App.E: Programming of differential

equations

Joakim Sundnes!?

!Simula Research Laboratory
2University of Oslo, Dept. of Informatics

Nov 6, 2019

Ordinary differential equations (ODEs) are widely used in science and engi-
neering, in particular for modeling dynamic processes. While simple ODEs can
be solved with analytical methods, non-linear ODEs are generally not possible to
solve in this way, and we need to apply numerical methods. In this chapter we
will see how we can program general numerical solvers that can be applied to any
ODE. We will first consider scalar ODEs, i.e. ODEs with a single equation and
a single unknown, and then later extend the ideas to systems of coupled ODEs.
Understanding the concepts of this chapter is useful not only for programming
your own ODE solvers, but also for using a wide variety of general-purpose ODE
solvers available both in Python and other programming languages.

1 Creating a general-purpose ODE solver

When solving ODEs analytically one will typically consider a specific ODE or
a class of ODEs, and try to derive a formula for the solution. In this chapter
we want to implement numerical solvers that can be applied to any ODE, not
restricted to a single example or a particular class of equations. For this purpose,
we need a general abstract notation for an arbitrary ODE. We will write the
ODE:s on the following form:

u'(t) = f(u(t),), (1)

which means that the ODE is fully specified by the definition of the right hand
side function f(u,t). Examples of this function may be:

flu,t) = au, exponential growth

flu,t) = au (1 — %) , logistic growth

f(u,t) = =blulu + g, falling body in a fluid

Notice that for generality we write all these right hand sides as functions of both
u and t, although the mathematical formulations only involve w. It will become
clear later why such a general formulation is useful. Our aim is now to write
functions and classes that take f as input, and solve the corresponding ODE to
produce u as output.

Finite difference approximation of the derivative turns an ODE into a
difference equation. All the numerical methods we will considered here rely
on approximating the derivatives in the equation v’ = f(u,t) by finite differences.
Assume that we have computed u at discrete time points tg,t1,...,tx. At tx we
have the ODE

u'(ty) = f(u(ty), tr),
and we can now approximate u'(t;) by a forward finite difference;
u(trs1) — u(le)
At '

Inserting this approximation into the ODE at ¢ = t;, yields the following
equation

u'(ty) ~

W = Flulty), te),
which we recognize as a difference equation for computing w(txy1) from the
known value u(tx) are known. We can rearrange the terms to obtain the explicit
formula

u(tey1) = ulte) + ALf(u(ty), te).

This is known as the forward Euler method, and is the simplest numerical method
for solving and ODE. As with the difference equations considered in Appendix A,
we start from the known initial condition u(tg), and apply the formula repeatedly
to compute u(ty), u(tz), u(ts) and so forth. We can simplify the formula by
using the notation for difference equations introduced in Appendix A. If we let
uy, denote the numerical approximation to the exact solution w(t) at ¢ = ty, the
difference equation can be written as

Uk4+1 = Uk + Atf(uk, tk). (2)
This is a regular difference equation which can be solved using arrays and a

for-loop, just as we did for the other difference equations in Appendix A.

An ODE needs an initial condition. In mathematics, an initial condition
for w must be specified to have a unique solution of equation (1). When solving
the equation numerically, we need to set ug in order to start our method and
compute a solution at all. As an example, consider the very simple ODE

u = u.

This equation has the general solution u = Ce! for any constant C, so it has
an infinite number of solutions. Specifying an initial condition w(0) = ug gives

C = ugp, and we get the unique solution v = uge!. When solving the equation
numerically, we start from our known wg, and apply formula (2) repeatedly:

Uy = Ug + AtUO
Uy = uy + Atuy

U3 = U2 + ...

To start with a concrete and simple example, let us first implement this
solution algorithm in a program. The algorithm may be sketclike this; for a
given time step At (dt) and number of time steps n, preform the following steps

1. Create arrays t and u of length n 41
2. Set initial condition: u[0] = Uy, t[0]=0
3. For k=0,1,2,...,n—1:

e t[k+1] t[k] + dt
e ulk+1] = (1 + dt)=ulk]

The Python implementation of this algorithm may look like

import numpy as np
import matplotlib.pyplot as plt

dt = 0.2

u0 = 1

T =4

n = int(T/dt)

t = np.zeros(nt+1)
u = np.zeros(n+1)
t[0] =0

ul0] =0

for k in range(n):
tlk+1] = tlk] + dt
ulk+1] = (1 + dt)*ulk]

plt.plot(t,u)
plt.show()

The solution is shown in Figure 1, for two different choices of the time step At.
We see that the approximate solution improves as At is reduced, although both
the solutions are quite inaccurate. However, reducing the time step further will
easily create a solution that cannot be distinguished from the exact solution.

