
Ch.9: Object-oriented programming

Joakim Sundnes1,2

1Simula Research Laboratory
2University of Oslo, Dept. of Informatics

Oct 19, 2019

When reading the chapter title Object-oriented programming, one may wonder
why this title is introduced now. We have programmed with objects since Chapter
1, and we started making our own classes and object types in Chapter 7, so
what is new in Chapter 9? The answer to this is that the term object-oriented
programming (OOP) may have two different meanings. The first is simply
programming with classes and objects and classes, which we introduced in
Chapter 7. This is more commonly referred to as object-based programming.
The second meaning of OOP is programming with class hierarchies, which are
families of classes that inherit methods and attributes from eachother. This is
the topic of the present chapter. We will learn how to collect classes in families
(hierarchies) and let child classes inherit attributes and methods from parent
classes.

1 Class hierarchies and inheritance
A class hierarchy is a family of closely related classes, organized in a hierarchical
manner. A key concept is inheritance, which means that child classes can
inherit attributes and methods from parent classes. A typical strategy is to
write a general class as a parent class (base class), and then let special cases be
represented as child classes (subclasses). This approach can often save much
typing and code duplication. As usual, the easiest way to introduce the topic is
to look at some examples.

OO is a Norwegian invention by Ole-Johan Dahl and Kristen Nygaard
in the 1960s - one of the most important inventions in computer science,
because OO is used in all big computer systems today!

1.1 Warning: OO is difficult and takes time to master



• Let ideas mature with time

• Study many examples

• OO is less important in Python than in C++, Java and C#, so the
benefits of OO are less obvious in Python

• Our examples here on OO employ numerical methods for
∫ b

a
f(x)dx,

f ′(x), u′ = f(u, t) - make sure you understand the simplest of these
numerical methods before you study the combination of OO and
numerics

• Our goal: write general, reusable modules with lots of methods for
numerical computing of

∫ b

a
f(x)dx, f ′(x), u′ = f(u, t)

Class for lines and parabolas. As a first example, let us create a class for
representing and evaluating straight lines; y = c0 + c1x. Following the concepts
and ideas introduced in the previous chapter, the implementation of the class
may look as follows

class Line:
def __init__(self, c0, c1):

self.c0, self.c1 = c0, c1

def __call__(self, x):
return self.c0 + self.c1*x

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
s = ''
for x in linspace(L, R, n):

y = self(x)
s += f'{x:12g} {y:12g}\n'

return s

We see that we have equipped the class with a standard constructor, a __call__
special method for evaluating the linear function, and a method table for writing
a table of x and y values. Say we now want to write a similar class for evaluating
a parabola y = c0 + c1x+ c2x

2. The code could look like:
class Parabola:

def __init__(self, c0, c1, c2):
self.c0, self.c1, self.c2 = c0, c1, c2

def __call__(self, x):
return self.c2*x**2 + self.c1*x + self.c0

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
s = ''
for x in linspace(L, R, n):

y = self(x)
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s += f'{x:12g} {y:12g}\n'
return s

We observe that the two classes are nearly identical, only differing in the parts
that involve c2. Although we could very quickly just copy all the code from the
Line class and edit the small parts that are needed, such duplication of code is
usually a bad idea. At some point we may need to make some changes to the
code, for instance to correct an error or improve the functionality, and having
to correct the same error in multiple places is a recipe for wasting time. So, is
there a way we can utilize the class Line code in Parabola without resorting to
copy-paste? This is exactly what inheritance is about.

Look at the following class defnition:
class Parabola(Line):

pass

Here pass is just a Python keyword that can be used wherever Python expects to
find some code, but we don’t really want to define anything. So at first site this
Parabola class seems to be empty. Notice however the class definition class
Parabola(Line), which means that parabola inherits all methods and attributes
from Line. The new Parabola class therefore has attributes c0 and c1 and
three methods __init__, __call__, and table. Line is a base class (or parent
class, superclass) , Parabola is a subclass (or child class, derived class). So the
new Parabola class is not as useless as it first seemed, but it is still just a copy
of the Line class. To make it represent a parabola, we need to add the missing
code, i.e. the code that differs between Line and Parabola. The principle when
creating such subclasses is to reuse as much as possible from the base class, and
add only what is needed in the subclass. In this way we avoid duplicating code.
Inspecting the two original classes above, we see that the Parabola class must
add code to Line’s constructor (an extra c2 attribute), and an extra term in
__call__, but table can be used unaltered. The full definition of Parabola as
a subclass of Line becomes:

