle:
v0 \(=5\); theta \(=80 * n p . p i / 180\)
\(\mathrm{vx}=\mathrm{v} 0 * \mathrm{np} \cdot \cos (\) theta) p v \(=\mathrm{v} 0 * \mathrm{np} . \sin (\) theta)
UO = [x, vx, y, vy]
solver= ForwardEuler(f)
solver.set_initial_condition(UO)
time_points \(=\) np.linspace(0, 1.0, 101)
u, \(\mathrm{t}=\) solver.solve(time_points)
\# \(u\) is an array of \([x, v x, y, v y]\) arrays, \(p l o t y\) vs \(x\) :
\(x=u[:, 0] ; y=u[:, 2]\)
plt.plot(x, y)
plt.show()
```


Summary

ODE solvers and OOP

- Many different ODE solvers (Euler, Runge-Kutta, ++)
- Most tasks are common to all solvers:
- Initialization of solution arrays and right hand side
- Overall for-loop for advancing the solution
- Difference; how the solution is advanced from step k to $k+1$
- OOP implementation:
- Collect all common code in a base class
- Implement the different step (advance) functions in subclasses

Systems of ODEs

- All solvers and codes are easily extended to systems of ODEs
- Solution at one time step $\left(u_{k}\right)$ is a vector (one-dimensional array), overall solution is a two-dimensional array
- Slightly more book-keeping, but the bulk of the code is identical as for scalar ODEs