Extending the solver to a the general ODE. As stated above, the purpose
of this chapter is to create general-purpose ODE solvers, that can solve any ODE
written on the form v’ = f(u,t). This requires a very small modification of the
algorithm above;

1. Create arrays t and u of length n 41

Solution of the ODE u'=u, u(0)=1 Solution of the ODE w=u, u(0)=1

60 60

numerical numerical
exact - - - exact — - -

50 r 74 50 77

Figure 1: Solution of v’ = u,u(0) = 1 with At = 0.4 and At = 0.2.

2. Set initial condition: u[0] = ug, t[0]=0
3. For k=0,1,2,...,n — 1:

o ulk+1]
o t[k+1]

ulk] + dt*f(ulk], t[k]) (the only change!)
tlk] + dt

We see that the only change of the algorithm is in the formula for computing
ulk+1] from ulk]. For the case considerd above we had f(u,t) = u, and to create
a general-purpose ODE solver we simply replace u[k] with the more general
f(ulk],t[k]). The implementation of the algorithm in a Python function may
look like:

def ForwardEuler(f, UO, T, n):
"miSolve u'=f(u,t), u(0)=U0, with n steps unttl t=T."""
import numpy as np
t = np.zeros(n+1)
u = np.zeros(n+l) # u/k] is the solution at time t[k]

ul0] = U0
t[0] =0
dt = T/float(n)

for k in range(n):
tlk+1] = t[k] + dt
ulk+1] = ulk] + dt*f(ulk]l, t[k])

return u, t

This simple function can solve any ODE written on the form (1)! The right hand
side function f(u,t) needs to be implemented as a Python function, and then
passed as an argument to ForwardEuler together with the initial condition, the
stop time T and the number of time steps.

To illustrate how the ForwardEuler function is used, let us apply it to the
same problem above; v’ = u, u(0) = 1, for ¢ € [0,4]. The following code uses the
ForwardEuler function to solve this problem:

def f(u, t):

return u
0=1
3
3

0
, t = ForwardEuler(f, UO, T, n)

eBHg
o

We see that the ForwardEuler function returns the two arrays u and t, which
can then be plotted or processed further as we want. One thing worth noticing
in this implementation is the definition of the right hand side function f. As
we commented above, we always write this function with two arguments u and
t, although in this case only u is used inside the function. The two arguments
are needed because of how the function is used inside ForwardEuler, it is called
as f(ulk], t[k]). If the function was defined as def f(u): we would get an
error message from this line, but simply writing def f(u,t): even if t is never
used solves this problem.

Now you can solve any ODE! For being only 15 lines of Python code,
the capabilities and generality of the ForwardEuler function above are quite
remarkable. Using this function, we can solve any kind of linear or non-linear
ODE, most of which would be impossible to solve using analytical techniques.
The general recipe goes as follows:

1. Identify f(u,t) in your ODE
. Make sure you have an initial condition ug

. Implement the f(u,t) formula in a Python function f(u, t)

2
3
4. Choose the time step At or the number of steps n
5. Call u, t = ForwardEuler(f, UO, T, n)

6

. Plot the solution

It is worth mentioning that the Forward Euler method is the simplest of all
ODE solvers, and many will argue that it is not very good. This is partly true,
since there are many other methods that are more accurate and more stable
when applied to challenging ODEs. We shall look at a few examples of such
methods later in this chapter. However, the Forward Euler method is quite
suitable for solving most ODEs. If we are not happy with the accuracy we can
simply reduce the time step, and in most cases this will give the accuracy we
need with a negligible increase in computing time.

The general ODE solver can also be implemented as a class. We can
increase the flexibility of the ForwardEuler solver function by implementing it
as a class. The usage of the class may be as follows:

method = ForwardEuler (f, dt)

u, t = method.solve(T)
plot(t, w)

The benefits of using a class instead of a function may not be obvious at this
point, but it will become cleare later. For now, let us just look at how the class
can be implemented:

¢ We need to store f, At, and the sequences uy, tx as attributes

e The steps in the ForwardEuler function can be split into two separate
methods:

— the constructor (__init__)

