
Ch.5: Array computing and curve plotting (Part 1)

Joakim Sundnes1,2 Hans Petter Langtangen1,2

Simula Research Laboratory1

University of Oslo, Dept. of Informatics2

Sep 17, 2018

Plan for week 38

Tuesday 18 september
Live programming of ex 4.4, 4.5, 4.6, 4.7
Intro to NumPy arrays and plotting

Thursday 22 september
Live programming of ex 5.7, 5.9, 5.10, 5.11, 5.13
Plotting with matplotlib

(Making movies and animations from plots)

Goal: learn to visualize functions

We need to learn about a new object: array

Curves y = f (x) are visualized by drawing straight lines
between points along the curve
Need to store the coordinates of the points along the curve in
lists or arrays x and y

Arrays ≈ lists, but computationally much more efficient
To compute the y coordinates (in an array) we need to learn
about array computations or vectorization
Array computations are useful for much more than plotting
curves!

We need to learn about a new object: array

Curves y = f (x) are visualized by drawing straight lines
between points along the curve
Need to store the coordinates of the points along the curve in
lists or arrays x and y

Arrays ≈ lists, but computationally much more efficient
To compute the y coordinates (in an array) we need to learn
about array computations or vectorization
Array computations are useful for much more than plotting
curves!

The minimal need-to-know about vectors

Vectors are known from high school mathematics, e.g.,
point (x , y) in the plane, point (x , y , z) in space
In general, a vector v is an n-tuple of numbers:
v = (v0, . . . , vn−1)

Vectors can be represented by lists: vi is stored as v[i],
but we shall use arrays instead

Vectors and arrays are key concepts in this chapter. It takes separate math
courses to understand what vectors and arrays really are, but in this course we
only need a small subset of the complete story. A learning strategy may be to
just start using vectors/arrays in programs and later, if necessary, go back to
the more mathematical details in the first part of Ch. 5.

The minimal need-to-know about vectors

Vectors are known from high school mathematics, e.g.,
point (x , y) in the plane, point (x , y , z) in space
In general, a vector v is an n-tuple of numbers:
v = (v0, . . . , vn−1)

Vectors can be represented by lists: vi is stored as v[i],
but we shall use arrays instead

Vectors and arrays are key concepts in this chapter. It takes separate math
courses to understand what vectors and arrays really are, but in this course we
only need a small subset of the complete story. A learning strategy may be to
just start using vectors/arrays in programs and later, if necessary, go back to
the more mathematical details in the first part of Ch. 5.

The minimal need-to-know about vectors

Vectors are known from high school mathematics, e.g.,
point (x , y) in the plane, point (x , y , z) in space
In general, a vector v is an n-tuple of numbers:
v = (v0, . . . , vn−1)

Vectors can be represented by lists: vi is stored as v[i],
but we shall use arrays instead

Vectors and arrays are key concepts in this chapter. It takes separate math
courses to understand what vectors and arrays really are, but in this course we
only need a small subset of the complete story. A learning strategy may be to
just start using vectors/arrays in programs and later, if necessary, go back to
the more mathematical details in the first part of Ch. 5.

The minimal need-to-know about arrays

Arrays are a generalization of vectors where we can have multiple
indices: Ai ,j , Ai ,j ,k

Example: table of numbers, one index for the row, one for the
column

 0 12 −1 5
−1 −1 −1 0
11 5 5 −2

 A =

 A0,0 · · · A0,n−1
...

. . .
...

Am−1,0 · · · Am−1,n−1


The no of indices in an array is the rank or number of
dimensions
Vector = one-dimensional array, or rank 1 array
In Python code, we use Numerical Python arrays instead of
nested lists to represent mathematical arrays (because this is
computationally more efficient)

Storing (x,y) points on a curve in lists

Collect points on a function curve y = f (x) in lists:
>>> def f(x):
... return x**3
...
>>> n = 5 # no of points
>>> dx = 1.0/(n-1) # x spacing in [0,1]
>>> xlist = [i*dx for i in range(n)]
>>> ylist = [f(x) for x in xlist]

>>> pairs = [[x, y] for x, y in zip(xlist, ylist)]

Turn lists into Numerical Python (NumPy) arrays:
>>> import numpy as np # module for arrays
>>> x = np.array(xlist) # turn list xlist into array
>>> y = np.array(ylist)

Make arrays directly (instead of lists)

The pro drops lists and makes NumPy arrays directly:
>>> n = 5 # number of points
>>> x = np.linspace(0, 1, n) # n points in [0, 1]
>>> y = np.zeros(n) # n zeros (float data type)
>>> for i in range(n):
... y[i] = f(x[i])
...

Arrays are not as flexible as list, but computational much
more efficient

List elements can be any Python objects
Array elements can only be of one object type
Arrays are very efficient to store in memory and compute with
if the element type is float, int, or complex
Rule: use arrays for sequences of numbers!

