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In this chapter we will introduce classes, which is a fundamental concept in
programming. Most modern programming languages support classes or similar
concepts, and we have already used classes extensively throughout this book.
Recall how we could check the type of a variable with the type method, and
the output would be on the form <class ’int’>, <class ’float’>, etc. This
simply states that the type of an object is defined in the form of a class. Every
time we create for instance an integer variable in our program, we create an
object or instance of the int class. The class defines how the objects behave
and what methods they contain. We have used a number of different methods
bound to objects, such as the append method for list objects, split for strings,
and many more. All such methods are part of the definition of the class that the
object belongs to. So far we have only used Python’s builtin classes to create
objects, but in this chapter we will write our own classes and use them to create
objects tailored to our particular needs.

1 Basics of classes
A class packs together data and functions, or methods, in a single unit. As we
have seen in previous chapters, functions that are bound to a class or objects
are usually called methods, and we will stick to this notation in the present
chapter. Classes have some similarity with modules, which are also collections
of variables and functions that naturally belong together. However, while there
is only a single instance of a module, we can create multiple instances of a class.
Different instances of the same class may contain different data, but they all
behave in the same way. and have the same methods. Think of a basic Python
class like int; we can create many integer variables in a program, and they
obviously have different values (data), but we know that they all have the same
general behavior and the same set of operations defined for them. The same
goes for more complex Python classes like lists and strings; different objects
contain different data but they all have the same methods. The classes we will
create in this chapter behaves in exactly the same way.



First example; a class representing a function. To start with a familiar
example, consider the function introduced earlier that defines the height of an
object as a function of t:

y(t; v0) = v0t − 1
2gt2

We need both v0, t, and g to compute y., but how should we implement this?
It is natural to think of g as constant, but both v0 and t may vary with every
call. However, for many applications of functions of this kind t will vary much
more frequently than v0. Since v0 can be thought of as a parameter in a model,
it is quite common to call such a function many times with the same v0 but
different t-values. How should we implement this in a convenient way? The
default solution would be to have both t and v0 as arguments, possibly with a
default value for v0:

def y(t, v0 = 5):
g = 9.81
return v0*t - 0.5*g*t**2

This solution obviously works, but if we want a different value of v0 we need to
pass the value to the function every time it is called. And what if the function
is to be passed as an argument to another function, which expects it to take a
single argument only? 1

Another solution would to have t as argument and v0 as global variable:
def y(t):

g = 9.81
return v0*t - 0.5*g*t**2

We now have a function which only takes a single argument, but defining v0 as
a global variable is not very convenient if we want to evaluate y(t) for different
values of v0. A third possible solution would be to set v0 as a local variable
inside the function, and define different functions y1(t), y2(t), y3(t), etc.
for each value of v0. This solution is obviously not very convenient if we want
many values of v0, but we shall see that programming with classes and objects
offers exactly that; a convenient solution to create a family of similar functions.

Representing a function by a class. With a class, y(t) can be a function
of t only, but still have v0 and g as parameters with given values. The class
packs together a function (or method) y(t) and data (v0, g). We make a class
Y for y(t; v0) with variables v0 and g and a function value(t) for computing
y(t; v0). All classes should also have a function named __init__ for initializing
the variables. The following code defines our function class

class Y:
def __init__(self, v0):

1This situation is fairly common in Python programs. Consider for instance the function
implementing Newton’s method in Appendix A. This function takes two functions as arguments,
and because of how they are used inside the function both need to take a single argument (x).
If we want to pass a parameterized function as argument to such a function, it needs to be
modified.
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self.v0 = v0
self.g = 9.81

def value(self, t):
return self.v0*t - 0.5*self.g*t**2

Having defined this class, we can create instances of the class with specific values
of the parameter v0, and then we can call the method value with t as the only
argument:

y1 = Y(v0=3) # create instance (object)
v1 = y1.value(0.1) # compute function value
y2 = Y(v0=5)
v2 = y2.value(0.1)