— solve, which runs the for loop to solve the ODE and returns the
solution

In addition to these methods, it may be convenient to implement the formula for
advancing the solution as a separate method advance. In this way it becomes
very easy to implement new numerical methods, since we typically only need
to change the advance method. A first version of the solver class may look as
follows:

import numpy as np

class ForwardEuler_vi1:
def __init__(f, U0, T, n):
self.f, self.U0, self.T, self.n = f, UO, T, n
self.dt = T/float(n)
self.u = np.zeros(self.n+1)
self.t = np.zeros(self.n+1)

def solve(self, T):
"""Compute solution for O <=t <= T."""
self.u[0] = float(self.U0)
self.t[0] = float(0)

for k in range(self.n):
self .k = k
self.t[k+1] = self.t[k] + self.dt
self.u[k+1] = self.advance()
return self.u, self.t

def advance(self):
"""Advance the solution one time step."""
Create local wvariables to get rid of "self." in
the numerical formula
u, dt, £, k, t = self.u, self.dt, self.f, self .k, self.t

unew = ulk] + dt*f(ulk], t[k])
return unew

This class does essentially the same tasks as the ForwardEuler function above.
The main advantage of the class implementation is the increased flexibility that
comes with the advance method. As we shall see later, implementing a different
numerical method typically only requires implementing a new version of this
method, while all other code can be reused.

We can also use a class to hold the right-hand side f(u, t), which is particularly
convenient for functions with parameters. Consider for instance the model for
logistic growth;

u'(t) = au(t) (1 - uf?) , u(0)=Uy, te]0,40],

which is a commonly used model in biology. The right hand side function has
two parameters a and R, but if we want to solve it using our ForwardEuler
function or class, it must be implemented as a function of v and ¢t only. As
we discussed in Chapter 7, a class with a call method provides a very flexible
implementation of such a function, since we can set the parameters as attributes
in the constructor and use them inside the __call__ method:

class Logistic:
def __init__(self, alpha, R, UO):
self.alpha, self.R, self.UO = alpha, float(R), UO

def __call__(self, u, t): # flu,t)
return self.alpha*ux(l - u/self.R)

The main program for solving the logistic growth problem may now look like:

problem = Logistic(0.2, 1, 0.1)
method = ForwardEuler_v1l(problem,problem.U0,40,401)
u, t = method.solve(T)

10 Logistic growth: alpha=0.2, R=1, dt=0.1

0.9

0.8f

0.7f

0.6

0.5

0.41

0.3

0.2

0.1

Figure 2: Solution of the logistic growth model.

2 A class hierarchy of ODE solvers

As mentioned above, the Forward Euler method is not the most sophisticated
ODE solver, although it is sufficiently accurate for most of the appliactions
we will consider. Many alternative methods exist, with better accuracy and
stability than Forward Euler. One very popular class of ODE solvers is known
as Runge-Kutta methods. The simplest example of a Runge-Kutta method is in
fact the Forward Euler method;

U1 = Uk + At fug, tr),

which is an example of an first-order explicit Runge-Kutta method with a single
stage. Another popular method is the fourth-order method:

1
Uk+1 = U+ o (K1 + 2Ky +2K3 + Ky)

where the K7, ..., K, are intermediate variables defined by
K1 = At f(uk, tk),

1 1
Ky = At f(ur + §K1>tk + iAt)v

1 1
K3 = Atf(Uk + §K27tk + §At)7

Ky = At f(ur + K3, t, + At).

This is called a four-stage Runge-Kutta method, and we may observe that the
update formula is quite similar to Forward Euler. The difference is that we
compute the intermediate variables K1, ..., K4, and advance the solution using
a weighted average of these rather then simply using At f(u,tr). This improves
the accuracy of the approximation. All Runge-Kutta methods follow the same
idea, and differ only in the number of stages and the coefficients and weights
used for computing the K-values and advancing the solution.

We now want to implement the fourth-order Runge-Kutta method as a class,
similar to the implementation of the Forward Euler class introduced above.
When inspecting the ForwardEuler_v1 class, we quickly observe that most of
the code is not specific to the particular ODE method, but are common to all
ODE solvers. For instance, we always need to create an array for holding the
solution, and the general solution method using a for-loop is the same. The only
difference is how the solution is advanced from one step to the next. Recalling
the ideas of Object-Oriented Programming from Chapter 9, it becomes obvious
that a class hierarchy is very convenient for implementing a collection of ODE
solvers. In this way we can collect common code in a superclass, and rely on
inheritance to avoid code duplication. The superclass can handle most of the
more "administrative" steps of the ODE solver, such as