We can work with entire arrays at once - instead of one
element at a time

Compute the sine of an array:
from math import sin

for i in range(len(x)):
y[i] = sin(x[i])

However, if x is array, y can be computed by
y = np.sin(x) # x: array, y: array

The loop is now inside np.sin and implemented in very efficient C
code.

Vectorization gives:
shorter, more readable code, closer to the mathematics
much faster code

A function f(x) written for a number x usually works for
array x too

from numpy import sin, exp, linspace

def f(x):
return x**3 + sin(x)*exp(-3*x)

x = 1.2 # float object
y = f(x) # y is float

x = linspace(0, 3, 10001) # 10000 intervals in [0,3]
y = f(x) # y is array

Note: math is for numbers and numpy for arrays
>>> import math, numpy
>>> x = numpy.linspace(0, 1, 11)
>>> math.sin(x[3])
0.2955202066613396
>>> math.sin(x)
...
TypeError: only length-1 arrays can be converted to Python scalars
>>> numpy.sin(x)
array([0. , 0.09983, 0.19866, 0.29552, 0.38941,

0.47942, 0.56464, 0.64421, 0.71735, 0.78332,
0.84147])

Very important application: vectorized code for computing
points along a curve

f (x) = x2e−
1
2 x sin(x − 1

3
π), x ∈ [0, 4π]

Vectorized computation of n + 1 points along the curve
from numpy import *

n = 100
x = linspace(0, 4*pi, n+1)
y = 2.5 + x**2*exp(-0.5*x)*sin(x-pi/3)

New term: vectorization

Scalar: a number
Vector or array: sequence of numbers (vector in mathematics)
We speak about scalar computations (one number at a time)
versus vectorized computations (operations on entire arrays,
no Python loops)

Vectorized functions can operate on arrays (vectors)
Vectorization is the process of turning a non-vectorized
algorithm with (Python) loops into a vectorized version
without (Python) loops
Mathematical functions in Python without if tests
automatically work for both scalar and vector (array)
arguments (i.e., no vectorization is needed by the programmer)

New term: vectorization

Scalar: a number
Vector or array: sequence of numbers (vector in mathematics)
We speak about scalar computations (one number at a time)
versus vectorized computations (operations on entire arrays,
no Python loops)

Vectorized functions can operate on arrays (vectors)
Vectorization is the process of turning a non-vectorized
algorithm with (Python) loops into a vectorized version
without (Python) loops
Mathematical functions in Python without if tests
automatically work for both scalar and vector (array)
arguments (i.e., no vectorization is needed by the programmer)

Small quiz:

What is output from the following code? Why?

import numpy as np

l = [0,0.25,0.5,0.75,1]
a = np.array(l)

print(l*2)
print(a*2)

Plotting the curve of a function: the very basics

Plot the curve of y(t) = t2e−t2 :
from matplotlib.pyplot import * # import and plotting
from numpy import *

Make points along the curve
t = linspace(0, 3, 51) # 50 intervals in [0, 3]
y = t**2*exp(-t**2) # vectorized expression

plot(t, y) # make plot on the screen
savefig('fig.pdf') # make PDF image for reports
savefig('fig.png') # make PNG image for web pages
show()

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A plot should have labels on axis and a title

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.1

0.2

0.3

0.4

0.5

y
My First Matplotlib Demo

t^2*exp(-t^2)

The code that makes the last plot

from matplotlib.pyplot import *
from numpy import *

def f(t):
return t**2*exp(-t**2)

t = linspace(0, 3, 51) # t coordinates
y = f(t) # corresponding y values

plot(t, y,label="t^2*exp(-t^2)")

xlabel('t') # label on the x axis
ylabel('y') # label on the y axix
legend() # mark the curve
axis([0, 3, -0.05, 0.6]) # [tmin, tmax, ymin, ymax]
title('My First Matplotlib Demo')
show()

Plotting several curves in one plot

Plot t2e−t2 and t4e−t2 in the same plot:
from matplotlib.pyplot import *
from numpy import *

def f1(t):
return t**2*exp(-t**2)

def f2(t):
return t**2*f1(t)

t = linspace(0, 3, 51)
y1 = f1(t)
y2 = f2(t)

plot(t, y1, 'r-', label = 't^2*exp(-t^2)')
plot(t, y2, 'bo', label = 't^4*exp(-t^2)')

xlabel('t')
ylabel('y')
legend()
title('Plotting two curves in the same plot')
savefig('tmp2.png')
show()

The resulting plot with two curves

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

0.0

0.1

0.2

0.3

0.4

0.5

y
Plotting two curves in the same plot

t^2*exp(-t^2)
t^4*exp(-t^2)