Although this code is short, there are a number of new concepts worth
dissecting. A class definition which in Python always starts with the word class,
followed by the name of the class and a colon. The following indented block of
code defines the contents of the class. Just as we are used to when definining
functions, the indentation defines what belongs inside the class definition. The
first contents of our class, and of most classes, is a method with the special name
__init__, which is the constructor of the class. This method is automatically
called every time we create an instance in the class, as in the line y = Y(v0=3)
above. Inside the method, we define two variables self.v0 and self.g, where
the prefix self means that these variables become bound to the object created.
Such bound variables are called attributes. Finally we define the method value,
which evaluates the formula using the pre-defined and object-bound parameters
self.v0 and self.g. After we have defined the class, every time we write a
line like

y = Y(v0=3)

we create a new variable (instance) y of type Y. The line looks like a regular
function call, but since Y is the definition of a class and not a function, Y(v0=3)
is instead a call to the class’ constructor.

At this point many will be confused by the self variable, and the fact that
when we defined the methods __init__ and value they took two arguments,
but when calling them we only used one. The explanation for this behavior is
that self represents the object itself, and this is automatically passed as the
first argument when we call a method bound to the object. When we write

v1 = y1.value(0.1)

it is equivalent to the call
v1 = Y.value(y1,0.1)

Here we explicitly call the value method that belongs to the class, and pass
the instance y1 as the first argument. Inside the method y1 then becomes the
local variable self, as usual when passing arguments to a function, and we
can access its variables v0 and g. Exactly the same thing happens when we
call y1.value(0.1), but now the object y1 is automatically passed as the first
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argument to the method. It looks like we are calling the method with a single
argument, but in reality it gets two.

The use of the self variable in Python classes has been the subject of many
discussions. Even experienced programmers find it confusing, and many people
question why the language was designed in this way. There are some obvious
advantages to the approach, for instance that it gives a very clear distinction
between instance attributes (prefixed with self) and local variables defined
inside a method. However, if one struggles to see the reasoning behind the self
variable it is sufficient to remember the two rules; (i) self is always the first
argument in a method definition, but never inserted when the method is called,
and (ii) to access an attribute inside a method it needs to be prefixed with self.

In mathematics you don’t understand things. You just get used
to them. John von Neumann, mathematician, 1903-1957.

The advantage of creating a class in this example is that we can now send
y.value as an ordinary function of t to any other function that expects a
function f(t) of one variable. Consider for instance the following small example,
where the function make_table will print a table of function values for any
function passed to it:

def make_table(f, tstop, n):
for t in linspace(0, tstop, n):

print(t, f(t))

def g(t):
return sin(t)*exp(-t)

table(g, 2*pi, 101) # send ordinary function

y = Y(6.5)
table(y.value, 2*pi, 101) # send class method

We need to send make_table a function that takes a single argument, Because
of how f(t) is used inside the function. Our our y.value method satisfies this
requirement and still allows us to use different values of v0.

More general Python classes. As a first generalization of the example
above, consider a class to represent a function with n + 1 parameters and one
independent variable,

f(x; p0, . . . , pn).

The natural class representation is a simple extension of the previous class, where
p0, . . . , pn are attributes defined in the class constructor, and we define a method,
say value(self, x), to evaluate f(x):

class MyFunc:
def __init__(self, p0, p1, p2, ..., pn):

self.p0 = p0
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self.p1 = p1
...
self.pn = pn

def value(self, x):
return ...

Of course, Python classes have far more general applicability than just to
represent mathematical functions. A general Python class follows the recipe
outlined in the examples above:

class MyClass:
def __init__(self, p1, p2,...):

self.attr1 = p1
self.attr2 = p2
...

def method1(self, arg):
#access attributes with self prefix

result = self.attr1 + ...
...
#create new attributes if desired
self.attrx = arg
...
return result

def method2(self):
...

print(...)