¢ Storing the solution uy and the corresponding time levels ¢y, k = 0,1,2,...,n
 Storing the right-hand side function f(u,t)

e Storing and applying initial condition

¢ Running the loop over all time steps

The implementation of the superclass should follow the principles introduced in
Chapter 9:

¢ Common data and functionality are placed in the superclass ODESolver

e The parts that differ between different solvers are isolated in a single
method (i.e. advance)

e Subclasses, e.g., ForwardEuler, just implement the specific numerical
formula in advance

The implamentation of the superclass may look like

class ODESolver:
def __init__(self, f):
self.f = f

def advance(self):
"""Advance solution one time step."""
raise NotImplementedError # implement in subclass

def set_initial_condition(self, UO):
self.U0 = float(UO)

def solve(self, time_points):
self.t = np.asarray(time_points)
self.u = np.zeros(len(self.t))
Assume that self.t[0] corresponds to self.U0
self.ul[0] = self.U0O

Time loop
for k in range(n-1):
self .k = k

self.ul[k+1] = self.advance()
return self.u, self.t

Comparing with the ForwardEuler_v1 class above, we see that we have made
some minor modifications. First, we have introduced a method set_initial_codition
instead of passing the initial condition as an argument to the constructor. Sec-
ond, the solve-method takes an array of time points as argument, instead
of a final time T. These choices offer some extra flexibility compared with
ForwardEuler_v1, and are more convenient for some applications but probably
not for all. As usual, there are multiple ways to solve a given task, and as
programmers we need to make some choices.

With the ODESolver superclass at hand, the implementation of a ForwardEuler
class becomes very simple:

class ForwardEuler (ODESolver):
def advance(self):
u, f, k, t = self.u, self.f, self .k, self.t

dt = t[k+1] - t[k]
unew = ulk] + dt*f(ulk], t)
return unew

Similarly, the fourth-order Runge-Kutta method can also be a subclass with
a single method:
class RungeKutta4(ODESolver):

def advance(self):
u, f, k, t = self.u, self.f, self.k, self.t

dt = t[k+1] - t[k]
dt2 = dt/2.0

K1 = dt*f(ulk], t)

K2 = dt*f(ulk] + 0.5%K1, t + dt2)
K3 = dt*f(ul[k] + 0.5%K2, t + dt2)
K4 = dtxf(ulk] + K3, t + dt)

unew = ulk] + (1/6.0)*(K1 + 2*K2 + 2xK3 + K4)
return unew

10

The use of these classes is quite similar to the first version of the Forward
Euler class. Considering the same simple ODE used above; v’ = u, u(0) = 1,
t € [0,3], At = 0.1, the code looks like:

import numpy as np
import matplotlib.pyplot as plt

from ODESolver import ForwardEuler, RungeKutta4
def test(u, t):
return u

time_points = np.linspace(0, 3, 31)

methodl = ForwardEuler(test)
methodl.set_initial_condition(U0=1)
ul, tl = methodl.solve(time_points)
plt.plot(tl, ul)

method2 = RungeKuttad(test)
method2.set_initial_condition(U0=1)
u2, t2 = methodl.solve(time_points)
plt.plot(t2, u2)

plt.show()

This code will solve the same equation using both methods, and plot the solutions
in the same window. Experimenting with the time step size should reveal the
difference in accuracy between the two methods.

The solver hierarchy makes it convenient to extend and improve the
implementation. An obvious advantage of the implementing the solvers as a
class hierarchy is that we can easily introduce new methods as subclasses, with
very little new code required. Another advantage is that we can easily improve the
functionality of the superclass, and the improvements will automatically apply to
all our solvers. As an example, we may introduce a form of automatic termination
of our solution process, which checks the solution at each steps and stops the
loop if a certain condition is fulfilled. For instance, for some equations it may be
useful to stop the solution process when the solution becomes zero, i.e. when
u < 1077 ~ 0. To include such functionality in our solvers, we can modify the
solve method take two arguments; solve(time_points, terminate). The
second argument should be a user-defined function terminate(u, t, step_no)
that is called at every time step, and returns True when the time stepping should
be terminated. The extended solve method may be implemented as follows:
def solve(self, time_points, terminate=None):

if terminate is None:
terminate = lambda u, t, step_no: False

Assume that self.t[0] corresponds to self.U0
self . u[0] = self.UO

Time loop
for k in range(n-1):
self .k = k

11

self.ul[k+1] = self.advance()
if terminate(self.u, self.t, self.k+1):
break # terminate loop over k
return self.ul:k+2], self.t[:k+2]