Controlling line styles

When plotting multiple curves in the same plot, the different lines
(normally) look different. We can control the line type and color, if
desired:
plot(t, y1, 'r-') # red (r) line (-)

plot(t, y2, 'bo') # blue (b) circles (o)

or
plot(t, y1, 'r-', t, y2, 'bo')

Documentation of colors and line styles: see the book, Ch. 5, or
Unix> pydoc matplotlib.pyplot

http://hplgit.github.no/primer.html/doc/pub/plot/plot-bootstrap.html

Quick plotting with minimal typing

A lazy pro would do this:
t = linspace(0, 3, 51)
plot(t, t**2*exp(-t**2), t, t**4*exp(-t**2))

Let’s try to plot a discontinuous function
The Heaviside function is frequently used in science and
engineering:

H(x) =

{
0, x < 0
1, x ≥ 0

Python implementation:
def H(x):

if x < 0:
return 0

else:
return 1

�4 �3 �2 �1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Plotting the Heaviside function: first try

Standard approach:
x = linspace(-10, 10, 5) # few points (simple curve)
y = H(x)
plot(x, y)

First problem: ValueError error in H(x) from if x < 0
Let us debug in an interactive shell:
>>> x = linspace(-10,10,5)
>>> x
array([-10., -5., 0., 5., 10.])
>>> b = x < 0
>>> b
array([True, True, False, False, False], dtype=bool)
>>> bool(b) # evaluate b in a boolean context
...
ValueError: The truth value of an array with more than
one element is ambiguous. Use a.any() or a.all()

if x < 0 does not work if x is array

Remedy 1: use a loop over x values
def H_loop(x):

r = zeros(len(x)) # or r = x.copy()
for i in range(len(x)):

r[i] = H(x[i])
return r

n = 5
x = linspace(-5, 5, n+1)
y = H_loop(x)

Downside: much to write, slow code if n is large

if x < 0 does not work if x is array

Remedy 2: use vectorize
from numpy import vectorize

Automatic vectorization of function H
Hv = vectorize(H)
Hv(x) works with array x

Downside: The resulting function is as slow as Remedy 1

if x < 0 does not work if x is array

Remedy 3: code the if test differently
def Hv(x):

return where(x < 0, 0.0, 1.0)

More generally:
def f(x):

if condition:
x = <expression1>

else:
x = <expression2>

return x

def f_vectorized(x):
x1 = <expression1>
x2 = <expression2>
r = np.where(condition, x1, x2)
return r

if x < 0 does not work if x is array

Remedy 3: code the if test differently
def Hv(x):

return where(x < 0, 0.0, 1.0)

More generally:
def f(x):

if condition:
x = <expression1>

else:
x = <expression2>

return x

def f_vectorized(x):
x1 = <expression1>
x2 = <expression2>
r = np.where(condition, x1, x2)
return r

if x < 0 does not work if x is array

Remedy 3: code the if test differently
def Hv(x):

return where(x < 0, 0.0, 1.0)

More generally:
def f(x):

if condition:
x = <expression1>

else:
x = <expression2>

return x

def f_vectorized(x):
x1 = <expression1>
x2 = <expression2>
r = np.where(condition, x1, x2)
return r

Back to plotting the Heaviside function

With a vectorized Hv(x) function we can plot in the standard way
x = linspace(-10, 10, 5) # linspace(-10, 10, 50)
y = Hv(x)
plot(x, y, axis=[x[0], x[-1], -0.1, 1.1])

�4 �3 �2 �1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

How to make the function look discontinuous in the plot?

Newbie: use a lot of x points; the curve gets steeper
Pro: plot just two horizontal line segments
one from x = −10 to x = 0, y = 0; and one from x = 0 to
x = 10, y = 1

plot([-10, 0, 0, 10], [0, 0, 1, 1],
axis=[x[0], x[-1], -0.1, 1.1])

Draws straight lines between (−10, 0), (0, 0), (0, 1), (10, 1)

The final plot of the discontinuous Heaviside function

�4 �3 �2 �1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

�4 �3 �2 �1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

Removing the vertical jump from the plot

Question
Some will argue and say that at high school they would draw H(x)
as two horizontal lines without the vertical line at x = 0, illustrating
the jump. How can we plot such a curve?

Plot function given on the command line

Task: plot function given on the command line
Terminal> python plotf.py expression xmin xmax
Terminal> python plotf.py "exp(-0.2*x)*sin(2*pi*x)" 0 4*pi

Should plot e−0.2x sin(2πx), x ∈ [0, 4π]. plotf.py should work for
“any” mathematical expression.

Solution

Complete program:
from numpy import *
from matplotlib.pyplot import *

formula = sys.argv[1]
xmin = eval(sys.argv[2])
xmax = eval(sys.argv[3])

x = linspace(xmin, xmax, 101)
y = eval(formula)
plot(x, y, title=formula)
show()