We can define as many methods as we want inside the class, with or without
arguments. When we create an instance of the class the methods become bound
to an instance, and are accessed with the prefix, for instance m.method2() if m
is an instance of MyClass. It is common to have a constructor where attributes
are initialized, but this is not a requirement. Attributes can be defined whenever
desired, for instance inside a method as in the example above, or even from
outside the class:

m = MyClass(p1,p2, ...)
m.new_attr = p3

The second line here will create a new attribute new_attr for the instance m
of MyClass. Such addition of attributes is completely valid, but it is rarely
good programming practice since we may end up with different instances of the
same class having completely different attributes. It is a good habit to always
equip a class with a constructor, and to primarily define attributes inside the
constructor.

A class for a bank account. For a more classical computer science example
of a Python class, let us look at a class to represent a bank account. Natural
attributes for such a class will be the name of the owner, the account number,
and the balance, and we may include methods to deposit, withdraw, and print
information about the account. The code for defining such a class may look like
this:
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class Account:
def __init__(self, name, account_number, initial_amount):

self.name = name
self.no = account_number
self.balance = initial_amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def dump(self):
s = f'{self.name}, {self.no}, balance: {self.balance}'
print(s)

Typical use of the class may be something like the following, where we create
two different account instances and call the various methods to deposit, withdraw,
and print:

>>> a1 = Account('John Olsson', '19371554951', 20000)
>>> a2 = Account('Liz Olsson', '19371564761', 20000)
>>> a1.deposit(1000)
>>> a1.withdraw(4000)
>>> a2.withdraw(10500)
>>> a1.withdraw(3500)
>>> print "a1's balance:", a1.balance
a1's balance: 13500
>>> a1.dump()
John Olsson, 19371554951, balance: 13500
>>> a2.dump()
Liz Olsson, 19371564761, balance: 9500

However, there is nothing preventing a user from changing the attributes of the
account directly:

>>> a1.name = 'Some other name'
>>> a1.balance = 100000
>>> a1.no = '19371564768'

While it may be tempting to adjust a bank account balance when needed, it is
not the intended use of the class. Directly manipulating attributes will very often
lead to errors in large software systems, and is considered to be bad programming
style. Instead, attributes should always be changed by calling methods, in this
case withdraw and deposit. Many programming languages have constructions
that may limit the access to attributes from outside the class, so that any attempt
to access them will lead to an error message when compiling or running the code.
Python has no technical way to limit attribute access, but it is common mark
attributes as protected by prefixing the name with an underscore (e.g. _name).
This convention tells other programmers that a given attribute or method is not
supposed to be accessed from outside the class, although it is still technically
possible to do so. An account class with protected attributes may look like this:

class AccountP:
def __init__(self, name, account_number, initial_amount):

self._name = name
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self._no = account_number
self._balance = initial_amount

def deposit(self, amount):
self._balance += amount

def withdraw(self, amount):
self._balance -= amount

def get_balance(self): # NEW - read balance value
return self._balance

def dump(self):
print(f'{self._name}, {self._no}, balance: {self._balance}')

When using this class, it will still be technically possible to do something like
this:

a1 = Account('John Olsson', '19371554951', 20000)
a1._no = '19371554955'

However, all experienced Python programmers will know that the second line is a
serious violation of good coding practice, and will look for a better way to solve the
problem. When using code libraries developed by others, breaking conventions is
risky since internal data structures may change, while the interface to the class
is more static. The convention of protected variables is how programmers tell
users of the class what may change and what is static. For instance, in a library
used by many others over a long period of time, the developers may decide to
change the internal data structures of a class. However, if the methods to access
the data remains unchanged, the users of the class may not even notice such
changes, since the class interface is not changed. But users who have broken the
convention, and accessed protected attributes directly, may be in for a surprise.

2 Special methods
In the examples above we defined a constructur for each class, identified by
its special name __init__(...). This name is recognized by Python, and the
method is automatically called every time we create a new instance of the class.
The constructor belongs to a family of methods known as special methods, which
are all recognized by double leading and trailing underscores in the name. The
term special methods may be a bit misleading, since the methods themselves
are not really special. The special thing about them is the name, which ensures
that they are automatically called in different situations, such as the __init__
function when class instances are created. There are many more such special
methods, which we can use to create object types with very useful properties.