Notice the default value provided for terminate, which makes this argument
optional, and the if-test inside the method ensures that it works as expected
if no terminate argument is provided. With the class hierarchy, an extension
like this, implemented in the superclass, is automatically available in all solver
subclasses. The following code provides an example of using the improved class
hierarchy:

import numpy as np
import matplotlib.pyplot as plt

from ODESolver import RungeKutta4
def decay(u, t):
return -u

def terminate(u, t, step_no):
eps = 1.0E-6 # small number
return abs(ulstep_no,0]) < eps # close enough to zero?

time_points = np.linspace(0, 10, 101)

method = ForwardEuler(decay)
method.set_initial_condition(U0=1)

ul, tl = method.solve(time_points, terminate)
plt.plot(tl, ul)

plt.show()

3 Systems of ordinary differential equations

So far we have only considered ODEs with a single solution component, often
called scalar ODEs. Many interesting processes can be described by systems
of ODEs, i.e., mutlipe ODEs where the right hand side of one depends on the
solution of the others. Such equation systems are also referred to as vector ODEs.
One simple example is

v = v,u(0) =1
v = —u,v(0) =0.

The solution of this system is u = cos(t),v = sin(t) which can easily be verified
by insterting the solution into the equations and initial conditions. For more
general cases, it is usually even more difficult to find analytical solutions of ODE
systems than of scalar ODEs, and numerical methods are usually required. The
purpose of this last part of the chapter is to extend the solvers introduced above
to be able to solve systems of ODEs. We shall see that such extension requires
relatively small modifications of the code.

We want to develop general software that can be applied to any vector ODE
or scalar ODE, and for this purpose it is useful to introduce general mathematical

12

notation. We have n unknowns
WO (8),u(2), ..., u" (1)

in a system of n ODEs:

D0 Z OO 1)) gy,
dt
%uu) = OGO 0 e gy

D=1 Z 0D (00 0 =)).

dt
To simplify the notation (and later the impleme_n‘caution)7 we collect both the
solutions u(¥ (t) and right-hand side functions f*) in vectors;

w=(u®, M, D),

and
f= (O, O)y,

Note that f is now a vector-valued function. It takes n + 1 input arguments (¢
and the n components of u) and returns a vector of n values. The ODE system
can now be written

u = f(u,t), u(0)=ug

where v and f are vectors and ug is a vector of initial conditions. We see that we
use exactly the same notation as for scalar ODEs, and whether we solve a scalar
or system of ODEs is determined by how we define f and the initial condition
ug. This general notation is completely standard in text books on ODEs, and
we can easily make the Python implementation just as general.

How can we make the ODESolver class work for systems of ODEs?
The ODESolver class above was written for a scalar ODE. We now want to make
it work for a system u' = f, u(0) = Uy, where u, f and Uy are vectors (arrays).
To identify how the code needs to be changed, let us start with the simplest
method. Applying the forward Euler method to a system of ODEs yields the
update formula

Upp1 = up +AL f(ug,tr).

N~ ~~ N—_——

vector vector vector
In Python code, this may look identical to the version for scalar ODEs;
ulk+1] = ulk] + dtxf(ulk], t)
with the important difference that both u[k] and ul[k+1] are arrays. Since these

are arrays, the solution u must be a two-dimensional array, and u[k] ,ul[k+1],
etc. are the rows of this array. The function £ must return a one-dimensional

13

array, containing all the right-hand sides f(© ..., f(»=1. To get a better feel
for how these arrays look and how they are used, we may compare the array
holding the solution of a scalar ODE to that of a system of two ODEs. For the
scalar equation, both t and u are one-dimensional NumPy arrays, and indexing
into u gives us numbers, representing the solution at each time step:

t=[0. 0.40.81.2(...)]
u=1[1.01.4 1.96 2.744 (...)]

u[0]
ul1]

...

1.0
1.4

In the case of a system t is the same, but u is now a two-dimensional array.
Indexing into it yields one-dimensional arrays of length two, which are the two
solution components at each time step:

u=[[1.00.8][1.4 1.1] [1.9 2.7] (...)]

uf0] = [1.0 0.8]
ul1] = [1.4 1.1]
...