class Parabola(Line):
def __init__(self, c0, c1, c2):

super().__init__(c0, c1) # Line stores c0, c1
self.c2 = c2

def __call__(self, x):
return super().__call__(self, x) + self.c2*x**2

To maximize code reuse, we let the Parabola class call the methods from Line,
and then add the parts that are missing. A subclass can always access its base
class using the builtin function super(), and this is the preferred way to invole
methods from the base class. We could, however, also use the class name directly,
for instance Line.__init__(self,c0,c1). In general, these two methods for
invoking superclass methods look like:

SuperClassName.method(self, arg1, arg2, ...)
super().method(arg1, arg2, ...)
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Notice the difference between the two approaches. When using the class name
directly we need to include self as argument, while this is handled automatically
when using super(). The use of super() is usually preferred, but in most cases
the two approaches are equivalent.

What exactly have we gained by creating a subclass?

• Class Parabola just adds code to the already existing code in class Line -
no duplication of storing c0 and c1, and computing c0 + c1x

• Class Parabola also has a table method - it is inherited and did not need
to be written

• __init__ and __call__ are overridden or redefined in the subclass, with
no code duplication

We use the Parabola class and call its methods just as if they were implemented
in the class directly:

p = Parabola(1, -2, 2)
p1 = p(2.5)
print p1
print p.table(0, 1, 3)

What does inheritance really mean? From a practical viewpoint, and for
the examples in this book, the point of inheritance is to reuse methods and
attributes from the base class, and minimize code duplication. On a more
theoretical level, inheritance should be thought of as an "is-a"-relationship
between the the two classes. By this we mean that if Parabola is a subclass of
Line, an instance of Parabola is also a Line instance. The Parabola class is
thought of as a special case of the Line class, and therefore every Parabola is
also a Line, but not vice versa. We can check class type and class relations with
the builtin functions isinstance(obj, type) and issubclass(subclassname,
superclassname):

>>> from Line_Parabola import Line, Parabola
>>> l = Line(-1, 1)
>>> isinstance(l, Line)
True
>>> isinstance(l, Parabola)
False
>>> p = Parabola(-1, 0, 10)
>>> isinstance(p, Parabola)
True
>>> isinstance(p, Line)
True
>>> issubclass(Parabola, Line)
True
>>> issubclass(Line, Parabola)
False
>>> p.__class__ == Parabola
True
>>> p.__class__.__name__ # string version of the class name
'Parabola'
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We will not use these methods much in practical applications1, but they are very
useful for getting a feel for class relationships when learning OOP.

Mathematically oriented readers may have noticed a logical fault in the small
class hierarchy we have presented so far. We stated that a subclass is usually
thought of as a special case of the base class, but a parabola is not really a
special case of a straight line. In fact it is the other way around, a line c0 + c1x
is a parabola c0 + c1x + c2x

2 with c2 = 0. Could then Line be a subclass of
Parabola? Certainly, and many will prefer this relation between a line and a
parabola, since it follows the usual is-a relationship between a subclass and its
base. The code may look like:

class Parabola:
def __init__(self, c0, c1, c2):

self.c0, self.c1, self.c2 = c0, c1, c2

def __call__(self, x):
return self.c2*x**2 + self.c1*x + self.c0

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
s = ''
for x in linspace(L, R, n):

y = self(x)
s += '%12g %12g\n' % (x, y)

return s

class Line(Parabola):
def __init__(self, c0, c1):

super().__init__(c0, c1, 0)

Notice that this version allows even more code reuse than the previous one, since
both __call__ and table can be reused without changes.

1.2 Class hierarchies for numerical methods
Common tasks in scientific computing, such as differentiation and integration,
can be solved with a large variety of numerical methods. Many such methods
are closely related, and can easily be grouped into families of methods that are
very suitable for implementing in a class hierarchy.