Consider for instance the first example of this chapter, where the class
contained a method value(t) to evaluate the mathematical function. After
creating an instance y, we would call the method with y.value(t). Wouldn’t it
be more convenient if we could just write y(t) as if the instance was a regular
Python function? This can obtained if we replace the value method with a
special method named __call__:
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class Y:
def __init__(self, v0):

self.v0 = v0
self.g = 9.81

def __call__(self, t):
return self.v0*t - 0.5*self.g*t**2

Now we can call ay instance of the class Y just as any other Python function
y = Y(3)
v = y(0.1) # same as v = y.__call__(0.1) or Y.__call__(y, 0.1)

The instance y behaves and looks like a function. The method does exactly the
same as the value method, but creating a special method by renaming it to
__call__ gives nicer syntax when the class is used.

Example; automatic differentiation of functions. To provide another
example of using the __call__ special method, consider the task of computing
derivatives of an arbitrary function. Given some mathematical function in
Python, say

def f(x):
return x**3

can we make a class Derivative and write
dfdx = Derivative(f)

so that dfdx behaves as a function that computes the derivative of f(x)? When
the instance dfdx is created, we want to call it like a regular function to evaluate
the derivative of f in a point x:

print dfdx(2) # computes 3*x**2 for x=2

It is tricky to make such a class using analytical differentiation rules, but we can
write a generic class by using numerical differentiation:

f ′(x) ≈ f(x + h) − f(x)
h

.

For a small (yet moderate) h, say h = 10−5, this estimate will be sufficiently
accurate for most applications. The key parts of the implementation are to let
the function f be an attribute of the Derivative class, and then implement the
numerical differentiation formula in a __call__ special method:

class Derivative:
def __init__(self, f, h=1E-5):

self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h # make short forms
return (f(x+h) - f(x))/h

The following interactive session demonstrates typical use of the class
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>>> from math import *
>>> df = Derivative(sin)
>>> x = pi
>>> df(x)
-1.000000082740371
>>> cos(x) # exact
-1.0
>>> def g(t):
... return t**3
...
>>> dg = Derivative(g)
>>> t = 1
>>> dg(t) # compare with 3 (exact)
3.000000248221113

For a particularly useful application of the Derivative class, consider solution
of nonlinear equations f(x) = 0. In Appendix A we implement Newton’s method
as a general method for this task, but Newton’s method uses the derivative f ′(x),
which needs to be provided as an argument to the function:

def Newton(f, xstart, dfdx, epsilon=1E-6):
...
return x, no_of_iterations, f(x)

See Appendix A for a complete implementation of the function. For many
functions f(x), finding f ′(x) may require lengthy and boring derivations, and in
such cases the Derivative class is quite handy:

>>> def f(x):
... return 100000*(x - 0.9)**2 * (x - 1.1)**3
...
>>> df = Derivative(f)
>>> xstart = 1.01
>>> Newton(f, xstart, df, epsilon=1E-5)
(1.0987610068093443, 8, -7.5139644257961411e-06)

Testing our class for automatic differentiation. How can we test the
Derivative class? Two possible methods are; (i) compute (f(x + h) − f(x))/h
by hand for some f and h, or (ii) utilize that linear functions are differentiated
exactly by our numerical formula, regardless of h. A test function based on (ii)
may look as follows:

def test_Derivative():
# The formula is exact for linear functions, regardless of h
f = lambda x: a*x + b
a = 3.5; b = 8
dfdx = Derivative(f, h=0.5)
diff = abs(dfdx(4.5) - a)
assert diff < 1E-14, 'bug in class Derivative, diff=%s' % diff

This function follows the standard recipe for test functions; we construct a
problem where we know the result, create an instance of the class, call the
function and compare the result wiht the expected. However, some of the details
inside the test function may be worth commenting. First, we use a lambda
function to define f(x). As we may recall from Chapter 3, a lambda function is
simply a compact way of defining a function, with
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f = lambda x: a*x + b

being equivalent to
def f(x):

return a*x + b

The use of the lambda function inside the test function looks straightforward at
first:

f = lambda x: a*x + b
a = 3.5; b = 8
dfdx = Derivative(f, h=0.5)
dfdx(4.5)

