UNIVERSITETET I OSLO
 Det matematisk-naturvitenskapelige fakultet

Examination in: \quad\begin{tabular}{l}
INF1100

programming

applications

\quad

Introduction

with

to

scientific
\end{tabular}

Day of examination: Tuesday, October 12, 2010
Examination hours: 15.00-19.00.
This examination set consists of 5 pages.
Appendices: None.
Permitted aids: None.

Make sure that your copy of the examination set is complete before you start solving the problems.

- Read through the complete exercise set before you start solving the individual exercises. If you miss information in an exercise, you can provide your own reasonable assumptions as long as you explain that in detail.
- The maximum possible score on the exam is 25 points. The maximum number of points is listed for each exercise (a correct answer of a subquestion ((a), (b), etc.) gives 1 point).

Exercise 1 (10 points)

What will be the output of the print statement in the programs below?
(a)

```
q = 3.141
print '%.1f' % q
```

(b)

```
for i in range(2, 6, 2):
    print i-1
```

(c)
$\mathrm{a}=4$
$\mathrm{~b}=10 / \mathrm{a}+1$
print b
(d)
$A=[14]+[16,18]+[25,40]$
del A[1]
print A
(e)
$A=[-1,9,2,5,19,21,33]$
print A[4:-1]
(f)

```
values = []
value = 0
stop \(=1\)
incr \(=0.2\)
while value <= stop:
        values.append (value)
        value += incr
for v in values:
        print v
```

(g)
print [0.2*i for i in range(6)]
(h)
def $f(x)$:
return $\mathrm{a} * \mathrm{x} * * 2$
$\mathrm{x}=3 ; \mathrm{a}=-2$
print ${ }^{\prime} \%$ g' \% $f(x+a)$
(i)

```
for i in range(2, 5):
    for j in range(i-1, i+3):
        if i != j:
            print i, j+1
```

(Continued on page 3.)
(j)

```
def branch(argument):
    r = 0
    if argument == -1:
            r = -1
    elif argument == 3:
        r = 3
    elif argument > 3:
        r = -2
    else:
        r = 10
    return r
print branch(6)
```


Exercise 2 (2 points)

What is wrong with the programs below?
(a)

```
\(\mathrm{a}=9.1\)
b = raw_input('Give b: ')
print a*b
```

(b)

```
1plus1 = 1 + 1
print 1plus1
```


Exercise 3 (1 point)

The following program aims to sum the integers $1,2, \ldots, n$: $\sum_{i=1}^{n} i$. Explain if the result s is correct or not.

```
import sys
n = int(sys.argv[1])
s = 0 # sum of integers
for i in range(1, n, 1):
    s += i
print s
```


Exercise 4 (4 points)

A function $p(x)$ is given as

$$
p(x)=A e^{-a x} \sin (w x),
$$

with $A>0$ and $a \geq 0$. Make a program that prints out a table of x and $p(x)$ values. Let the x coordinates in the table be uniformly distributed in $[0,5 / a]$. Read the number of x coordinates in the table, A, a, and w from the command line. Use exception handling to ensure that the user provides enough command-line arguments and that the values are legal.

Exercise 5 (1 point)

Extend the program from Exercise 4 with statements for plotting the $p(x)$ function. (You may use the same coordinates as in the table.)

Exercise 6 (4 points)

An arbitrary triangle can be described by the coordinates of its three vertices: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$. The area of the triangle is given by the formula

$$
A=\frac{1}{2}\left|x_{2} y_{3}-x_{3} y_{2}-x_{1} y_{3}+x_{3} y_{1}+x_{1} y_{2}-x_{2} y_{1}\right|
$$

while the circumference ("omkrets" på norsk) is computed as

$$
\begin{aligned}
C= & \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}+\sqrt{\left(x_{3}-x_{2}\right)^{2}+\left(y_{3}-y_{2}\right)^{2}}+ \\
& \sqrt{\left(x_{1}-x_{3}\right)^{2}+\left(y_{1}-y_{3}\right)^{2}} .
\end{aligned}
$$

Write a function triangle (corners) that returns the area A and the circumference C of a triangle whose vertices are specified by the argument corners, which is a nested list of the vertex coordinates. For example, corners can be $[[0,0],[1,0],[0,2]]$ if the three corners of the triangle have coordinates $(0,0),(1,0)$, and $(0,2)$. Demonstrate how to call the triangle function to compute the area and the circumference of the triangle with vertices $(-3,0)$, $(3,0)$, and $(0,4)$.

Exercise 7 (3 points)

Make a function for solving the system of difference equations

$$
\begin{align*}
s_{j} & =s_{j-1}+a_{j-1}, \tag{1}\\
a_{j} & =-x^{2}((2 j+1) 2 j)^{-1} a_{j-1}, \tag{2}
\end{align*}
$$

with initial conditions $s_{0}=0$ and $a_{0}=x$. In the function, store only the newest two s_{j} and a_{j} values (i.e., do not store all the s_{j} and a_{j} values in arrays). The function should take two arguments, x and N, and return the two values s_{N} and $\left|a_{N}\right|$. Write a main program that prints out the value of s_{20} for $x=\pi$.

END