Classes for numerical differentation. As a first example we consider meth-
ods for numerical differentiation. The simplest formula is a one-sided finite
difference;

f ′(x) ≈ f(x+ h)− f(x)
h

which can be implemented in the following class:
1In fact, if you have to use isinstance in your code to check what kind of object you are

working with it is usually a sign that the design of the program is wrong. There are exceptions,
but normally isinstance and issubclass should only be used for learning and debugging.
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class Derivative:
def __init__(self, f, h=1E-5):

self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h # make short forms
return (f(x+h) - f(x))/h

To use the Derivative class, we simply define the function f(x), create an
instance of the class, and call it as if it was a regular function (effectively calling
the __call__ method behind the scenes):

def f(x):
return exp(-x)*cos(tanh(x))

from math import exp, cos, tanh
dfdx = Derivative(f)
print dfdx(2.0)

But there are numerous formulas for numerical differentiation;

f ′(x) = f(x+ h)− f(x)
h

+O(h),

f ′(x) = f(x)− f(x− h)
h

+O(h),

f ′(x) = f(x+ h)− f(x− h)
2h +O(h2),

f ′(x) = 4
3
f(x+ h)− f(x− h)

2h − 1
3
f(x+ 2h)− f(x− 2h)

4h +O(h4),

f ′(x) = 3
2
f(x+ h)− f(x− h)

2h − 3
5
f(x+ 2h)− f(x− 2h)

4h +

1
10
f(x+ 3h)− f(x− 3h)

6h +O(h6),

f ′(x) = 1
h

(
−1

6f(x+ 2h) + f(x+ h)− 1
2f(x)− 1

3f(x− h)
)

+O(h3),

and we can easily make a module that offers all of them:
class Forward1:

def __init__(self, f, h=1E-5):
self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h
return (f(x+h) - f(x))/h

class Backward1:
def __init__(self, f, h=1E-5):

self.f = f
self.h = float(h)

def __call__(self, x):
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f, h = self.f, self.h
return (f(x) - f(x-h))/h

class Central2:
# same constructor
# put relevant formula in __call__

The problem with this code is of course that all the constructors are identical,
so we duplicate a lot of code. As mentioned above, a general idea of OOP is to
place code common to many classes in a superclass and inherit that code. In
this case, we could make a superclass containing the constructor, and let the
different subclasses implement their own version of the __call__ method. The
superclass will be very simple, and not really useful on its own:

class Diff:
def __init__(self, f, h=1E-5):

self.f = f
self.h = float(h)

Subclass for simple 1st-order forward formula:
class Forward1(Diff):

def __call__(self, x):
f, h = self.f, self.h
return (f(x+h) - f(x))/h

Subclasses for 2nd order and 4-th order central formulae:
class Central2(Diff):

def __call__(self,x):
f, h = self.f, self.h

return (f(x+h)-f(x-h))/(2*h)

class Central4(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (4./3)*(f(x+h) - f(x-h)) /(2*h) - \

(1./3)*(f(x+2*h) - f(x-2*h))/(4*h)

Interactive example: f(x) = sin x, compute f ′(x) for x = π

>>> from Diff import *
>>> from math import sin
>>> mycos = Central4(sin)
>>> # compute sin'(pi):
>>> mycos(pi)
-1.000000082740371

Here Central4(sin) calls inherited constructor in superclass, while mycos(pi)
calls __call__ in the subclass Central4

As indicated by the O(hn) terms in the formulas above, the different methods
have different accuracy. We can empirically investigate the accuracy of our
family of 6 numerical differentiation formulas, using the class hierarchy created
above. The code may look like

• Sample function: f(x) = exp (−10x)

7



• See the book for a little program that computes the errors:

. h Forward1 Central2 Central4
6.25E-02 -2.56418286E+00 6.63876231E-01 -5.32825724E-02
3.12E-02 -1.41170013E+00 1.63556996E-01 -3.21608292E-03
1.56E-02 -7.42100948E-01 4.07398036E-02 -1.99260429E-04
7.81E-03 -3.80648092E-01 1.01756309E-02 -1.24266603E-05
3.91E-03 -1.92794011E-01 2.54332554E-03 -7.76243120E-07
1.95E-03 -9.70235594E-02 6.35795004E-04 -4.85085874E-08

Observations:

• Halving h from row to row reduces the errors by a factor of 2, 4 and 16,
i.e, the errors go like h, h2, and h4

• Central4 has really superior accuracy compared with Forward1

Class hierarchy for numerical integration. There are numerous formulas
for numerical integration, and all of them can be put into a common notation:∫ b

a

f(x)dx ≈
n−1∑
i=0

wif(xi)

Based on this general formula, different methods are realized by choosing the
integration points xi and associated weights wi. For instance, the Trapezoidal
rule has h = (b− a)/(n− 1) and

xi = a+ ih, w0 = wn−1 = h

2 , wi = h (i 6= 0, n− 1),

the midpoint rule has h = (b− a)/n and

xi = a+ h

2 + ih, wi = h,

while Simpson’s rule has

xi = a+ ih, h = b− a
n− 1 ,

w0 = wn−1 = h

6 ,

wi = h

3 for i even, wi = 2h
3 for i odd.