But looking at this code in more detail may give rise to some questions. When
we call dfdx(4.5) it implies calling Derivative.__call__ but how can this
function know the values of know a and b when it calls our f(x) function? The
answer is that a function defined inside another function "remembers", or has
access to, all local variables in the function it is defined are defined. Therefore
all variables defined inside test_Derivative become part of the namespace of
the function f. Therefore f can access a and b in test_Derivative even when
it is called from the __call__ method in class Derivative. The construction is
known as a closure in computer science.

Special method for printing. We are used to printing an object a using
print(a), which works fine for Python’s builtin object types such as strings,
lists, etc. However, if a is an instance of a class we defined ourselves we do not
get much useful information, since Python does not know what information to
show. We can solve this problem by defining a special method named __str__ in
our class. The __str__ method must return a string object, preferably a string
that gives some useful information about the object, and should not take any
arguments except self. For the function class seen above, a suitable __str__
method may look like this:

class Y:
...
def __call__(self, t):

return self.v0*t - 0.5*self.g*t**2

def __str__(self):
return f'v0*t - 0.5*g*t**2; v0={self.v0}'

If we now call print for an instance of the class, it will print the function
expression:

>>> y = Y(1.5)
>>> y(0.2)
0.1038
>>> print(y)
v0*t - 0.5*g*t**2; v0=1.5
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2.1 Special methods for arithmetic operations
So far we have seen three special methods; __init__, __call__, and __str__,
but there are many more. We will not cover all of them in this book, but a few
are worth mentioning. For instance, there are special methods for arithmetic
operations, such as __add__, __sub__, __mul__, etc. Defining these methods
inside our class will enable us to perform operations like c = a+b, where a,b
are instances of the class. To illustrate this with an example, consider the
representation of polynomials introduced in Chapter 6. A polynomial can be
specified by a dictionary or list representing its coefficients and powers. For
example, 1 − x2 + 2x3 is

1 + 0 · x − 1 · x2 + 2 · x3

and the coefficients can be stored as a list [1, 0, -1, 2]. We now want to
create a class for such a Polynomial, and equip it with functionality for evaluating
and printing a polynomial and to add two polynomials. Intended use of the class
Polynomial may look as follows:

>>> p1 = Polynomial([1, -1])
>>> print(p1)
1 - x
>>> p2 = Polynomial([0, 1, 0, 0, -6, -1])
>>> p3 = p1 + p2
>>> print(p3.coeff)
[1, 0, 0, 0, -6, -1]
>>> print(p3)
1 - 6*x^4 - x^5
>>> print(p3(2.0))
-127.0
>>> p4 = p1*p2
>>> p2.differentiate()
>>> print(p2)
1 - 24*x^3 - 5*x^4

To make all these operations possible, the class needs the following special
methods:

• __init__, the constructor, for the line p1 = Polynomial([1,-1])

• __str__, for pretty print, for doing print(p1)

• __call__, to enable the call p3(2.0)

• __add__, to make p3 = p1 + p2 work

• __mul__, to allow p4 = p1*p2

In addition, the class needs a method differentiate, which computes the
derivative of a polynomial, and changes it in-place. Starting with the most basic
ones, the constructor is fairly straightforward and the call method simply follows
the recipe from Chapter 6:
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class Polynomial:
def __init__(self, coefficients):

self.coeff = coefficients

def __call__(self, x):
s = 0
for i in range(len(self.coeff)):

s += self.coeff[i]*x**i
return s

To enable adding two polynomials, we need to implement the __add__ method,
which should take one argument in addition to self. The methot should return
a new Polynomial instance, since the sum of two polynomials is a polynomial,
and the method needs to implement the rules of polynomial addition. This is
basically to add together terms of equal order, which in our list representation
means to loop over the coeff lists and add individual elements.