To make a generic ODESolver class that works both with scalars and systems,
we need to make the following changes:

e Ensure that £ (u,t) always returns an array.

o Inspect Uy to see if it is a number or a list/array/tuple and make the
corresponding u a one-dimensional or two-dimensional array

If these two items are handled and initialized correctly, the rest of the code from
above will work with no modifications. The extended superclass implementation
may look like:

class ODESolver:
def __init__(self, £f):
Wrap user's f in a new function that always
converts list/tuple to array (or let array be array)
self.f = lambda u, t: np.asarray(f(u, t), float)

def set_initial_condition(self, UOQ):
if isinstance(UO, (float,int)): # scalar ODE

self.neq = 1 # no of equations
U0 = float(UO)

else: # system of UDEs
UO = np.asarray(UO)
self.neq = UO.size # no of equations

self.U0 = U0
def solve(self, time_points, terminate=Nomne):
if terminate is None:

terminate = lambda u, t, step_no: False

self.t = np.asarray(time_points)

14

n = self.t.size

if self.neq == 1: # scalar ODEs
self.u = np.zeros(n)
else: # systems of UDEs

self.u = np.zeros((n,self.neq))

Assume that self.t[0] corresponds to self.U0
self . u[0] = self.UO

Time loop
for k in range(n-1):
self .k = k

self.ul[k+1] = self.advance()
if terminate(self.u, self.t, self.k+1):
break # terminate loop over k
return self.ul:k+2], self.t[:k+2]

Some parts of this code are worth some comments. First, the constructor looks
almost as in the scalar case, but it will convert any f that returns a list or
tuple to a function returning a NumPy array. This modification is not strictly
needed, since we could just assume that the user implements f to return an
array, but it makes the class more robust and flexible. Similar tests are included
in the set_initial_condition, to make sure that UO is either a single number
(float) or a NumPy array, and to set the attribute self.neq to hold the number
of equations. Finally, the most essential modification is found in the method
solve. Here, the self.neq attribute is inspected, and u is initialized to a one-
or two-dimensional array of the correct size. The actual for-loop, as well the
implementation of the advance method in the subclasses, can be left unchanged.

3.1 Example: ODE model for throwing a ball

To demonstrate the use of the extended ODESolver hierarchy, let us consider a
system of ODEs describing the trajectory of a ball. From Newton’s 2nd law we
get the equations

dvg dx
T =0= =0—= T
“ dt at "
dv dy
ay:fgé dityzfgazvy

We have neglected air resistance, but this can easily be added later if needed.
The ODE system can be written as

15

and the four unknowns are the ball’s position x(t), y(t) and the velocity compo-
nents v, (t), vy(t). To solve the system we need to define initial conditions for
all these variables, i.e. we need to know the initial position and velocity of the
ball. To solve this system using the 0DESolver class hierarchy, we first define
the right hand side as a Python function: Define the right-hand side:

def f(u, t):
X, VX, ¥, Vy = 1
g =9.81

return [vx, 0, vy, -gl

We see that the function here returns a list, but this is automatically converted
to an array by the solver class’ constructor, as mentioned above. The main
program is not very different from the examples above, but needs to define an
initial condition with four components:

Initial condition, start at the origin:
x=0;y=0

velocity magnitude and angle:

vO = 5; theta = 80*np.pi/180

vx = vO*np.cos(theta); vy = vO*np.sin(theta)

Uo = [x, vx, y, vyl

solver= ForwardEuler (f)
solver.set_initial_condition(UO)

time_points = np.linspace(0, 1.0, 101)

u, t = solver.solve(time_points)

u 1s an array of [z,vz,y,vy] arrays, plot y vs x:
x = ul:,0]; y = ul:,2]

plt.plot(x, y)
plt.show()

Notice that since u is a two-dimensional array, we use array slicing to extract
and plot the individual components. A call like plt.plot(t,u) will also work,
but this will plot all components in the same window which is not very useful in
this case.

3.2 Summary

ODE solvers and Obejct Oriented Programming;:
o Many different ODE solvers (Euler, Runge-Kutta, ++)
o Most tasks are common to all solvers:

— Initialization of solution arrays and right hand side

— Overall for-loop for advancing the solution

o Difference; how the solution is advanced from step k to k + 1

¢ OOP implementation:

16

— Collect all common code in a base class
— Implement the different step (advance) functions in subclasses
Systems of ODEs
e All solvers and codes are easily extended to systems of ODEs

 Solution at one time step (uy) is a vector (one-dimensional array), overall
solution is a two-dimensional array

¢ Slightly more book-keeping, but the bulk of the code is identical as for
scalar ODEs

17

	Creating a general-purpose ODE solver
	A class hierarchy of ODE solvers
	Systems of ordinary differential equations
	Example: ODE model for throwing a ball
	Summary