Other methods have more complicated formulas for wi and xi

A numerical integration formula can be implemented as a class, with a, b and
n as attributes and an integrate method to evaluate the formula and compute
the integral. As with the family of numerical differentiation methods considered
above, all such classes will be quite similar. The evaluation of

∑
j wjf(xj) is the
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same, and the only difference between the methods is the definition of the points
and weights. Following the ideas above, it makes sense to place all common
code in a subperclass, and code specific to the different methods in subclasses.
Here, we can put

∑
j wjf(xj) in a superclass (method integrate), and let the

subclasses extend this class with code specific to a specific formula, i.e. wi and
xi. This method-specific code can be placed inside a method, for instance named
construct_rule. The superclass for the numerical integration hierarchy may
look like this:

class Integrator:
def __init__(self, a, b, n):

self.a, self.b, self.n = a, b, n
self.points, self.weights = self.construct_method()

def construct_method(self):
raise NotImplementedError('no rule in class %s' % \

self.__class__.__name__)

def integrate(self, f):
s = 0
for i in range(len(self.weights)):

s += self.weights[i]*f(self.points[i])
return s

def vectorized_integrate(self, f):
# f must be vectorized for this to work
return dot(self.weights, f(self.points))

Notice the implementation of construct_method, which will raise an error if it
is called, indicating that the only purpose of the Integrator is as a superclass,
it should not be used directly. Alternatively, we could of course just not include
construct_method method in the superclass at all. However, the approach used
here makes it even more obvious that the class is just a superclass and that this
method has to be implemented in subclasses.

The superclass provides a common framework for implementing the different
methods, which can be then be realized as subclasses. The trapezoidal and
midpoint methods may be implemented like this:

class Trapezoidal(Integrator):
def construct_method(self):

h = (self.b - self.a)/float(self.n - 1)
x = linspace(self.a, self.b, self.n)
w = zeros(len(x))
w[1:-1] += h
w[0] = h/2; w[-1] = h/2
return x, w

class Midpoint(Integrator):
def construct_method(self):

a, b, n = self.a, self.b, self.n # quick forms
h = (b-a)/float(n)
x = np.linspace(a + 0.5*h, b - 0.5*h, n)
w = np.zeros(len(x)) + h
return x, w

And the more complex Simpson’s rule can be added in the following subclass:
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class Simpson(Integrator):
def construct_method(self):

if self.n % 2 != 1:
print ’n=%d must be odd, 1 is added’ % self.n
self.n += 1

x = np.linspace(self.a, self.b, self.n)
h = (self.b - self.a)/float(self.n - 1)*2
w = np.zeros(len(x))
w[0:self.n:2] = h*1.0/3
w[1:self.n-1:2] = h*2.0/3
w[0] /= 2
w[-1] /= 2
return x, w

Simpson’s rule is more complex because it uses different wiights for odd and even
points. We present all the details here for completeness, but it is not necessary
to study the detailed implementation of all the formualas. The important parts
here are the class design and usage of the class hierarchy.

To demonstrate how the classs can be used, let us compute the integral∫ 2
0 x

2dx using 101 points:

def f(x):
return x*x

simpson = Simpson(0, 2, 101)
print(simpson.integrate(f))
trapez = Trapezoidal(0,2,101)
print(trapez.integrate(f))

The program flow in this case may not be entirely obvious. When we
construct the instance with method = Simpson(...), it invokes the superclass
constructor, but then this method calls construct_method in class Simpson. The
call method.integrate(f) invokes the integrate method inherited from the
class Integrator. However, to us as users of the class none of these details really
matter. We use the Simpson class just as if all the methods were implemented
directly in the class, regardless of whether they were actually inherited from
another class.

1.3 Summary of object-orientation principles

• A subclass inherits everything from the superclass

• When to use a subclass/superclass?

– if code common to several classes can be placed in a superclass
– if the problem has a natural child-parent concept

• The program flow jumps between super- and sub-classes, but users
of the classes will not notice this
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