class Polynomial:
...

def __add__(self, other):
# return self + other

# start with the longest list and add in the other:
if len(self.coeff) > len(other.coeff):

coeffsum = self.coeff[:] # copy!
for i in range(len(other.coeff)):

coeffsum[i] += other.coeff[i]
else:

coeffsum = other.coeff[:] # copy!
for i in range(len(self.coeff)):

coeffsum[i] += self.coeff[i]
return Polynomial(coeffsum)

The order of the sum of two polynomials is equal to the highest order of the
two, so the length of the returned polynomial must be equal to the length of the
longest of the two coeff lists.

Multiplication of two polynomials is slightly more complex than adding them,
so it is worth writing down the mathematics before implementing the __mul__
method. The formula looks like(

M∑
i=0

cix
i

) N∑
j=0

djxj

 =
M∑

i=0

N∑
j=0

cidjxi+j

and in our list representation this means that the coefficient corresponding to
power i+ j is ci ·dj . The list r of coefficients of the resulting polynomial becomes

`r[i+j] = c[i]*d[j]`

where i and j run from 0 to M and N , respectively. The implementation of the
method may look like

class Polynomial:
...
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def __mul__(self, other):
M = len(self.coeff) - 1
N = len(other.coeff) - 1
coeff = [0]*(M+N+1) # or zeros(M+N+1)
for i in range(0, M+1):

for j in range(0, N+1):
coeff[i+j] += self.coeff[i]*other.coeff[j]

return Polynomial(coeff)

Just as the __add__ method, __mul__ takes one argument in addition to self,
and returns a new Polynomial instance.

Turning now to the differentiate method, the rule for differentiating a
general polynomial is

d

dx

n∑
i=0

cix
i =

n∑
i=1

icix
i−1

So if c is the list of coefficients, the derivative has a list of coefficients, dc, where
dc[i-1] = i*c[i] for i running from 1 to the largest index in c. Note that dc
will have one element less than c, since differentiating a polynomial reduces the
order by 1. The full implementation of the differentiate method may look
like this:

class Polynomial:
...
def differentiate(self): # change self

for i in range(1, len(self.coeff)):
self.coeff[i-1] = i*self.coeff[i]

del self.coeff[-1]

def derivative(self): # return new polynomial
dpdx = Polynomial(self.coeff[:]) # copy
dpdx.differentiate()
return dpdx

Here, the differentiate method will change the polynomial itself, since this
is the behavior indicated by how the function was used above. We have also
added a separate function derviative, which does not change the polynomial
but instead returns its derivative as a new Polynomial object.

Finally, let us implement the __str__ method for pretty print of polynomi-
als. This method should return a string representation of the polynomial, but
achieving this can actually be fairly complicated. The following implementatino
does a reasonably good job:

class Polynomial:
...
def __str__(self):

s = ''
for i in range(0, len(self.coeff)):

if self.coeff[i] != 0:
s += ' + %g*x^%d' % (self.coeff[i], i)

# fix layout (lots of special cases):
s = s.replace('+ -', '- ')
s = s.replace(' 1*', ' ')
s = s.replace('x^0', '1')
s = s.replace('x^1 ', 'x ')
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s = s.replace('x^1', 'x')
if s[0:3] == ' + ': # remove initial +

s = s[3:]
if s[0:3] == ' - ': # fix spaces for initial -

s = '-' + s[3:]
return s

For all these special methods, and for special methods in general, it is important
to be aware that the contents and behavior of the methods are entirely up to the
programmer. The only special thing about special methods is their name, which
ensures that they are automatically called by certain operations. What they
actually do, and what they return, is up to the programmer when writing the
class. If we want to write an __add__ method that returns nothing, or returns
something completely different from a sum, we are free to do so. But it is of
course a good habit for the __add__(self, other) to implement something
that seems like a meaningful result of self + other.

Special methods for mathematical operations. We can equip our Python
classes to support more than just addition and multiplication. Here are some
relevant arithmetic operations and the corresponding special method that they
will call:

c = a + b # c = a.__add__(b)

c = a - b # c = a.__sub__(b)

c = a*b # c = a.__mul__(b)

c = a/b # c = a.__div__(b)

c = a**e # c = a.__pow__(e)

It is natural in most cases, but not always, that these methods return an opject
of the same type as the operands. Similarly, there are special methods for
comparing objects:

a == b # a.__eq__(b)

a != b # a.__ne__(b)

a < b # a.__lt__(b)

a <= b # a.__le__(b)

a > b # a.__gt__(b)

a >= b # a.__ge__(b)

These should be implemented to return True/False to be consistent with the
usual behavior of the comparison operators.

Example; a class for vectors in the plane. Two-dimensional (2D) vectors
have a set of well-defined mathematical operations. For two vectors (a, b) and
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(c, d), we have

(a, b) + (c, d) = (a + c, b + d)
(a, b) − (c, d) = (a − c, b − d)
(a, b) · (c, d) = ac + bd

(a, b) = (c, d) if a = c and b = d

We want to implement a class for such 2D vectors, which supports these opera-
tions. We may recall that NumPy arrays support all of these operations, but
the result of the operation is not always what we want. NumPy defines array
operations, which for addition, subtraction, and equality give the same results
as the rules defined above. However, multiplying two arrays gives a new array
and not a scalar, so to support all the operations we need to implement things
differently. We want the class to support the following usage:

>>> u = Vec2D(0,1)
>>> v = Vec2D(1,0)
>>> print u + v
(1, 1)
>>> a = u + v
>>> w = Vec2D(1,1)
>>> a == w
True
>>> print u - v
(-1, 1)
>>> print u*v
0

The implementation of the Vec2D class may look as follows:
class Vec2D:

def __init__(self, x, y):
self.x = x; self.y = y

def __add__(self, other):
return Vec2D(self.x+other.x, self.y+other.y)

def __sub__(self, other):
return Vec2D(self.x-other.x, self.y-other.y)

def __mul__(self, other):
return self.x*other.x + self.y*other.y

def __abs__(self):
return math.sqrt(self.x**2 + self.y**2)

def __eq__(self, other):
return self.x == other.x and self.y == other.y

def __str__(self):
return f'({self.x}, {self.y})'

def __ne__(self, other):
return not self.__eq__(other) # reuse __eq__

Here, since we wanted __mul__ to represent the scalar product, it returns a
number rather than a Vec2D object.
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The \_\_repr\_\_ special method. The last special method we will consider
here is a method named __repr__, which is similar to __str__ in the sense that
it should return a string with info about the object. The difference is that while
__str__ should provide human readable information, the __repr__ string shall
contain all the information necessary to recreate the object. For an object a, the
__repr__ method is called if we call repr(a), where repr is a builtin function.
The intended function of repr is such that eval(repr(a)) == a, i.e., running
the string output by a.__repr__ should recreate a. To illustrate its use, let us
add a __repr__ method to the class Y from the start of the chapter:

class Y:
"""Class for function y(t; v0, g) = v0*t - 0.5*g*t**2."""

def __init__(self, v0):
"""Store parameters."""
self.v0 = v0
self.g = 9.81

def __call__(self, t):
"""Evaluate function."""
return self.v0*t - 0.5*self.g*t**2

def __str__(self):
"""Pretty print."""
return f'v0*t - 0.5*g*t**2; v0={self.v0}'

def __repr__(self):
"""Print code for regenerating this instance."""
return f'Y({self.v0})'

Again, we can illustrate how it works in an interactive shell:
>>> from tmp import *
>>> y = Y(3)
>>> print(y)
v0*t - 0.5*g*t**2; v0=3
>>> repr(y)
'Y(3)'
>>> z = eval(repr(y))
>>> print(z)
v0*t - 0.5*g*t**2; v0=3

The last two lines confirm that the repr method works as intended, since running
eval(repr(y) returns an object identical to y. The methods __repr__ and
__str__ are fairly differentquite different

How can we know the contents of a class? Sometimes it is useful to be
able to list the contents of a class, in particular for debugging. Consider the
following dummy class, which does nothing useful but defines a doc string, a
constructor and a single attribute:

class A:
"""A class for demo purposes."""
def __init__(self, value):

self.v = value
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If we now write dir(A) we see that the class actually contains a lot more
than what we put into it, since Python automatically defines certain methods
and attributes in all classes. Most of the items listed are default versions
of special methods, which do nothing useful except giving an error message
NotImplemented if they are called. However, if we create an instance of A, and
use dir again on that instance, we get more useful information:

>>> a = A(2)
>>> dir(a)
['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'v']

We see that the list contains the same (mostly useless) default versions of special
methods, some items are more meaningful. If we continue the interactive session
to examine some of the items, we get

>>> a.__doc__
'A class for demo purposes.'
>>> a.__dict__
{'v': 2}
>>> a.v
2
>>> a.__module__
'__main__'

The __doc__ attribute is the doc string we defined, while __module__ is the
module that the class belongs to, which is simply __main__ in this case since
we defined it in the main program. However, the most useful item is probably
__dict__, which is a dictionary containing names and values of all attributes of
the object a. Any instance holds its attributes in the self.__dict__ dictionary,
which is automatically created by Python. If we add new attributes to the
instance, they are inserted into the __dict__:

>>> a = A([1,2])
>>> print a.__dict__ # all attributes
{'v': [1, 2]}
>>> a.myvar = 10 # add new attribute (!)
>>> a.__dict__
{'myvar': 10, 'v': [1, 2]}

When programming with classes we are not supposed to use the internal data
structures like __dict__ explicitly, but it may be very useful to print it to check
values of variables if something goes wrong in our code.

3 Summary of class programming
Although the class concept itself is quite complex, the Python syntax of class
programming is fairly simple. To define a class, simply write the keyword class
followed by the class name and an indented block of code. The indented block
will typically be method definitions, one of the methods being the constructor
where the class attributes are defined:
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class Gravity:
"""Gravity force between two objects."""
def __init__(self, m, M):

self.m = m
self.M = M
self.G = 6.67428E-11 # gravity constant

def force(self, r):
G, m, M = self.G, self.m, self.M
return G*m*M/r**2

def visualize(self, r_start, r_stop, n=100):
from matplotlib.pyplot import plot, show
from numpy import linspace
r = linspace(r_start, r_stop, n)
g = self.force(r)
title = f'm={self.m}, M={self.M}'
plot(r, g, title=title)
show()

The least intuitive part of the class definition is probably the use of self as the
first argument in all methods. As indicated by the name, one should always
think of self as the instance itself, and stick to the following three rules; (i)
always include self as the first argument when defining methods in a class, (ii)
never include self when calling the methods from an instance, and (iii) always
prefix attributes with self when they are used inside the methods.

To use the class, we first create one or more instances of the class, and then
call the methods of interest:

mass_moon = 7.35E+22
mass_earth = 5.97E+24

# make instance of class Gravity:
gravity = Gravity(mass_moon, mass_earth)

r = 3.85E+8 # earth-moon distance in meters
Fg = gravity.force(r) # call class method

Finally, we looked at special methods, which are special in the sense that
they have very particular names, and they are called automatically when certain
operations are performed on instances of the class. The most fundamental one
is __init__, which is calledwhenever a new instance is created, but there are
many more, for instance:

• c = a + b implies c = a.__add__(b)

• There are special methods for a+b, a-b, a*b, a/b, a**b, -a, if a:, len(a),
str(a) (pretty print), repr(a) (recreate a with eval), etc.

• With special methods we can create new mathematical objects like vec-
tors, polynomials and complex numbers and write “mathematical code”
(arithmetics)

• The __call__ special method is particularly handy: v = c(5) means
v = c.__call__(5)
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• Functions with parameters should be represented by a class with the
parameters as attributes and with a call special method for evaluating the
function
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